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Abstract
In this paper, we prove that the Mostow fibration of a compacmmex
parallelizable pseudo-#hler solvmanifold is a complex torus bundle over a complex
torus.

Introduction

A complex manifold X" of complex dimensiom is called complex parallelizable
if there existn holomorphic vector fields which are linearly independeneath point.
Wang [13] proved that a compact complex parallelizable fioéhis of the formG/T,
whereG is a complex Lie group antl' is a discrete subgroup @&. Wang also proved
that if a compact complex parallelizable manifolXd admits a Kahler structure, then
X is a complex torus. On the other hand, Matsushima [10] proved & compact
homogeneous &hler manifold is biholomorphic to a product of a homogerseoar
tional manifold and a complex torus. By a homogeneouwhl&r manifold we mean
a Kahler manifold on which the group of holomorphic isometriansformations acts
transitively. Borel-Remmert [2] generalized the resuliMdtsushima to compactahler
manifolds on which the group of holomorphic transformasioacts transitively.
Dorfmeister-Guan [3] proved that a compact homogeneousadasEahler manifold is
also biholomorphic to a product of a homogeneous rationatifold and a complex
torus. As for compact pseudodkler manifolds on which the group of holomorphic
transformations acts transitively, there exist non-tarampact complex parallelizable
pseudo-Kahler solvmanifolds. In particular, we see that a compact-lmmmogeneous
pseudo-Kahler manifold is not biholomorphic to a product of a homaemrs rational
manifold and a complex torus in general (cf. [17]). It is #fere important to study
compact complex parallelizable pseudéffer solvmanifolds. In this paper we prove
the following structure theorem, which is our main theorem:
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Theorem 1.6 Let X = G/I' be a compact complex parallelizable solvmanifold
which admits a pseudod&fler structure Then the Mostow fibration of X is a complex
torus bundle over a complex torus

We also investigate the Dolbeault cohomology groups of apamihcomplex par-
allelizable solvmanifold which admits a pseudéier structure.

The author would like to express his deep appreciation tdeBsor Yusuke Sakane
and Professor Ryushi Goto for valuable advice and helpfetidision and encourage-
ment during completion of this paper.

1. Proof of main theorem

In this section we prove our main theorem.

DEeFINITION 1.1. LetG be a Lie group. A discrete subgroupof G is called a
lattice if G/T" has a finite invariant measure.

If G is a solvable Lie group, then a discrete subgrdupf G is a lattice if and
only if T is a discrete co-compact subgroup &f

Let Ox = O be the sheaf of holomorphic functions on a complex manifld
We denote the Hodge number f by hP9(X), i.e., hP9(X) = dimH9(X). Let G be
a connected complex Lie grou, a lattice of G, N the maximal connected normal
nilpotent subgroup. LeG = S- R be a Levi decomposition, wherg is a semi-simple
part, andR is the radical. We denote derived Lie subgroupssfN and R by G’, N’
and R’ respectively. Winkelmann has proven

Theorem 1.2 ([14]). Let G I',N,S R,G', N’ and R be as abovelet A=
[S, R] - N'. Furthermore let W denote the maximal linear subspace of tieealge-
bra LifR'A/A) of RA/A such thatAd(y)|w, where Ad is the adjoint representa-
tion of G, is a semisimple linear endomorphism with only real eigemeslfor each
y € I'. Then

dmHYG/I, ©) <dimG/G’ +dimHY(G/RI", O) + dimW.

DEFINITION 1.3. Let X be a complex manifold. A real (1)-form « of X is
called apseudo-khler structureif w is a non-degenerate closed form.

In the case of a compact complex parallelizable manifold,haee shown the fol-
lowing in the paper [17]:
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Theorem 1.4. Let X" = G/I" be a compact complex parallelizable manifold which
admits a pseudo-&hler structure Then

o (3).(2):

Corollary 1.5. Let(G/I', w) be an n-dimensional compact complex parallelizable
pseudo-Kahler manifold such thar is a lattice of G If h®Y(G/I") = dimH%(G/I", dO),
then G/T" is a complex torus

Proof. Letg be the Lie algebra of5, | the complex structure of, and g* =
{X € g® | I1X =+/~1X}. We identify g* with the set of all right invariant holomorphic
vector fields ofG. Let H9(g*) be theqth Lie algebra cohomology group @f. Since
HO(G/I', dO) = H(g*) and h®1(G/I") > n, we see that dinkl1(g*) = n. Henceg® is
abelian. ]

Let G/I" be a compact complex parallelizable solvmanifold, i®.,is a simply
connected complex solvable Lie group afdis a lattice of G. Mostow proved that
'y = NNT is a lattice of the maximal normal nilpotent Lie subgrotpof G. A
fibration N/T'y — G/T" — G/NT is called theMostow fibrationof G/T.

