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Abstract
In this paper, we consider the uniqueness in the Cauchy problem for systems

of differential operators with partial analytic coefficients. By proving Carleman’s
estimate, we obtain the uniqueness theorem which contains the classical Holmgren’s
theorem for systems of differential operators.

1. Introduction

The problem of the uniqueness in the Cauchy problem is a fundamental problem
in a theory of partial differential equation. In this paper,we consider the uniqueness
in the Cauchy problem for systems with partial analytic coefficients. In the case when
coefficients are analytic, by Holmgren’s theorem, the uniqueness holds for any non-
characteristic initial hypersurface. On the other hand, itis well known that, when co-
efficients are merelyC1 function, the uniqueness is false for some non-characteristic
initial hypersurface. For example, Alinhac and Baouendi [1] showed that there exists
some second order hyperbolic operatorP = �2

t � A(t; x; �x), where A is a second or-
der elliptic operator withC1 coefficients, and some time-like initial hypersurface for
which the uniqueness result is false. Here time-like means that, if C2-hypersurfaceS
is locally defined byS = fx j '(x) = 0g, ' satisfies that

'0t (0)2 � A(0;0; '0x(0))< 0:
In [10], [5], [8], Tataru, Ḧormander, Robbiano and Zuily showed that under the as-
sumption of partial analyticity of coefficients, uniqueness result holds for any non-
characteristic initial hypersurface. But they consideredthe uniqueness only for scalar
differential operators. In this paper, we consider uniqueness for systems of partial dif-
ferential operators with partial analytic coefficients. The study of the uniqueness for
systems is not so many as for scalar differential equation. For example, in [6], G. Hile
and M. Protter considered the uniqueness for first order systems with C1-coefficients.
But their result holds for some restricted differential systems. The purpose of this pa-
per is that, under the assumption of partial analyticity, weprove the uniqueness result
for differential systems which can’t be proved in [6].
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We introduce some notation. Letna, nb be non negative integers withn = na +
nb � 1. We setRn = Rna � Rnb and, for x; � in Rn, x = (xa; xb), � = (�a; �b). Let
P(x; Dx) = (pi j (x; Dx))1�i ; j�N =

Pj�j�m A�(x)D�
x be a linear differential system with

the principal partPm(x; � ) =
Pj�j=m A�(x)��. Let S be aC2 hypersurface through 0

locally given by

S = fx : '(x) = 0g;
where' satisfies

'(0) = 0; '0(0) = ('0a(0); '0b(0)) 6= 0:
Our result is stated as follows;

Theorem 1.1. Let P(x; Dx) be a differential system of order m with C1 coeffi-
cients. We assume that all coefficients of P are analytic with respectto xa in a neigh-
borhood of 0, and that the principal part Pm(x; � ) satisfies the following conditions:
1. For any �b 2 Rnbnf0g

detPm(0;0; �b) 6= 0:(1)

2. For any �b 2 Rnb

detPm(0; i'0a(0); i'0b(0) + �b) 6= 0:(2)

Let V be a neighborhood of0 and u= (u1;u2; : : : ;uN) 2 C1(V)N , which satisfy

(
P(x; Dx)u(x) = 0; x 2 V;
suppu =

SN
k=1 suppuk � fx 2 V : '(x) � 0g:

Then there exists a neighborhood W of 0 in which u� 0.

We make some remarks on this result. This theorem contains Holmgren’s unique-
ness theorem. In fact, when we setna = n;nb = 0, the condition ofPm(x; � ) in this
theorem means thatP(x; Dx) is non-characteristic with respect to the initial hypersur-
face S. Moreover, by this theorem, we can show that the uniqueness holds in the fol-
lowing differential system.

EXAMPLE 1. We set (t; x) 2 R2. Let a(t; x);b(t; x); c(t; x) 2 C1(R2), andA(x) 2
C1(R;M2(C)). We assume thata = a(t; x), b = b(t; x), c = c(t; x) satisfy the following
conditions:
1. a(t; x), b(t; x), c(t; x) is analytic with respect tot in some neighborhood of 0.
2. a0;b0; c0 2 R and a0b0 6= 0, wherea0 = a(0;0), b0 = b(0;0), c0 = c(0;0).
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Then the equation

�tu =

�
c�x a�x

b�x 0

�
u + A(x)u

has a unique continuation property with respect to the initial surfaceS = fx j '(t; x) =
0g, where' satisfies
1. '0t (0)2 � c0'0t (0)'0x(0)� a0b0'0x(0)2 6= 0;
2. c0'0t (0) + 2a0b0'0x(0) 6= 0.

