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Abstract

In this paper we introduce a general notion of a symmetricecoralid for the
finite and infinite dimensional case, and prove that one caluakethe seminegative
curvature of the Thompson part metric in this general sgttimlong with standard
inequalities familiar from operator theory. As a speciase&awe prove that every
symmetric cone from a JB-algebra satisfies a certain cotyvexioperty for the
Thompson part metric: the distance function between pa@&wtdving in time on two
geodesics is a convex function. This provides an affirmadivewer to a question of
Neeb [22].

1. Introduction

Let A be a unitalC*-algebra with identitye, and let A* be the set of positive
invertible elements ofdA. It is known thatA* is an open convex cone in the space
H(A) of hermitian elements. The geometry &f has been studied by several au-
thors. One approach has been to endbivwith a natural Finsler structure and metric
and use these for a substitute for the Riemannian geometrynomly considered in
finite-dimensional examples. One particular focus in tteergetry has been the study
of appropriate non-positive curvature properties. One/glemt notion of non-positive
curvature is a purely metric one, that of convexity of the noetin [3], [4] and [9],
Andruchow-Corach-Stojanoff and Corach-Porta-Recht teh@vn the convexity of the
distance function along two distinct geodesics and its \edgemce to the well-known
Loewner-Heinz inequality. In [22], Neeb established anrappate differential geomet-
ric notion of seminegative (equal non-positive) curvattoe certain classes of Finsler
manifolds.

Our approach is somewhat different from either of the premedWe replace the
differential geometric structure by the structure of a sygtno space endowed with a
midpoint operation and study seminegative curvature viavexity of the metric. In
[16] we obtained the convexity of the metric for symmetriasps with weaker metric
assumptions than those enjoyed by the Finsler metrid\tn

The Finsler distance or length metric & used in the earlier referenced papers
agrees with the Thompson metric, which is widely known ansl imany applications in
general convex cones of normed spaces ([27], [24]). Theamodine passing through
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a andb is given byya p(t) = a/?(a~/?ba"/?)!al/? and the Thompson metric is defined
by d(a, b) = maxloglla—Y?ba=%/?||, log|a/?2b—ta~/?||}. The convexity theorem states
that fora,b,c,d € A*, the real functiort — d(yap(t), yc,q(t)) is convex. For Riemann-
ian manifolds this convexity condition is equivalent to tm@nifold having non-positive
curvature in the Riemannian sense. In general, howeves, dtweaker notion than the
more prevalent metric notion of a CéBpace arising from Alexandrov’s metric notion
of spaces of non-positive curvature; see Section 11.1.18 the following appendix in
(8] (ct. [5], [10]).

The main purpose of this paper is to extend the convexityltresuA* to much
more general cones endowed with a symmetric structure thatopriately interacts
with the conal structure. A special case is the symmetricecarising as the set of
invertible squares of a Jordan-Banach algebra (JB-aljelrar general results applied
to this particular case provide an affirmative answer to astjie raised by Neeb [22].
A subsidiary goal of the paper is to present a very generaldveork, that of a general
notion of a symmetric cone, in which one can derive and stualyous inequalities,
such as those familiar from operator theory.

2. Symmetric spaces with midpoints

We recall from ([14], [15]) the underlying algebraic stru with which we work
and basic properties thereof. #symmetric sefcalled dyadic symsetin [14]) con-
sists of a binary systemX( o), with left translationS;y := x e y representing the point
symmetry throughx, satisfying for alla, b, c € X:

(Sl)aea=a (S5 a=a);

(S2)ae(aeb)=b (§% =idx);

(S3)ae(bec)=(aeb)e(aec) (S = SpS);

(S4) the equatiorxea =b (S¢a =b) has a unique solutior € X, called themidpoint
or meanof a and b, and denoted bwa f b.

The axioms bear close resemblance to the Loos axioms for anegnic space [21].
A binary system X, o) satisfying (S1), (S2), and (S3) also satisfies (S4) if anly on
if it is a quasigroup. Thus the preceding structures are edferred to assymmetric
guasigroups Systems satisfying only Axioms (1)—(3) are callegmmetric setgor in-
volutive quandlesn knot theory circles).

A pointed f-symmetric set is a tripleX, e, ¢), where ¥, o) is a i-symmetric set
ande € X is some distinguished point, called the base point. In thitirgy we define

xP=¢, x1:=Sx, x2:=Se, xY?:i=etx

and inductively from these definitions all dyadic powers deéined so that the follow-
ing rules are satisfied:

(Xr)s - er, X" # xS = X(HS)/Z.
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If we consider the dyadic rational® endowed with thei-symmetric structure e b =
2a — b (the reflection ofb througha), thena b = (a+b)/2, the usual midpoint, and
the mapt — x': D — X is both ae-homomorphism ang¢-homomorphism. From this
fact the preceding rules (and others) easily follow.

The displacement grou@(X) (also called the transvection group) oft@ymmetric
set X is the group generated under the composition by all tramsitons of the form
5SS, x, ¥y € X. It follows from Axioms (S2) and (S3) that these are autorhisms
and thus there is a group actiog, k) — g.x: G(X) x X — X with G(X) acting as
automorphisms. IfX is pointed with base poir, then G(X) is generated by al§ S
and X embeds intoG(X) as a twisted subgroup (closed undpsé h = gh~1g) via the
guadratic representation QX — G(X) defined by Q(x) = §S.. The imageQ(X)
is a pointedg-symmetric set under the precedimgoperation and the quadratic repre-
sentation is an isomorphism betweeh and Q(X). In particular, Q(X) is uniquely
2-divisible andQ(x £ y) = Q(X) # Q(y), Q(x¥?) = Q(x)¥/? ([14, Theorem 5.4]). For
X, y € X, we write interchangeably as convenient

X.y = Q(x)y = Q(x)(y).

