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Abstract
Assuming the minimal model program, we prove that there exists a positive

integer �n depending only onn such that for every smooth projectiven-fold of
general typeX defined over complex numbers,jmKX j gives a birational rational
map from X into a projective space for everym � �n.
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1. Introduction

Let X be a smooth projective variety and letKX be the canonical bundle ofX.
X is said to be a general type, if there exists a positive integer m such that the pluri-
canonical systemjmKXj gives a birational (rational) embedding ofX. The following
problem is fundamental to study projective varieties of general type.

Probrem. Find a positive integer�n depending only onn such that for every
smooth projectiven-fold X of general type,jmKXj gives a birational rational map
from X into a projective space for everym ≧ �n.
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If X is a smooth projective curve of genus≧ 2, it is well known thatj3KXj gives
a projective embedding. In the case thatX is a smooth projective surface of general
type, E. Bombieri showed thatj5KXj gives a birational rational map fromX into a
projective space ([2]). But for the case of dimX ≧ 3, very little is known about the
above problem.

The main purpose of this article is to prove the following theorems assuming
MMP (minimal model program). The proof without assuming MMP will be published
in the subsequent paper [23] which is the transcription of the latter half of [22].

Theorem 1.1. There exists a positive integer�n which depends only on n such
that for every smooth projective n-fold X of general type defined over complex num-
bers, jmKXj gives a birational rational map from X into a projective space for every
m ≧ �n.

Let us explain MMP. It has been conjectured that for every nonuniruled smooth
projective varietyX, there exists a projective varietyXmin such that
1. Xmin is birationally equivalent toX,
2. Xmin has onlyQ-factorial terminal singularities,
3. KXmin is a nefQ-Cartier divisor.
Xmin is called a minimal model ofX. To construct a minimal model, the minimal
model program (MMP) has been proposed (cf. [11, p.96]). The minimal model pro-
gram was completed in the case of 3-folds by S. Mori ([12]).

The proof of Theorem 1.1 can be very much simplified, if we assume the ex-
istence of minimal models for projective varieties of general type. The proof for the
general case is modeled after the proof under the existence of minimal models by us-
ing the theory of AZD (cf. [23]). The only essential difference is the use of an exten-
sion theorem (the subadjunction theorem) instead of the Serre vanishing theorem here.

We should also note that even if we assume the existence of minimal models for
projective varieties of general type, Theorem 1.1 is quite nontrivial because the indices
of minimal models of ([11, p.159, Definition 5.19]) can be arbitrarily large. Conversely
if we assume MMP and restrict ourselves to the case of smooth projective n-folds
which have minimal models with indices less than some positive integer, sayr , then
for such anX, by the method in [1, 20] it is easy to prove thatj(1 + rn(n + 1))KXj
gives a birational embedding ofX into a projective space. But since the set of indices
of minimal 3-folds of general type is unbounded, Theorem 1.1is quite nontrivial even
in the case of dimX = 3. Hence in this sense the major difficulty of the proof of
Theorem 1.1 is to find “a (universal) lower bound” of the positivity of KX. In fact
Theorem 1.1 is equivalent to the following theorem (see the last part of Section 3).
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Theorem 1.2. For a smooth projective n-fold X over complex numbers, we de-
fine the volume�(X; KX) of X with respect to KX by

�(X; KX) := n! � lim
m!1m�n dim H0(X;OX(mKX)):

Then there exists a positive number Cn depending only on n such that for every smooth
projective n-fold X of general type, the inequality:

�(X; KX) ≧ Cn

holds.

We note that�(X; KX) is equal to the intersection numberK n
X for a minimal projec-

tive n-fold X of general type (cf. Proposition 4.1 and Remark 4.2 in Appendix). In
Theorems 1.1 and 1.2, the numbers�n and Cn have not yet been computed effectively.

The relation of Theorems 1.1 and 1.2 is as follows. Theorem 1.2 means that there
exists a universal lower bound of the positivity of canonical bundle of smooth projec-
tive variety of general type with a fixed dimension. On the other hand, for a smooth
projective variety of general typeX, the lower bound ofm such thatjmKXj gives a
birational embedding depends on the positivity ofKX on subvarieties which appear as
the strata of the filtrations as in [20, 1] (cf. Section 3.2).

The positivity of KX on the subvarieties can be related to the positivity of the
canonical bundles of the smooth models of the subvarieties via the subadjunction the-
orem due to Kawamata ([7]). We note that there exists a nonempty Zariski open sub-
set U0 of X in countable Zariski topologysuch that any subvarieties passing through
a point in U0 should be of general type. Here the countable Zariski topology means
that the topology onX whose closed sets are at most countable union of subvarieties
of X.

The organization of the paper is as follows.
In Section 2, we review the relation between multiplier ideal sheaves and singular-

ities of divisors. And we review Kawamata’s subadjunction theorem which is essential
in our proofs.

In Section 3, we prove Theorems 1.1 and 1.2 assuming the existence of minimal
models for projective varieties of general type. For the proofs we use the induction
on dimension. Section 3.2 is similar to the argument in [20, 1]. The essential part of
Section 3 consists of Section 3.4. In Section 3.4, we use the subadjunction theorem of
Kawamata to relate the canonical divisor of centers of log canonical singularities and
the canonical divisor of the ambient space. And we prove thatthe minimal projective
n-fold X of general type withK n

X ≦ 1 can be embedded birationally into a projective
space as a variety with degree≦ Cn, whereC is a positive constant depending only
on n (defined in Lemma 3.11). Using this fact we finish the proofs ofTheorems 1.1
and 1.2 assuming the existence of minimal models.

In this paper all the varieties are defined overC.
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2. Preliminaries

2.1. Multiplier ideal sheaves and singularities of divisors. In this subsection
we shall review the relation between multiplier ideal sheaves and singularities of divi-
sors. Throughout this subsectionL will denote a holomorphic line bundle on a com-
plex manifold M.

DEFINITION 2.1. A singular hermitian metrich on L is given by

h = e�' � h0;
whereh0 is a C1-hermitian metric onL and ' 2 L1

loc(M) is an arbitrary function on
M. We call ' the weight function ofh with respect toh0.

The curvature current2h of the singular hermitian line bundle (L ; h) is defined by

2h := 2h0 +
p�1��̄';

here��̄ is taken in the sense of a current. TheL2-sheafL2(L ; h) of the singular her-
mitian line bundle (L ; h) is defined by

L2(L ; h)(U ) :=
�� 2 0(U;OM (L))

�� h(� ; � ) 2 L1
loc(U )

	;
whereU runs over the open subsets ofM. In this case there exists an ideal sheafI(h)
such that

L2(L ; h) = OM (L)
 I(h)

holds. We callI(h) the multiplier ideal sheafof (L ; h). If we write h as

h = e�' � h0;
whereh0 is a C1 hermitian metric onL and ' 2 L1

loc(M) is the weight function, we
see that

I(h) = L2(OM ;e�')

holds. For' 2 L1
loc(M) we define the multiplier ideal sheaf of' by

I(') := L2(OM ;e�'):
EXAMPLE 2.2. Let m be a positive integer. Let� 2 0(X;OX(mL)) be a global

section. Then

h :=
1j� j2 =

h0�
hm

0 (� ; � )
�1=m
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is a singular hemitian metric onL, whereh0 is an arbitraryC1-hermitian metric on
L (the righthand side is obviously independent ofh0). The curvature2h is given by

2h =
2�p�1

m
(� )

where (� ) denotes the current of integration over the divisor of� .