When ' = t , this equation is not always strictly hyperbolic, so by the method of
energy estimate, as in [11], we can’t prove the uniqueness ofthis equation. And be-
cause the coefficient ofux is not normal, the result in [6] doesn’t contain this example.

Our proof is based on the Carleman method and the FBI transformation theory, as
the proof given in [8]. By Sj̈ostrand’s theory of FBI transformation, we microlocalize
the symbol ofP(x; Dx) with respect toxa and, by using semi-classical pseudo differ-
ential symbolic calculus and G̊arding’s inequality, we establish the Carleman estimate
of P(x; Dx).

2. Preliminaries

In this section, we prepare the tools for our proof taken from[2], [7], [8], [9].

2.1. From theory of PDO.

DEFINITION 2.1. 1. Letg 2 C1(Rd : (0;1)). We say thatg is an order func-
tion if, for any � 2 Nd, there exists someC� > 0 such that

����x g(x)
�� � C�g(x):(3)

2. Let g be an order function. Fora(x; �) 2 C1(Rd� (0;1)), we say thata(x; �) is
of the symbol classSd(g) if, for any � 2 Nd, there exists some positive constantC�
such that

����x a(x; �)
�� � C�g(x):(4)

DEFINITION 2.2. Let g be an order function. Forfa j g � Sd(g), a 2 Sd(g),
we write

(5)
X
j�0

1� j
a j � a in Sd(g)

if, for any � 2 Nd and N 2 N, there exist some positive constantsCN;�; �N;� such



754 M. TAMURA

that, for (x; �) 2 Rd � [�N;�;1), a(x; �) satisfies the following inequality:

(6)

��������x
0
�a(x; �)� NX

j =0

1� j
a j (x; �)

1
A
������ �

CN;��N+1
g(x):

In the following context, we setd = 2n, Rd = Rn
x � Rn� , h�i = (1 + j� j2)1=2.

DEFINITION 2.3. For� 2 S2n(h�im), we define Op�(� )(x; Dx) = ��(x; Dx) by

(7) ��(x; Dx)u(x) =

� �
2�
�n ZZ

ei�(x�y)��� �x + y

2
; �� u(y) dy d�;

where the integral means oscillatory integral. Similarly we define� (x; Dx) by

(8) � (x; Dx)u(x) =

�
1

2�
�n ZZ

ei (x�y)��� �x + y

2
; �� u(y) dy d� :

Theorem 2.4. 1. For � 2 S2n(h�im), we have

(9) ��(x; Dx)� = � �(x; Dx);
where��(x; Dx)� is the formal adjoint of��(x; Dx).
2. For �i 2 S2n(h�imi ) (i = 1;2), there exists some�3 2 S2n(h�im1+m2) such that

(10) �1;�(x; Dx)�2;�(x; Dx) = �3;�(x; Dx):
And we have the following expansion formula for�3:

�3(x; � ) � 1X
k=0

�
1

k!

��
i

2�
�k

(D� Dy � D�Dx)k�1(x; � )�2(y; �)j(y;�)=(x;� )

in S2n(h�im1+m2).

(11)

By a slight modification of the proof of Theorem 2.4 in [7], we have the follow-
ing theorem.

Theorem 2.5. 1. For � 2 S2n(h�bim), we have

(12) ��(x; Dx)� = � �(x; Dx);
where��(x; Dx)� is the formal adjoint of��(x; Dx).
2. For �i 2 S2n(h�bimi ) (i = 1;2), there exists some�3 2 S2n(h�bim1+m2) such that

�1;�(x; Dx)�2;�(x; Dx) = �3;�(x; Dx):(13)
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And we have the following expansion formula for�3:

�3(x; � ) � 1X
k=0

�
1

k!

��
i

2�
�k

(D� Dy � D�Dx)k�1(x; � )�2(y; �)j(y;�)=(x;� )

in S2n(h�bim1+m2).

(14)

Theorem 2.6. Let � 2 C1(R2n) satisfy the following inequality:

k�k� � X
j�+�j�2n+1



D�� D�
x �

1 < +1:(15)

Then��(x; Dx) is L2 bounded. Moreover we have

(16) k��(x; Dx)k � Ck�k�;
where C is a positive constant independent of� ; �.

2.2. Review on the theory of FBI transformation. In this section, we review
on the theory of FBI transformation from [7], [8], [9].

DEFINITION 2.7. We denote the partial FBI transformation byT , that is, foru 2
S(Rn), we defineTu by

(17) Tu(za; xb; �) = K (�)
Z

e�(�=2)(za�ya)2
u(ya; xb) dya;

where za 2 Cna , xb 2 Rnb, � � 1, and K (�) = 2�na=2(�=�)3na=4, z2
a =

Pna
j =1 z2

aj .

