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Abstract
In this paper, we consider the uniqueness in the Cauchy gmolior systems
of differential operators with partial analytic coefficten By proving Carleman’s
estimate, we obtain the uniqueness theorem which contheslassical Holmgren's
theorem for systems of differential operators.

1. Introduction

The problem of the uniqueness in the Cauchy problem is a fuedtal problem
in a theory of partial differential equation. In this papere consider the uniqueness
in the Cauchy problem for systems with partial analytic @ioefts. In the case when
coefficients are analytic, by Holmgren’s theorem, the uersss holds for any non-
characteristic initial hypersurface. On the other hands itvell known that, when co-
efficients are merefC> function, the uniqueness is false for some non-charatteris
initial hypersurface. For example, Alinhac and Baouendi giiowed that there exists
some second order hyperbolic operaf®r= 82 — A(t, X, &), where A is a second or-
der elliptic operator withC*> coefficients, and some time-like initial hypersurface for
which the uniqueness result is false. Here time-like med&as, if C2-hypersurfaceS
is locally defined byS = {x | ¢(x) = 0}, ¢ satisfies that

9{(0)? — A0, 0, 9,(0)) < O.

In [10], [5], [8], Tataru, Hbrmander, Robbiano and Zuily showed that under the as-
sumption of partial analyticity of coefficients, uniquesesult holds for any non-
characteristic initial hypersurface. But they considetied uniqueness only for scalar
differential operators. In this paper, we consider unigssnfor systems of partial dif-
ferential operators with partial analytic coefficients.eThtudy of the uniqueness for
systems is not so many as for scalar differential equation.example, in [6], G. Hile
and M. Protter considered the uniqueness for first order sgsteith Cl-coefficients.
But their result holds for some restricted differential teyss. The purpose of this pa-
per is that, under the assumption of partial analyticity, preve the uniqueness result
for differential systems which can't be proved in [6].
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We introduce some notation. Let, n, be non negative integers with = n, +
Ny > 1. We setR" = R™ x R™ and, forx,& in R", X = (Xa, Xp), & = (£a, &p). Let
P(X, Dx) = (pij (X, Dx))1<i,j<n = Z‘a‘gm A, (X)Dg be a linear differential system with
the principal partPm(X, &) = >, 1=m A«(X)%. Let S be aC? hypersurface through 0
locally given by

S={x: ¢(x) =0},
where ¢ satisfies

¢(0)=0 ¢'(0) = (pa(0). ¢1,(0)) 7 O.

Our result is stated as follows;

Theorem 1.1. Let P(x, Dy) be a differential system of order m with®Ccoeffi-
cients We assume that all coefficients of P are analytic with respect, in a neigh-
borhood of 0, and that the principal part R(x, &) satisfies the following conditions
1. For any &, € R™\{0}

2. Foranyé&, e R™

) detPn(0, 1¢;(0). i¢;(0) +&) 7 0.

Let V be a neighborhood o and u= (ug, U, ..., uy) € C®(V)N, which satisfy

P(X, DX)U(X) = Oa X € V,
suppu = UL\':I suppux C {x € V: ¢(x) < 0}.

Then there exists a neighborhood W of 0 in whick: 0.

We make some remarks on this result. This theorem contaitdtien’s unique-
ness theorem. In fact, when we s® = n,n, = 0, the condition ofPy(x, &) in this
theorem means tha® (X, Dy) is non-characteristic with respect to the initial hypersu
face S. Moreover, by this theorem, we can show that the uniquenels hio the fol-
lowing differential system.

EXAMPLE 1. We set{, x) € R?. Leta(t, x), b(t, x), c(t, x) € C*(R?), andA(x) €
C>(R, My(C)). We assume tha = a(t, x), b = b(t, x), ¢ = c(t, x) satisfy the following
conditions:

1. aft, x), b(t, x), c(t, x) is analytic with respect td in some neighborhood of 0.
2. ay, by, co € R andaghy # 0, whereag = a(0, 0), by = b(0, 0), ¢y = ¢(0, 0).
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Then the equation

_ [COx @ady
otu = <b8x 0 > u+ A(xX)u

has a unique continuation property with respect to theahgurfaceS= {x | p(t, X) =
0}, whereg satisfies

1. ¢{(0Y — Cog{(0)py(0) — aohog; (0) # O;

2. copy(0) + 2a0bog (0) # 0.