REMARK 2.1. The following useful calculation rules are derived ] or can
easily be derived by the methods there:
(1) Q(Q(X)y) = Q(x)Q(Y)Q(x) or (x.y).z = X.(y.(x.2)).
2) QM) *=Q(x™).
(3) QY™ =Q(x Yyt or (x.y)t=x"ty™h
(4) Se xS=x oXS= X2r—s' Q(Xr)XS =x"'.xs= X2r+s’ N i xS = x(r+s)/2

Lemma 2.2 (Riccati lemma). In a pointed fi-symmetric set X the geometric
mean ag b is the unique solution in X of the Riccati equation

Qx)at=b
and is given by
a ﬁ b= Q(al/Z)(Q(a—l/Z)b)l/Z - a1/2.(a—1/2.b)1/2
(cf. the last paragraph in [21). Furthermore the geometric mean operation satisfies
(i) atb=bta,
(i) (agb)y*t=atgb?,
(i) g.(attb)=(g.a)1(g.b) for any ge G(X).

Lemma 2.3. In a pointedg-symmetric set X

agQ)al=b, VvabeX.
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Proof. The lemma follows from the fact that= Q(b)a~! if and only if b=at x,
which follows by the Riccati lemma. O

3. Symmetric spaces with convex metrics

We now impose metric and topological structure ugesymmetric sets.

DEerINITION 3.1. A pointed symmetric space with convex metigca pointed
g-symmetric setP equipped with a complete metraly -, -) satisfying for allx,y € P
andg € G(P)

(i) d(g.x,g9.y) =d(x,y),

(i) d(x7*, y™) =d(x, y),

(iiiy d(x/2, y*¥?) < (1/2)d(x, y),

(iv) X = x?: P — P is continuous.

A symmetric space with convex metiica f-symmetric set equipped with a complete
metric that is a pointed symmetric space with convex metrith wespect to some
pointing.

ExampPLE 3.2. LetR be equipped with the standafdsymmetric operatiorx e
y :=2x —y and the usual metric. Thexy = (x+y)/2, the usual midpoint operation,
and the metric is convex. Thu®R(e, 0) is a pointed symmetric space with convex
metric.

We recall some basic results about symmetric spaces witheganetrics from [16].

Theorem 3.3 ([16]). Let P be a symmetric space with convex metiitien for
distinct x, y € P, there exists a unique continuous homomorphissy, (called an
s-geodesiy of g-symmetric sets fronR into P satisfyingey,y(0) = x and ay y(1) = y.
Furthermore the maps

X, Y)>xey:PxP =P, (t,X,y)— axyt) =xfiiy:RxPxP—>P

are continuous

The elementx 4; y is called thet-weighted mearof x andy. Note thatx fy =
Xfl12Y.

Theorem 3.4 ([16]). Let P be a symmetric space with convex metkor every
pair (8, y) of s-geodesicsthe real function

t=d(g), y®)

is a convex functian
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REMARK 3.5. We note that the uniquegeodesic line satisfyingy,y(0) =x and
axy(l)=yis

axy(t) = X gy = xY2 (x 2y

and oy x(1 —t) = ay,y(t), t € R ([16]). In particular,

(3.1) QX' = Q(Y)QXYA(Q(x2)y?) .
Indeed,

QY ™ M(QMX)' =y 2 X =X i Y2
= Q(x"2)(Q(x 2y At
= Q(xA)(Q(x?)y?) 1.

4. Convex cones with convex metrics

Let V be a Banach space and i@t henceforth denote a non-empty open convex
cone of V: tQc Qforalt>0 Q+QcQ, andQn — = {0}, whereQ denotes
the closure of2. We further assume tha® is a normal cone: that is, there exists a
constantK with ||x|| < K|ly| for all x, y € € with x <y. For a normal con&?, the
relation

x<y ifandonlyif y—xeQ

is a partial order. We writx < y if y —x € Q.

Any membere of Q is an order unit for the ordered spacé, (<), and the cone
is normal if and only if the order unit norm determined byis compatible, i.e., de-
termines the topology of/. In this case (< x <y implies || x|| < |ly| with respect to
the order unit norm, that is, we may assume without loss otggity thatK = 1. We
henceforth make this assumption. In fact, foe V, ¢ + y/M € Q for a sufficiently
large M, and henceMe > y > —Me. Moreover,y = M[(y/M +¢) —¢e] € R — Q, i.e.,
V =Q — Q. By Proposition 1.1 in [24], for a normal cor@, the order unit norm is
compatible. The normality condition of the order unit fol® from its definition. See
[24], [12, Section 1.2], and [29, Section 14] for more detail

A.C. Thompson [27] (cf. [23], [24]) has proved th&t is a complete metric space
with respect to the Thompson part metric defined by

e ) o)

where M(x/y) :=inf{A > 0: x < Ay}. The Thompson metric can be alternatively real-
ized as an appropriately defined Finsler length metric. &#cis an open subset of
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V, it carries a natural structure of (real) differentiablenifeld and its tangent space
T2 can be identified tov = {x} x V (cf. [13]). Forx € @ andv € V = T,Q, we
define the Finsler metric by the order unit norm far

[v]x :=inf{t > 0: —tx < v < tx}.

The Thompson part metrid(x, y) agrees with the Finsler distance fromto y:

1
@.1) mKw=m4A|wmumm:ye3ymrm,ﬂn=ﬁ

where S denotes the set of piecewi€' mapsy: [0, 1] — Q ([24, Theorem 1.1]).

