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Abstract
Assuming the minimal model program, we prove that theretexés positive
integer v, depending only om such that for every smooth projectivefold of
general typeX defined over complex numbergmKy| gives a birational rational
map from X into a projective space for every > vy,.
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1. Introduction

Let X be a smooth projective variety and |&ty be the canonical bundle oX.
X is said to be a general type, if there exists a positive imtegeuch that the pluri-
canonical systemimKy| gives a birational (rational) embedding of. The following
problem is fundamental to study projective varieties ofegahtype.

Probrem. Find a positive integew, depending only om such that for every
smooth projectiven-fold X of general type,mKx| gives a birational rational map
from X into a projective space for evem = v,.
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If X is a smooth projective curve of genuds 2, it is well known that|3K x| gives
a projective embedding. In the case thftis a smooth projective surface of general
type, E. Bombieri showed thdbK x| gives a birational rational map fronX into a
projective space ([2]). But for the case of dn=> 3, very little is known about the
above problem.

The main purpose of this article is to prove the following dieens assuming
MMP (minimal model program The proof without assuming MMP will be published
in the subsequent paper [23] which is the transcription ef ltiter half of [22].

Theorem 1.1. There exists a positive integey, which depends only on n such
that for every smooth projective n-fold X of general type rdefiover complex num-
bers |mKx| gives a birational rational map from X into a projective spafor every
m = vp.

Let us explain MMP. It has been conjectured that for every nooled smooth
projective varietyX, there exists a projective varieinm, such that
1. Xmin is birationally equivalent toX,

2. Xmin has onlyQ-factorial terminal singularities,

3. Kx,, is a nefQ-Cartier divisor.

Xmin is called a minimal model ofX. To construct a minimal model, the minimal
model program (MMP) has been proposed (cf. [11, p.96]). Theimahmodel pro-
gram was completed in the case of 3-folds by S. Mori ([12]).

The proof of Theorem 1.1 can be very much simplified, if we assithe ex-
istence of minimal models for projective varieties of gextelype. The proof for the
general case is modeled after the proof under the existeho@nimal models by us-
ing the theory of AZD (cf. [23]). The only essential diffe@nis the use of an exten-
sion theorem (the subadjunction theorem) instead of theeSeamishing theorem here.

We should also note that even if we assume the existence amalirmodels for
projective varieties of general type, Theorem 1.1 is qudatrivial because the indices
of minimal models of ([11, p.159, Definition 5.19]) can be itdrily large. Conversely
if we assume MMP and restrict ourselves to the case of smootjeqgre n-folds
which have minimal models with indices less than some pasititeger, say, then
for such anX, by the method in [1, 20] it is easy to prove thél +rn(n + 1))K|
gives a birational embedding of into a projective space. But since the set of indices
of minimal 3-folds of general type is unbounded, Theoremi4.fjuite nontrivial even
in the case of dinX = 3. Hence in this sense the major difficulty of the proof of
Theorem 1.1 is to find & (universa) lower bound” of the positivity of K. In fact
Theorem 1.1 is equivalent to the following theorem (see #st part of Section 3).
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Theorem 1.2. For a smooth projective n-fold X over complex numbeve de-
fine the volumeuw(X, Kx) of X with respect to i by

w(X, Kx):=n!- mﬁ m " dim HO(X, Ox(MKx)).

Then there exists a positive numbey @epending only on n such that for every smooth
projective n-fold X of general type¢he inequality

H’(X’ KX) z Cn
holds

We note thatu(X, Kx) is equal to the intersection numb&; for a minimal projec-
tive n-fold X of general type (cf. Proposition 4.1 and Remark 4.2 in Appdndn
Theorems 1.1 and 1.2, the numbersand C,, have not yet been computed effectively.

The relation of Theorems 1.1 and 1.2 is as follows. Theorenmieans that there
exists a universal lower bound of the positivity of canohisandle of smooth projec-
tive variety of general type with a fixed dimension. On theeothand, for a smooth
projective variety of general typ&X, the lower bound ofm such thatimKy| gives a
birational embedding depends on the positivitykof on subvarieties which appear as
the strata of the filtrations as in [20, 1] (cf. Section 3.2).

The positivity of Kx on the subvarieties can be related to the positivity of the
canonical bundles of the smooth models of the subvarieigshe subadjunction the-
orem due to Kawamata ([7]). We note that there exists a nohe@gariski open sub-
setUp of X in countable Zariski topologyuch that any subvarieties passing through
a point in Ug should be of general type. Here the countable Zariski tapolmeans
that the topology onX whose closed sets are at most countable union of subvarietie
of X.

The organization of the paper is as follows.

In Section 2, we review the relation between multiplier idglseaves and singular-
ities of divisors. And we review Kawamata’s subadjunctibedrem which is essential
in our proofs.

In Section 3, we prove Theorems 1.1 and 1.2 assuming theeggistof minimal
models for projective varieties of general type. For theofsowe use the induction
on dimension. Section 3.2 is similar to the argument in [Z0,The essential part of
Section 3 consists of Section 3.4. In Section 3.4, we use ubadjunction theorem of
Kawamata to relate the canonical divisor of centers of logooéal singularities and
the canonical divisor of the ambient space. And we prove ti@tminimal projective
n-fold X of general type withK% < 1 can be embedded birationally into a projective
space as a variety with degreg C", whereC is a positive constant depending only
on n (defined in Lemma 3.11). Using this fact we finish the proofsTbEorems 1.1
and 1.2 assuming the existence of minimal models.

In this paper all the varieties are defined o¥r
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2. Preliminaries

2.1. Multiplier ideal sheaves and singularities of divisos. In this subsection
we shall review the relation between multiplier ideal slemaand singularities of divi-
sors. Throughout this subsectidn will denote a holomorphic line bundle on a com-
plex manifold M.

DEFINITION 2.1. A singular hermitian metri on L is given by
h=e"?.h,,

where hg is a C®-hermitian metric onL and ¢ € L, (M) is an arbitrary function on

M. We call ¢ the weight function ofh with respect toho.

The curvature curren®y, of the singular hermitian line bundld_(h) is defined by
On 1= Op, + V=130,

here 9 is taken in the sense of a current. Thé-sheaf£?(L, h) of the singular her-
mitian line bundle [, h) is defined by

L2(L, h)(U) :={o € I'(U, Om(L)) | h(o, 0) € Lin(U)},

whereU runs over the open subsets M. In this case there exists an ideal sh&#f)
such that

L3(L,h) = Ou(L) ® Z(h)
holds. We callZ(h) the multiplier ideal sheafof (L, h). If we write h as
h=e"?.hy,

wherehg is a C* hermitian metric onL and ¢ € Lﬁ)c(M) is the weight function, we
see that

Z(h) = £L2(Oy, €7%)

holds. Forg € L: (M) we define the multiplier ideal sheaf qf by

loc

(@) := L2(On, €7%).