We introduce some notations about the FBI transformation.

8(za) =
1

2
(Im za)2;(18)

�T (xa; �a) = (xa � i �a; �a); (xa; �a) 2 T�Rna :(19)

DEFINITION 2.8. Foru 2 S(Rn) and 0� � � 1, we define the partial FBI trans-
formation T�u by

(20) T�u(za; xb; �) = K�(�)
Z

e�(�=2)(1+�)(za�ya)2
u(ya; xb) dya;

where za 2 Cna , xb 2 Rnb, � � 1, and K�(�) = 2�na=2(�(1 +�)=�)3na=4, z2
a =

Pna
j =1 z2

aj .

We define8�(za) and �T� by

8(1+�)(za) =
1

2
(1 +�)(Im za)2;(21)
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�T� (xa; �a) =

�
xa � i �a

1 +� ; �a

� ; (xa; �a) 2 T�Rna :(22)

Next we introduce some function spaces whereT and T� operate. Fork 2 Z and 0�� � 1, we defineL2
(1+�)8(Cna; H k(Rnb)) by

(23) L2
(1+�)8(Cna; H k(Rnb)) = L2��Cna;e�2(1+�)8(za)L(dza)

�; H k(Rnb)
�;

where L(dza) is Lebesgue measure onCna , and H k(Rnb) is the Sobolev space of or-
der k. In particular, whenk = 0, we denoteL2

(1+�)8(Cna; L2(Rnb)) by L2
(1+�)8. And we

defineL2
(1+�)8 by

(24) L2
(1+�)8 = L2

(1+�)8 \H(Cna);
whereH(Cna) is the space of all entire functions inCna . Then we have the following
proposition.

Proposition 2.9. For � 2 [0;1], we have
1. T� is an isometry mapping from L2(Rna; H k(Rnb)) into L2

(1+�)8(Cna; H k(Rnb)).
2. T�� T� is an identity on L2(Rn), where T�� is the formal adjoint of T�.
3. T�T�� is the projection from L2(1+�)8 to L2

(1+�)8, in particular, if ev = Tv; v 2 S(Rn),
we have T�T��ev =ev.

2.3. Microlocalization of PDO whose coefficients are analytic. In this section
we prepare some theorems taken from [8]. Letp(x; � ) =

Pj�j�m a�(x)�� be a poly-
nomial in � with coefficients inC1

0 (Rn). Assume moreover that there exists some pos-
itive constantc0 such that alla�(x) are holomorphic with respect toxa in !, where! = fza 2 Cna : jzaj < c0g.

Theorem 2.10. For v 2 C1
0 (Rn), and � 2 [0;1], we have T� p(x; Dx)v = ep�T�v

where

(25) ep�Tv(x; �) =

� �
2�
�2n ZZ

ei�(xb�yb)��b

�ZZ
�a=�(1+�) Im((x+y)=2)

!�
�

dyb d�b

with !� defined by

(26) !� = ei�(xa�ya)��a p

�
xa + ya

2
+ i

�a

1 +� ; xb + yb

2
; ��� T�u(ya; yb; �) dya ^ d�a:

Let d be a positive number such that 13d < c0, and let�(za; �a) 2 C1
0 (C2na)

satisfy

(27) �(za; �a) =

(
1 jzaj + j�aj < 12d;
0 jzaj + j�aj > 13d:
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Moreover let� be almost analytic in38� = �(R2na), which means that, for any posi-
tive integerN, there exists some positive numberCN such that

(28)
����(za; �a)

�� � CN j�a + (1 +�) Im zajN :
Then we have the following theorem.

Theorem 2.11. Let v 2 C1
0 (Rn) with suppv � fjxj < dg, and let us set, for� 2 (0;1],

(29)

eQ�Tv(x; �) =

� �
2�
�2n ZZ

ei�(xb�yb)��b

�ZZ
�a=�(1+�) Im((x+y)=2)

� �xa + ya

2
; �a

�!�dyb d�b;
where! = !0 is defined inTheorem 2.10.Then we have

(30) ep�Tv = eQ�Tv + eR�Tv +eg�
with ep(x; Dx) = ep0(x; Dx) defined inTheorem 2.10,and eR� andeg� satisfy the follow-
ing properties: For any N2 N, there exists some positive constant CN such that

eR�Tv

L2

(1+�)8 � CN��NkTvkL2
(1+�)8(Cna ;Hm(Rnb ));(31) 

eg( � ; �)




L2

(1+�)8 = O
�
e�(�=3)�d2kvkHn0 (Rn)

�; �! +1;(32)

where n0 depends only on the dimension n and the order of p.

