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Abstract
In this paper, we prove that the Mostow fibration of a compact complex

parallelizable pseudo-K̈ahler solvmanifold is a complex torus bundle over a complex
torus.

Introduction

A complex manifoldXn of complex dimensionn is calledcomplex parallelizable
if there existn holomorphic vector fields which are linearly independent ateach point.
Wang [13] proved that a compact complex parallelizable manifold is of the formG=0,
whereG is a complex Lie group and0 is a discrete subgroup ofG. Wang also proved
that if a compact complex parallelizable manifoldX admits a K̈ahler structure, then
X is a complex torus. On the other hand, Matsushima [10] proved that a compact
homogeneous K̈ahler manifold is biholomorphic to a product of a homogeneous ra-
tional manifold and a complex torus. By a homogeneous Kähler manifold we mean
a Kähler manifold on which the group of holomorphic isometric transformations acts
transitively. Borel-Remmert [2] generalized the result ofMatsushima to compact K̈ahler
manifolds on which the group of holomorphic transformations acts transitively.
Dorfmeister-Guan [3] proved that a compact homogeneous pseudo-Kähler manifold is
also biholomorphic to a product of a homogeneous rational manifold and a complex
torus. As for compact pseudo-Kähler manifolds on which the group of holomorphic
transformations acts transitively, there exist non-toralcompact complex parallelizable
pseudo-K̈ahler solvmanifolds. In particular, we see that a compact non-homogeneous
pseudo-K̈ahler manifold is not biholomorphic to a product of a homogeneous rational
manifold and a complex torus in general (cf. [17]). It is therefore important to study
compact complex parallelizable pseudo-Kähler solvmanifolds. In this paper we prove
the following structure theorem, which is our main theorem:
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Theorem 1.6 Let X = G=0 be a compact complex parallelizable solvmanifold
which admits a pseudo-K̈ahler structure. Then the Mostow fibration of X is a complex
torus bundle over a complex torus.

We also investigate the Dolbeault cohomology groups of a compact complex par-
allelizable solvmanifold which admits a pseudo-Kähler structure.

The author would like to express his deep appreciation to Professor Yusuke Sakane
and Professor Ryushi Goto for valuable advice and helpful discussion and encourage-
ment during completion of this paper.

1. Proof of main theorem

In this section we prove our main theorem.

DEFINITION 1.1. Let G be a Lie group. A discrete subgroup0 of G is called a
lattice if G=0 has a finite invariant measure.

If G is a solvable Lie group, then a discrete subgroup0 of G is a lattice if and
only if 0 is a discrete co-compact subgroup ofG.

Let OX = O be the sheaf of holomorphic functions on a complex manifoldX.
We denote the Hodge number ofX by hp;q(X), i.e., hp;q(X) = dim H p;q�̄ (X). Let G be
a connected complex Lie group,0 a lattice of G, N the maximal connected normal
nilpotent subgroup. LetG = S � R be a Levi decomposition, whereS is a semi-simple
part, andR is the radical. We denote derived Lie subgroups ofG; N and R by G0; N 0
and R0 respectively. Winkelmann has proven

Theorem 1.2 ([14]). Let G; 0; N; S; R;G0; N 0 and R0 be as above. Let A=
[S; R] � N 0. Furthermore let W denote the maximal linear subspace of the Lie alge-
bra Lie(R0A=A) of R0A=A such thatAd(
 )jW, where Ad is the adjoint representa-
tion of G, is a semisimple linear endomorphism with only real eigenvalues for each
 2 0. Then

dim H1(G=0;O) � dimG=G0 + dim H1(G=R0;O) + dimW:
DEFINITION 1.3. Let X be a complex manifold. A real (1;1)-form ! of X is

called apseudo-K̈ahler structureif ! is a non-degenerate closed form.