EXAMPLE 2.2. Letm be a positive integer. Let € T'(X, Ox(mL)) be a global
section. Then

1 ho

h:= - -
o2 (h(o, o)™
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is a singular hemitian metric oh, wherehg is an arbitraryC*-hermitian metric on
L (the righthand side is obviously independenthgj. The curvature®y, is given by

_2ny/-1

m

On (o)

where ¢) denotes the current of integration over the divisoroof

DEFINITION 2.3. L is said to be pseudoeffective, if there exists a singular her
mitian metrich on L such that the curvature curref, is a closed positive current.

Also a singular hermitian line bundld.(h) is said to be pseudoeffective, if the
curvature currentdy, is a closed positive current.

Let m be a positive integer anfbi} a finite number of global holomorphic sections of
mL. Let ¢ be aC>-function on M. Then
1
h=e?. ——

(Zi |oi |2)1/m

defines a singular hermitian metric @an We call such a metritv a singular hermitian
metric onL with algebraic singularities Singular hermitian metrics with algebraic sin-
gularities are particulary easy to handle, because itsiptiaht ideal sheaf of the met-
ric can be controlled by taking a suitable modificatibn N — M of the base scheme
ﬂi (0i).

Let D = ) & D; be an effectiveQ-divisor on X. Let o; be a section 0l0x(D;)
with divisor D; respectively. Then we define

(D) =T <Za log hj (ai, o ))

and call it the multiplier ideal sheaf of the divis@r, whereh; denotes aC*°-hermitian
metric of Ox(D;) respectively. It is clear thaf(D) is independent of the choice of the
hermitian metrics(h;}.

Let us consider the relation betwe&iD) and singularities ofD. As is seen be-
low, the multiplier ideal sheaf (D) can be computed in terms of log resolution of the
pair (X, D).

DEFINITION 2.4. Let X be a normal variety and = ), d;D; an effectiveQ-
divisor such thatKy + D is Q-Cartier. If u: Y — X is a log resolution of the pair
(X, D), i.e., u is a composition of successive blowing ups with smooth aensecch
that Y is smooth and {*D);eq is a divisor with normal crossings, then we can write

Ky +u 1D = u*(Kx + D)+ F
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with F = Zj g E; for the exceptional divisor$E;}, where u;1D denotes the strict
transform of D. We call F the discrepancy and; € Q the discrepancy coefficient for
E;. We regard—d, as the discrepancy coefficient @f;.

The pair X, D) is said to have onl\Kawamata log terminal singularitie$KLT)
(resp.log canonical singularitiegLC)), if di < 1 (resp.= 1) for alli andej > —1
(resp.= —1) for all j for a log resolutionu: Y — X. One can also say thaX( D) is
KLT (resp. LC), orKx +D is KLT (resp. LC), when X, D) has only KLT (resp. LC).
The pair (X, D) is said to be KLT (resp. LC) at a poing € X, if (U, D|y) is KLT
(resp. LC) for some neighbourhodd of xg.

The following proposition is a dictionary between algebrgeometry and thé.2-
method.

Proposition 2.5. Let D be an effectiv®-divisor normal n-fold X Then (X, D)
is KLT at xe Xyeg, if and only if Z(D)y is trivial (= Ox ).
In particular, multy D = n impliesZ(D) is nontrivial at xe X. holds

The proof is trivial and left to the reader. The last assarfalows from the fact that
(Xt lz |2)_n is not locally integrable aroun® e C".

For a multiplier ideal sheaf(h), the support ofOx/Z(h) is called the co-support
of Z(h). To locate the co-support of a multiplier ideal sheaf ofeefive Q-divisors,
the following notion is useful.

DEFINITION 2.6. A subvarietyW of X is said to be acenter of log canonical
singularities for the pair (X, D), if there is a log resolutiont: Y — X and a prime
divisor E on Y with the discrepancy coefficie® < —1 such thatu(E) = W.

By definition W C SuppD holds. The set of all the centers of log canonical singular-
ities is denoted byCLC(X, D). For a pointxg € X, we defineCLC(X, Xg, D) :={W €
CLC(X, D) | xo € W}. We quote the following proposition to introduce the notioh
the minimal center of log canoical singularities.

Proposition 2.7 ([8, p.494, Proposition 1.5]).Let X be a normal variety and D
an effectiveQ-Cartier divisor such that K + D is Q-Cartier. Assume that X is KLT and
(X, D) is LC. If W, W, € CLC(X, D) and W an irreducible component of ;\W W5,
then W € CLC(X, D). This implies that if(X, D) is not KLT, then there exists a
unique minimal element of CU&, D). Also if (X, D) is LC but not KLT at a point
Xo € X, then there exists the unique minimal element of CL&o, D).

We call these minimal elements tmeinimal center of LC singularitiesf (X, D)
and theminimal center of LC singularitiesf (X, D) at xo respectively.
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2.2. Kawamata's subadjunction theorem. The following subadjunction theo-
rem is crucial in our proof.

Theorem 2.8 ([7, Theorem 1]). Let X be a normal projective variety and &
Xreg- Let D° and D be effective-divisors on X such that D< D, (X, D) is KLT at
x and (X, D) is LC at x Let W be the minimal center of LC singularities at x for
(X, D). Let 7: W — W be the desingularization of W.et H be an ample Cartier
divisor on X ande a positive rational number

Then there exists an effecti@divisor Dy on W such that

JT*(K)(+D+EH) ~Q Kw+ Dw.

REMARK 2.9. The above theorem is a little bit different from the ora
Kawamata’'s subadjunction theorem [7, Theorem 1]. In factonly assume thaWv is
a local minimal center ax. But the proof of Theorem 2.8 is contained in Kawamata’s
by just replacing “minimal center of LC singularities” byotal minimal center” when-
ever necessary. And the main difference to Kawamata’s $uibetibn is that local min-
imal centerW is not necessarily normal everywhere, hence it is not clelaatuy
should be.

Roughly speaking, Theorem 2.8 implies th&k + D|w (almost) dominatey.

2.3. Several remarks on singular hermitian line bundles on rimimal algebraic
varieties. Since minimal algebraic varieties are singular in genenad,cannot apply
the theory of singular hermitian line bundles directly. elérwould like to explain the
modifications we need.