2.4. Extension to the system case.Let us introduce some notation for system.
We denoteS(Rn)N by

S(Rn)N =

Nz }| {
S(Rn)� � � � � S(Rn)

and defineL2(Rn)N , L2
(1+�) (Cna , Hm(Rnb))N , L2

(1+�) N similarly. Let u = t (u1;u2; : : : ;
uN), v = t (v1; v2; : : : ; vN) be in L2(Rn)N , we denote (u; v)L2 by

(u; v)L2 = (u1; v1)L2 + � � � + (uN; vN)L2

and denote (u; v)L2
(1+�)8 similarly. For u 2 S(Rn)N and � 2 [0;1], T�u is denoted by

(33) T�u = t (T�u1; : : : ; T�uN):
Let a matrix valued functionA(x; � ) = (ai j (x; � ))1�i ; j�N on R2n be in S2n(h�im) with
m 2 R, which means that, for anyi; j , ai ; j 2 S2n(h�im). For u 2 S(Rn)N , we define
A�(x; Dx)u(x) by

(34) A�(x; Dx)u(x) =

� �
2�
�n ZZ

ei�(x�y)�� A
� x + y

2
; �� u(y) dy d�
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and defineA(x; Dx)u similarly. For a differential systemP(x; Dx) =
Pj�j�m A�(x)Dx,Pj�j=m A�(x)�� is called the principal part ofP(x; Dx), and denoted byPm(x; � ). Then

similarly to the scalar case, we have the following theorems.

Theorem 2.12. For A(x;� ) 2 S2n(h�bim1), and B(x;� ) 2 S2n(h�bim2), with m1;m2 2
R, we have
1. A�(x; Dx)� = A��(x; Dx), where A�(x; � ) = t A(x; � ).
2. There exists some C(x; � ) 2 S2n(h�bim1+m2) such that

(35) A�(x; Dx)B�(x; Dx) = C�(x; Dx):
Moreover we have

C(x; � ) � 1X
k=0

�
1

k!

��
i

2�
�k

(D� Dy � D�Dx)k A(x; � )B(y; �)j(y;�)=(x;� )

in S2n(h�bim1+m2).

(36)

Theorem 2.13. Let A(x; � ) 2 S2n(1). Then A�(x; Dx) is L2-bounded. Further-
more, we setkAk� =

�P
i ; j kai ; j k2��1=2. Then, for u 2 S(Rn)N , we have

(37) kA�(x; Dx)uk � CkAk�kuk
where C is independent of�, A.

Theorem 2.14. If A(x; � ) = (ai j (x; � ))1�i ; j�N;ai j 2 S2n(h�bim) satisfy, for all
(x; � ) 2 R2n,

(38) A(x; � ) � 0

then, there exists some constant C> 0 such that, for all u 2 S(Rn)N and � > 0,
we have

(A�(x; Dx)u;u) � �C�


hDxb=�im=2u



2;(39)

where hDxb=�i = Op�(h�bi)(x; Dx).

Proposition 2.15. For � 2 [0;1], T� has the following properties.
1. T� is an isometry mapping from L2(Rna; Hm(Rnb))N into L2

(1+�)8(Cna; Hm(Rnb))N .
2. T�� T� is an identity on L2(Rn)N .
3. T�T�� is the projection from L2(1+�)8N to L2

(1+�)8N . In particular T�T��ev = ev if ev =
Tv; v 2 S(Rn)N .
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Let P(x; � ) =
Pj�j�m A�(x)��, be a polynomial in� whose coefficients are matrix

valued function inC1
0 (Rn : MN(C)). Assume moreover that there existsc0 > 0 such

that, for all �, A�(x) is analytic with respect toxa in !a, where!a = fza 2 Cna jjzaj < c0g.
Proposition 2.16. Let  (x) be a real quadratic polynomial. For u 2 C1

0 (Rn)N ,
we have

(40) e� P(x; Dx)e�� u(x) = P�; (x; Dx)u(x);
where P�; (x; Dx) is a differential operator defined by
(41)

P�; (x; Dx)u(x) =

� �
2�
�n ZZ

ei�(x�y)�� P
� x + y

2
; � �� + i 0 �x + y

2

���
u(y) dy d� :

Theorem 2.17. For � 2 [0;1] and v 2 C1
0 (Rn)N , we have T�P�; (x; Dx)v =eP�; ;�T�v, where

(42) eP�; ;�Tv(x; �) =

� �
2�
�2n ZZ

ei�(xb�yb)��b

�ZZ
�a=�(1+�) Im((x+y)=2)

!�
�

dyb d�b:
Here !� is defined by

(43) !� = ei�(xa�ya)��a P(X; �(� + i 0(X)))T�u(ya; yb; �) dya ^ d�a

with X = ((xa + ya)=2 + i (�a=(1 +�)); (xb + yb)=2).