Theorem 1.6. Let X" = G/T" be a compact complex parallelizable solvmanifold
which admits a pseudo#@ler structure Then the Mostow fibration of @ is a com-

plex torus bundle over a complex torus

Proof. We use the notation of Theorem 1.2. Sii&és solvable, we see thdk =
R,S={e} and A= N’. By Theorems 1.2 and 1.4, we see

n < dimH>Y(G/T) < dimG/G’ +dimW < dimG —dimG' +dimG'/N,
which implies dimN’ = 0. U
By the proof of our main theorem, we have

Corollary 1.7. If a compact complex parallelizable solvmanifold" Xadmits a
pseudo-Kihler structure then H1(X) =n.

Corollary 1.8. If a compact complex parallelizable solvmanifold/IG admits a
pseudo-Khler structure then N must be abelian and in particular the Lie algelya
must satisfyD®g = 0.

Proof. Sincen D [g, g], we have our corollary. ]
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REMARKS 1.9. (i) There exists a complex solvable Lie gro@pwhich has lat-
ticesI'y, I', such thatG/I'; has a pseudo-&hler structure, whilgs/I"; has no pseudo-
Kahler structures (see [17]).

(ii) It is well known that a simply connected complex sohallie group G is bi-
holomorphic toC". Moreover if its Lie algebrgy has a Chevalley decomposition, then
there exists a good system of coordinates, (..,z,) of G which satisfies the
following:

(@) The Lie groupG is isomorphic to C", x) as a complex Lie group, where the

multiplication = of C" is given by

(z1, -+, Za) % (Y1, -+, Yn)
= (Zl +VY1,....4 t W, Fr+1r+1(y)zr+1 + V41t Fr+1(Z, Y), cees an(y)zn +Yynt Fn(za y))

forz=(z1,...,2n0),y = (Y1,..., ¥n) € C", wherer = dimg — dim[g, g], Fii (2) =
exp(— Z'j‘:lcgizj), wherek = dimG/NT" and C}i are constant, andr,(z,y) =
Fi(z1,..., 2.1, Y1, ..., ¥5—1) IS a holomorphic function with respect ta(...,
Zi-1, Y1, - .., Ya_1) for eacha.

(b) LetT be a lattice ofG. Using the above system of coordinates, (.., z,)
of G, we see that any element Hg'l(G/F) has a representative of the following

form:
k k+r(N/Tn)
Y=Y adz+ > fiz,....z)dz,
A=1 A=k+1
wherer(N/T'y) = dimH>Y(N/Ty), ¢, are constant and; (zs. ..., z) are holo-
morphic inz, ..., z.

We say that a complex solvable Lie algelyrdas aChevalley decompositioifi g
has a decompositiog = a+n as a vector space, wheeeis a commutative subalgebra
andn is the maximal nilpotent ideal. For further details see [11]

Using the above system of coordinates, we give another psbafur main the-
orem for the case where the Lie algelyaof G has a Chevalley decomposition (see
Section 3).

2. The structure of the sheafR!x,Ogr

For a holomorphic mapf : X — Y between complex spaces, there exists a Leray
spectral sequence for the sh&df The respective lower term sequence yields the fol-
lowing:

0 — HY(Y, R°f,0x) — HY(X, Ox)
— HO®Y, R ,0x) — HA(Y, R°f,0x),

where RYf.Ox is the higher direct image sheaf. K is connected and proper, then
RO f*Ox = Oy.
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In this section we prove the following:

Proposition 2.1. Let X" = G/I' be a compact complex parallelizable pseudo-
Kahler solvmanifold andr: G/’ — G/NT the Mostow fibration Then Rx,Ox is
the sheaf of sections of a trivial holomorphic vector bundle

To prove this proposition we follow a part of the proof of Them 1.2 due to
Winkelmann ([14]).