Let X be a minimal projectiven-fold of general type, i.e.X has onlyQ-factorial
terminal singularities and the canonical divis€ is nef.

For a reduced complex spade we define the space @>-functions (resp. pluri-
subharmonic functions) o¥ as a space of continuous functions (resp. plurisubharmonic
functions) on the regular part of which are locally extendable t&°>°-functions
(resp. plurisubharmonic functions) on an ambient spack wspect to some local em-
bedding ofY into an open subset of a complex Euclidean space (“some éunhbed-
ding” is enough for our purposes).

Let r be a positive integer such thaKy is Cartier. ThenrKyx admits aC>-
hermitian metrichg, where C*°-hermitian metric means that it is locally expressed by
a C>-function with respect to a local holomorphic frame. Thee thth root </hg is
well defined. We conside{/hg as aC> hermitian metric onK x.

Let h be a singular hermitian metric om(— 1)Kx such that
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1. h has algebraic singularities, i.e.,
1
l b
(Z;\Ll |oj |2) e

where ¢ is a C*°-function on X, a is a positive integer and

h=ze?.

aj € HU(X, Ox(a(m - 1)Kx)) (1< j = N)

(for the notation|o; |2, see Example 2.2).
2. The curvature curren®y is strictly positive in the sense that it dominates a pos-
itive multiple of a Kahler form which is induced by a projective embedding Xf
i.e. ®y is locally extendable to a closed positive current on thgeptve embedding
which dominates a positive multiple of theaKler form.
Later we will consider slightly more general situation,.,i.le is a product of singular
hermitian metrics with algebraic singularities. But thguanent below is identical also
in this more general case.

Let

7. X — X

be a resolution of singularities such that the exceptiopalFsis a divisor with normal
crossings.

h defines a singular hermitian metricth on (m—1)Kg. Here we should note that
we have identifiedr*h as a metric onr— 1)K not of (m— 1)7*Kx. The reason is
that (n— 1)Ky is a line bundle and is easier to handle. We note that skd®s only
canonical singularitiesK ¢ —7*Kx is effective. Hencer*h has semipositive curvature
current onX and strictly positive om‘l(xreg), where X¢y denotes the regular locus
of X.

Let F = )", F« be the irreducible decomposition of the exceptional divisoof
7 and letog, be a nontrivial global holomorphic section 6¥x(Fx) with divisor F.
Let hy be aC-hermitian metric onOg(F). Let h be a singular hermitian metric on
(m— 1)K defined by

7*h
[k llor 12

for some positive rational numbefgy}. Since ®y, is strictly positive onX, we may
and do chooséhy} and {cc} so that the curvature curre@y, of his strictly positive
on X. Then for a sufficiently small positive number<« 1, (x*h'~¢) . he has strictly
positive curvature orX and

h=

Z((x*h**) - h*) = Z(z*h)
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holds. This follows from Proposition 2.5, sindehas algebraic singularities. Then by
Nadel's vanishing theorem ([13, p.561]), we have that

HY(X, Og(Kg + (M — 1)Kg) ® Z(x*h)) = 0

holds for everyq > 1. We setwy := m,0x(Kg) and call it the L2-dualizing sheaf
of X. wyx is nothing but the sheaf of germs @f-holomorphic canonical forms oiX.
Hence it is independent of the choice of the resolution. &iKchas only canonical
singualities, thel ?-dualizing sheafvy is isomorphic toOx(Kx).

Since

an*(o)”((K)z +(m—1)Kg) ®I(7'r*h)) =0

holds for everyp > 1 by the standard. 2-vanishing theorem on holomorphically con-
vex manifolds (cf. [6], this is nothing but the local Nadelsnishing theorem), we
have that

HI(X, Ox(Kx +(m— 1)Kx) ® Z(h)) =0
holds for everyq = 1, where
Ox(Kx +(m — 1)Kx) ® Z(h) = 7, (Ox(Kg + (M — 1)Kg) ® Z(7*h)).

It is clear thatOg(Kx + (m — 1)Kx) ® Z(h) is independent of the choice of the reso-
lution . Here we note thaf(h) may not be well defined, imKy is not Cartier. But
Ox(Kx +(m—1)Kx) ® Z(h) is well defined.

3. Proofs of Theorems 1.1 and 1.2 assuming MMP

In this section we prove Theorems 1.1 and 1.2 assuming thenalirmodel pro-
gram (MMP). Since the minimal model program is establishechin ¢ase of 3-folds,
the proof under this assumption provides the full proofs bedrems 1.1 and 1.2 for
the case of projective varieties of general type of &int 3.

3.1. Construction of a filtration. Let X be a minimal projectiva-fold of gen-
eral type, i.e.,X has onlyQ-factorial terminal singularities and the canonical dis
Kx is nef. We set

X® ={x € Xieg | X ¢ BsimKx| and ®mk,| is a biholomorphism

on a neighbourhood of for somem = 1}.

Then X° is a nonempty Zariski open subset ¥t
In this subsection we shall construct a filtration as follows
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Lemma 3.1. Let x and X be distinct points on X Then there exists a filtration
/

X=XgDX1D---DX DX41=X Or X

of X by a strictly decreasing sequence of subvariefig!s for some r(depending
on x and x), effectiveQ-divisors

DO,...,Dr

which are Q-lineraly equivalent to K and invariants

aO’al,"'vareQ+a
nN=ng>n;>--->n (n=dimX;, i =0,...,r)
and
oy 41, - e (i = KG - Xi, 1=0,...,T)
with the estimates
ni ¥/2 )
o S ——=+5 (0<i<r),

where$ is a fixed positive number less thdyin and«; is defined inductively by

o = inf:a >0

i—1
(X, Z(“i —&;)D; +aDi) is KLT at neither x nor &,
=0

where gg, ..., &_1 are small positive rational numbers which can be taken aabit
ily small. Here each filter X (1 = i = r) is the minimal center of log canonical
singularities of (X, Y\ 25(ej — &;)Dj + @i_1Di_1) at x or X (if i = 1, we consider

Y j=o(e; — &;)Dj = 0).

€o, - - -» &—1 Will be specified during the constrution of the filtration.

Roughly the construction of the filtration is as follows.

First we setXy = X. Suppose that we have already constructed the filtratioroup t
Xi, i.e., we have constructed the filtration:

X=XoD X1 D---D X,

divisors Dy, ..., Di_1 and so on. Then one of the following two cases occurs. Here
one has to split off the construction &F;. .