In particular, we denoteeP�; ;0 by eP�; . Let � 2 C1
0 and d > 0 be the same as

in Theorem 2.11, then we have the following theorem similar to the scalar case.

Theorem 2.18. Let v(x) be in C10 (Rn)N with suppv � fjxj < dg. For � 2 (0;1],
we set
(44)

eQ�Tv(x; �) =

� �
2�
�2n ZZ

ei�(xb�yb)��b

�ZZ
�a=�(1+�) Im((x+y)=2)

� �xa + ya

2
; �a

�!�dyb d�b;
where! = !0 with !� defined inTeorem 2.17.Then we have

(45) eP�; Tv = eQ�Tv + eR�Tv +eg�:
Hereeg� and eR�Tv satisfy the following properties. For any N2 N, there exists some
positive number CN such thateRTv andeg satisfy

eR�Tv

L2

(1+�)8 � CN��NkTvkL2
(1+�)8(Cna ;Hm(Rnb ));(46)
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eg( � ; �)




L2
(1+�)8 = O

�
e�(�=3)�d2kvkHn0 (Rn)

�; �! +1;(47)

where n0 depends only on the dimension n and on the order of P.

3. Main estimate

Let v be in C1
0 (Rn)N and setw = T�� Tv. It follows from Proposition 2.15 that

(48) T�w(x) = Tv(x):
Let us set

(49) Q�(x; � ) = � �xa � i �a

1 +� ; �a

�
P(Z; �(� + i 0(Z)))

with Z = (xa + (i�=(1 +�))�a; xb), then we deduce from Theorem 2.17

eQ�Tv(x) = eQ�T�w(x)

= T�Q�w(x);(50)

where Q� is the operator defined by

(51) Q�w(x) =

� �
2�
�n ZZ

ei�(x�y)�� Q� �x + y

2
; ��w(y) dy d� :

Moreover setting

(52) Qk(x; � ) =
X
j�j=k

� �xa � i �a

1 +� ; �a

�
A�(Z)(� + i 0(Z))�;

we have

(53) Q�(x; � ) =
mX

k=0

�k Qk(x; � ):
3.1. The estimate ofQ�. In this section, we prove Carleman estimate forQ�.

First of all, we precise our choice of . Let ' and Pm satisfy the assumption in The-
orem 1.1.

Proposition 3.1. There exists a quadratic polynomial (x) such that
1.  (0) = '(0) = 0,  0(0) = '0(0).
2. There exists some neighborhood W of0 such that

(54) x 2 W n f0g \ fx j  (x) = 0g =⇒ '(x) > 0:
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Proof. We set

(55)  (x) = '0(0)x +
1

2
('00(0)x; x) + ('0(0)x)2 � jxj2:

Then obviously satisfies

(56)  (0) = '(0) = 0;  0(0) = '0(0):
And, when (x) = 0, there exists someC > 0 such that

'0(0)x = �1

2
('00(0)x; x)� ('0(0)x)2 + jxj2

� Cjxj2:
Then, by Taylor’s formula, we have

'(x) = '0(0)x +
1

2
('00(0)x; x) + O(jxj3)

= �('0(0)x)2 + jxj2 + O(jxj3)

� �(Cjxj2)2 + jxj2 + O(jxj3):
Therefore'(x) > 0 whenx is small enough andx 6= 0. The proposition is proved.

Lemma 3.2. There exist positive numbers"0; Æ such that if jxj + j�aj < "0, for
any �b 2 Rnb, we have

(57) Qm(x; � )�Qm(x; � )� Æh�bi2mI � 0:
Proof. Becausejxj+j�aj is small enough, we may assume�(xa + i �a=(1+�); �a) =

1. Then it follows that

(58) Qm(x; � )�Qm(x; � ) = Pm(X; � + i 0(X))�Pm(X; � + i 0(X));
where X = (xa + i��a=(1 +�); xb).