Lemma 4.1. Let Q be an open convex normal cone in a Banach spaceSup-
pose that there is a pointegtsymmetric structure orf2 such that the displacements
Q(x): @ — Q are positively homogeneous for allex. Then(ix)~! = (1/A)x~* and
Me = (re)t for all A > 0 and all dyadic rationals t Moreover ux iy Ax = u*tAtx for
all x € Q, u, A > 0 and all dyadic rationals t Furthermore the following conditions
are equivalent
(i) (Ax)¥2=axY? for all x € Q and A > 0;

(i) (Ax)t =Atxt for any dyadic rational t and x Q and A > 0;
(i) Q(rx) =A%2Q(x) for any xe Q and A > 0.

Proof. Let A be the set of all dyadic rationatssuch thatite = (Ae)t. It is im-
mediate that 0, & A. Setx = ie. Then for any dyadic rational by homogenity of
Q(x) and Remark 2.1

X" = Q(x?)x = Q(x'/?)(re) = AQ(X"?)e = Ax".

A simple induction then yields for any positive integer x!*" = A"x' (for example,
X2 = Q(x¥?2)xt*1 = Q(xY2)(Ax!) = AQ(x/2)xt = Ax!*L = A2xY). It follows that x" =
A% = A"e and thusA includes all positive integers.

For a positive integen andt = —n, ¢ = x™ ™" = A"x™". Thusx ™" =A17"¢ and A
includes the negative integers as well.

The preceding results apply to any> 0, in particular tou = A/2". Thus for
y = ue, y2' = u?"e = re. It follows that (e)¥?" =y = AY%"¢, i.e, 1/2™ e A. For any
integern,

()" = ((he)EY = o) = (ue)" = pule = 20,

where the penultimate equality follows from the first two ggmaphs fora = p.
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Suppose thapr and A are positive real numbers. We recall from Remark 3.5 that
X fiy y = x¥Y2.(x"2.y)t = Q(x)Y?(Q(x)~Y2y)t. Then the preceding result implies that

t
e 2 = QUue)Y2(Que) V2 (re))t = Q(u€)1/2<%Q(u8)‘1/2(u8))
t t t
= Quue?( 2e) = Quue(4) o= (4 ) Qe
1 m 1"
}\' t
- (—) e = (e
m

and forx e Q,
px e ax = Q(xY2)(ue g he) = QOMA)(W'2e) = (AN Q(XY2)e = (uAYx.
Next, we show that
(4.2) 0x)"t= A Ix L
It follows from (re)t = 171e, Ax = AQ(x¥?)e = Q(x¥/?)(re) and Remark 2.1 that
()= (QIXMA)(he)) = QI YA (he) = Qx HMA)(te) = A TQX MA)e = A I

We next prove the equivalence of the conditions in the star¢mAssumexx)Y/? =
VAxY2 for x € @ and A > 0. To prove (iii), we first calculate

x gy = x2(e g A(x M2y)) = xM2 (22 = X2 (VA((x Y2y
= VX2 (e 1 xY2y) = VA(x 1 y).

By the Riccati lemma,zz = Q(Ax)y implies thatix =z y~* or x = (1/A)(zg y™) =
((1/2®»2) ¢ y~%, and again by the Riccati lemma we have/33)z = Q(xX)y or z =
12Q(x)y. This shows thaQ(ix) = A2Q(x) for any x € Q and A > 0.

(iii) implies (ii). SupposeQ(rx) = A2Q(x) for x € @ and A > 0. From ¢x)? =
Q(Ax)e = A2Q(X)e = A%x? and by a simple inductionik)" = A"x" for any positive
integern. Indeed, if ¢x)X = Akxk for k=1, 2,..., n, then

()\.X)n”' - Q()\.X)()\.X)nil - )\'ZQ(X)()\nlenfl) - )Ln+1xn+1_

By (4.2), (.x)™" = ((Ax)™1)" = (A ~Ix~1)" = A~"x~" for any positive integen. Further-
more, §Y2"x%2")2" = ix and hence (x)/?" = A1/2"x¥/2" for any integerm. For any
integern,

()\'X)n/Zm — (()\‘X)l/Zm)n — ()\'l/Zle/Zm)n — )\‘n/Zan/Zm.

Therefore (ii) follows, and the trivial implication (ii) iplies (i) completes the proof.
]
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The next theorem gives the main result of this paper. Noté¢ aHapowers are
computed in the giveri-symmetric structure of the cone.

Theorem 4.2. Let Q2 be an open convex normal cone in a Banach spaceSup-
pose that there is a pointeglsymmetric structure o2 satisfying
(i) x¥2 < (e+x)/2.
(i) the squaring map x> x2 = Q(x)e is continuous(in the relative norm topology
of Q).
(iii) every basic displacement (§) is continuous and linearthat is additive and
positively homogeneousn .
Then is a symmetric space with convex metric with respect to thempson metric
that satisfies the equivalent conditio¢} (ii) and (iii) of Lemma 4.1.Furthermore (i)
the order-reversing property of inversipfii) the harmonic-geometric-arithmetic mean
inequality and (iii) the Loewner-Heinz inequality all haldfor a, b € €,
() bl<atlifa<hb,
(i) 2@ t+bHt<atb<(1/2)(a+b), and
(i) a¥2 <bY?if a <b.

Proof. The proof proceeds in steps.