DEFINITION 2.3. L is said to be pseudoeffective, if there exists a singular her-
mitian metrich on L such that the curvature current2h is a closed positive current.

Also a singular hermitian line bundle (L ; h) is said to be pseudoeffective, if the
curvature current2h is a closed positive current.

Let m be a positive integer andf�i g a finite number of global holomorphic sections of
mL. Let � be aC1-function on M. Then

h := e�� � 1�P
i j�i j2�1=m

defines a singular hermitian metric onL. We call such a metrich a singular hermitian
metric on L with algebraic singularities. Singular hermitian metrics with algebraic sin-
gularities are particulary easy to handle, because its multiplier ideal sheaf of the met-
ric can be controlled by taking a suitable modificationf : N ! M of the base schemeT

i (�i ).
Let D =

P
ai Di be an effectiveQ-divisor on X. Let �i be a section ofOX(Di )

with divisor Di respectively. Then we define

I(D) := I

 X
i

ai loghi (�i ; �i )

!

and call it the multiplier ideal sheaf of the divisorD, wherehi denotes aC1-hermitian
metric of OX(Di ) respectively. It is clear thatI(D) is independent of the choice of the
hermitian metricsfhi g.

Let us consider the relation betweenI(D) and singularities ofD. As is seen be-
low, the multiplier ideal sheafI(D) can be computed in terms of log resolution of the
pair (X; D).

DEFINITION 2.4. Let X be a normal variety andD =
P

i di Di an effectiveQ-
divisor such thatKX + D is Q-Cartier. If � : Y ! X is a log resolution of the pair
(X; D), i.e., � is a composition of successive blowing ups with smooth centers such
that Y is smooth and (f �D)red is a divisor with normal crossings, then we can write

KY +��1� D = ��(KX + D) + F
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with F =
P

j ej E j for the exceptional divisorsfE j g, where��1� D denotes the strict
transform of D. We call F the discrepancy andej 2 Q the discrepancy coefficient for
E j . We regard�di as the discrepancy coefficient ofDi .

The pair (X; D) is said to have onlyKawamata log terminal singularities(KLT)
(resp. log canonical singularities(LC)), if di < 1 (resp.≦ 1) for all i and ej > �1
(resp.≧ �1) for all j for a log resolution� : Y ! X. One can also say that (X; D) is
KLT (resp. LC), or KX + D is KLT (resp. LC), when (X; D) has only KLT (resp. LC).
The pair (X; D) is said to be KLT (resp. LC) at a pointx0 2 X, if (U; DjU ) is KLT
(resp. LC) for some neighbourhoodU of x0.

The following proposition is a dictionary between algebraic geometry and theL2-
method.

Proposition 2.5. Let D be an effectiveQ-divisor normal n-fold X. Then (X; D)
is KLT at x2 Xreg, if and only if I(D)x is trivial (= OX;x).

In particular, multx D ≧ n impliesI(D) is nontrivial at x2 X. holds.

The proof is trivial and left to the reader. The last assertion follows from the fact that�Pn
i =1 jzi j2��n

is not locally integrable aroundO 2 Cn.
For a multiplier ideal sheafI(h), the support ofOX=I(h) is called the co-support

of I(h). To locate the co-support of a multiplier ideal sheaf of effective Q-divisors,
the following notion is useful.

DEFINITION 2.6. A subvarietyW of X is said to be acenter of log canonical
singularities for the pair (X; D), if there is a log resolution� : Y ! X and a prime
divisor E on Y with the discrepancy coefficiente ≦ �1 such that�(E) = W.

By definition W � SuppD holds. The set of all the centers of log canonical singular-
ities is denoted byCLC(X; D). For a pointx0 2 X, we defineCLC(X; x0; D) := fW 2
CLC(X; D) j x0 2 Wg. We quote the following proposition to introduce the notionof
the minimal center of log canoical singularities.

Proposition 2.7 ([8, p.494, Proposition 1.5]).Let X be a normal variety and D
an effectiveQ-Cartier divisor such that KX + D is Q-Cartier. Assume that X is KLT and
(X; D) is LC. If W1;W2 2 CLC(X; D) and W an irreducible component of W1 \ W2,
then W 2 CLC(X; D). This implies that if(X; D) is not KLT, then there exists a
unique minimal element of CLC(X; D). Also if (X; D) is LC but not KLT at a point
x0 2 X, then there exists the unique minimal element of CLC(X; x0; D).

We call these minimal elements theminimal center of LC singularitiesof (X; D)
and theminimal center of LC singularitiesof (X; D) at x0 respectively.
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2.2. Kawamata’s subadjunction theorem. The following subadjunction theo-
rem is crucial in our proof.

Theorem 2.8 ([7, Theorem 1]). Let X be a normal projective variety and x2
Xreg. Let DÆ and D be effectiveQ-divisors on X such that DÆ < D, (X; D) is KLT at
x and (X; D) is LC at x. Let W be the minimal center of LC singularities at x for
(X; D). Let � : W ! W be the desingularization of W. Let H be an ample Cartier
divisor on X and� a positive rational number.

Then there exists an effectiveQ-divisor DW on W such that

��(KX + D + �H ) �Q KW + D W:
REMARK 2.9. The above theorem is a little bit different from the original

Kawamata’s subadjunction theorem [7, Theorem 1]. In fact weonly assume thatW is
a local minimal center atx. But the proof of Theorem 2.8 is contained in Kawamata’s
by just replacing “minimal center of LC singularities” by “local minimal center” when-
ever necessary. And the main difference to Kawamata’s subadjunction is that local min-
imal centerW is not necessarily normal everywhere, hence it is not clear what KW

should be.

Roughly speaking, Theorem 2.8 implies thatKX + DjW (almost) dominatesKW.

2.3. Several remarks on singular hermitian line bundles on minimal algebraic
varieties. Since minimal algebraic varieties are singular in general,we cannot apply
the theory of singular hermitian line bundles directly. Here I would like to explain the
modifications we need.

Let X be a minimal projectiven-fold of general type, i.e.,X has onlyQ-factorial
terminal singularities and the canonical divisorKX is nef.

For a reduced complex spaceY, we define the space ofC1-functions (resp. pluri-
subharmonic functions) onY as a space of continuous functions (resp. plurisubharmonic
functions) on the regular part ofY which are locally extendable toC1-functions
(resp. plurisubharmonic functions) on an ambient space with respect to some local em-
bedding ofY into an open subset of a complex Euclidean space (“some localembbed-
ding” is enough for our purposes).