(1) The case of large�b.
By the definition of Pm, we have

Pm(X; � + i 0(X))�Pm(X; � + i 0(X))

= Pm(X;0; �b)�Pm(X;0; �b) +
X

j�j�2m�1

B�(X; �a)��b ;(59)

where, for any�, B�(x; �a) is an hermitian matrix whose components are inC1(Rn
x�
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Rn� ). Then by homogeneity ofPm, for anyw 2 RN with jwj = 1, we have

(Qm(x; � )�Qm(x; � )w;w) = (Pm(X;0; �b)�Pm(X;0; �b)w;w)

+
X

j�j�2m�1

��b (B�(X; �a)w;w)

= j�bj2m

8<
:
�

Pm

�
X;0; �bj�bj

��
Pm

�
X;0; �bj�bj

�w;w�

+
1j�bj

X
j�j�2m�1

��bj�bj2m�1
(B�(X; �a)w;w)

9=
; :

On the other hand, it follows from the ellipticity ofPm(0;0; �b) and the continuity of
Pm(X;0; �b) that there exist positive constantsÆ1; "1 such that, if j�bj = 1 and jxj +j�aj < "1, we have

(60) (Pm(X;0; �b)�Pm(X;0; �b)w;w) > 2Æ1:
And, by the continuity ofB� , there exists someC� > 0 which satisfies that, for any
(x; �a) with jxj + j�aj < "1, we have

(61) jB�(X; �a)wj < C� :
It follows that if we takeC > 0 such thatC�1P� C� < Æ1, for any �b with j�bj > C,
we have

(Qm(x; � )�Qm(x; � )w;w) � j�bj2m

0
�2Æ1 � 1j�bj

X
j�j�2m�1

jB�(X; �a)wj
1
A

� Æ1j�bj2m:
Therefore if j�bj > C and jxj + j�aj < "1,

(62) Qm(x; � )�Qm(x; � )� Æ1h�bi2m I

is positive definite.
(2) The case that�b is bounded.
We argue by contradiction. Assume that there exist sequences fxkg � Rn; f�akg �

Rna , f�bkg � Rnb; fwkg � RN which satisfy

jxkj + j�akj < 1

k
; j�bkj � C; jwkj = 1;

(Qm(xk; �ak; �bk)
�Qm(xk; �ak; �bk)wk; wk) < 1

k
h�bki2m:
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Becausef�bkg; fwkg are bounded, we can take convergent sequencesf�bkj g; fwk j g with
lim j!1 �bkj = �b0, lim j!1wk j = w0. By the fact that limj!1 xk j , lim j!1 �a;k j are
equal to 0, and by the continuity ofQm, we have

(63) (Qm(0;0; �b0)�Qm(0;0; �b0)w0; w0) = 0;
which contradicts that detQm(0;0; �b0) = detPm(0; '0a(0); �b0 + i'0b(0)) 6= 0. thus the
lemma is proved.

Let h(xb) 2 C1
0 (Rnb : [0;1]) satisfy

(64) h(xb) =

8><
>:

1 jxbj < "1

6
;

0 jxbj > "1

3
;

where "1 is a small parameter, and lete�0 2 C1
0 (Cna � Cna : [0;1]) be almost analytic

in 3(1+�)8. Moreover we can takee�0 satisfies

(65) e�0(za; �a) =

8><
>:

1 jzaj + j�aj < �
1 +� "1

3
;

0 jzaj + j�aj > 2"1

3
:

When we define�1(x; �a) 2 C1
0 (Rn � Rna) by

(66) �1(x; �a) =e�0 Æ ��(xa; �a)h(xb);
then we have

(67) �1(x; �a) =

8<
:1 jxj + j�aj < "1

3
;

0 jxj + j�aj > "1:
Lemma 3.3. There exist positive numbers C1;C2; �0 such that, for any � > �0

and any u2 S(Rn)N , we have

(68) C1�2m
�
Op�((1� �1)h�bi2m

�
(x; Dx)u;u) + C2kQ�uk2 � �2mÆ

2



hDxb=�imu


2 :

Proof. By Lemma 3.2, we can takeC1 > 0 large enough such that

(69) C1(1� �1(x; �a))h�bi2m + Qm(x; � )�Qm(x; � )� Æh�bi2m I � 0:
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By this inequality and Theorem 2.14, there exists some positive constantC3 such that,
for any u 2 S(Rn)N ,

C1(Op�((1� �1)h�bi2m)u;u) + ((Q�
mQm)�(x; Dx)u;u)� Æ(hDxb=�i2mu;u)

� �C3�


hDxb=�imu



2 :(70)

On the other hand, by Theorem 2.12, we have

(71) (Q�
mQm)�(x; Dx) = Qm�(x; Dx)�Qm�(x; Dx) +

1�R�(x; Dx);
where R�(x; Dx) is a pseudodifferential system whose symbolR(x; � ; �) be an hermit-
ian matrix in S2n(h�bi2m). Therefore we have

C1(Op�((1� �1)h�bi2m)(x; Dx)u;u) + kQm�(x; Dx)uk2

� �Æ � C3�
�

hDxb=�imu



2 � 1� (R�(x; Dx)u;u):(72)