In the case of a compact complex parallelizable manifold, wehave shown the fol-
lowing in the paper [17]:
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Theorem 1.4. Let Xn = G=0 be a compact complex parallelizable manifold which
admits a pseudo-K̈ahler structure. Then

hp;q(X) � � n
p

� � � n
q

� :
Corollary 1.5. Let (G=0; !) be an n-dimensional compact complex parallelizable

pseudo-K̈ahler manifold such that0 is a lattice of G. If h0;1(G=0) = dim H0(G=0;dO),
then G=0 is a complex torus.

Proof. Let g be the Lie algebra ofG, I the complex structure ofg, and g+ =�
X 2 gC

�� I X =
p�1X

	
. We identify g+ with the set of all right invariant holomorphic

vector fields ofG. Let Hq(g+) be theqth Lie algebra cohomology group ofg+. Since
H0(G=0;dO) �= H1(g+) and h0;1(G=0) � n, we see that dimH1(g+) = n. Henceg+ is
abelian.

Let G=0 be a compact complex parallelizable solvmanifold, i.e.,G is a simply
connected complex solvable Lie group and0 is a lattice of G. Mostow proved that0N = N \ 0 is a lattice of the maximal normal nilpotent Lie subgroupN of G. A
fibration N=0N ! G=0! G=N0 is called theMostow fibrationof G=0.

Theorem 1.6. Let Xn = G=0 be a compact complex parallelizable solvmanifold
which admits a pseudo-K̈ahler structure. Then the Mostow fibration of G=0 is a com-
plex torus bundle over a complex torus.

Proof. We use the notation of Theorem 1.2. SinceG is solvable, we see thatG =
R; S = feg and A = N 0. By Theorems 1.2 and 1.4, we see

n � dim H0;1�̄ (G=0) � dimG=G0 + dimW � dimG� dimG0 + dimG0=N 0;
which implies dimN 0 = 0.

By the proof of our main theorem, we have

Corollary 1.7. If a compact complex parallelizable solvmanifold Xn admits a
pseudo-K̈ahler structure, then h0;1(X) = n.

Corollary 1.8. If a compact complex parallelizable solvmanifold G=0 admits a
pseudo-K̈ahler structure, then N must be abelian and in particular the Lie algebrag

must satisfyD(2)g = 0.

Proof. Sincen � [g; g], we have our corollary.
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REMARKS 1.9. (i) There exists a complex solvable Lie groupG which has lat-
tices01; 02 such thatG=01 has a pseudo-K̈ahler structure, whileG=02 has no pseudo-
Kähler structures (see [17]).
(ii) It is well known that a simply connected complex solvable Lie group G is bi-
holomorphic toCn. Moreover if its Lie algebrag has a Chevalley decomposition, then
there exists a good system of coordinates (z1; : : : ; zn) of G which satisfies the
following:

(a) The Lie groupG is isomorphic to (Cn; �) as a complex Lie group, where the
multiplication � of Cn is given by

(z1; : : : ;zn) � (y1; : : : ; yn)

= (z1 + y1; : : : ;zr + yr ;Fr +1r +1(y)zr +1 + yr +1 + Fr +1(z; y); : : : ;Fnn(y)zn + yn + Fn(z; y))

for z = (z1; : : : ; zn); y = (y1; : : : ; yn) 2 Cn, where r = dimg � dim[g; g], Fi i (z) =
exp

��Pk
j =1 Ci

j i zj
�
, where k = dimG=N0 and Ci

j i are constant, andF�(z; y) =
F�(z1; : : : ; z��1; y1; : : : ; y��1) is a holomorphic function with respect to (z1; : : : ;
z��1; y1; : : : ; y��1) for each�.
(b) Let 0 be a lattice ofG. Using the above system of coordinates (z1; : : : ; zn)
of G, we see that any element ofH0;1�̄ (G=0) has a representative of the following
form:

 =
kX
�=1

c� dz̄� +
k+r (N=0N )X
�=k+1

f�(z1; : : : ; zk) dz̄�;
where r (N=0N) = dim H0;1�̄ (N=0N), c� are constant andf�(z1; : : : ; zk) are holo-
morphic in z1; : : : ; zk.
We say that a complex solvable Lie algebrag has aChevalley decompositionif g

has a decompositiong = a + n as a vector space, wherea is a commutative subalgebra
and n is the maximal nilpotent ideal. For further details see [11].