When ¢ =t, this equation is not always strictly hyperbolic, so by thethod of
energy estimate, as in [11], we can't prove the uniquenesthisfequation. And be-
cause the coefficient afy is not normal, the result in [6] doesn’t contain this example

Our proof is based on the Carleman method and the FBI transtion theory, as
the proof given in [8]. By Sjstrand’s theory of FBI transformation, we microlocalize
the symbol of P(x, Dy) with respect tox, and, by using semi-classical pseudo differ-
ential symbolic calculus and &ding’s inequality, we establish the Carleman estimate
of P(x, Dy).

2. Preliminaries

In this section, we prepare the tools for our proof taken fi@ [7], [8], [9].

2.1. From theory of PDO.

DEFINITION 2.1. 1. Letg e C®(RY: (0, 00)). We say thatg is an order func-
tion if, for any o € N9, there exists som€, > 0 such that

®3) |02 9(x)| < Cog(x).
2. Letg be an order function. Faa(x, .) € C*(RY x (0, 00)), we say thata(x, 1) is

of the symbol classi(g) if, for any « € N9, there exists some positive constaiit
such that

4 9¢a(x, A)| < Ceg(X).

DEFINITION 2.2. Let g be an order function. Fora;} C S(g), a < S(9),
we write

1 .
(5) Zﬁaj ~a in S(9)

j>0

if, for any « € N4 and N e N, there exist some positive constar@g o, An.o Such
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that, for , 1) € RY x [An.q, 00), a(x, 1) satisfies the following inequality:

(6)

j=0

N
i (a(x, NEDD %aj (x ,\)) ‘ < fﬂf{ 9(x).

In the following context, we sed = 2n, RY = R" x Ry, (§) =(1 +]£1%)12,

DEFINITION 2.3. Foro € Sn((¢)™), we define Op(o)(x, Dx) = 03(X, Dx) by

(2N [[ grxwe, (XY
M e 0= (5 ) [[ e (FLe)undye
where the integral means oscillatory integral. Similarlg defineo(x, Dy) by
1y" i-yye (XY
®) ot D) = (5 ) [[ e (3 e uay .
T 2

Theorem 2.4. 1. For o € Sn((€)™M), we have
) 03 (X, Dx)* =7;(X, Dx),

whereo; (X, Dy)* is the formal adjoint ofo; (X, Dy).
2. For gi € Sn((5)™) (i =1, 2), there exists somes € $n((€)™*™) such that

(10) 01.(X, Dx)o2,1(X, Dx) = 03,1(X, Dx).

And we have the following expansion formula fey.

> /1 i \K .
1) a3(X, &) ~ ; (W) <Z) (DeDy — D, Dx)“01(X, &)o2(Y, m)l(y.n)=(x.¢)
in - Sn((g)™™M).

By a slight modification of the proof of Theorem 2.4 in [7], wave the follow-
ing theorem.

Theorem 2.5. 1. For o € Sn({&,)™), we have
(12) 0. (X, Dy)* =7,.(x, Dy),

whereo; (X, Dy)* is the formal adjoint ofo; (X, Dy).
2. For gi € Sn({&p)™) (i =1, 2), there exists somes € Sn((&,)™*™) such that

(13) O—l.)»(xﬂ DX)O—Z)»(X’ DX) = 0—3.)»()(7 DX)
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And we have the following expansion formula tey

o0 1 i k ‘
14) o3(X, &) ch; (E) (Z) (Dg Dy — D, Dx)"01(X, §)o2(Y, mMly.n=x.£)
in - Sn((&)™ ™).