Let r be a positive integer such thatr K X is Cartier. Thenr K X admits aC1-
hermitian metrich0, whereC1-hermitian metric means that it is locally expressed by
a C1-function with respect to a local holomorphic frame. Then the r -th root r

p
h0 is

well defined. We considerr
p

h0 as aC1 hermitian metric onKX.
Let h be a singular hermitian metric on (m� 1)KX such that
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1. h has algebraic singularities, i.e.,

h = e�� � 1�PN
j =1 j� j j2�1=a ;

where� is a C1-function on X, a is a positive integer and

� j 2 H0(X;OX(a(m� 1)KX)) (1 ≦ j ≦ N)

(for the notationj� j j2, see Example 2.2).
2. The curvature current2h is strictly positive in the sense that it dominates a pos-
itive multiple of a K̈ahler form which is induced by a projective embedding ofX,
i.e. 2h is locally extendable to a closed positive current on the projective embedding
which dominates a positive multiple of the Kähler form.
Later we will consider slightly more general situation, i.e., h is a product of singular
hermitian metrics with algebraic singularities. But the argument below is identical also
in this more general case.

Let

� : X̃ ! X

be a resolution of singularities such that the exceptional set F is a divisor with normal
crossings.

h defines a singular hermitian metric��h on (m�1)K X̃. Here we should note that
we have identified��h as a metric on (m� 1)K X̃ not of (m� 1)��KX. The reason is
that (m�1)K X̃ is a line bundle and is easier to handle. We note that sinceX has only
canonical singularities,K X̃ ���KX is effective. Hence��h has semipositive curvature
current on X̃ and strictly positive on��1(Xreg), where Xreg denotes the regular locus
of X.

Let F =
P

k Fk be the irreducible decomposition of the exceptional divisor F of� and let �Fk be a nontrivial global holomorphic section ofOX̃(Fk) with divisor Fk.
Let hk be aC1-hermitian metric onOX̃(Fk). Let h̃ be a singular hermitian metric on
(m� 1)K X̃ defined by

h̃ =
��hQ

k k�Fkk2ck

for some positive rational numbersfckg. Since2h is strictly positive onX, we may
and do choosefhkg and fckg so that the curvature current2h̃ of h̃ is strictly positive
on X̃. Then for a sufficiently small positive number" � 1, (��h1�") � h̃" has strictly
positive curvature oñX and

I
�
(��h1�") � h̃"� = I(��h)



PLURICANONICAL SYSTEMS 975

holds. This follows from Proposition 2.5, sinceh has algebraic singularities. Then by
Nadel’s vanishing theorem ([13, p.561]), we have that

Hq
�
X̃;OX̃(K X̃ + (m� 1)K X̃)
 I(��h)

�
= 0

holds for everyq ≧ 1. We set!X := ��OX(K X̃) and call it the L2-dualizing sheaf
of X. !X is nothing but the sheaf of germs ofL2-holomorphic canonical forms onX.
Hence it is independent of the choice of the resolution. Since X has only canonical
singualities, theL2-dualizing sheaf!X is isomorphic toOX(KX).

Since

Rp���OX̃(K X̃ + (m� 1)K X̃)
 I(��h)
�

= 0

holds for everyp ≧ 1 by the standardL2-vanishing theorem on holomorphically con-
vex manifolds (cf. [6], this is nothing but the local Nadel’svanishing theorem), we
have that

Hq
�
X;OX̃(KX + (m� 1)KX)
 I(h)

�
= 0

holds for everyq ≧ 1, where

OX(KX + (m� 1)KX)
 I(h) := ���OX̃(K X̃ + (m� 1)K X̃)
 I(��h)
�:

It is clear thatOX̃(KX + (m� 1)KX)
 I(h) is independent of the choice of the reso-
lution � . Here we note thatI(h) may not be well defined, ifmKX is not Cartier. But
OX̃(KX + (m� 1)KX)
 I(h) is well defined.

3. Proofs of Theorems 1.1 and 1.2 assuming MMP

In this section we prove Theorems 1.1 and 1.2 assuming the minimal model pro-
gram (MMP). Since the minimal model program is established in the case of 3-folds,
the proof under this assumption provides the full proofs of Theorems 1.1 and 1.2 for
the case of projective varieties of general type of dimX ≦ 3.

3.1. Construction of a filtration. Let X be a minimal projectiven-fold of gen-
eral type, i.e.,X has onlyQ-factorial terminal singularities and the canonical divisor
KX is nef. We set

XÆ = fx 2 Xreg j x =2 BsjmKXj and8jmKX j is a biholomorphism

on a neighbourhood ofx for somem ≧ 1g:
Then XÆ is a nonempty Zariski open subset ofX.

In this subsection we shall construct a filtration as follows.
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Lemma 3.1. Let x and x0 be distinct points on XÆ. Then there exists a filtration:

X = X0 � X1 � � � � � Xr � Xr +1 = x or x0
of X by a strictly decreasing sequence of subvarietiesfXi gr +1

i =0 for some r (depending
on x and x0), effectiveQ-divisors

D0; : : : ; Dr

which areQ-lineraly equivalent to KX and invariants:

�0; �1; : : : ; �r 2 Q+;
n =: n0 > n1 > � � � > nr (ni = dim Xi ; i = 0; : : : ; r )

and

�0; �1; : : : ; �r (�i = K ni
X � Xi ; i = 0; : : : ; r )

with the estimates

�i ≦
ni

ni
p

2
ni
p�i

+ Æ (0 ≦ i ≦ r );
whereÆ is a fixed positive number less than1=n and �i is defined inductively by:

�i = inf

(
� > 0

�����
 

X; i�1X
j =0

(� j � " j )D j + �Di

!
is KLT at neither x nor x0

)
;

where "0; : : : ; "i�1 are small positive rational numbers which can be taken arbitrar-
ily small. Here each filter Xi (1 ≦ i ≦ r ) is the minimal center of log canonical
singularities of

�
X;Pi�2

j =0(� j � " j )D j + �i�1Di�1
�

at x or x0 (if i = 1, we considerPi�2
j =0(� j � " j )D j = 0).

"0; : : : ; "i�1 will be specified during the constrution of the filtration.
Roughly the construction of the filtration is as follows.
First we setX0 = X. Suppose that we have already constructed the filtration up to

Xi , i.e., we have constructed the filtration:

X = X0 � X1 � � � � � Xi ;
divisors D0; : : : ; Di�1 and so on. Then one of the following two cases occurs. Here
one has to split off the construction ofDi .

CASE 1. For every sufficiently small positive number�,
�
X;Pi�2

j =0(� j � " j )D j +
(�i�1 � �)Di�1

�
is KLT at both x and x0.
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CASE 2. For every sufficiently small positive number�,
�
X;Pi�2

j =0(� j � " j )D j +
(�i�1 � �)Di�1

�
is KLT at exactly one ofx or x0 say x.