Case 1. For every sufficiently small positive number (X, le;g(a'j —&j)Dj +
(i1 —A)Dj_1) is KLT at bothx and x'.
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Cask 2. For every sufficiently small positive number (X, Zijzg(aj —¢;)Dj +
(j—1 — A)Di_l) is KLT at exactly one ofx or x’ say Xx.
In Case 1, we construct an effectiv@-divisor D; which is Q-linearly equivalent to
Kx such that
1. SuppD; does not contairX;.
2. Dj|X; has “high multiplicities” both atx and x’ (for the precise meaning of “high
multiplicities,” see the detailed construction below).
3. Aroundx, SuppD; is smooth outsideX; and D; has sufficiently low multiplicities
on X — Xj.
We choose a sufficiently small positive rational number, and define

o = inf{a >0

i—1
<X, > (o —£5)D; +aDi> is KLT at neitherx nor x'{.
=0

Then we defineXj.; to be the minimal center of log canonical singularitiesxatr x’.

In generalX;,; may not be unique, whe(1X, Zij;é(aj —¢j)Dj+o; Di) is log canonical
both x and x’. Since Sup; is smooth around and x’, the minimal centerXj.; is

a proper subvariety ok;.

We setni, = dim X1 and pivg = KG* - X

In Case 2, we construct thB; so thatD; has relatively large multiplicities at
instead of at bothx and x’. We note that if we encounter Case 2, in the following
steps, we encounter only Case 2, i.e., we may concentrateleges around a single
point.

We continue the construction untX;.; is a point.

Now we shall describe the construction more closely. Thestantion of a filtra-
tion below is similar to that in [20, 1]. The only difference the fact that we deal
with the Q-Cartier divisor Ky which is not Cartier in general. Of course this differ-
ence is very minor as long as we work on the regular locuXofThe only essential
difference is that the intersection number of a powelKgf and the subvarieties ok
is a rational number in general.

We set

MHo = KX'
Lemma 3.2. We set
Mx_x’ = MX : Mx’,

where My, My denote the maximal ideal sheaves of the points x dnekspectively
Let ¢ be a positive rational number less thdn Then

Yio(l-e) g
HO(X, Ox(mKy) ®M£X,MO d) #0
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for every sufficiently large nfindependent of xx’), where for a real number afaj
denotes the smallest integer greater or equal to a

Proof. Let us consider the exact sequence:

[ -2 ;]

X, X'

) = HO(X, Ox(mKx))

Yio(1—¢)
o HO(X, Ox(mKy) © Ox /ML,

0 — HOX, Ox(mKx) ® M

We note that
nl- lim m™"dim HO(X, Ox(MmKx)) = uo
m—o0

holds, sinceKx is nef and big (cf. Proposition 4.1 and Remark 4.2 in Appendix

Then since
J— Vio(1—e)
nt - Tim_ m-"dim HO(X, Ox(mKy) ® OX/MLZ,’T"( Ml = e < o
— 00 ’
hold, by the above exact sequence we complete the proof ofrizef2. O

Let ¢ > 0 be as in Lemma 3.2. Let us take a sufficiently large posititegermg
so that

Yis(-e) 7
HO(X, Ox(MoKx) ® M)[.x’ ’ ﬁ]) #0

holds as in Lemma 3.2 and lep be a general nonzero elementtaP(X, Ox(MoKx) ®
ML%’,TO(lfg)m"/ ﬁ1). We define the effectiv-divisor Dy by
1
Do = HO(O'O)-
We define the positive number, by
ap = infla > 0] (X, aDyg) is KLT at neitherx nor x'},

where KLT is short for Kawamata log terminal (cf. Definitiod®2 Letu: Y — X be
a log resolution of X, D) and fora > 0 let

Ky + 1, H(@D) = u*(Kx + D) + F(a),

where F(«) denotes the discrepancy depending @nThen «g is the infimum of«a
such that the discrepandy(«) has a component whose coefficient is less than or equal
to —1. Hence by the constructiom, is a rational number.
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Considering the multiplicities oDg at x and x’, by Proposition 2.5, we see that
nv/2
S ———
Jio(1 —¢)

holds.
Let us fix an arbitrary positive numbér <« 1/n. Let us takee > 0O sufficiently
small so that

~ Vo
holds. Then one of the following two cases occurs.
Case 1. For every sufficiently small positive numbgr (X, (¢o — A)Do) is KLT
at bothx and x'.
CAse 2. For every sufficiently small positive numbgr (X, (¢o — A)Do) is KLT
at exactly one ofx or x’' say x.
We define the next straturX; as

X3 :=the minimal center of log canonical singularities o, @gDg)
at x (cf. Section 2)

Let n; denote the dimension oX;. Let us define the volume; of X; with respect
to Kx by

n1 = K?(l - X1.

If X; is a point, we stop the construction of the filtration. Sugpdisat X; is not
a point.

Case 1 divides into the following two subcases.

Case 1.1. X; passes through botk and x'.

CAste 1.2. X; passes through exactly one »fand x’ (by the above assumption
in Case 2,X; passes through).

First we shall consider Case 1.1. In this casgis not isolated atx. Sincex e
X°, we see thaju; > 0 holds. The proof of the following lemma is identical to that
of Lemma 3.2.

Lemma 3.3. Let ¢’ be a positive rational number less thdnand let x and %
be distinct regular points on X Then for a sufficiently large m- 1 (indendent of
X1, X2),

"yri(l—¢") s
HO(Xl’ Oxl(m KX) by M>[1.X2 ' l/é]) ;é 0

holds.
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Let x; andx, be distinct regular points oK;NX°. Let ¢’ be a positive rational number
as in Lemma 3.3. Lein; be a sufficiently large positive integer so that

"Y(l—e)
HO(X1, Ox,(MKx) ® ML,XZ l/E]) 70

as in Lemma 3.3 and let

, "yEI(—e) s
T xx, € HX1, Ox, (MiKx) ® ML.XZ 1 W])

be a nonzero element.

By Kodaira’s lemma [10, Appendix] there is an effecti@zdivisor E such that
Kx — E is ample. By the definition ofX°, we may assume that the support Bf
contains neithex nor x'. In fact this can be verified as follows. Léi be an arbi-
trary ample divisor onX. Then by the definition ofX°, |aKx — H| is base point free
at x and x’ for every sufficiently largea. Fix such ana and take a membeE’ of
|aKyx — H| which contains neithek nor x’. Then we may takeE to bea 1E’.