Step 1. Each QXx) extends to an invertible bounded linear operator on V that
is an order-isomorphismLet T: Q — Q be linear (additive and positive homogeneous)
and continuous. Ley: @ x @ — V be defined by (X, y) =x—Yy. Theny is an open
mapping that is surjective sincé = 2 — Q (see the second paragraph of this section).
One verifies directly thafl extends to a map, again call@id from V to V defined
by T(x—y) =T(X) — T(y) and that the following diagram commutes:

v—L vy

L

axo L axa

It is straightforward to verify tha: V — V is an additive homomorphism and homo-
geneous with respect to positive scalars. Since an additiveomorphism is homo-
geneous for the scalarl, it follows thatT is linear. Sincey is open, it is a quotient
map and thusT: V — V is continuous, hence bounded, sinEex T is continuous.
For T = Q(x), we conclude from hypothesis (iii) thaD(x) extends (uniquely) to a
bounded linear map. Since members@(f2) are compositions of basic displacements,
the same conclusion holds for them.

Since Q(x)™! = Q(x™1), Q(x) is invertible with inverseQ(x~1) on Q. It follows
readily that their extensions are inverses. Sif@&) preserves2, by continuity it
also preserves?, and thus is order-preserving an. Since Q(x™1) is similarly order-
preserving, it follows thatQ(x) is an order-isomorphism. It follows that any member
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of G(R2) is an order-isomorphism, being a composition of such. ldesach member
of G(R2) is an isometry for the Thompson metric, since the latteraéngd from the
order. Thus Axiom 3.1 (i) is satisfied.

STEP 2. The inversion x— x~! = Sx is order reversing

Suppose that & x < y. Then by the Riccati lemma 2.2 we have

Qlytx)y t=x<y=Q(xtyx L

Since Q(yix) = Q(x#Yy) is an order-isomormisphism by Step 1, the conclusion ¥alo
Step 3. The harmonic-geometric-arithmetic mean inequality holds

“14y-1\1 +
(4.3) <%> Sxﬁygxzy.

Since each displacement is linear and order preservin@ and preserves the geo-
metric mean operation by Lemma 2.2, we have
x £y = (Q(x*?)e) £ (Q(xY*)Q(x?)y)
=xY2 (e g (xM2y))

i +y—1/2
2x1/2.<8 x2 .y)

the geometric-arithmetic mean inequality. The harmomorgetric mean inequality fol-
lows from the order reversing property of inversion (Ste@2)l the geometric-arithmetic
mean inequality

Lemma2.2

x ey HH

-1 —1\ -1
St§p2 Xt +y .
- 2

STEP 4. The squaring map %> x? is continuous for the Thompson metri€here-
fore Axiom 3.1 (iv) is satisfied Indeed, this is a consequence of the agreement of the
norm topology with that of Thompson metric ([24, Propositib.1]).

STEP 5. Inversion is an isometry with respect to the Thompson mefrierefore
Axiom 3.1 (i) is satisfied Let x, y €  and letA > 0 such thatx < Ay. Then since
Q(y*?) is linear and preserves the order, we have

xXgy

y Y2 x <y 2 (ny) = 2e.
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The order reversing property of the inversion implies that

1 Lemma4.11 .

(y 2x) =y 2xt > (he)” e

Again by linearity,

1 1
-1 12 _1
x o=y '</\8> o

This string shows thaM(y—1/x~1) = M(x/y) and henced(x %, y~1) = d(X, y).
STEP 6. For ac , define §: @ — Q by fi(x) = (1/2)(x + Q(@)x~1). Then

nIim fl(x)=a, VxeQ.
(See [20, Theorem 7] for symmetric cones of Euclidean Joalgabras.)
First, we observe that the mafy is continuous (inversion, the displacements, and
the linear operations are continuous). Suppose that thatide has a limit point, say
b. Then by continuity,b = fa(b) = (1/2)(b + Q(a)b~1) and thenb = Q(a)b~1. By the

Riccati lemma,a=bfb=Db. The convergence is proved by several substeps.
(i) fJ(x)>a: By the G-A (geometric-arithmetic mean) inequality and lrean2.3,

fa(x) = %(f;“l(X) + Q@) 2 (x) ™) = 7 (%) £ Q(a) frt(x) ™ = a.

(i) Q@)fMx)! < a: By linearity, the invertibility of Q(a), and the equality
(QE@)x)™ = Qa)~*x1,

-1
Q@) 126 = Q@) (127200 + Q@ 109
1 -1
- (3@ 0+ 157007
1 -1
= (@ T e 1w )

Q@ 0 7 £71(x)

Lemma 2.3
="""a.
(i) I f7(x) —all < 1/2" Y| fa(x) —all: By (i) and (i),
n — 1 n-1 1 n-1 -1 1 n-1
0= () —a=3({7'(x) -~ a) - 5@~ Q@)™ = 5(f17) —a),
and then by the normality of the cone,

1
I f2(x) —all < 5| fo(x) —all.
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STeEP 7. The Loewner-Heinz inequality hotds
(4.4) O<a<b implies a¥?<b'/?
By Step 6, it is enough to show statemeft: f1.(c) < fll.(e) foralln=0,1,2,. ..
whenever O< a < b (cf. [20, Corollary 9]). However, for the induction to prak

smoothly, we prove additionally statemeBf: Q(a%?)fJ.(e)™* < Q(bY?)f}.(e) "
The statemenfp reduces tee < ¢ and By asserts that

a=Q@"*)(e™) < QY)Y =b,
which is true by hypothesis. Suppose thgt and B¢ hold for k =n — 1. Then
(22(6) = 5 (1126 + Q@) 174() )
< (13460 + Q@ 134() ™)