In Case 1, we construct an effectiveQ-divisor Di which is Q-linearly equivalent to
KX such that
1. SuppDi does not containXi .
2. Di jXi has “high multiplicities” both atx and x0 (for the precise meaning of “high
multiplicities,” see the detailed construction below).
3. Around x, SuppDi is smooth outsideXi and Di has sufficiently low multiplicities
on X � Xi .
We choose a sufficiently small positive rational number"i�1 and define

�i = inf

(
� > 0

�����
 

X; i�1X
j =0

(� j � " j )D j + �Di

!
is KLT at neitherx nor x0

)
:

Then we defineXi +1 to be the minimal center of log canonical singularities atx or x0.
In generalXi +1 may not be unique, when

�
X;Pi�1

j =0(� j �" j )D j +�i Di
�

is log canonical
both x and x0. Since SuppDi is smooth aroundx and x0, the minimal centerXi +1 is
a proper subvariety ofXi .

We setni +1 = dim Xi +1 and�i +1 = K ni +1
X � Xi +1.

In Case 2, we construct theDi so that Di has relatively large multiplicities atx
instead of at bothx and x0. We note that if we encounter Case 2, in the following
steps, we encounter only Case 2, i.e., we may concentrate ourselves around a single
point.

We continue the construction untilXr +1 is a point.
Now we shall describe the construction more closely. The construction of a filtra-

tion below is similar to that in [20, 1]. The only difference is the fact that we deal
with the Q-Cartier divisor KX which is not Cartier in general. Of course this differ-
ence is very minor as long as we work on the regular locus ofX. The only essential
difference is that the intersection number of a power ofKX and the subvarieties ofX
is a rational number in general.

We set

�0 := K n
X:

Lemma 3.2. We set

Mx;x0 := Mx �Mx0 ;
whereMx;Mx0 denote the maximal ideal sheaves of the points x and x0 respectively.
Let " be a positive rational number less than1. Then

H0(X;OX(mKX)
M

l
np�0(1�") m

np2

m
x;x0 ) 6= 0
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for every sufficiently large m(independent of x; x0), where for a real number a, dae
denotes the smallest integer greater or equal to a.

Proof. Let us consider the exact sequence:

0! H0(X;OX(mKX)
M

l
np�0(1�") m

np2

m
x;x0 ) ! H0(X;OX(mKX))

! H0(X;OX(mKX)
OX=M
l

np�0(1�") m
np2

m
x;x0 ):

We note that

n! � lim
m!1m�n dim H0(X;OX(mKX)) = �0

holds, sinceKX is nef and big (cf. Proposition 4.1 and Remark 4.2 in Appendix).
Then since

n! � lim
m!1m�n dim H0(X;OX(mKX)
OX=M

l
np�0(1�") m

np2

m
x;x0 ) = �0(1� ")n < �0

hold, by the above exact sequence we complete the proof of Lemma 3.2.

Let " > 0 be as in Lemma 3.2. Let us take a sufficiently large positive integerm0

so that

H0(X;OX(m0KX)
M

l
np�0(1�") m0

np2

m
x;x0 ) 6= 0

holds as in Lemma 3.2 and let�0 be a general nonzero element ofH0(X;OX(m0KX) 

M

d np�0(1�")m0= np2e
x;x0 ). We define the effectiveQ-divisor D0 by

D0 =
1

m0
(�0):

We define the positive number�0 by

�0 := inff� > 0 j (X; �D0) is KLT at neitherx nor x0g;
where KLT is short for Kawamata log terminal (cf. Definition 2.4). Let � : Y ! X be
a log resolution of (X; D) and for � > 0 let

KY +��1� (�D) = ��(KX + �D) + F(�);
where F(�) denotes the discrepancy depending on�. Then �0 is the infimum of�
such that the discrepancyF(�) has a component whose coefficient is less than or equal
to �1. Hence by the construction�0 is a rational number.
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Considering the multiplicities ofD0 at x and x0, by Proposition 2.5, we see that

�0 ≦
n n
p

2
n
p�0(1� ")

holds.
Let us fix an arbitrary positive numberÆ � 1=n. Let us take" > 0 sufficiently

small so that

�0 ≦
n n
p

2
n
p�0

+ Æ
holds. Then one of the following two cases occurs.

CASE 1. For every sufficiently small positive number�, (X; (�0 � �)D0) is KLT
at both x and x0.

CASE 2. For every sufficiently small positive number�, (X; (�0 � �)D0) is KLT
at exactly one ofx or x0 say x.

We define the next stratumX1 as

X1 := the minimal center of log canonical singularities of (X; �0D0)

at x (cf. Section 2):
Let n1 denote the dimension ofX1. Let us define the volume�1 of X1 with respect
to KX by

�1 := K n1
X � X1:

If X1 is a point, we stop the construction of the filtration. Suppose that X1 is not
a point.

Case 1 divides into the following two subcases.
CASE 1.1. X1 passes through bothx and x0.
CASE 1.2. X1 passes through exactly one ofx and x0 (by the above assumption

in Case 2,X1 passes throughx).
First we shall consider Case 1.1. In this caseX1 is not isolated atx. Since x 2

XÆ, we see that�1 > 0 holds. The proof of the following lemma is identical to that
of Lemma 3.2.

Lemma 3.3. Let "0 be a positive rational number less than1 and let x1 and x2
be distinct regular points on X1. Then for a sufficiently large m> 1 (indendent of
x1; x2),

H0(X1;OX1(mKX)
M

l
n1
p�1(1�"0) m

n1
p

2

m
x1;x2 ) 6= 0

holds.
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Let x1 and x2 be distinct regular points ofX1\XÆ. Let "0 be a positive rational number
as in Lemma 3.3. Letm1 be a sufficiently large positive integer so that

H0(X1;OX1(m1KX)
M

l
n1
p�1(1�"0) m1

n1
p

2

m
x1;x2 ) 6= 0

as in Lemma 3.3 and let

� 01;x1;x2
2 H0(X1;OX1(m1KX)
M

l
n1
p�1(1�"0) m1

n1
p

2

m
x1;x2 )

be a nonzero element.
By Kodaira’s lemma [10, Appendix] there is an effectiveQ-divisor E such that

KX � E is ample. By the definition ofXÆ, we may assume that the support ofE
contains neitherx nor x0. In fact this can be verified as follows. LetH be an arbi-
trary ample divisor onX. Then by the definition ofXÆ, jaKX � H j is base point free
at x and x0 for every sufficiently largea. Fix such ana and take a memberE0 ofjaKX � H j which contains neitherx nor x0. Then we may takeE to be a�1E0.

Let l1 be a sufficiently large positive integer which will be specified later such that

L1 := l1(KX � E)

is Cartier.

Lemma 3.4. If we take l1 sufficiently large, then

�m : H0(X;OX(mKX + L1)) ! H0(X1;OX1(mKX + L1))

is surjective for every m≧ 0.