Using the above system of coordinates, we give another proofof our main the-
orem for the case where the Lie algebrag of G has a Chevalley decomposition (see
Section 3).

2. The structure of the sheafR1��OG=Γ
For a holomorphic mapf : X ! Y between complex spaces, there exists a Leray

spectral sequence for the sheafO. The respective lower term sequence yields the fol-
lowing:

0! H1(Y; R0 f�OX) ! H1(X;OX)

! H0(Y; R1 f�OX) ! H2(Y; R0 f�OX);
where Rq f�OX is the higher direct image sheaf. Iff is connected and proper, then
R0 f�OX = OY.
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In this section we prove the following:

Proposition 2.1. Let Xn = G=0 be a compact complex parallelizable pseudo-
Kähler solvmanifold and� : G=0 ! G=N0 the Mostow fibration. Then R1��OX is
the sheaf of sections of a trivial holomorphic vector bundle.

To prove this proposition we follow a part of the proof of Theorem 1.2 due to
Winkelmann ([14]).

Let G be a connected complex Lie group and0 a lattice ofG. Let V be a com-
plex vector space,� : G ! GL(V) an antiholomorphic representation andV1 the set
of all v 2 V which are invariant under�(G0), where G0 is the derived Lie subgroup
of G. We denote byV0 the subspace spanned by all vectorsv 2 V1 such thatv is an
eigenvector with a real eigenvalue for every�(
 ) (
 2 0).

Let E; E0 be flat vector bundles overX = G=0 which are induced by�j0 on
V;V0 respectively, i.e.,E = G � V=�, where (g; v) � (g0; v0) if and only if (g0; v0) =
(g
�1; �(
 )v). Note thatE; E0 are holomorphic vector bundles.

Proposition 2.2. The flat vector bundle E0 is a holomorphically trivial vector
bundle and0(X; E) = 0(X; E0) �= V0.

Proof. See [14], Propositions 7.9.1 and 7.9.2.

Let � : X ! B be a holomorphic fiber bundle with ann-dimensional complex
torus Tn

C
as typical fiber. LetV = �1(Tn

C
) denote the vector space of holomorphic 1-

forms on Tn
C

. Note thatTn
C

is a compact K̈ahler manifold. LetU = fUi g be a trivial-
izing open cover ofB such thatX is given by transition functions�i j : Ui \ U j !
Aut(Tn

C
), where Aut(Tn

C
) is the automorphism group ofTn

C
. We denote by Aut0(Tn

C
)

the identity component of Aut(Tn
C

).

Lemma 2.3. Under the above assumptions R1��OX is a locally free coherent
sheaf of B isomorphic to the sheaf of sections of the flat vector bundle E given by

transition functions'i j = � Æ �i j : Ui \U j !GL(V), where1!Aut0(Tn
C

)!Aut(Tn
C

)
�!

GL(V) is exact.

Proof. See [14], CLAIM 8.4.5.

We apply this lemma to a complex parallelizable manifoldG=0. Let K be a nor-
mal abelian complex Lie subgroup ofG and k its Lie algebra. Assume thatK=K \ 0
is compact. Denote the natural projection mapX = G=0! B = G=K0 by � .
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Proposition 2.4. The sheaf R1��OX is the sheaf of sections of the flat vector
bundle E of rankdim K over B induced by the representation� : 0 ! GL(k�) given
by 
 7! Ad�(
 ).

Proof. See [14], Proposition 8.4.6.

Moreover, if G=K is abelian, we have

Proposition 2.5 ([14]). If G=K is abelian, then

dim H1(G=0;O) � dimG=K + dimU;
where U denotes the maximal linear subspace ofk such thatAd(
 )jU is a semisimple
linear endomorphism with only real eigenvalues for every
 in 0.