Theorem 2.6. Let o € C®(R?") satisfy the following inequality

(15) loll.=" Y [DgD{o],, < +oo.

la+B|<2n+1
Theno,(x, Dy) is L? bounded. Moreover we have
(16) llo3.(X, DIl < Cllo [l
where C is a positive constant independentogfa.

2.2. Review on the theory of FBI transformation. In this section, we review
on the theory of FBI transformation from [7], [8], [9].

DEFINITION 2.7. We denote the partial FBI transformation By that is, foru e
S(R"), we defineTu by

17) TWZa, Xp, 1) = K (1) / e (/2  y(y,, xp) dya,

wherez, € C™, x, € R™, 1 > 1, andK (%) = 27™/2(x /m)*/4, 24 = 370, 22,

We introduce some notations about the FBI transformation.
1
(18) ®(za) = 5(Im )%,

(19) kT (Xa, &a) = (Xa —i6a, &a),  (Xa, &a) € T'R™.

DEFINITION 2.8. Foru € S(R") and 0< n < 1, we define the partial FBI trans-
formation T,u by

(20) T,U(Za, Xo, ) = K,y (1) / e ¢/A0mEy(y,, x) dya,
wherez, € C™, x, € R™, 1 > 1, and K, (1) = 2 "/2(A(1 +n)/m)¥=/4, 22 = Y0, Z2;.

We define®,(z,) and «t, by

(21) Oy (2e) = (L +n)Im 22,
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it

(22) KkT,(Xa» &a) = <Xa T 1+ 0’

éa) , (Xa, &) € T'R™.

Next we introduce some function spaces wh&rend T, operate. Fok € Z and 0<
n <1, we defineLd.,, ,(C", H*(R™)) by

(23) Lo (Ce, HER™)) = L2((C™, e 2@ (dz)). HAR™)),

where L(dz,) is Lebesgue measure @i, and HX(R™) is the Sobolev space of or-
derk. In particular, wherk = 0, we denoteL?, \,(C™, L%(R™)) by L%, . And we
define £, by

(24) ‘C’(21+n)d> = L(21+77)<I> N H((Cna)’

where H(C™) is the space of all entire functions i@". Then we have the following
proposition.

Proposition 2.9. For 5 € [0, 1], we have
1. T,is an isometry mapping from#R", HX(R™)) into L, ¢, (C"™, HX([R™)).
2. T,T, is an identity on B(R™), where T is the formal adjoint of T.
3. T,T; is the projection from g, , to £f, o, in particular, if 7=Twv,v e S(R"),
we have JT,v'=7.

2.3. Microlocalization of PDO whose coefficients are analid. In this section
we prepare some theorems taken from [8]. gk, &) = >, _,a.(X)E“ be a poly-
nomial in& with coefficients inC3°(R"). Assume moreover that there exists some pos-
itive constantcy such that alla,(x) are holomorphic with respect tg, in w, where
w={2q € C": |z4] < Cp}.

Theorem 2.10. For v € C*(R"), and n € [0, 1], we have Tp(x, Dx)v = B, T,v
where

2n
25) B, To(x, ) = (%) // ol 106 Yb) b ([] a),]> dy, dé&y
§a=—(1+n) Im((x+y)/2)

with , defined by

Xa"'Ya_'_i &a ’
2 1+n

i Xp +
(26) a)n = I)»(Xa7Ya)-Ea p ( b 2 Yb’ )\‘%_) T,]u(ya, yb, }\‘) dya A dEa

Let d be a positive number such thatdl3< ¢y, and let x(za, ¢a) € CgO(CZ”a)
satisfy

1 |zal +1¢al <12,

27 Za, Ca) =
@) x(z20 62) io 2] + |¢a] > 130
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Moreover lety be almost analytic inAg, = «(R?"), which means that, for any posi-
tive integerN, there exists some positive humb@y such that

(28) 0% (Za, £a)| < Cnlga+ (L +n)Imza|™.

Then we have the following theorem.