1
= (f[?l/zl(g) + Q(bl/z) fb1/2 (e)~ )
= b1/2 (e),

where the two inequalities are applications &f_1 and B,_1 respectively.
Showing

(4.5) Q(al/z) fa1/2(8) ! = Q(bl/z) fb1/2(8)71

is equivalent (by inverting) to showing
(4.6) Q(a_l/z) fal/z (e) = Q(b_l/z) fbl/Z (e).
However, since

Q(a_l/z) fal/Z (e) = _(Q(a_l/z) fal/z (e) + fal/z (8)_1)

Q(b 1/2) fbl/z(s) — _(Q(b 1/2) fb1/2 ( )+ ft;‘ll/zl(ff)il)

and sincef}; o)t > fbl/2 (6)~* (by induction hypothesisA,_; and inversion), (4.6)
follows from

(4.7) Q@ Y3 f1:'e) = Qb2 fil(e)

or

(4.8) Q@) fhz'(e) ™ = Q™) frt(e) ™,
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which is true by the inductive hypothesi;,_;.

STEP 8. (ra)Y2=/a%? for any » > 0 and ac 2, and therefore the equivalent
conditions of Lemma 4.1are satisfied To prove this we use mainly the facts that
(Q(X)Y) = Q(x Yy ! (Remark 2.1) andix)~* =1 ~*x~! (Lemma 4.1). By Step 6, it
is enough to show statemeh: f(m)m(s) VA fal/z(k_l/ze) for all positive integersh.
Setb = (1/+v/A)e. The statement; follows by a direct computation:

fuape(e) = %(e + Q(ra)Y?%e) = %(8 +2a) = %(b + Q@%b 1) = v/a faz(b).

To proceed by induction, we need also to include the follgwiim our induction:

(4.9) Q(ra)?(x f2(0))” 1= QY?)( fal/z(b))_l, n=1,2,....

StatementB, is true forn = 1 because
-1

1
Q) (0 ue(0) = Qa2 -+ Q) ) =2 QG ( -+ via)

(7

:2()L 1/2 1+A.1/28) 1=2Q(a1/2)(k‘1/28+Q(al/z)(kl/ze))_l
=Q(@"?)(farz(b)) ™.

-1
Q(ra)~ 1ﬂ(m)) :§(X_3/2a_1+k_1/28)_1

Next, suppose thaB, holds. This implies that
(4.10) 2Q@"%)Q(ra)~2Q@"?)(fh.(b) ™! = Q@) (fh.(0) ™.

Indeed, Q(al/z)(fal/z(b)) 1= Q(Aa)l/z(k fal,z(b)) 1= (1/)\)Q()\a)1/2(fal,z(b))‘l implies
that AQ(ra) 2Q(a¥3)(f1.(b)) X = (1.(b) L. Then
Q(a)Y2(n 114(b)) 1 = 2Q(1a)/2(x 11 (b) + AQ(@Y2)(F1 (b)) 1)
= (Q(a) Y21 11,.(b)) + AQ(a)"Y2Q(aY2) (11, (b))~
= 2Q@Y2)(11.(b)) + 2Q(1a)"2Q(a¥?)(f1.(b)) 1)~
= 2Q(a?)(1,,(b) + 2 Q@2 Q(ra) ¥2Q@Y2)(f1, (b)) 1)
“29 2Q(a?)(11,.(b) + Q@Y2)(f1.(0)) ™)™
= Q@Y2)(fae(F2(b)) " = QEYA)(f(b) L,

where the third equality follows from statemeB} and taking inverses.
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Finally, suppose additionally tha, holds, that is, f(’;a)l/z(e) ffal/z(b). Then

Oita(e) = Tgapa(Taye() = frape(va f2(0)
(f % 0(b) + Qa2 (VA £1,(b) 1)

_f
T2
(49)\/—

(f22(b) + Qra)Y2(A f1.(b)) 1)

(fh2(b) + Q@Y2)(f.(b)™)
= x/— . favz(f12(0)) = VAT (D).

STEP 9. For X,y € Q,
1/2 ,1/2 1
A%, y7) = Sd(x, ).

ThereforeAxiom 3.1 (iii) is satisfied It is enough to show thatl(x/y) > M(x¥/?/y/?)2.
This follows from the Loewner-Heinz inequality and Step 8:
M(x/y) =inf{A > 0: x < Ay}
> inf{A > 0: x¥2 < (Ay)Y2 = VayY?)
= inf{t?: x¥2 < tyY/?}
= M(xY2/yY2)2, ]

5. Symmetric cones

Our earlier results motivate the following definition.

DErFINITION 5.1. Let be an open normal convex cone in a Banach space
equipped with afi-symmetric structure making it @&symmetric set. Ther2 is a
f-symmetric conéf the following conditions are satisfied:

(i) xgy<((x+y)/2forall x,yeQ;
(i) the following maps are continuous:

X, Y) > Xey: QxQ—=Q, (t,X,yY)> axy(t) =xXthy:RxQx Q- Q;
(iii) Every member of the displacement gro@(£2) extends to a bounded linear order-

preserving operator oN.
(iv) uxtgry =pr A (xgy) forall A, u >0, X,y € Q andt € R.
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The next result follows essentially from Theorem 4.2.