Proof. Let us consider the lower term of the Leray spectral sequence for� : G=0! G=K0. Then we have the following:

0! H1(G=K0;O) ! H1(G=0;O) ! H0(G=K0; R1��O):
Since G=K0 �= (G=K )=(K0=K ) and G=K is abelian, by Propositions 2.2 and 2.4,
we see

dim H1(G=0;O) � dim H1(G=K0;O) + dimU

= dimG=K + dimU:
Hence we have our proposition.

Proof of Proposition 2.1. In Section 1, we have seen that if a compact complex
parallelizable solvmanifoldXn = G=0 admits a pseudo-K̈ahler structure, then the max-
imal normal nilpotent Lie subgroupN of G is abelian andh0;1 = n. Thus let us con-
sider the Mostow fibration� : G=0 ! G=N0. Since G=N is abelian andG=0 ad-
mits a pseudo-K̈ahler structure, we haveW = n by Proposition 2.5, whereW is the
maximal linear subspace ofn such that Ad(
 )jW is a semisimple endomorphism with
only real eigenvalues for every
 2 0. By Propositions 2.2 and 2.4, this means that
the flat vector bundleE induced by the representation�j0 : 0 ! GL(n�) given by
 7! Ad�(
 ) is trivial as a holomorphic vector bundle.

3. Dolbeault cohomology of compact complex parallelizablepseudo-Kähler
solvmanifolds

In this section we consider the Dolbeault cohomology groupsof compact complex
parallelizable pseudo-K̈ahler solvmanifolds.
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Let G be a complex Lie group andg its Lie algebra. LetI denote the complex
structure ofg, andg+ (resp.g�) denote the vector space of the +

p�1 (resp.�p�1 )
eigenvectors of the complex structureI respectively. Then we havegC = g+ � g�. In
this section, we identifyg+ with the set of all right invariant holomorphic vector fields
of G. Recall thatH p;q�̄ (G=0) �= H0;q�̄ (G=0) 
Vp(g+)� for a compact complex paral-
lelizable manifoldG=0. Sakane [12] has proved that ifG is a complex nilpotent Lie
group, thenH p;q�̄ (G=0) �= Hq(g�) 
 Vp(g+)�, where Hq(g�) is the qth Lie algebra
cohomology group ofg�.

Let F ! X
�! B be a holomorphic fiber bundle such thatX; B; F are connected

and F is compact. Then
S

b2B H p;q�̄ (Fb) is the total space of a differentiable vector
bundle overB. This bundle is denoted byH p;q(F) and H �̄ (F) is the direct sum of
H p;q(F). If every connected component of the structure group of� : X ! B acts triv-
ially on H �̄ (F), then the vector bundle is a holomorphic vector bundle. Thus if the
fiber F is a compact K̈ahler manifold, thenH �̄ (F) is a holomorphic vector bundle.

Theorem 3.1 ([8]). Let � = (X; B; F; �) be a holomorphic fiber bundle, where
X; B; F are connected and F is compact. Assume that every connected component of
the structure group of� acts trivially on H �̄ (F), i.e., H �̄ (F) is a holomorphic vec-
tor bundle. Then there exists a spectral sequence(Er ;dr ), (r � 0), with the following
properties:
(i) Er is 4-graded, by the fiber-degree, the base-degree and the type. Let p;qEs;t

r be
the subspace of elements of Er of type (p;q), fiber-degree s and base-degree t. We
have p;qEs;t

r = 0 if p + q 6= s + t or if one of p;q; s; t is negative. The differential dr
maps p;qEs;t

r into p;q+1Es+r;t�r +1
r .

(ii) If p + q = s + t , then we have

p;qEs;t
2
�= X

i�0

H i ;s�i�̄ (B;H p�i ;q�s+i (F)):
(iii) The spectral sequence converges to H�̄ (X) =

L
p;q H p;q�̄ (X).

We put p;qEr =
P

s;t�0
p;qEs;t

r . We call the above spectral sequence theBorel’s
spectral sequence.

REMARK 3.2. If F is a complex torus, then the vector bundleH0;1�̄ (F) ! B
is isomorphic to the holomorphic vector bundleE considered in Section 2 (see Lem-
ma 2.3).