Theorem 2.11. Let v € CZ°(R") with suppv C {|x| < d}, and let us setfor
n€(0,1],
(29)

2n
B, To(x, 2) = <2i) // SEICROES (f/ x (2 ; % &) w) dyb dép,
T Ea=—(1+n) Im((x+y)/2)

wherew = wq is defined inTheorem 2.10Then we have

(30) PTv=0Q,To+ R Tv+0,

with P(x, Dy) = Po(x, Dy) defined inTheorem 2.10and R, and §; satisfy the follow-
ing properties For any N € N, there exists some positive constan Guch that
(31) [RT o,

(L+n)®
(32) 8¢ M, = O O vllungn). 5 = +oc,

-N
< CnA T[Tl L2 )0 (Ca HM(R™))»

where ry depends only on the dimension n and the order of p
2.4. Extension to the system case.Let us introduce some notation for system.
We denoteS(R")N by
N
SRMHN =S@R") x --- x S(R")

and defineL2(R"N, L%, (C™, HMR™)N, £&, " similarly. Letu="(u, u, ...,

un), v =Y(v1, v, ..., vn) be in LAR™MN, we denote , v), 2 by

(U, V)2 = (Ug, va)rz + - + (U, UN)L2
and denote(, v)L(21+n)® similarly. Foru € S(R"N andn € [0, 1], T,u is denoted by
(33) T,u="YT,u, ..., T,un).

Let a matrix valued functiorA(x, &) = (a&j (X, £))1<i,j<n ON R?" be in Sin((€)™) with
m € R, which means that, for any, j, a; € Sn((§)™). Foru € SRMN, we define
AA(X’ DX)U(X) by

(34) A (X, DYU(X) = (%)n// ei/\(x—y)-EA<X_;y’§> u(y) dy d
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and defineA(x, Dy)u similarly. For a differential systeniP(x, Dy) = Z‘a‘sm A, (X) Dy,
> wi=m A«(X) is called the principal part oP(x, D), and denoted bym(x, £). Then
similarly to the scalar case, we have the following theorems

Theorem 2.12. For A(X,€) € Sn({&)™), and B(X,&) € Sn((&p)™), with my,m; €
R, we have
1. Ai(x, Dy)* = AX(X, Dy), where A(x, &) ="A(X, ).
2. There exists some (&, &) € Sn({&p)™*™) such that

(35) A)L(X, DX)B)L(X, DX) = C)L(X, DX)

Moreover we have

“NEAVARY y
e S~ (i) (1) 00— PP BG I

N Spn((€0)™™).

Theorem 2.13. Let AX,£) € S$n(1). Then A(x, Dy) is L?-bounded Further-
more we set||Al, = (Zi,j E® ||§)1/2. Then for u € S(RMN, we have

(37) I AL(x, Dull = ClIAIL

where C is independent of, A.

Theorem 2.14. If A(X,&) = (&j(X. &))1<i,j<N.aj € Sn((&p)™) satisfy for all
(x, ) e R?,

(38) Ax,£) >0

then there exists some constant € 0 such that for all u € S(R™MN and » > 0,
we have

C
(39) (Au(x, Du, u) = — | (D, /2)™2ul%,
Where<DXb/)“> = OpA((éb))(X’ Dx)-

Proposition 2.15. For 5 € [0, 1], T, has the following properties
1. T, is an isometry mapping from#R", H™(R™)) into L&, (C", HM(R™))N.
2. TrT, is an identity on E(R")N.
3. T,T; is the projection from §, N to L5, . In particular T, T v =7 if v =
Tv,v e SRMHN.
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Let P(x, &) = Z‘a‘sm A. (X)€%, be a polynomial irt whose coefficients are matrix
valued function inC3°(R": My(C)). Assume moreover that there exists > 0 such
that, for all o, A,(x) is analytic with respect t; in w,, wherew, = {z, € C™ |

|Za| < Co}-

Proposition 2.16. Let y/(x) be a real quadratic polynomialFor u € CS°(R")N,
we have