Let |, be a sufficiently large positive integer which will be spestfilater such that

L;:=11(Kx — E)
is Cartier.
Lemma 3.4. If we take | sufficiently large then
¢m: HO(X, Ox(mKx + L1)) = H(Xy, Ox,(MKx + L1))
is surjective for every nz 0.

Proof. Ky is nef Q-Cartier divisor by the assumption. Letbe the index ofX,
i.e. r is the minimal positive integer such theK x is Cartier. Then for every locally
free sheafe, by Lemma 4.3 in Appendix, there exists a positive intekgdepending
on £ such that ifl; = ko holds, then

HI(X, Ox((1+mnKx+L)®&E)=0
holds for everyg = 1 andm = 0. Let us consider the exact sequences
0— Kj— & = Ox(JKx)®Ix, > 0

for some locally free sheaf; for every 0= j < r — 1, whereZx, denotes the ideal
sheaf associated witi;. Then noting the above fact, we can prove that if we take
sufficiently large,

Hq(X, Ox(m Ky + Lj_) ®Ix1) =0
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holds for everyq = 1 andm = 0 by exactly the same manner as the standard proof
of Serre’s vanishing theorem (cf. [5, p.228, Theorem 5.Zpis implies the desired
surjection. Ul

Note that forl; sufficiently large, the surjectivity is true for evemp = 0. Let
I, be as in Lemma 3.4. Let be a general section il°(X, Ox(L1)). Then by Lem-
ma 3.4 we see that

, ny/mr(1-€') ks
0'l.>(1,X2 QT e HO(Xl’ Oxl(leX + Ll) & M)[l-xz ' Jﬁ-‘)

extends to a section
O1x.% € HO(X, Ox((My +11)Kx)).

We may assume that the divisari, x,) is smooth on the neighbourhooteq\ (X1 U
SuppE) of x and X’ by Bertini’'s theorem. This is because if we takesufficiently
large, as in the proof of Lemma 3.4 (see also the proof of LemitBy

() HO(X, Ox(mKx + L1)) = HO(X, Ox(MKx + L1) ® Ox/Zx, - My)

is surjective for everyy € Xeg\X1 andm = 0 (we may and do assume thiat is
independent ofy and m, since X is projective algebraic). We set

1
D1(X1, X2) = m(al.xl.xz)-

Let X1 g denote the regular locus of;. We may construct the divisorDi(xy, X2)}
as an algebraic family overXg reqg x X1reg)\Ax,, Where Ay, denotes the diagonal of
X1 x X3. Since in Lemma 3.4 we may take, independent oy, Xp, the construction
of the algebraic family is possible. Lettinggy and x, tend to x and x’ respectively,
we obtain aQ-divisor D; on X which is (my +1,)~! times a divisor of a global holo-
morphic section

o1 € HO(X, Ox((my +11)Kx)).

By the construction, we may and do assume tha} {5 smooth on the neighbourhood
Xreg\(X1USUppE) of x and x’. In fact this follows from the surjectivity ofbj (which
is independent ok;, x2) and Bertini's theorem.

Let o be a positive rational number withy < «9. And we define the positive
numbersa (X1, Xo) and «y by

C(l(Xl, X2) =infla > 0| (Olo — 80) Do +OlD1(X]_, X2) is KLT at neitherx; nor X}
and

ap = infla > 0| (ag — €0) Do + « Dy is KLT at neitherx nor x'}
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respectively. We shall estimate,. We note thatm; is independent of;, (cf. Lem-
ma 3.4).

Lemma 3.5. Let § be the fixed positive number as abovEhen we may
assume that

nq W
Y1

holds if we takee’, I1/m; and g¢ sufficiently small

+4

o1

[IA

Proof. To prove Lemma 3.5, we need the following elementamgrha.

Lemma 3.6 ([20, p.12, Lemma 6]). Let a, b be positive humbers and; ra pos-
itive integer Then

1 2n;—1 ry 2n;—1
ra drs = 2n,/a—2b rs
7[) r2 - I’l ﬁ dl’3
o (rf+r3®) o (1+r)
holds where

rz
3 = m
Iy
First suppose that botk and x” are nonsingular pointson X;. Then we may set
X1 = X, X2 =X/, i.e., we do not need the limiting process to define the divide.
Let (z;,...,2,) be a local coordinate system on a neighbourhbbdf x in X
such that

UnXi={geU|z,(q)=---=2z(q) =0}

We setr; = (Z{‘:n1+1|zl|2)1/2 andr; = ( i”;l|zi|2)1/2. Fix an arbitraryC>-hermitian
metric hy on Kx. Then there exists a positive const&htsuch that

2| nym(1—¢") s
(*) ||ol||2§C(rf+rz{m R

)

holds on a neighbourhood of, where| | denotes the norm with respect It§21+'1.
Let us apply Lemma 3.6 by taking

a::lrng/m(l—s’) r\'}%w

Then by Lemma 3.6 and the estimatg, (we see that for every

ni

b .
T T/m—e)mi/ V2]
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llo1ll produces a singularity greater than or equarl%/a_b, if we average the singu-
larity in terms of the volume form irzy, ..., z, direction.
On the other hand, there exists a positive inteljeisuch that

looll =2 = O(r; ™)

holds on a neighbourhood of the generic pointlofiX;, where| || denotes the norm
with respect toh}® andc is a positive constant.
Hence by the definition ofg, by Proposition 2.5 we have the inequality:

0.

+ gy +
oy < (ml |1> n; V2 oM l1
my wWii(l—¢’) Mo

We note that since onk works for allm = 0, I;/m; can be made arbitrary small.
Taking ¢, I1/m; and gg sufficiently small, we obtain that

nlw

ar < +46

¥/

holds.
Next we consider the case thator x’ is a singular point onX;. We need the
following lemma.

Lemma 3.7. Let ¢ be a plurisubharmonic function oA x A. Let ¢ (t € A)
be the restriction ofp on A" x {t}. Assume that & does not belong to ﬂgm(A“, 0)
for any te A*.

Then €% is not locally integrable at Q= A".

Lemma 3.7 is an immediate consequence of tReextension theorem [15, p.20, The-
orem].
Using Lemma 3.7 and Lemma 3.6, letti’dg — x and x, — X/, we see that

o < liminf Oll(Xl, X2)

T Xp—> X, Xo—> X/

holds. Hence Lemma 3.5 holds also in this case. O

Let X, be the minimal center of LC singularities oK{(«o — €9) Do + @1 D;) at Xx.
Since X, (wop—¢0)Do) is KLT by the definition ofeg and Dy is smooth onXeg\ (XU
SuppE), if we take m; sufficiently large, we may and do assume tbatis a proper
subvariety ofXj.