By Theorem 1.4 and the Borel’s spectral sequence, we have

Proposition 3.3. Let X = G=0 be a compact complex parallelizable manifold
which admits a pseudo-K̈ahler structure and F! X

�! B a holomorphic fiber bun-
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dle such that F; B are complex tori. If H �̄ (F) ! B is trivial as a holomorphic vector
bundle, then

hp;q(X) =

�
n
p

� � � n
q

� :
Proof. By our assumption we see that the Borel’s spectral sequence satisfies

p;qEs;t
2
�= X

i�0

H i ;s�i�̄ (B)
 H p�i ;q�s+i�̄ (F):
Thus by the relation dimp;qE1 � dim p;qE2, we see thathp;q(X) � � n

p
� � � n

q
�
. Thus

we have our proposition by Theorem 1.4.

If H0;1(Tn
C

) ! B, where Tn
C

is an n-dimensional complex torus, admits global
holomorphic sections�1; : : : ; �n which are linearly independent at each point, then
H0;q(Tn

C
) ! B is trivial as a holomorphic vector bundle. Indeed, consider�J = � j1 ^� � � ^ � jq (Note thath0;q(Tn

C
) =

� n
q
�
). Thus by Proposition 2.1 and Lemma 2.3 we have

Corollary 3.4. If a compact complex parallelizable solvmanifold Xn = G=0 ad-
mits a pseudo-K̈ahler structure, then

hp;q(X) =

�
n
p

� � � n
q

� :
Proof. By our assumption, we see thatH0;q�̄ (N=0N) ! G=N0 is trivial as a

holomorphic vector bundle.

Let (Xn; !) be a compact pseudo-Kähler manifold. We say that (Xn; !) has the
hard Lefschetz property with respect to the Dolbeault cohomology if for any p+q � n,
the homomorphism

Ln�p�q : H p;q�̄ (X) ! Hn�q;n�p�̄ (X); Ln�p�q([�]) = [� ^ !n�p�q]

is an isomorphism.

Corollary 3.5. Let (G=0; !) be an n-dimensional compact complex parallelizable
pseudo-K̈ahler solvmanifold. Then (G=0; !) has the hard Lefschetz property with re-
spect to the Dolbeault cohomology.

Proof. Put ¯�i = i (X+
i )!, wherefX+

1; : : : ; X+
ng is a basis ofg+. We denote the dual

basis ofg+ by f!+
1; : : : ; !+

ng. Then ! can be written as! =
Pn

i =1 �̄i ^ !+
i . In partic-

ular, we see that ¯�i are non-exact̄�-closed. We also see that� =
P

J K aJ K �̄J ^ !+
K
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is non-exact�̄-closed, whereaJ K 2 C, �̄J = �̄ j1 ^ � � � ^ �̄ jq for J = ( j1; : : : ; jq) and!+
K = !+

k1
^ � � � ^ !+

kp
for K = (k1; : : : ; kp). Thus by Corollary 3.4 for each Dolbeault

cohomology class we can choose a representative of the form� =
P

J K aJ K �̄J ^ !+
K .

Hence (G=0; !) has the hard Lefschetz property.

By the proof of Corollary 3.5, we see that if ann-dimensional compact complex
parallelizable solvmanifoldG=0 admits a pseudo-K̈ahler structure, thenH�̄ (G=0) =L

p;q H p;q�̄ (G=0) is isomorphic to the cohomologyring H�̄ (Tn
C

).

REMARK 3.6. Mathieu’s theorem of the Dolbeault cohomology on a compact
pseudo-K̈ahler manifold (X; !) also holds (see [18], [19]), i.e., the following two as-
sertions are equivalent: (a) every Dolbeault cohomology class contains ā�-harmonic
representative. (b) (X; !) has the hard Lefschetz property with respect to the
Dolbeault cohomology. We define�� : �p;q(X) ! �p�1;q(X) by �� = (�1)p+q � �̄ �,
where�p;q(X) is the set of all differential (p;q)-forms on X. A form � is called a�̄-harmonic form if it satisfies �̄� = ��� = 0, where� : �p;q(Xn) ! �n�q;n�p(Xn) is
defined as an analogy of the star operator for a compact Riemannian manifold. In the
above case, for each Dolbeault cohomology class, we can choose a �̄-harmonic repre-
sentative of the form� =

P
J K aJ K �̄J ^ !+

K .