(40) e P(x, Dx)e " u(x) = Ppy (X, D)u(x),

where R (X, Dy) is a differential operator defined by
(41)

oo 0u = (1) [ (S (s eiv (15)) uves

Theorem 2.17. For n € [0,1] and v € CP(RMN, we have TP, ,(x, Dy)v =
Pyv .y Tyv, where

~ A\ _
(42) Px,w,nT”(X,A)=(E> // e'Mvaw-fb(// wn>dybdsb.
Ea=—(1+n) Im((x+y)/2)

Here w, is defined by
(43) wy = eHTIVEP(X A€ +19/ (X)) T,U(Ya, Yor 1) dYa A déa
with X = ((Xa + Ya)/2 +i(£a/(1 + 1)), (X6 + Yb)/2)-

In particular, we denoté®, ;0 by P, . Let x € C andd > 0 be the same as
in Theorem 2.11, then we have the following theorem simitathte scalar case.

Theorem 2.18. Let v(x) be in G°(R™N with suppv C {|x| < d}. For n € (0, 1],
we set
(44)

6 Tu(x, 1) < » )2“ //ei}‘(xb_)’b)'éb (// (Xa+ya £ ) >dybd§'
Y 5 = ~_ : X 5 w bs
2r £a=—(L47) IM((x+Y)/2) 2 7

wherew = wo With w, defined inTeorem 2.17Then we have

(45) PyTv=CQ,Tv+RTv+9,.

Here §, and R, Tv satisfy the following propertiesor any N € N, there exists some
positive number § such thatRTv and § satisfy

B —N
(46) IRl , = CnANiIT vl oo, mem:
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~ _ 2
(47) 180 D)5, , = OE W ullragn). & — oo,
where ry depends only on the dimension n and on the order of P

3. Main estimate

Let v be in C°(R")N and setw = TTw. It follows from Proposition 2.15 that

(48) T,w(X) = Tv(x).

Let us set

(49) Qi 6) =1 (3= 1 ) PZAE +iV/ @)
n

with Z = (X + (in/(1 +n))&a, Xp), then we deduce from Theorem 2.17

Q. To(x) = Q. T,w(x)

(50) T 0w,

where Q, is the operator defined by

Sy Qu=(5) [[e¢ (5 e) vimayet.

Moreover setting

2) Q=Y x (30 12 A +1/@)"
we have
(53) Qu(x, &) = Y A*Qu(x, &).

k=0

3.1. The estimate ofQ,. In this section, we prove Carleman estimate y.
First of all, we precise our choice af. Let ¢ and P, satisfy the assumption in The-
orem 1.1.

Proposition 3.1. There exists a quadratic polynomigi(x) such that

1. ¥(0) =¢(0) =0, ¥'(0) = ¢(0).
2. There exists some neighborhood W &uch that

(54) Xxe W\ {0} N{x|y¥(x) =0} = ¢(x) > 0.
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Proof. We set

1 " /
(55) V() = @' (Ox + 5 (¢" (0%, X) + (¢ 0x)% — Ix]%.
Then ¢ obviously satisfies
(56) ¥(0)=¢(0) =0, ¥'(0) =¢(0).
And, wheny(x) = 0, there exists som€ > 0 such that
’ 1 ” ’ 2 2
@O0 = 3¢ (Ox. X) = (¢' (0 + Ix]
< C|x|%
Then, by Taylor’s formula, we have
1 "
0(x) = @'+ 5(¢" ()X, X) + O(xP)

= —(¢'(0)x)* + |x|> + O(Ix|®)

> —(CIx[%)2 +|x|? + O(x[3).

Thereforep(x) > 0 whenx is small enough ana # 0. The proposition is proved.[]

Lemma 3.2. There exist positive humbets, § such that if [x| + |&| < &g, for
any &, € R™, we have

(57) Qm(X, &) Qm(X, &) — 8(&x)™™I > 0.