Let G be a connected complex Lie group afda lattice of G. Let V be a com-
plex vector spacep: G — GL(V) an antiholomorphic representation akg the set
of all v € V which are invariant undep(G’), where G’ is the derived Lie subgroup
of G. We denote by, the subspace spanned by all vectors V; such thatv is an
eigenvector with a real eigenvalue for everfy) (y € I').

Let E, Eq be flat vector bundles oveX = G/I" which are induced byp|r on
V, Vy respectively, i.e.E = G x V/~, where §,v) ~ (¢, v) if and only if (¢/,v") =
(gy~1, p(y)v). Note thatE, Ey are holomorphic vector bundles.

Proposition 2.2. The flat vector bundle Eis a holomorphically trivial vector
bundle andI'(X, E) = I'(X, Eg) = Vo.

Proof. See [14], Propositions 7.9.1 and 7.9.2. ]

Let #: X — B be a holomorphic fiber bundle with am-dimensional complex
torus T? as typical fiber. Letv = Q}(T{) denote the vector space of holomorphic 1-
forms onTZ. Note thatT? is a compact Khler manifold. Letdl = {U;} be a trivial-
izing open cover ofB such thatX is given by transition functiong;: Ui NU; —
Aut(T), where AutT!) is the automorphism group of2. We denote by AX(T)
the identity component of AuT{").

Lemma 2.3. Under the above assumptions!/ROx is a locally free coherent
sheaf of B isomorphic to the sheaf of sections of the flat vdmiadle E given by
transition functionsgi; =¢ o ¢ij : Ui NU;j — GL(V), where1— Aut’(T2) — Aut(T®) LN
GL(V) is exact

Proof. See [14], CLAIM 8.4.5. ]
We apply this lemma to a complex parallelizable manif@drl". Let K be a nor-

mal abelian complex Lie subgroup @& and¢ its Lie algebra. Assume th&/K N T’
is compact. Denote the natural projection mép= G/I" - B = G/KT by =.
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Proposition 2.4. The sheaf Rr,Ox is the sheaf of sections of the flat vector
bundle E of rankdimK over B induced by the representatipn ' — GL(¢*) given
by y > Ad*(y).

Proof. See [14], Proposition 8.4.6. U
Moreover, if G/K is abelian, we have
Proposition 2.5 ([14]). If G/K is abelian then

dmHYG/I", 0) <dimG/K +dimU,

where U denotes the maximal linear subspacé sfich thatAd(y)|y is a semisimple
linear endomorphism with only real eigenvalues for everyn T.

Proof. Let us consider the lower term of the Leray spectrajusace for
n: G/T — G/KTI. Then we have the following:

0— HYG/KT,0) - HYG/I', 0) - HYG/KT, R'r,0).

Since G/KT = (G/K)/(KT'/K) and G/K is abelian, by Propositions 2.2 and 2.4,
we see

dimHYG/T, ©) < dimHYG/KT, ©) + dimU
=dimG/K +dimU.

Hence we have our proposition. Ll

Proof of Proposition 2.1. In Section 1, we have seen that ibagact complex
parallelizable solvmanifoldX" = G/T" admits a pseudo-&hler structure, then the max-
imal normal nilpotent Lie subgroupl of G is abelian anch®! = n. Thus let us con-
sider the Mostow fibrationt: G/T' — G/NTI. Since G/N is abelian andG/I" ad-
mits a pseudo-Khler structure, we hav@&/ = n by Proposition 2.5, wher&V is the
maximal linear subspace of such that Adg)|w is a semisimple endomorphism with
only real eigenvalues for every € I'. By Propositions 2.2 and 2.4, this means that
the flat vector bundleE induced by the representatignr: ' — GL(n*) given by
y > Ad*(y) is trivial as a holomorphic vector bundle. O

3. Dolbeault cohomology of compact complex parallelizablgpseudo-Kahler
solvmanifolds

In this section we consider the Dolbeault cohomology grosfpsompact complex
parallelizable pseudo-#hler solvmanifolds.
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Let G be a complex Lie group ang its Lie algebra. Letl denote the complex
structure ofg, andg* (resp.g~) denote the vector space of the/+1 (resp.—v/—1)
eigenvectors of the complex structurerespectively. Then we havg® = g* @ g~. In
this section, we identifyy* with the set of all right invariant holomorphic vector fields
of G. Recall thatH"%(G/T) = Hg’q(G/F) ® AP(g")* for a compact complex paral-
lelizable manifoldG/I". Sakane [12] has proved that @ is a complex nilpotent Lie
group, thenH>%(G/I") = HYg") ® AP(g")", where Hi(g") is the gth Lie algebra
cohomology group ofy~.