Moreover, by Theorem 2.13, there exists some positive numberC4 such that

j(R�(x; Dx)u;u)j � 

hDxb=�i�mR�(x; Dx)u


 

hDxb=�imu




� C4



hDxb=�imu


2 :

Then when we take�1 > 0 with 2C3=�1 < Æ=3, it follows that, for any� > �1,

(73) C1(Op�((1� �1)h�bi2m)(x; Dx)u;u) + kQm�(x; Dx)uk2 � 2

3
Æ 

hDxb=�imu



2 :
On the other hand, by the definition ofQ�, we have

kQm�(x; Dx)uk2 =






��mQ�u� m�1X
k=0

�k�mQk�(x; Dx)u







2

� 2m

 
��2mkQ�uk2 +

m�1X
k=0

�2k�2mkQk�(x; Dx)uk2

!

� 2m��2mkQ�uk2 +
mC4�2



hDx=�imu


2 ;

where C5 is a positive constant independent ofu and �. Then if we take�2 with
mC4=�2

2 < Æ=6, for any� > �2, we have

(74) kQm;�(x; Dx)uk2 � 2m��2mkQ�uk2 +
Æ
6



hDx=�imu


2 :
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It follows that, if � > �0 = max(�1; �2), we have

(75) C1((Op�((1� �1)h�bim)(x; Dx)u;u) + 2m��2mkQ�uk2 � Æ
2



hDxb=�imu


2 ;

which completes the proof.

Lemma 3.4. We can take positive real numbers"2; �0 which have the following
properties: Let v 2 C1

0 (Rn)N satisfy suppv � fx : jxj < "2g. Then, for any k 2 N,
there exist positive constants Ck;1;Ck;2 such that

j(Op�((1� �1)h�bi2m)(x; Dx)T�� Tv; T�� Tv)j
� Ck;1�k



hDxb=�imu




L2
(1+�)8 + C2;ke���0kvk2

Hn0 ;(76)

where n0 is an integer depending only on the dimension n.

Proof. Using Proposition 2.15, we have

(Op�((1� �1)h�bi2m)(x; Dx)T�� Tv; T�� Tv)

= (T� Op�((1� �1)h�bi2m)(x; Dx)T�� Tv; T�T�� Tv)L2
(1+�)8 :(77)

And, by Theorem 2.17, we have

T� Op�((1� �1)h�bi2m)(x; Dx)T�� Tv(x)

=

� �
2�
�n ZZ

ei�(xb�yb)��bh�bi2m
ZZ

�a=�(1+�) Im((xa+ya)=2)
w� dyb d�b;(78)

where!� is defined by
(79)

w� = ei�(xa�ya)��a

�
1� �1

�
xa + ya

2
+

i �a

1 +� ; xb + yb

2
; �a

��
T�T�� Tv(ya; yb) dya ^ d�a:

By the definition of�1, we have

�1

�
xa + ya

2
+

i �a

1 +� ; xb + yb

2
; �a

�
= �1

���1� �xa + ya

2
; �a

� ; xb + yb

2

�
=e�0

�xa + ya

2
; �a

�
h
�xb + yb

2

�(80)

and by Proposition 2.15,

(81) T�T�� Tv = Tv:
Therefore

(82) w� = ei�(xa�ya)��a

�
1�e�0

�xa + ya

2
; �a

�
h
� xb + yb

2

��
Tv(ya; yb) dya ^ d�a:
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We defineeSTv by

(83) eSTv =

� �
2�
�n ZZ

ei�(xb�yb)��bh�bi2m
ZZ

�a=�(1+�) Im((xa+ya)=2)
w� dyb d�b:

By the same method in [8], we can show the following inequality: There exists some"2 > 0 such that ifv 2 C1
0 (Rn)N satisfy suppv � fx : jxj < "2g, then, for any positive

integerk, we can take�0;Ck;1;Ck;2 > 0 which satisfy

(84)


eSTv

L2

(1+�)8 � Ck;1�k



hDxb=�imTv

L2
(1+�)8 + Ck;2e���2kvkHn0 ;

wheren0 is a positive integer dependent only on the dimensionn. From this inequal-
ity, for any positive integerk, we have

j(Op�((1� �1)h�bi2m)(x; Dx)T�� Tv; T�� Tv)j
=
����eSTv; Tv�L2

(1+�)8
���

� 

eSTv

L2
(1+�)8kTvkL2

(1+�)8
� Ck;1�k



hDxb=�imTv

2
L2

(1+�)8 + Ck;2e��kvkHn0kTvkL2
(1+�)8 ;

(85)

which completes the proof becausekTvkL2
(1+�)8 � kTvkL28 = kvkL2 � kvkHn

0
.