Proof. KX is nef Q-Cartier divisor by the assumption. Letr be the index ofX,
i.e. r is the minimal positive integer such thatr K X is Cartier. Then for every locally
free sheafE , by Lemma 4.3 in Appendix, there exists a positive integerk0 depending
on E such that ifl1 ≧ k0 holds, then

Hq(X;OX((1 + mr)KX + L1)
 E) = 0

holds for everyq ≧ 1 andm ≧ 0. Let us consider the exact sequences

0! K j ! E j ! OX( j K X)
 IX1 ! 0

for some locally free sheafE j for every 0≦ j ≦ r � 1, whereIX1 denotes the ideal
sheaf associated withX1. Then noting the above fact, we can prove that if we takel1
sufficiently large,

Hq(X;OX(mKX + L1)
 IX1) = 0
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holds for everyq ≧ 1 and m ≧ 0 by exactly the same manner as the standard proof
of Serre’s vanishing theorem (cf. [5, p.228, Theorem 5.2]).This implies the desired
surjection.

Note that for l1 sufficiently large, the surjectivity is true for everym ≧ 0. Let
l1 be as in Lemma 3.4. Let� be a general section inH0(X;OX(L1)). Then by Lem-
ma 3.4 we see that

� 01;x1;x2

 � 2 H0(X1;OX1(m1KX + L1)
M

l
n1
p�1(1�"0) m1

n1
p

2

m
x1;x2 )

extends to a section

�1;x1;x2 2 H0(X;OX((m1 + l1)KX)):
We may assume that the divisor (�1;x1:x2) is smooth on the neighbourhoodXregn(X1 [
SuppE) of x and x0 by Bertini’s theorem. This is because if we takel1 sufficiently
large, as in the proof of Lemma 3.4 (see also the proof of Lemma4.3),

([) H0(X;OX(mKX + L1)) ! H0(X;OX(mKX + L1)
OX=IX1 �My)

is surjective for everyy 2 XregnX1 and m ≧ 0 (we may and do assume thatl1 is
independent ofy and m, since X is projective algebraic). We set

D1(x1; x2) =
1

m1 + l1
(�1;x1;x2):

Let X1;reg denote the regular locus ofX1. We may construct the divisorsfD1(x1; x2)g
as an algebraic family over (X1;reg� X1;reg)n1X1, where1X1 denotes the diagonal of
X1� X1. Since in Lemma 3.4 we may takeL1 independent ofx1; x2, the construction
of the algebraic family is possible. Lettingx1 and x2 tend to x and x0 respectively,
we obtain aQ-divisor D1 on X which is (m1 + l1)�1 times a divisor of a global holo-
morphic section

�1 2 H0(X;OX((m1 + l1)KX)):
By the construction, we may and do assume that (�1) is smooth on the neighbourhood
Xregn(X1[SuppE) of x and x0. In fact this follows from the surjectivity of ([) (which
is independent ofx1; x2) and Bertini’s theorem.

Let "0 be a positive rational number with"0 < �0. And we define the positive
numbers�1(x1; x2) and �1 by

�1(x1; x2) := inff� > 0 j (�0 � "0)D0 + �D1(x1; x2) is KLT at neitherx1 nor x2g
and

�1 := inff� > 0 j (�0 � "0)D0 + �D1 is KLT at neitherx nor x0g
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respectively. We shall estimate�1. We note thatm1 is independent ofl1 (cf. Lem-
ma 3.4).

Lemma 3.5. Let Æ be the fixed positive number as above. Then we may
assume that

�1 ≦
n1

n1
p

2
n1
p�1

+ Æ
holds, if we take"0, l1=m1 and "0 sufficiently small.

Proof. To prove Lemma 3.5, we need the following elementary lemma.

Lemma 3.6 ([20, p.12, Lemma 6]). Let a;b be positive numbers and n1 a pos-
itive integer. Then

Z 1

0

r 2n1�1
2�

r 2
1 + r 2a

2

�b dr2 = r 2n1=a�2b
1

Z r�2a
1

0

r 2n1�1
3�

1 + r 2a
3

�b dr3

holds, where

r3 =
r2

r 1=a
1

:
First suppose that bothx and x0 are nonsingular pointson X1. Then we may set

x1 = x, x2 = x0, i.e., we do not need the limiting process to define the divisor D1.
Let (z1; : : : ; zn) be a local coordinate system on a neighbourhoodU of x in X

such that

U \ X1 = fq 2 U j zn1+1(q) = � � � = zn(q) = 0g:
We setr1 =

�Pn
i =n1+1 jz1j2�1=2 and r2 =

�Pn1
i =1 jzi j2�1=2. Fix an arbitraryC1-hermitian

metric hX on KX. Then there exists a positive constantC such that

(?) k�1k2 ≦ C(r 2
1 + r

2
l

n1
p�1(1�"0) m1

n1
p

2

m
2 )

holds on a neighbourhood ofx, wherek k denotes the norm with respect tohm1+l1
X .

Let us apply Lemma 3.6 by taking

a :=

�
n1
p�1(1� "0) m1

n1
p

2

� :
Then by Lemma 3.6 and the estimate (?), we see that for every

b > n1�
n1
p�1(1� "0)m1

Æ
n1
p

2
� :
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k�1k produces a singularity greater than or equal tor 2n1=a�b
1 , if we average the singu-

larity in terms of the volume form inz1; : : : ; zn1 direction.
On the other hand, there exists a positive integerM such that

k�0k�2 = O
�
r�M

1

�
holds on a neighbourhood of the generic point ofU\X1, wherek k denotes the norm
with respect tohm0

X and c is a positive constant.
Hence by the definition of�0, by Proposition 2.5 we have the inequality:

�1 ≦

�
m1 + l1

m1

�
n1

n1
p

2
n1
p�1(1� "0) + M

m1 + l1
m0

"0:
We note that since onel1 works for all m ≧ 0, l1=m1 can be made arbitrary small.
Taking "0, l1=m1 and "0 sufficiently small, we obtain that

�1 ≦
n1

n1
p

2
n1
p�1

+ Æ
holds.

Next we consider the case thatx or x0 is a singular point onX1. We need the
following lemma.

Lemma 3.7. Let ' be a plurisubharmonic function on1n � 1. Let 't (t 2 1)
be the restriction of' on 1n � ftg. Assume that e�'t does not belong to L1loc(1n;O)
for any t 2 1�.

Then e�'0 is not locally integrable at O2 1n.

Lemma 3.7 is an immediate consequence of theL2-extension theorem [15, p.20, The-
orem].

Using Lemma 3.7 and Lemma 3.6, lettingx1 ! x and x2 ! x0, we see that

�1 ≦ lim inf
x1!x; x2!x0 �1(x1; x2)

holds. Hence Lemma 3.5 holds also in this case.

Let X2 be the minimal center of LC singularities of (X; (�0� "0)D0 +�1D1) at x.
Since (X; (�0�"0)D0) is KLT by the definition of�0 and D1 is smooth onXregn(X1[
SuppE), if we take m1 sufficiently large, we may and do assume thatX2 is a proper
subvariety ofX1.

Next we consider Case 2. The remaining case Case 1.2 will be considered later.
In Case 2, for every sufficiently small positive number�, (X; (�0 � �)D0) is KLT at
x and not KLT atx0. In Case 2, instead of Lemma 3.3, we use the following simpler
lemma.
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Lemma 3.8. Let "0 be a positive number less than1 and let x1 be a regular
point on X1. Then for a sufficiently large m> 1,

H0
�

X1;OX1(mKX)
M
d n1
p�1(1�"0)me

x1

� 6= 0

holds.