Let F - X 5> B be a holomorphic fiber bundle such th¥t B, F are connected
and F is compact. Ther g Ha—p'q(Fb) is the total space of a differentiable vector
bundle overB. This bundle is denoted by 9(F) and H3(F) is the direct sum of
HP-A(F). If every connected component of the structure groupr ofX — B acts triv-
ially on H3(F), then the vector bundle is a holomorphic vector bundle. sTHuthe
fiber F is a compact lhler manifold, therH;(F) is a holomorphic vector bundle.

Theorem 3.1 ([8]). Leté& = (X, B, F, ) be a holomorphic fiber bundlevhere
X, B, F are connected and F is compadissume that every connected component of
the structure group ot acts trivially on H3(F), i.e.,, Hz(F) is a holomorphic vec-
tor bundle Then there exists a spectral sequeriég, d;), (r > 0), with the following
properties
() E is 4-graded by the fiber-degreethe base-degree and the tydeet P9ES! be
the subspace of elements of Bf type (p, q), fiber-degree s and base-degreeWe
have PAES' = 0 if p+q #s+t or if one of pg,s,t is negative The differential d
mapsPIES! into PATIESTIHL
(i) If p+q=s+t, then we have

p,qu.t ~ Z H(’i;.s—i (B, H p—i,q—sH (F))

i>0
(iii) The spectral sequence converges tg(¥) = P, , Hy *(X).

We put P9E, = Y ¢ o P9EP". We call the above spectral sequence Burel's
spectral sequence

REMARK 3.2. If F is a complex torus, then the vector bund*(F) — B
is isomorphic to the holomorphic vector bundte considered in Section 2 (see Lem-
ma 2.3).

By Theorem 1.4 and the Borel's spectral sequence, we have

Proposition 3.3. Let X = G/T" be a compact complex parallelizable manifold
which admits a pseudodler structure and F—~ X = B a holomorphic fiber bun-
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dle such that B are complex torilf H5(F) — B is trivial as a holomorphic vector

bundle then
B _(n) (n
oo <p> <q>

Proof. By our assumption we see that the Borel's spectralessmge satisfies

PAES" > Y " HEST(B) @ HP 97" (F).
i>0

Thus by the relation difi%E,, < dimP9E;, we see thah™d9(X) < (p) - (g). Thus
we have our proposition by Theorem 1.4. ]

If HOYT{) — B, where T2 is an n-dimensional complex torus, admits global
holomorphic sectionsr, ..., o, which are linearly independent at each point, then
H%4(T8) — B is trivial as a holomorphic vector bundle. Indeed, considgr= oj, A
.-~ Aoj, (Note thath®d(T) = (g)). Thus by Proposition 2.1 and Lemma 2.3 we have

Corollary 3.4. If a compact complex parallelizable solvmanifold X G/I" ad-
mits a pseudo-Khler structure then

- (2) (3

Proof. By our assumption, we see thag’q(N/FN) — G/NT s trivial as a
holomorphic vector bundle. ]

Let (X", w) be a compact pseudoakler manifold. We say thatX(", ) has the
hard Lefschetz property with respect to the Dolbeault cablogy if for any p+q < n,
the homomorphism

L"P=9: HPY(X) — HF *"7P(X),  L"P9([a]) = [a A 0" P79
is an isomorphism.

Corollary 3.5. Let(G/T", w) be an n-dimensional compact complex parallelizable
pseudo-Khler solvmanifold Then (G/I", w) has the hard Lefschetz property with re-
spect to the Dolbeault cohomolagy

Proof. Putr =i(X)w, where{X7,..., X;} is a basis ofg". We denote the dual
basis ofg* by {o],...,®t}. Thenw can be written aso = Y ., 5 A . In partic-
ular, we see that; are non-exacb-closed. We also see that = ), ajk7i A wg
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is non-exactd-closed, wherea;x € C, 7 = T, A AT, for 3 = (ji,..., jg) and
Wi = O A A w;p for K = (ky, ..., kp). Thus by Corollary 3.4 for each Dolbeault
cohomology class we can choose a representative of the dormd_;, ajk Ty A wi.
Hence G/I', w) has the hard Lefschetz property. ]

By the proof of Corollary 3.5, we see that if andimensional compact complex
parallelizable solvmanifolds/I" admits a pseudo-&hler structure, therH;(G/T") =
Pp.q HY4(G/T) is isomorphic to the cohomologying H3(TY).