Next we consider Case 2. The remaining case Case 1.2 will bsidared later.

In Case 2, for every sufficiently small positive number (X, (g — A)Dg) is KLT at
x and not KLT atx’. In Case 2, instead of Lemma 3.3, we use the following simpler
lemma.
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Lemma 3.8. Let ¢/ be a positive number less thah and let x be a regular
point on X. Then for a sufficiently large m+ 1,

HO (X, 0, (MKx) ® MM 70
holds

Let x; be a regular point ofX;. Using Lemma 3.8, let us take a nonzero element
.

01y, In

HO (Xl, Ox,(mKx) ® Milnm(l_wmﬂ) ,

for a sufficiently largem;. Let |; be as in Lemma 3.4 and let be a general nonzero
section iNnHO(X, Ox(Ly)) as before, wherd ; is the line bundle as in Lemma 3.4. By
Lemma 3.4, we may extend; y, ® T to a section

o1x € HO(X, Ox((my +11)Kx)).
As in Case 1.1, takindy sufficiently large, we may assume that () is smooth on

the neighbourhoodXeq\ (X1 U SuppE) of x and x’. We set

1
Di(xq) = m(“l,m)

Let X1reg denote the regular locus of;. We may construct the divisorD,(x1)} as
an algebraic family ovelXy eq Letting x; tend tox, we obtain aQ-divisor D; on X
which is (m; + 1)~ -times a divisor of a global holomorphic section

o1 € HO(X, Ox((my +11)Kx)).

By the construction, we may and do assume tha} {s smooth on the neighbourhood
Xreg\(X1 U SUppE) of x and x'.
Let go be a sufficiently small positive rational number witly < ag such that
(ap — €0)Dg is not KLT at x’ (this is possible because we are considering Case 2).
And we definea;(x1) anda; by

a1(Xq) == inf{a > 0| (g — €9) Do + @D1(X1) is not KLT at x1}.
and
ay ;= infla > 0| (g — 0)Do + @Dy is KLT at neitherx nor x’}

respectively. The definition of; is the same as in Case 1.1. But we note that-{
co)Do is already not KLT atx’. We shall estimatay;. The proof of the following
lemma is similar to that of Lemma 3.5.
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Lemma 3.9. Let § be the fixed positive number as abovEhen we may
assume that

p722st

holds if we takes’, |1/m; and gq sufficiently small

This estimate is better than Lemma 3.5. Then we may define ribygep subvarietyX,
of X; as the minimal center of log canonical singularities ¥f (o — €0) Do + 1 D)
at x or X’ as we have defineX;.

Lastly in Case 1.2 the construction of the filtration redute<ase 2 as follows.
In Case 1.2,X; does not pass througkl. Hence in this case the minimal center of
LC singularitiesX; at x’ does not pass through

Let a; be a sufficiently large positive integer such that

HO(X, Ox(a1Kx) ® Zx;) #O.

Let ¢’ be a general nonzero section BP(X, Ox(a1Kx) ® Ix;)-

We note that there exists an effecti@edivisor G on X such that

1. Kx—G is ample,

2. X is not contained in Sup@.

In fact this can be verified as follows. L&t be an arbitrary ample divisor oK. Then
by the definition of X°, |bKyx — H| is base point free at for every sufficiently large
b. Fix such ab and take a membe®’ of |bKyx — H| which does not contaix. Then
we may takeG to beb™1G'.

Let a; be a sufficiently large positive integer such tla{Kx — G) and a;G are
Cartier. By 1, it follows there exists” € H(X, Ox(a1(Kx — G)) such thatr”(X;) =0
and t”(x) # 0. By tensoring the global section d¥x(a;G) with divisor a,G to t”, if
we takea; sufficiently large, we may assume that the divisel) @does not contairx.

In this case instead ofp, we shall usesy ® t’, wheree is a positive integer.
Let Dy := (moe + a;1) (o§ ® t’). Let us define the positive rational numbej for
(X, Dg) similar to «p. Then sincer’(X}) = 0 andt’(x) Z 0, the minimal center of LC
singularities of K, ayDg) at x is X1 and (X, a;Dg) is not LC atx’. Also we can make
oy, arbitrary close taxg by taking e sufficiently large. Hence we may assume thgt
satisfies the same estimate:

asap. In this way we can reduce Case 1.2 to Case 2.

In any case, we construct the next stratmas the minimal center of log canon-
ical singularities of K, (xg — g0)Do + @1 D7) at x. If X, is a point, then we stop the
construction of the filtration. IfX, is not a point, we continue exactly the same pro-
cedure replacing<; by X,. And we continue the procedure as long as the new center
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of log canonical singularitiesXy, X2, ...) is not a point. As a result, for any distinct
points x, X’ € X°, we construct a strictly decreasing sequence of subvesieti

4

X=XpgDX1D:++ DX DX41=X%X o0r X,
effective Q-divisors
DO, ceey Dr

numerically equivalent t&Kx and invariants:

aOsals""ars
nN=ng>ny>--->n (n=dimX;, i =0,...,r)
and
tos Has -y e (i =KY - Xi, 1=0,...,T)

depending on small positive rational numbegs. .., & _1, large positive integersn,
my, ..., M, positive integers 04y, ls,..., 1,

oi € HO(X, Ox((m; +1)Kx)) (@ =0,....r),

1 ;-
i—mi+|i(0'i) (I —0,...,I’),

etc.

Here eachX; (1 =i =r) is the minimal center of log canonical singularities of
(X, Y25 —#j)D;j) atx or X',

By Nadel's vanishing theorem ([13, p.561]) we have the feifgy lemma.