Let x1 be a regular point ofX1. Using Lemma 3.8, let us take a nonzero element� 01;x1
in

H0
�

X1;OX1(m1KX)
M
d n1
p�1(1�"0)m1e

x1

� ;
for a sufficiently largem1. Let l1 be as in Lemma 3.4 and let� be a general nonzero
section inH0(X;OX(L1)) as before, whereL1 is the line bundle as in Lemma 3.4. By
Lemma 3.4, we may extend�1;x1 
 � to a section

�1;x1 2 H0(X;OX((m1 + l1)KX)):
As in Case 1.1, takingl1 sufficiently large, we may assume that (�1;x1) is smooth on
the neighbourhoodXregn(X1 [ SuppE) of x and x0. We set

D1(x1) =
1

m1 + l1
(�1;x1):

Let X1;reg denote the regular locus ofX1. We may construct the divisorsfD1(x1)g as
an algebraic family overX1;reg. Letting x1 tend to x, we obtain aQ-divisor D1 on X
which is (m1 + l1)�1-times a divisor of a global holomorphic section

�1 2 H0(X;OX((m1 + l1)KX)):
By the construction, we may and do assume that (�1) is smooth on the neighbourhood
Xregn(X1 [ SuppE) of x and x0.

Let "0 be a sufficiently small positive rational number with"0 < �0 such that
(�0 � "0)D0 is not KLT at x0 (this is possible because we are considering Case 2).

And we define�1(x1) and �1 by

�1(x1) := inff� > 0 j (�0 � "0)D0 + �D1(x1) is not KLT at x1g:
and

�1 := inff� > 0 j (�0 � "0)D0 + �D1 is KLT at neitherx nor x0g
respectively. The definition of�1 is the same as in Case 1.1. But we note that (�0 �"0)D0 is already not KLT atx0. We shall estimate�1. The proof of the following
lemma is similar to that of Lemma 3.5.
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Lemma 3.9. Let Æ be the fixed positive number as above. Then we may
assume that

�1 ≦
n1

n1
p�1

+ Æ
holds, if we take"0, l1=m1 and "0 sufficiently small.

This estimate is better than Lemma 3.5. Then we may define the proper subvarietyX2

of X1 as the minimal center of log canonical singularities of (X; (�0 � "0)D0 + �1D1)
at x or x0 as we have definedX1.

Lastly in Case 1.2 the construction of the filtration reducesto Case 2 as follows.
In Case 1.2,X1 does not pass throughx0. Hence in this case the minimal center of
LC singularitiesX0

1 at x0 does not pass throughx.
Let a1 be a sufficiently large positive integer such that

H0
�
X;OX(a1KX)
 IX01� 6= 0:

Let � 0 be a general nonzero section ofH0(X;OX(a1KX)
 IX01).
We note that there exists an effectiveQ-divisor G on X such that

1. KX � G is ample,
2. x is not contained in SuppG.
In fact this can be verified as follows. LetH be an arbitrary ample divisor onX. Then
by the definition ofXÆ, jbKX � H j is base point free atx for every sufficiently large
b. Fix such ab and take a memberG0 of jbKX � H j which does not containx. Then
we may takeG to be b�1G0.

Let a1 be a sufficiently large positive integer such thata1(KX � G) and a1G are
Cartier. By 1, it follows there exists� 00 2 H0(X;OX(a1(KX�G)) such that� 00(X0

1) = 0
and � 00(x) 6= 0. By tensoring the global section ofOX(a1G) with divisor a1G to � 00, if
we takea1 sufficiently large, we may assume that the divisor (� 0) does not containx.

In this case instead of�0, we shall use� e
0 
 � 0, where e is a positive integer.

Let D0
0 := (m0e + a1)�1(� e

0 
 � 0). Let us define the positive rational number�00 for
(X; D0

0) similar to �0. Then since� 0(X0
1) = 0 and� 0(x) 6= 0, the minimal center of LC

singularities of (X; �00D0
0) at x is X1 and (X; �00D0

0) is not LC atx0. Also we can make�00 arbitrary close to�0 by taking e sufficiently large. Hence we may assume that�00
satisfies the same estimate:

�00 ≦
n n
p

2
n
p�0

+ Æ
as �0. In this way we can reduce Case 1.2 to Case 2.

In any case, we construct the next stratumX2 as the minimal center of log canon-
ical singularities of (X; (�0 � "0)D0 + �1D1) at x. If X2 is a point, then we stop the
construction of the filtration. IfX2 is not a point, we continue exactly the same pro-
cedure replacingX1 by X2. And we continue the procedure as long as the new center
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of log canonical singularities (X1; X2; : : : ) is not a point. As a result, for any distinct
points x; x0 2 XÆ, we construct a strictly decreasing sequence of subvarieties:

X = X0 � X1 � � � � � Xr � Xr +1 = x or x0;
effective Q-divisors

D0; : : : ; Dr

numerically equivalent toKX and invariants:

�0; �1; : : : ; �r ;
n =: n0 > n1 > � � � > nr (ni = dim Xi ; i = 0; : : : ; r )

and

�0; �1; : : : ; �r (�i = K ni
X � Xi ; i = 0; : : : ; r )

depending on small positive rational numbers"0; : : : ; "r�1, large positive integersm0;
m1; : : : ;mr , positive integers 0 =:l0; l1; : : : ; lr ,

�i 2 H0(X;OX((mi + l i )KX)) (i = 0; : : : ; r );
Di =

1

mi + l i
(�i ) (i = 0; : : : ; r );

etc.
Here eachXi (1 ≦ i ≦ r ) is the minimal center of log canonical singularities of�

X;Pi�1
j =0(� j � " j )D j

�
at x or x0.

By Nadel’s vanishing theorem ([13, p.561]) we have the following lemma.

Lemma 3.10. For every positive integer m> 1+
Pr

i =0�i , 8jmKX j separates x and
x0. And we may assume that

�i ≦
ni

ni
p

2
ni
p�i

+ Æ
holds for every0 ≦ i ≦ r .