Proof. Becauséx|+|&;| is small enough, we may assuméx, +i&,/(1+n), &) =
1. Then it follows that

(58) Qm(X, £)"Qm(X, §) = Pm(X, & +iy/(X))"Pn(X, & +iy/(X)),

where X = (Xg +1n&a/(1 +1), Xp).
(1) The case of largéy.
By the definition of Py, we have
Pm(X, & +i /(X)) Pm(X, & +iy/'(X))

(59) = Pn(X. 0.6)*Pn(X. 0. 80) + Y Bpy(X. £a)8L,
|Bl<2m-1

where, for anyg, Bg(X, &) is an hermitian matrix whose components areCiiti (R} x
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RY). Then by homogeneity oPy, for any w € RN with |w| =1, we have

(Qm(xv E)* Qm(xv g)wv w) = (Pm(xv Ov gb)* Pm(x’ 07 Sb)wv U))
+ Y & (B(X Ew, w)

|Bl=2m-1

& \" &p
=1&*™ { | P x,o,—> Pm<x,o,—> : )
ol [( ( EY &l )

p
NS > L(Bﬁ(x, Ea)w, w)] ,

2m-1
1ol S 1 1601

On the other hand, it follows from the ellipticity d?,(0, O, &) and the continuity of
Pn(X, 0, &) that there exist positive constanisg, &; such that, if|&] = 1 and x| +
|&al < &1, we have

(60) (Pm(xv 07 %—b)* Pm(x’ 07 gb)wv U)) > 281

And, by the continuity ofBg, there exists som€g > 0 which satisfies that, for any
(X, &) with |X] +|&5| < €1, we have

(61) |Bﬁ(X, Sa)w| < Cﬁ.

It follows that if we takeC > 0 such thatC?! Zﬁ Cs < 6, for any &, with |&| > C,
we have

&b Pt

1
(Qm(xv S)* Qm(xv %—)U), U)) 2 |§b|2m (281 - Ta Z |Bf3(x’ Ea)wl)
> 81/Ep|*".
Therefore if|&,| > C and |X| + |&4] < &1,

(62) Qm(X, £)* Qm(X, &) — 81(&)°"

is positive definite.

(2) The case that, is bounded.

We argue by contradiction. Assume that there exist sequeige C R", {£4} C
R", {&x} € R™, {wx} € RN which satisfy

[Xg| + [Eak| < l&okl < C,  wi| =1,

Ea
1
(Qm(Xk» &ak» £bk) " Qm(Xk, Eak, Ebk)wk, Wk) < K (€ )>™.
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Because{én}, {wk} are bounded, we can take convergent sequefigs, {wy;} with

im0 &bk, = &bo, liMj_o wk, = wo. By the fact that lim_ . Xk, lIMj_&ak are
equal to 0, and by the continuity @®,,, we have

(63) (Qm(0. 0, o) Qm(0. 0, &ho)wo. wo) = 0,

which contradicts that d&m(0, 0, &) = detPm(0, ¢5(0), &no + iy (0)) # O. thus the
lemma is proved. ]

Let h(x,) € Cg°(R™: [0, 1]) satisfy

(64) h(xp) =

whereg; is a small parameter, and et € Cg°(C" x C™: [0, 1]) be almost analytic
in A@+ye. Moreover we can takéo satisfies

&
1 1zl * laal < 79—
~ n 3
(65) 0o(za, ¢a) = 26,
0 |zal + %l > —~
When we defingd;(x, &) € CFF(R" x R™) by
(66) 01(X, &) = B0 © 5 (Xa, Ea)N(Xb),

then we have

&
1 |x|+ &l < 51

(67) 01(X, &) =
0 [IX|+ &l > e1.

Lemma 3.3. There exist positive numbers; 5, Ag such that for any A > Ag
and any ue S(RMN, we have

A2ms
(68)  C1A”™(Op,((1 — 1) (&) *™)(X, Dy)u, u) + Co[| Q;ull? > — | (D /M) ™ul?.