Corollary 5.2. Let Q be an open convex normal cone in a Banach space V
Suppose that there is a pointgesymmetric structure o2 satisfying
() 2x <e+x?
(i) the squaring map x> x? = Q(X)e is continuous(in relative norm topology of2),
(iii) every basic displacement (§) is continuous and linearthat is additive and
positively homogeneousn .
ThenQ is a pointed symmetric space with convex metifie Thompson metric whose
metric topology agrees with the relative topolpggd also ai-symmetric coneConverse-
ly, a g-symmetric cone satisfies these three conditions with otgpeany pointing

Proof. Assume conditions (i)—(iii). Note that singe— x? is a bijection, we can
rewrite hypothesis (i) in the form
(i) x¥? < (s +x)/2.
Thus the hypotheses of Theorem 4.2 are satisfied. Hence tmeegigc-arithmetic mean
inequality holds, i.e., condition 5.1 (i) is satisfied. Pedy 5.1 (ii) follows directly
from Theorem 4.2 and Theorem 3.3. By Step 1 of the proof of Témo04.2, each
member ofG(2) extends to an invertible bounded linear operatonbthat is an order
isomorphism, so Property 5.1 (iii) is valid. Property 5/)(fiollows for dyadic rationals
t from Step 8 of Theorem 4.2 and Lemma 4.1.:

X e Ay = Q((ux)A)(QUux)~YA)ny)!
= QU2 QA Ay)!
= QM) (A QX 2)y)!
= () QIMA)(Q(XHA)y)!
= A (x g y).
That it holds for allt € R then follows from continuity.
Step 9 of the proof of Theorem 4.2 establishes that the Thompsetric is a con-
vex metric, and Step 4 that its metric topology agrees with riflative topology.

Conversely assume that we choose some pointthe f-symmetric coneR. Then
using 5.1 (i), we have

32
2x:2(snx2)§2<8 2X >:e+x2,

and thus hypothesis (i) is satisfied. Hypotheses (ii) arjl féllow immediately from
5.1 (i) and 5.1 (iii) resp., sinc&®=xe¢. O
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ExAMPLE 5.3. LetA be a unitalC*-algebra with identitye, and letA* be the
set of positive invertible elements @f. It follows readily from Corollary 5.2 and stan-
dard basic facts from the theory @f*-algebras that\* is a -symmetric cone. To see
this we need the standard basic facts thatis an open normal convex cone in the
closed subspac@{(A) of hermitian elements, that each element&sf has a unique
square root inA*, and thatx? > 0 for everyx € H(A). The setA* is a twisted sub-
group (closed underx(y) — xy !x) with unique square roots of the multiplicative
group of invertible elements ofA, hence a pointeg-symmetric set with respect to
x ¢y =xy x and distinguished point the identi Furthermore, the powers com-
puted in the algebra agree with those computedAih ¢, €) [14]. Hence condition (i)
of Corollary 5.2 holds. Condition 5.2 (i) is equivalent ®-{x)? > 0, thus valid. Since
Q(X)y = x(y~1)~x = xyx, condition 5.2 (iii) holds.

The next lemma is elementary, but will prove useful for ourpmses.

Lemma 5.4. Let A be a subset 0f0, 1] that containsO and 1, is closed under
the operation of taking midpointsind is closed under sequential limit¥he A= [0, 1].

Theorem 5.5 (Loewner-Heinz, [2]). Let Q2 € V be ag-symmetric conelf x; <
X2 and y <y, for Xq, X2, y1, Y2 € @, then x i y1 < Xofit Yo for 0<t < 1.

Proof. If X it Y1 < Xg fit Y2 and Xq it Y2 < Xz it Y2, then we obtain our desired
conclusion by transitivity. Thus (using commutivity ofand xt; y = yi1_¢ X) it suffices
to show thatb < ¢ implies atiyb < afi;c. By Corollary 5.2 we may choose any member
of @ for our distinguished point, so without loss of generalitg wssumea = ¢. For
t=1/2, i =4, and we have by the Loewner-Heinz inequality (Theorem 4.2)

etb=b"?<cY?=¢tc,

so the theorem is valid for=1/2.

Let b < cin Q. There exists a-homomorphism (and hencehomomorphism)
ap: R — Q such thatap(0) = ¢ and ap(1) = b; then by definitionb! = ¢ t; b = ay(t).
Consider the sefA of all t € [0, 1] such thatb! = ety b<efc=c'. Fort =0, we
havee < ¢ and fort =1 we haveb < ¢, so 0, 1e A. Suppose that;, t; € A. Then
for t = (t; +12)/2,

bt = b(t1+t2)/2 = ph # btz < ch # cte = Ct,

where the inequality follows from the case= 1/2 established above. By closedness
of the relation< and continuity off;, A is closed under limits of sequential limits.
Thus by Lemma 5.4A = [0, 1]. O
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Theorem 5.6. The general harmonic-geometric-arithmetic mean inedudiolds
in any g-symmetric coné, that is for x, y € © and te [0, 1]:

(L-t)x T+ty H P <xthy<(@-t)x+ty.

Proof. LetA be the set of alt € [0, 1] for which the HGA-inequality holds. For
t =0 (resp.t =1) it reduces tax < x < x (resp.y <y <Yy) so 0, 1 A. By closedness
of the order and continuity of the operation4,is sequentially closed.

Let Hy = (A —t)x t+ty )L Gy :=xt y, andA :=(1—t)x+tyfor0O<t < 1.
Suppose that, s € A. Then by elementary computation and the standard HGA-glégu
(Theorem 4.2),

-1 —1\ -1
o= (07£09°)

e ((Gt)1 + (Gs)1>1

2
H-G

< Gt Gs
2.1(4)

= "Gy)/2-

By an analogous computation, or by taking inverses, ondmbthatG+s)2 < Ag+s)/2.
By Lemma 5.4A = [0, 1], yielding the theorem.

The HGA-inequalities provide an approximation schemexdry.