Proof. For i = 0;1; : : : ; r , let hi be the singular hermitian metric onKX de-
fined by

hi :=
1j�i j2=(mi +l i )

:=
hX�

hmi +l i
X (�i ; �i )

�1=(mi +l i )
;

where we have setl0 = 0 and hX is a C1-hermitian metric onKX (the righthand
side does not depend on the choice ofhX). As before, using Kodaira’s lemma ([10,
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Appendix]), let G be an effectiveQ-divisor such thatKX �G is ample. As before we
may assume that SuppG contains neitherx nor x0. Let m be a positive integer such
that m > 1 +

Pr
i =0�i holds. Let hL is a C1-hermitian metric on the ampleQ-line

bundle

L :=

 
m� 1�

 
r�1X
i =0

(�i � "i )

!
� �r

!
KX � ÆL G

with strictly positive curvature, whereÆL be a sufficiently small positive rational num-
ber and we shall considerhL as a singular hermitian metric on

�
m� 1� �Pr�1

i =0 (�i �"i )
�� �r

�
KX, i.e., we identifyhL and the singular hermitian metric

hLj�Gj2ÆL

on
�
m�1� �Pr�1

i =0 (�i � "i )
���r

�
KX, where�G is a multi-holomorphic section of the

Q-line bundleG with divisor G. Let us define the singular hermitian metrichx;x0 of
(m� 1)KX defined by

hx;x0 =

 
r�1Y
i =0

h�i�"i
i

!
� h�r

r � hL :
Then we see thatI(hx;x0 ) defines a subscheme ofX with isolated support aroundx or
x0 by the definition of the invariantsf�i g’s. By the construction the curvature current2hx;x0 is strictly positive onX. Then by Nadel’s vanishing theorem ([13, p.561]) we
see that

H1(X;OX(mKX)
 I(hx;x0 )) = 0

holds (see Section 2.3). Hence

H0(X;OX(mKX)) ! H0(X;OX(mKX)
OX=I(hx;x0 ))
is surjective. Since by the construction ofhx;x0 (if we take ÆL sufficiently small)
Supp(OX=I(hx;x0 )) contains bothx and x0 and is isolated at least at one ofx or x0.
Hence by the above surjection, there exists a section� 2 H0(X;OX(mKX)) such that

� (x) 6= 0; � (x0) = 0

or

� (x) = 0; � (x0) 6= 0

holds. This implies that8jmKX j separatesx and x0. The proof of the last statement is
similar to the proof of Lemma 3.5
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3.2. Estimate of the degree. To relate�0 and the degree of the pluricanonical
image of X, we need the following lemma.

Lemma 3.11. If 8jmKX j is a birational rational map onto its image, then

deg8jmKX j(X) ≦ �0 �mn

holds.

Proof. Let p : X̃ ! X be the resolution of the base locus ofjmKXj and let

p�jmKXj = jPmj + Fm

be the decomposition into the free partjPmj and the fixed componentFm. We have

deg8jmKX j(X) = Pn
m;

holds.
We note thatOX̃(�Pm) is globally generated oñX. This implies that for every� ≧ 1 we have the injection

OX̃(�Pm) ! p�OX(m�KX):
Hence there exists a natural morphism

H0
�
X̃;OX̃(�Pm)

�! H0(X;OX(m�KX))

for every � ≧ 1. This morphism is clearly injective. This implies that

�0 ≧ m�n��X̃; Pm
�

holds. SincePm is nef and big onX̃, we see that

��X̃; Pm
�

= Pn
m

holds. Hence

�0 ≧ m�n Pn
m

holds. This implies the desired inequality:

deg8jmKX j(X) ≦ �0 �mn

holds.
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3.3. Use of Kawamata’s subadjunction theorem. Let X be a minimal projec-
tive n-fold X of general type and letXÆ be the Zariski open subset ofX defined by

XÆ = fx 2 Xreg j x =2 BsjmKXj and8jmKX j is a biholomorphism

on a neighbourhood ofx for somem ≧ 1g
as in the beginning of Section 3. Letx; x0 be distinct points onXÆ. Let us consider
again the sequence of numbers� j , divisors D j and the filtration

X � X1 � � � � � Xr � Xr +1 = fxg or fx0g
which were defined in Section 3.1. For 1≦ j ≦ r , let � j : Wj ! X j be a desingular-
ization of X j . Let us fix 1≦ j ≦ r . Applying Theorem 2.8 to (X; D) where

D := (�0 � "0)D0 + � � � + (� j�2 � " j�2)D j�2 + � j�1D j�1;
we get

(℄) �(Wj ; KWj ) ≦

 
1 +

j�1X
i =0

�i

!n j

� � j

holds, where

�(Wj ; KWj ) := n j ! � lim
m!1m�n j dim H0(Wj ;OWj (mKWj )):

In fact by Theorem 2.8 and Remark 2.9, we see that

(KX + D)jX j � (� j )�KWj

is pseudoeffective. Hence

�(Wj ; KWj ) ≦ ��Wj ; ��j (KX + D)
�

holds. Here we have defined��Wj ; ��j (KX + D)
�

by

��Wj ; ��j (KX + D)
�

:= c�n j � ��Wj ;a � ��j (KX + D))
�;

wherec is a positive integer such thatc(KX + D) is Cartier. It is easy to see that this
definition is independent of the choice ofc (cf. Remark 4.2). Also we note that since
every Di (1 ≦ i ≦ j � 1) is Q-linearly equivalent toKX, KX + D is Q-linearly equiv-
alent to

1 +

 
� j�1 +

j�2X
i =0

(�i � "i )

!
KX:



990 H. TSUJI

Then combining the above facts, by Proposition 4.1 (see alsoRemark 4.2) and the def-
inition � j := K

n j

X � X j , we have the desired inequality (℄).
We note thatX cannot be dominated by a family of varieties of nongeneral type.

In fact if there exists a dominant family of subvarieties of nongeneral type, then this
contradicts the assumption thatX is of general type. Hence there exists a nonempty
open setU0 of XÆ in countable Zariski topologysuch that for everyx 2 U0, any sub-
variety of X passing throughx is of general type.

We shall prove Theorem 1.2 by induction onn. Suppose that Theorem 1.2 holds
for projective varieties of general type of dimension less than or equal ton � 1 (the
case ofn = 1 is trivial), i.e., for every positive integerk < n there exists a positive
numberC(k) such that for every smooth projective varietyW of general type of di-
mensionk,

�(W; KW) ≧ C(k)

holds. Let us assume that (x; x0) belongs to (U0�U0)n1X . Then X j is of general type
by the definition ofU0 and by the above inequality (℄) and the definition ofC(n j ),

C(n j ) ≦

 
1 +

j�1X
i =0

�i

!n j

� � j

holds. Since

�i ≦
ni
p

2ni

ni
p�i

+ Æ
holds for every 0≦ i ≦ r by Lemma 3.10, we see that

1
n j
p� j

≦

 
2 +

j�1X
i =0

ni
p

2ni

ni
p�i

!
� C(n j )

�1=n j

holds for every j ≧ 1. We note that the stricly decreasing sequencefn;n1; : : : ;nr g
has finitely many possibilities. Then using the above inequality inductively, we have
the following lemma.