Theorem 3.5. For eP�; defined inTheorem 2.17,there exist some positive con-
stants C1;C2;n0; �0; "; � such that, for any v 2 C1

0 (Rn)N with suppv � fx : jxj < "g
and � � �0, we have

(86) C1�

eP�; Tv

2
L2

(1+�)8 + C2e���kvk2
Hn0 � kTvk2

L2
(1+�)8(Cna ;Hm(Rnb )):

Proof. By Proposition 2.15, we have

Q�T�� Tv

 =


T�Q�T�� Tv



L2
(1+�)8

=


eQ�T�T�� Tv



L2
(1+�)8

=


eQ�Tv

L2

(1+�)8 :
Moreover, by choosing"1 with "1 < d, it follows from Theorem 2.18 that there exist
some constantsCm;1;Cm;2 > 0 such that

eQ�Tv

L2

(1+�)8 =


eP�; Tv � eR�Tv �eg�

L2

(1+�)8� 

eP�; Tv

L2
(1+�)8 +



eR�Tv

L2
(1+�)8+



eg�

L2
(1+�)8

� 

eP�; Tv


L2

(1+�)8+
Cm;1�m

kTvkL2
(1+�)8 + Cm;2e�(1=3)�d2�0kvkHn0 :
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On the other hand, if we take" > 0 satisfying" < "2, by Lemma 3.4, there exist
some positive constantsCm;3;Cm;4 such that

�2m
���Op�((1� �1)h�bi2m)(x; Dx)T�� Tv; T�� Tv���

� Cm;3 

hDxb=�imTv

2
L2

(1+�)8 + Cm;4�2me���0kvk2
Hn0 :(87)

Then, because�2me���0=2 < 1 with � large enough, we have

�2m
���Op�((1� �1)h�bi2m)(x; Dx)T�� Tv; T�� Tv���

� Cm;3 

hDxb=�imTv

2
L2

(1+�)8 + Cm;4e���0=2kvk2
Hn0 :(88)

It follows from these inequalities and Lemma 3.3 that, if� is large enough, there exist
positive constantsC5;C6;C7;C8 such that

C5



eP�Tv

2
L2

(1+�)8 +
�
C6e�(�=2)�0 + C7e�(2=3)��d2�kvkHn0

� � Æ
2
�2m � C8

�

hDxb=�imTv

2
L2

(1+�)8 :
(89)

Therefore setting� = min(�0=2; (2=3)�d2), we have

(90) C5



eP�Tv

2
L2

(1+�)8 + (C6 + C7)e���kvkHn0 � Æ
4
�2m



hDxb=�imTv

2
L2

(1+�)8 ;
which completes the proof.

4. Proof of Main Theorem

In this section, using the estimate proved in the previous section, we prove our
main theorem. Let us assume thatP satisfies the condition of Theorem 1.1, thatu is
a C1-solution near the origin of the equationPu = 0 with suppu � fx 2 Rn : '(x) �
0g, and that is introduced in Proposition 3.1. Let� 2 C1

0 (R : [0;1]) satisfy

(91) �(t) =

8<
:1 t � �"2

2
;

0 t � �"2;
where"2 is a positive number small enough. We set

(92) u1(x) = �( (x))u(x):
Then if "2 is small enough, it follows that there exists some neighborhood V0 of 0,
and some positive numberC such that

suppu1 \ V0 � fx : jxj2 < C"2g:(93)
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If "2 is small enough so that" � p
C"2, we have

(94) suppu1 \ V0 � fx : jxj < "g:
Moreover we setPu1 = f . BecausePu = 0, f satisfies

supp f � n
x : � " �  (x) � �"

2

o :(95)

Let us set

(96) v = e�� u1;
where� is a positive parameter. Then we have

eP�;�; Tv = T(e�� f ):
By Theorem 3.5, there exist positive constants�0; � ;C1;C2 such that, for� > �0,
we have

(97) kTvkL2
(1+�)8(Cna ;Hm(Rnb )) � C1�kT(e�� f )kL2

(1+�)8 + C2e���kvkHn0 :
By using (95), we can show the following estimate:

(98) kT(e�� f )kL2
(1+�)8 = O(e�(�=3)"�); �! +1:

Therefore, when� is large enough, there exists someC�;" > 0 such that

(99) kTvkL2
(1+�)8 � C�;"e�Æ�;

whereÆ = min("�=3; � ). By the same argument of the last section in [8], if� satisfies
the inequality:

�k 00(0)k < 1

4
;(100)

there exists some neighborhoodVof 0 whereu = 0, which completes the proof of the
main theorem.
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