Lemma 3.10. For every positive integer n+ 1+ _jai, ®|mk,| Separates x and
x’. And we may assume that

o < 245
i
holds for every0 <i <rr.
Proof. Fori = 0,1,...,r, let h; be the singular hermitian metric oy de-
fined by
1 hx

i = S T TR
|oi |2/(m|+||) (hr)T(1|+|| (Ui , 0] ))l/(m.+l.)

where we have séy = 0 andhy is a C*-hermitian metric onKx (the righthand
side does not depend on the choicelgf). As before, using Kodaira’s lemma ([10,
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Appendix]), letG be an effectiveQ-divisor such thatKx — G is ample. As before we
may assume that Sui@ contains neithex nor x’. Let m be a positive integer such
thatm > 1 +Z{:Oai holds. Leth, is a C*®-hermitian metric on the ampl®-line

bundle
r-1
L= (m—l— (Z(ai —gi)> —ar> Kx — .G
i=0

with strictly positive curvature, wher& be a sufficiently small positive rational num-
ber and we shall considdr. as a singular hermitian metric o(mn -1- (Z{;Ol(ai -
&i)) —ar)Kx, i.e., we identifyh_ and the singular hermitian metric

he

log|?t

on (m—1— (Zi':‘ol(ai —&)) —ar)Kx, Whereog is a multi-holomorphic section of the
Q-line bundle G with divisor G. Let us define the singular hermitian mettig . of
(m — 1)K defined by

r-1
Py = (]_[ h;“i) e hy
i=0

Then we see thdaf(hy x') defines a subscheme of with isolated support arouns or

x" by the definition of the invariantéx;}'s. By the construction the curvature current
®, , Is strictly positive onX. Then by Nadel's vanishing theorem ([13, p.561]) we
see that

Hl(xv OX(m KX) ® Z.(hx,x’)) =0
holds (see Section 2.3). Hence
HO(X, Ox(MKx)) = HO(X, Ox(MKx) ® Ox/Z(hxx))

is surjective. Since by the construction bf  (if we take §_ sufficiently small)
Supp@x/Z(hy x)) contains bothx and x’ and is isolated at least at one wfor x'.
Hence by the above surjection, there exists a seetianH%(X, Ox(mKy)) such that

o(X)#0, o(x)=0
or

o(x)=0, o(xX)#0

holds. This implies thatbmk,, separates and x’. The proof of the last statement is
similar to the proof of Lemma 3.5 ]
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3.2. Estimate of the degree. To relateug and the degree of the pluricanonical
image of X, we need the following lemma.

Lemma 3.11. If ®nk,  is a birational rational map onto its imagehen
deg® miy((X) = po - m"
holds
Proof. Letp: X — X be the resolution of the base locus |aiKx| and let
P IMKx| = [Pm| + Fm
be the decomposition into the free paR,| and the fixed componerf,. We have
deg®m,(X) = Py,
holds. )
We note thatOx(vPny) is globally generated orX. This implies that for every
v = 1 we have the injection
Ox(vPy) = p*Ox(mvKy).
Hence there exists a natural morphism
HO(X, Ox(vPm)) = HO(X, Ox(mvKx))
for everyv = 1. This morphism is clearly injective. This implies that
po = M (X, Pn)
holds. SinceP,, is nef and big onX, we see that
w(X, Pm) = Py
holds. Hence
po = m"PY
holds. This implies the desired inequality:
deg®imiy(X) = po-m"

holds. Ol
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3.3. Use of Kawamata’'s subadjunction theorem. Let X be a minimal projec-
tive n-fold X of general type and leX® be the Zariski open subset &f defined by

X ={x € Xreg | X ¢ Bs|mKx]| and &k, is a biholomorphism

on a neighbourhood of for somem = 1}

as in the beginning of Section 3. L&t X’ be distinct points onX°. Let us consider
again the sequence of numberg divisors D; and the filtration

XDX1D--DX DX ={x} or {x}

which were defined in Section 3.1. Forslj <r, let 7;: W; — X; be a desingular-
ization of Xj. Let us fix 1= j <r. Applying Theorem 2.8 toX, D) where

D= (0o —€0)Do+---+(oj-2—¢j-2)Dj2+aj 1Dj 1,

we get

-1\
®) M(Wj,ij)§<1+Zai> T

holds, where
(Wi, Kw,) = nj! - m@O m~" dim HO(W;, Ow, (MKw,)).
In fact by Theorem 2.8 and Remark 2.9, we see that
(Kx + D)Ix; — ()« Kw,
is pseudoeffective. Hence
(Wi, Kw,) < w(Wj, 7 (Kx + D))
holds. Here we have defingd(W;, 7(Kx + D)) by
(Wi, i (Kx + D)) :=c™™ - u(Wj, a- 7} (Kx + D)),
wherec is a positive integer such thafKy + D) is Cartier. It is easy to see that this
definition is independent of the choice of(cf. Remark 4.2). Also we note that since

everyD; (L<i £j—1) is Q-linearly equivalent toKx, Kx + D is Q-linearly equiv-
alent to

j—2
1+ (aj—l+2(ai —Si)> Kx.

i=0
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Then combining the above facts, by Proposition 4.1 (see Résoark 4.2) and the def-
inition wj := K;j - Xj, we have the desired inequality)(

We note thatX cannot be dominated by a family of varieties of nongenerpéty
In fact if there exists a dominant family of subvarieties aihgeneral type, then this
contradicts the assumption that is of general type. Hence there exists a honempty
open setUp of X° in countable Zariski topologguch that for every € Uy, any sub-
variety of X passing throughx is of general type.

We shall prove Theorem 1.2 by induction on Suppose that Theorem 1.2 holds
for projective varieties of general type of dimension lelsant or equal ton — 1 (the
case ofn = 1 is trivial), i.e., for every positive integet < n there exists a positive
numberC(k) such that for every smooth projective variety of general type of di-
mensionk,

(W, Kw) = C(k)

holds. Let us assume that,(x’) belongs to o x Ug)\Ax. Then X; is of general type
by the definition ofUgy and by the above inequalityi) and the definition ofC(n;),

-1 \M
C(nj)§(1+zai) T

i=0

holds. Since

V2n;
o >
S oy

holds for every & i <r by Lemma 3.10, we see that

V_ (2 Z {Mn. ) - C(ny)~m

i=0

+4

holds for everyj = 1. We note that the stricly decreasing sequefrteny, ..., n}
has finitely many possibilities. Then using the above inétuaductively, we have
the following lemma.

Lemma 3.12. Suppose thafg < 1 holds Then there exists a positive constant
C depending only on n such that for evepy X') € (Ug x Ug)\Ax the corresponding
invariants {uo, ..., ur} and {nq, ..., n;} depending onx, x’) (r may also depend on
(x, x')) satisfies the inequality

2+’7,;ZO%—‘ gl”iﬂoJ’

where for a real number ,ala] denotes the largest integer less than or equal to a
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By Lemmas 3.10 and 3.12 we see thaui < 1 holds, for

ki
m:= ,
v M0

ImKx| gives a birational embedding of and

1) deg® mk, (X) < C"

holds by Lemma 3.11, wher€ is the positive constant in Lemma 3.12. Also
dim Ho(X, Ox(MKy)) < n+ 1+ deg®mk, | (X)

holds by the semipositivity of thé&\-genus ([3]). Hence we have thatify < 1,

¥3) dimHO(X, Ox(mKy)) <n+1+C"

holds.