Lemma 3.12. Suppose that�0 ≦ 1 holds. Then there exists a positive constant
C depending only on n such that for every(x; x0) 2 (U0 �U0)n1X the corresponding
invariants f�0; : : : ; �r g and fn1; : : : ;nr g depending on(x; x0) (r may also depend on
(x; x0)) satisfies the inequality:

2 +

&
rX

i =0

ni
p

2ni

ni
p�i

'
≦

�
C

n
p�0

� ;
where for a real number a, ba
 denotes the largest integer less than or equal to a.
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By Lemmas 3.10 and 3.12 we see that if�0 ≦ 1 holds, for

m :=

�
C

n
p�0

� ;
jmKXj gives a birational embedding ofX and

(1) deg8jmKX j(X) ≦ Cn

holds by Lemma 3.11, whereC is the positive constant in Lemma 3.12. Also

dim H0(X;OX(mKX)) ≦ n + 1 + deg8jmKX j(X)

holds by the semipositivity of the1-genus ([3]). Hence we have that if�0 ≦ 1,

(2) dimH0(X;OX(mKX)) ≦ n + 1 +Cn

holds.
SinceC is a positive constant depending only onn, combining the above two in-

equalities (1) and (2), we have that there exists a positive constantC(n) depending
only on n such that

�0 = K n
X ≧ C(n)

holds.
More precisely we argue as follows. LetH be the union of the irreducible com-

ponents of the Hilbert scheme parametrizing subschemes of degree≦ Cn in projective
spaces of dimension≦ n + Cn.

By the general theory of Hilbert schemes ([4, exposé 221]),H consists of finitely
many irreducible components. LetH0 be the Zariski open subset ofH which
parametrizes irreducible subvarieties. Then there existsa finite stratification ofH0 by
Zariski locally closed subsets such that on each stratum, there exists a simultaneous
resolution of the universal family on the stratum. We note that the volume of the
canonical bundle of the resolution (for the definition of thevolume see Theorem 1.2)
is constant on each stratum by the invariance of plurigenera([21, 14]). Hence there
exists a positive constantC(n) depending only onn such that

�(X; KX) ≧ C(n)

holds for every projectiven-fold X of general type with�(X; KX) ≦ 1. This com-
pletes the proof of Theorem 1.2 assuming MMP.

Now let us prove Theorem 1.1. By Lemmas 3.10 and 3.12, Theorem1.2 implies
that there exists a positive integer�n depending only onn such that for every projec-
tive n-fold X of general type,jmKXj gives a birational embedding into a projective
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space for everym ≧ �n. This completes the proof of Theorem 1.1 assuming MMP.

4. Appendix

4.1. Volume of nef and big line bundles. The following fact seems to be well
known. But for the completeness, I would like to include the proof.

Proposition 4.1. Let M be a smooth projective n-fold and let L be a nef and
big line bundle on M. Then

n! � lim
m!1m�n dim H0(M;OM (mL)) = Ln

holds.

Proof. SinceL is big, there exists an effectiveQ-divisor F such thatL � F is
ample. Leta be a positive integer such thatA := a(L � F) is a very ample Cartier
divisor andA�KX is ample. Then by the Kodaira vanishing theorem, for everyq ≧ 1,

Hq(M;OM (A + mL)) = 0

holds for everym ≧ 0. By the Riemann-Roch theorem, we have that

n! � lim
m!1m�n dim H0(M;OM (A + mL)) = Ln

holds. By the definition ofA, we see that

n! � lim
m!1m�n dim H0(M;OM (mL)) = Ln

holds. This completes the proof.

REMARK 4.2. Let X be a minimal projectiven-fold of general type and letr be
a positive integer such thatr K X is Cartier. LetY be a subvariety ofX. Let $ : Ỹ !
Y be a resolution of singularities. Thenr$ �KX is a nef Cartier divisor onỸ.$ �OX(mKX) is a sheaf onỸ for every m ≧ 1. We define

�(Y; KXjY) = (dimY)! � lim
m!1m� dimY dim H0�Ỹ;OỸ($ �(mKX)

�
as above. Suppose that�(Y; KXjY) > 0 holds, i.e.,KXjY is big.

We note that by Kodaira’s lemma, there exists a positive integer a0 such that for
every positive integera ≧ a0, H0

�
Ỹ;$ �OY(aKX)

� 6= 0 holds. In particular, there ex-
ists a positive integerb0 such that

H0
�
Ỹ;$ �OY((b0 + j )KX)

� 6= 0
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for every j = 0;1; : : : ; r � 1. Hence there exists an injection

H0�Ỹ;$ �OY(mKX)
�! H0�Ỹ;$ �OY((m + b0 + j )KX)

�
for every 0≦ j ≦ r � 1.

This implies that

�(Y; KXjY) = r�n � ��Ỹ; r$ �KX
�

holds.
Then by Proposition 4.1, we see that

�(Y; KXjY) = r�n � ��Ỹ; r$ �KX
�

= r�n � �($ �(r K X))dimY � Ỹ� = K dimY
X � Y

holds.

4.2. A Serre type vanishing theorem.

Lemma 4.3. Let X be a projective variety with only canonical singularities
(cf . [11, p.56, Definition 2.34]).Let E be a vector bundle on X and let L be a nef
line bundle on X. Let A be an ample line bundle on X. Then there exsists a positive
integer k0 depending only on E such that for every k≧ k0

Hq(X;OX(KX + mL + k A)
 E) = 0

holds for every m≧ 0 and q≧ 1.

Proof. Let!X be theL2-dualizing sheaf ofX, i.e., the direct image sheaf of the
canonical sheaf of a resolution ofX. Since X has only canonical singularities, we see
that !X is isomorphic toOX(KX). Since L is nef andA is ample, there exists a pos-
itive integer k0 such that for everyk ≧ k0, (mL + k A) 
 E admits aC1-hermitian
metric with (strictly) Nakano positive curvature.

Then by exactly the same way as in Section 2.3, we see that

Hq(X; !X 
OX(mL + k A)
 E) = 0

holds for everym ≧ 0 andq ≧ 1.
Since!X is isomorphic toOX(KX), we have that

Hq(X;OX(KX + mL + k A)
 E) = 0

holds for everym ≧ 0 andq ≧ 1. This completes the proof.
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NOTE ADDED IN PROOFS. Very recently the following two papers appeared and
proved the same result in this paper and [23].

[H-M] C. Hacon and J. McKernan:Boundedness of pluricanonical maps of varieties of generaltype,
Invent. Math.166 (2006), 1–25.

[Ta] S. Takayama:Pluricanonical systems of varieties of general type, Invent. Math.165 (2006),
551–587.

Apparently they have followed the strategy and the arguments in this paper and [23]
as they mentioned in their papers. Actually as in [23], the crucial tools in their proofs
(Section 4 in [H-M], Theorem 4.1 in [Ta]) are also the extension theorems of sections
of multi adjoint bundles from the subvariety to the ambient variety which follow the
subadjunction theorem, Theorem 2.23 in [23]. Theorem 2.23 in [23] and their corre-
sponding extension theorems follow from entirely the same argument which appeared
in the paper: Y.-T. Siu, Invariance of plurigenera, Invent.Math 134 (1998), 661–673.
Actually all the proofs of extension theorems are completely parallel to the proof of
invariance of plurigenera in Siu’s paper.

The only difference between their proofs and the one in [23] is that the extension
theorem is from a divisor in their proofs, while in my proof the extension is from a
subvariety of arbitrary codimension, because I have used the L2-extension theorem of
Ohsawa ([21]) instead of the Kawamata-Viehweg vanishing theorem. Hence I do not
see anything essentially new in their proofs, although their proofs require only alge-
braic tools.
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