Let (G=0; !) be ann-dimensional compact complex parallelizable pseudo-Kähler
solvmanifold. We now give another proof of our main theorem for the case where the
Lie algebrag of G has a Chevalley decomposition. We use a system of coordinates of
Remarks 1.9 and the notation of the proof of Corollary 3.5. Then the pseudo-K̈ahler
structure! on G=0 can be written as follows:

! =
nX

i =1

�̄i ^ !+
i :

Note that ¯�i , !+
i are �̄-closed. By Remarks 1.9, ¯�i are expressed by

�̄i =  i + �̄
i ;
where i =

Pk�=1 ci� dz̄� +
Pk+r (F)�=k+1 f i�(z) dz̄�, F = N=0N , ci� are constant andf i� are

holomorphic. Hence we can write

! =
nX

i =1

 i ^ !+
i + �̄� :

Put !0 =
Pn

i =1 i ^ !+
i . Then a volume form!n is expressed by!n = !0n + �̄�,

where� 2 �n;n�1(X). Since
R

G=0 !n =
R

G=0 !0n +
R

G=0 �̄� =
R

G=0 !0n, we see that

r (F) = dim H0;1�̄ (F) = dim F = n � k. Since F is a compact complex parallelizable
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nilmanifold, we seen�k = dim H0;1�̄ (N=0N) = dim H1(n�) by Sakane’s theorem. Thus
n� is abelian, which implies thatF is a complex torus.

4. Examples

EXAMPLE 4.1 ([11]). Define a multiplication� of Cn+2m by

(z1; : : : ; zn; w1; w2; : : : ; w2m�1; w2m) � �z01; : : : ; z0n; w0
1; w0

2; : : : ; w0
2m�1; w0

2m

�
=
�
z1 + z01; : : : ; zn + z0n; : : : ;e�Pi ak

i ziw0
2k�1 +w2k�1;ePi ak

i ziw0
2k +w2k; : : : �;

whereak
i are integers. The solvable Lie groupG = (Cn+2m; �) has a lattice0 such that

G=0 has a pseudo-K̈ahler structure. Indeed, for a suitable lattice0 of G,

! =
p�1

nX
k=1

dzk ^ dz̄k +
mX

k=1

(dw2k�1 ^ dw̄2k + dw̄2k�1 ^ dw2k)

is a pseudo-K̈ahler structure onG=0 (for details, see [17]). By Corollary 3.4, we see
hp;q(G=0) =

�
n+2m

p

� � � n+2m
q

�
.

EXAMPLE 4.2 (cf. [4]). Let us consider the following solvable Lie group:

G =

8>>>>>>>>><
>>>>>>>>>:

0
BBBBBBBBB�

ez1 0 z2ez1 0 0 0 w1

0 e�z1 0 z2e�z1 0 0 w2

0 0 ez1 0 0 0 w3

0 0 0 e�z1 0 0 w4

0 0 0 0 1 0 z2

0 0 0 0 0 1 z1

0 0 0 0 0 0 1

1
CCCCCCCCCA

���������������
z1; z2; w1; w2; w3; w4 2 C

9>>>>>>>>>=
>>>>>>>>>;
:

The Lie algebrag of G is given by

g = spanCfZ1; Z2;W1;W2;W3;W4g
with

[Z1;W2k�1] = W2k�1;
[Z2;W3] = W1;

[Z1;W2k] = �W2k;
[Z2;W4] = W2

for k = 1;2. The solvable Lie groupG admits a lattice0 (see [16]). Since the maxi-
mal nilpotent idealn is not abelian, we see that for any lattice0, G=0 has no pseudo-
Kähler structures by Corollary 1.8.
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References
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