Lemma 5.7. For X, y in a g-symmetric cone2, x gy = H(X, y) # A(X, y), where
H (X, y) is the harmonic mean and (R y) is the arithmetic mean of x and. y

Proof. We have

xt+y1l 1 1
QXEVH(x, y) * = Q(xrty)#y = S(Eyx THyEXy 1= Sy +) = AKX Y).
From the Riccati lemma it follows thattt y = H(X, y) # A(X, Y). ]

Theorem 5.8. For X,y in a g-symmetric cone? in a Banach space Vdefine
H; = H(X, y), the harmonic meanand A = A(X, y), the arithmetic meanInductively
define H+; = H(H,, An) and A = A(Hn, An). Then for each n
Hn < Hper < XY < At < A,

and H, — xgy, Ay > xgy.
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Proof. By Lemma 5.7 and induction, we hat £ A, = x gy for eachn. The
asserted inequality then follows from the HGA-inequalitj/e fix ¢ € 2 and endowV/
with the order-unit norm for the order unit the topology of this norm agrees with that
of the original Banach space norm. In this norm the arithcmetean of two points is
halfway between them in distance, an&k®X <y implies ||x|| < ||y|l, hence|ly — z|| <
X — z|| wheneverz <y < x. From these facts we conclude that

1
[Hn+1 — Ansall < IHn — Ansall = EHHn — Anlls

and thus||H, — Ayl < 27"||x — y|| for eachn. Hence|H, — x# vyl < ||lHy — Anll <
27"||x —y|| for eachn, so H, — x#y. Similarly A, — x#y. U

The previous results have been obtained in symmetric cohésididean Jordan
algebras [20].

Theorem 5.9 (The Furuta inequality, [11]). Let Q be a f-symmetric cone in a
Banach space V and I&e<b<a. If 0<p,q,r € R satisfies pr2r <(1+2)q and
1<q, then

b(P*2)/4 < (b .aP)¥a,

Proof. The proof is the same as given in [28] for Banaealgebras with contin-
uous involution, where the Loewner-Heinz inequality (Tieeo 5.5), the order preserv-
ing property of the quadratic representations, the ordegrsing property of inversion
(Theorem 4.2), and the equality (3.1) are applied as the noails. Ul

6. JB-algebras and symmetric cones

In this section we illustrate and apply our previously resuh the context of
JB-algebras. A basic reference for the theory of JB-alggbparticulary the results
we need in what follows, is the book of Hanche-Olsen and Stgifih?].

A Jordan algebra is a vector spaZewith a commutative multiplicatiorxy such
that x(x2y) = x2(xy) holds forx, y € Z. An involution on a complex Jordan algebZa
is an antilinear involutive mapg+— z* with (zw)* = w*z* for all z,w € Z. A JB-algebra
V is a real Jordan algebra with urétendowed with a complete norin- || such that

lzwll < Izl lwll, 1221 =112, 12117 < 122+ w?l.

A JB*-algebra is a complex Banach spatendowed with the structure of a Jordan

algebra with involutionx such that

— 3
lzwll < lizll - llwll, [I{zZ'Z}] = ||zl
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for z, w € Z, where {xy*z} = (xy*)z+ x(y*z) — y*(x2). There is a one-to-one corre-
spondence between JB-algebras and-dBebras: For any JBalgebraZ, the hermit-
ian partV :={x € Z: x* =x} is a JB-algebra under the restricted nhorm. Conversely, for
every JB-algebra/ the complexified algebr& =V +iV has a unique norm making
Z equipped with the canonical involution a *3Blgebra ([30], [7], [12], [25]).

Let V be a JB-algebra. Fax € V we write L(x)(y) = Xy, the multiplication op-
erator. We consider the set

Q= {x € V: Specl(x)) c (0, c0)}.

Then € is an open convex cone &f (see [29, Section 21], particularly [29, Proposi-
tion 21.19], also [12, Section 3.3]) and is realized as

Q =expV) = {expk): x € V}.
The Banach algebra norm agrees with the order unit norm
[X|e ;= inf{t > 0:te£ x > 0},

or equivalently®2 is a normal cone ([1, Theorem 2.2], [12, Proposition 3.3.10][29,
Proposition 21.19]). The quadratic representation of thielah algebra is defined by
P(2) = 2L(2)? — L(Z%). It is well-known that for eactz € 2, P(z) € G(R), the linear
automorphism group of2. In fact, there is a polar decompositi@(2) = P(2) Aut(V)
where Autl/) denotes the Jordan automorphism groupyofsee [29, Corollary 22.29]).
We further note ([29, Proposition 22.27]) that Av)(= {g € G(€2): g(e) = e}. The basic
properties

Pzl=z P@ =P, P(P@w)=P@PwW)P()

([29, Corollary 19.9 and Proposition 19.18]) yield a pothtsymmetric set structure
xey = P(x)y~! with ¢ := e as base point on the set of invertible elements, in particula
on the coneQ2 (see p.67 of [21]; see also the discussion in Section 3.9 2Jf).[1In
symmetric set notationP(a) = Q(a) and the symmetric set inverse! := ee a agrees
with the Jordan inverse dd.