REMARK 3.6. Mathieu’s theorem of the Dolbeault cohomology on a carhpa
pseudo-Kahler manifold ¥, ») also holds (see [18], [19]), i.e., the following two as-
sertions are equivalent: (a) every Dolbeault cohomologs<gicontains a@-harmonic
representative. (b) X, w) has the hard Lefschetz property with respect to the
Dolbeault cohomology. We defing*: QP9(X) — QP 19(X) by 3* = (—1)P*9 x 3 *,
where QP9(X) is the set of all differential [, gq)-forms on X. A form « is called a
d-harmonic form if it satisfiesda = 9%« = 0, wherex: QPI(X") — QN-4N-P(X") js
defined as an analogy of the star operator for a compact Ri@aramanifold. In the
above case, for each Dolbeault cohomology class, we cansehad-harmonic repre-
sentative of the formx =), ayk Ty A wi.

Let (G/T', w) be ann-dimensional compact complex parallelizable pseu@dtHir
solvmanifold. We now give another proof of our main theorean the case where the
Lie algebrag of G has a Chevalley decomposition. We use a system of coordimdite
Remarks 1.9 and the notation of the proof of Corollary 3.5elthe pseudo-&hler
structurew on G/I" can be written as follows:

n
w= Z T Ao
i=1
Note thatt, o are d-closed. By Remarks 1.9; are expressed by
T =i +an,
wherey; = Y ¥ d dz, + Y X) fi(2)dz, F = N/T'y, ¢, are constant and, are
holomorphic. Hence we can write
n —
®=Y Y Ao +00.
i=1

Puto = YL ¥ A . Then a volume formw" is expressed by" = o™ + %,
where @ € Q""(X). Since [ 0" = [5 0™+ [o, 02 = [, @", we see that

r(F) = dimH>Y(F) = dmF = n — k. SinceF is a compact complex parallelizable
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nilmanifold, we seen—k = dimH2*(N/I'y) = dimH(n~) by Sakane’s theorem. Thus
n~ is abelian, which implies thaF is a complex torus.

4. Examples
EXAMPLE 4.1 ([11]). Define a multiplication: of C"?"™ by

/ / ’ 7 4 /
(Z1, .- Zn, wi, Wo, ..o, Wome1, Wom) * (20, -, Zh, W, Why .., Why 1, Wh)

_ / / — Y akz cakz oy
—(Z]_+Zl,...,Zn+Zn,...,e Z'a1Iw2k71+w2k71,e2'a1Iu)2k+w2k,...),

Whereaik are integers. The solvable Lie gro@= (C"?", x) has a latticel’ such that
G/T" has a pseudo-&hler structure. Indeed, for a suitable latticeof G,

n m
®=~=1) dz Adzc+ ) (dwac1 A dwg +dwacg A dwa)
k=1 k=1

is a pseudo-Bhler structure orG/I" (for details, see [17]). By Corollary 3.4, we see

hp,q(G/F) - (n+§m) ) (n+qu).

ExAMPLE 4.2 (cf. [4]). Let us consider the following solvable Lie gm

et 0 zer 0 0 0 wy
0 e= 0 =ze2 0 0 wp
0 0 ex 0 0 0 ws
G= 0 © 0 ez 0 0 ws 71, 2o, w1, wa, w3, wa € C
0 0 0 0 1 0 2
0 0 0 0 0 1 z
0 0 0 0 0 0 1

The Lie algebrag of G is given by

g = spa{Zi, Zo, Wi, Wo, Ws, Wy}
with
[Z1, Wor—1] = War—q,  [Z1, W] = —Wa,
[Z2, Wa] = W, [Z2, Wa] = W,

for k = 1, 2. The solvable Lie grous admits a latticel" (see [16]). Since the maxi-
mal nilpotent ideah is not abelian, we see that for any lattife G/I" has no pseudo-
Kahler structures by Corollary 1.8.
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