SinceC is a positive constant depending only oncombining the above two in-
equalities (1) and (2), we have that there exists a positaestantC(n) depending
only on n such that

1o = K = C(n)

holds.

More precisely we argue as follows. Lét be the union of the irreducible com-
ponents of the Hilbert scheme parametrizing subschemeggkd< C" in projective
spaces of dimensiox n+C".

By the general theory of Hilbert schemes ([4, ex@@R21]), H consists of finitely
many irreducible components. Lek, be the Zariski open subset off which
parametrizes irreducible subvarieties. Then there essfinite stratification ofHy by
Zariski locally closed subsets such that on each stratueretlexists a simultaneous
resolution of the universal family on the stratum. We notattthe volume of the
canonical bundle of the resolution (for the definition of ttdume see Theorem 1.2)
is constant on each stratum by the invariance of pluriger@®, 14]). Hence there
exists a positive constar@(n) depending only om such that

n(X, Kx) = C(n)

holds for every projectiven-fold X of general type withu(X, Kx) < 1. This com-
pletes the proof of Theorem 1.2 assuming MMP. ]

Now let us prove Theorem 1.1. By Lemmas 3.10 and 3.12, Thedr@rimplies
that there exists a positive integey depending only om such that for every projec-
tive n-fold X of general type|mKy| gives a birational embedding into a projective
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space for everym = v,. This completes the proof of Theorem 1.1 assuming MMP.
]

4. Appendix

4.1. Volume of nef and big line bundles. The following fact seems to be well
known. But for the completeness, | would like to include theds.

Proposition 4.1. Let M be a smooth projective n-fold and let L be a nef and
big line bundle on M Then

nt - lim m™dimH°(M, Oy (mL)) = L"

m—o0

holds

Proof. SincelL is big, there exists an effectiv®-divisor F such thatL — F is
ample. Leta be a positive integer such th& := a(L — F) is a very ample Cartier
divisor and A— Ky is ample. Then by the Kodaira vanishing theorem, for evesy 1,

HY(M, Om(A+mL))=0
holds for everym > 0. By the Riemann-Roch theorem, we have that

nl - im m"dimH°(M, Oy (A+mL)) = L"

m—o0

holds. By the definition ofA, we see that
n! -mﬁ m " dimH°(M, Oy(mL)) = L"
holds. This completes the proof. O

REMARK 4.2. LetX be a minimal projectivan-fold of general type and let be
a positive integer such thaK x is Cartier. LetY be a subvariety ofX. Let w: Y —
Y be a resolution of singularities. Thenw*Ky is a nef Cartier divisor ony.
w*Ox(MKy) is a sheaf orY for everym > 1. We define

u(Y, Kxly) = (dimY)! - mﬁ m~ ™Y dim HO(Y, Oy (@ *(mKx))

as above. Suppose thaty, Kx|y) > 0 holds, i.e.,Kx|y is big.

We note that by Kodaira’s lemma, there exists a positivegeit@y such that for
every positive integer > ap, HO(Y, @*Oy(aKx)) # 0 holds. In particular, there ex-
ists a positive integeby such that

HO(Y, @*Ov((bo + [)Kx)) #0



PLURICANONICAL SYSTEMS 993
for every j =0,1,...,r — 1. Hence there exists an injection
HO(Y, @ *Oy(MmKx)) — HO(Y, m*Oy((m+bo + [)Kx))

for every 0S j <1 — 1.
This implies that

1Y, Kxly) =r " u(Y, ro*Kx)

holds.
Then by Proposition 4.1, we see that

n(Y, Kxly) =r"- M(V, ro*Ky)=r". ((w*(er))dimY . Q) = KdmY .y
holds.
4.2. A Serre type vanishing theorem.

Lemma 4.3. Let X be a projective variety with only canonical singules
(cf. [11, p.56, Definition 2.34]).Let E be a vector bundle on X and let L be a nef
line bundle on X Let A be an ample line bundle on. Xhen there exsists a positive
integer k depending only on E such that for everykkg

HY(X, Ox(Kx +mL+kA) ® E)=0
holds for every m= 0 and q= 1.

Proof. Letwy be thelL?-dualizing sheaf ofX, i.e., the direct image sheaf of the
canonical sheaf of a resolution &. Since X has only canonical singularities, we see
that wx is isomorphic toOx(Kx). SincelL is nef andA is ample, there exists a pos-
itive integer kg such that for evenk = kg, (ML + kA) ® E admits aC>-hermitian
metric with (strictly) Nakano positive curvature.

Then by exactly the same way as in Section 2.3, we see that

HI(X, wx ® Ox(ML+KkA)® E)=0

holds for everym > 0 andq = 1.
Sincewyx is isomorphic toOx(Kx), we have that

HA(X, Ox(Kx +mL+kA) ® E)=0

holds for everym = 0 andq = 1. This completes the proof. ]
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NOTE ADDED IN PROOFS Very recently the following two papers appeared and
proved the same result in this paper and [23].

[H-M] C. Hacon and J. McKernarBoundedness of pluricanonical maps of varieties of gentyyad
Invent. Math.166 (2006), 1-25.

[Ta] S. TakayamaPluricanonical systems of varieties of general typevent. Math.165 (2006),
551-587.

Apparently they have followed the strategy and the arguméntthis paper and [23]
as they mentioned in their papers. Actually as in [23], thecied tools in their proofs
(Section 4 in [H-M], Theorem 4.1 in [Ta]) are also the extensibeorems of sections
of multi adjoint bundles from the subvariety to the ambieatiety which follow the
subadjunction theorem, Theorem 2.23 in [23]. Theorem 2r2%8] and their corre-
sponding extension theorems follow from entirely the samgriment which appeared
in the paper: Y.-T. Siu, Invariance of plurigenera, Inveiiath 134 (1998), 661-673.
Actually all the proofs of extension theorems are compjefmrallel to the proof of
invariance of plurigenera in Siu’s paper.

The only difference between their proofs and the one in [83fhat the extension
theorem is from a divisor in their proofs, while in my proofettextension is from a
subvariety of arbitrary codimension, because | have used.thextension theorem of
Ohsawa ([21]) instead of the Kawamata-Viehweg vanishireptbm. Hence | do not
see anything essentially new in their proofs, althoughrtbebofs require only alge-
braic tools.
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