Next, we show that the pointed symmetric spafs £ = €) is f-symmetric. Let
X,y € Q such thatx? = y2. Then by the commutativity of Jordan products, 8=y =
L(x + y)(x — y). SinceL(2) is invertible for allz € Q ([29, Proposition 21.19 and
Corollary 21.22], [12, Lemma 3.2.10]x —y = 0. This implies that each element ©f
has a unique square root {2. Note that ifa = exp(), x € V thena'’? = exp((1/2)x).
Moreover, ifa, b € Q then the quadratic equation

P(x)al=b
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has a unique solution i®. Note thatx = P(al/?)(P(a Y/?)b)¥/? € Q solves the equa-
tion (cf. [14] and [19]). Suppose that andy are solutions in2. Then

(P@Y?)x)? = P(P(a ¥?)x)e = P(@aY2)P(x)P(a~*?)e
=P@ ?)(P(x)a )
=P@ )b =P@ ?)(P(y)a™)
= P@?)P(y)P@?e
= (P(@?)y)?

and henceP(a Y?)x = P(a %¥?)y, sox =y. We conclude that the open convex cone
Q is a g-symmetric set under the operatione y = P(x)y 1. In this case the dyadic
powera' of a=exp() agrees with expp&) and the geometric meamtb of a andb is

atb=P@Y?)(P@ ¥?)h)Y2

Corollary 6.1. Let V be a JB-algebra and le2 be the associated symmetric
cone Then® is a symmetric space with convex metric with respect to thenpson
metric. In particular, the harmonic-geometric-arithmetic mean inequalidy3) and the
Loewner-Heinz inequality4.4) hold and the distance function between points evolving
in time on two geodesics is a convex function

Proof. Letx € Q. Since the subalgebra generated dwand x is isometrically
(order and algebra)-isomorphic @(X) for some compact Hausdorff space ([1, Propo-
sition 2.3]), the inequality

12 _ 8+X

efX=X 5

holds. The squaring map — x? is continuous (Banach algebra product). The qua-
dratic representatiof?(x) is obviously a bounded linear operator. This shows that the
pointed -symmetric setQ satisfies the three conditions of Theorem 4.2. The last as-
sertion then follows from Theorem 3.4. ]

The last assertion of the preceding corollary provides atipesanswer to a ques-
tion of Neeb [22]. Neeb considers a*3BlgebraZz and the associated symmetric cone
Q in the real JB-subalgebrd = {z € Z: z* = z} with the Finsler structure o given
by [vle = €M for x,v € V ([22, Example 6.6]). The geodesic line passing
through y(0) = & and y(1) = € is given by y(t) = e-®(e"-®eY)t. One of Neeb’s
qguestions concerns the convexity of the real function witbpect to the Finsler metric
distance

(6.1) t = d(x, y(t)
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wherex € Q andy is a geodesic. FronfP(expu) =exp A (u) for u e V ([29, Corol-
lary 22.8]), we see that fox, y € €,

_ -1/2 _
[vlx = [v]goax = l&7 009y || = ||2-009X Dy || = | P(x 2|

(log x is well-defined for anyx € © from the fact that the closed unital subalgebra
generated byx is an abelianC*-algebra, [29, Lemma 20.33]) and the geodesic line
passing throughx andy is

y(t) = P2)(P(x2)y) = x te y.
Since the JB-algebra norm agrees with the order unit norm,
lvlx = inf{t > 0: —te < P(x"Y?)v < te} =inf{t > 0: —tx < v < tx}.

This implies that the Finsler distance is exactly the Thammpart metric fromd (4.1)
and hence the function (6.1) is convex.

REMARK 6.2. The harmonic-geometric-arithmetic mean inequalityd athe
Loewner-Heinz inequality with applications to the Finsirometry of finite dimensional
symmetric cones are studied in [17], [18], [19] and [20]. dstrecently been discovered
by Bhatia [6] that the non-positive curvature property af tonvex cone of positive def-
inite matrices holds for metrics inherited from symmetraazige functions.

EXAMPLE 6.3. The hermitian elementx = x* of any C*-algebra form a
JB-algebra with respect to the symmetric prodxety := (xy + yx)/2. In this case
is the cone of positive elements of Example 5.3. Spin factb?s Chapter 6], which
arose in the study of anticommutation relations in physpreyide another type of ex-
ample. Given a real Hilbert spad¢, let A= H®R1 have the normja+Al|| = ||a]|+|A|
and define a product i\ by

(a+2al)o(b+pul)=((ma+ab)+((@ b) +iu)l.

Then A is a JB-algebra, and hence its corresponding cansatisfies the hypotheses,
and hence conclusions of Theorem 4.2.

7. Hermitian Banach =-algebras

DEFINITION 7.1. LetZ be a unital Banach algebrd with a continuous invo-
lution = and let X consist of the self-adjoint elements &. Let e denote the unit
element ofZ. The unital Banach algebrA is calledhermitianif o(x) c R and|/x| =
sugo (x)| for every x = x*. We let

Q:={x=x":0(x) C (0, 0)}.
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We note that by the Shirali-Ford theorem [26]zZ") C [0, co) for everyz € Z.
If z is invertible theno(zZ") C (0, c0).

Theorem 7.2. Let Z be a hermitian Banach algebrarhen Q is a f-symmetric
cone of X

Proof. It is shown in [29, Corollary 14.16] tha& is an open convex cone of
and the order unit norm with respect éocoincides with the given nornjj - ||, which
implies the normality ofQ.

For a € @, we denotea/? := exp((1/2) loga) where log denotes the principal
branch of the complex logarithm. Them?f/? = a ([28, Lemma 6]) and therefore
each element if2 has a unique square root f&. Moreover, ifa,b e Q thenab™ta=
(ab~Y?)(ab~/?)* is contained in the con& since it is invertible andr(zZ) C [0, o).
This shows that2 is a uniquely 2-divisible twisted subgroup &(Z), the group of
invertible elements ofZ.

The conditions of Corollary 5.2 hold; the verification is fan to the case for
C*-algebras (Example 5.3). O
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