Proof. By Lemma 3.2, we can take; > 0 large enough such that

(69) C1(1 — 01(X, £))(E0)™™ + Qm(X, £)* Qm(X, &) — 8(£,)*™1 > 0.
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By this inequality and Theorem 2.14, there exists some ipesitonstantCs such that,
for any u € S(RMN,

C1(0p, (1 — 61)(£0)*™u, U) + ((Q Qm)x (X, Dx)u, u) — 8({Dy,/A)?™u, u)

(70) C
> == [ (D /1™l

On the other hand, by Theorem 2.12, we have

(71) (@ Q) (X, D) = Qi (X, D)’ Qi(x, D) + TR (x, D),

where R, (X, Dy) is a pseudodifferential system whose symBgk, &, 1) be an hermit-
ian matrix in S ((&)2"). Therefore we have

C1(Op, (1 — 61)(Ex)™™)(X, Dy)u, U) + | Qi (X, Dy)ul|?

72
(72) > (8 — %) | (D /2)™u|” — %(RA(X, Dy)u, u).

Moreover, by Theorem 2.13, there exists some positive nur@@esuch that

I(R.(X, Dy)u, U)] < [{Dy,/2)"™Ru(X, Dx)u| [[(Dx,/2)™ul|
< Ca||(Dyy/ )™

Then when we take.; > 0 with 2C3/A; < §/3, it follows that, for anyr > A,

2
(73)  C1(OP,((1 — 62)(50)°™)(x, D)u, u) + [ Qm(x, Dx)ull* = 30 | (D /2)™u”.

On the other hand, by the definition &J;, we have

2

m—1
1Qum (X, Dy)U[® = |A7"Quu — D A*"™ Qs (X, Dx)u

k=0

m-1
<2 <r2m|| Quull?+ ) A% 72| Qi (, Dx)unz)

k=0

m
< 2MA72|IQuu? + T? | (Dx/M)™ul?,

where Cs is a positive constant independent ofand . Then if we takex, with
mCy/23 < §/6, for anyx > A, we have

)
(74) | Qm.i(X, Dx)ull? < 2™A2M||Q;ul|? + 5 | (Dy/2)™u?.
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It follows that, if A > Ao = max@.1, A»), we have

J
(75 Ca(OP((2 — 1)) DJu, ) + 23 2 Quul = 5 (D /)™u”,

which completes the proof. Ul

Lemma 3.4. We can take positive real numbess, oo which have the following
properties Let v € CP(RMN satisfy suppy C {X: |X| < &2}. Then for any k € N,
there exist positive constants g Ci 2 such that

(0P, ((1 — 61){E)*™) (X, DY) T Tv, T T)|

- Ck.1
<K

(76) . )
[(Bro/m™l g, + Cor€™ v,

where ry is an integer depending only on the dimensian n

Proof. Using Proposition 2.15, we have

(0P, ((1 — 61)(56)*™) (X, DY) T, Tv, T, Tv)
= (T, Op.((1 — 1) (£0)*™)(x, DT, To, T, T To)

(o

(77)

And, by Theorem 2.17, we have
T, Op, (1 — 62) (&) *™)(X, DY) T, Tw(x)

78 n .
(78) — (%) // e”h("b‘Yb)'Eb(%'b)zm // w, dy, d&p,
§a=—(1+n) Im((Xa+ya)/2)

where w, is defined by
(79)

) + i +
w, = @10y & <1 — 6, <X"" 5 Ya \ 1'? i > yb,$a>) Ty T, To(Ya: Yb) d¥a A déa.
n

By the definition of9;, we have

91<Xa+ya L Xb"'Yb’éa) :91<K,]_1(Xa+ya’§a>’ xb+yb>

(80) 2 1 + n 2 « + y 2 .+ y2
_x a a b b
=00 ( 2 53) h ( 2 )

and by Proposition 2.15,

(81) T,,Tn*Tv =To.

Therefore

(82w, =@ (1o (B2 g )0 (22R)) Tuya, yo) dya A e
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We defineSTv by

~ A" .
83 STu= (2—> / / 206 ) 1 2m f / w, dyp dép.
T Ea=—(1+n) Im((Xa*Ya)/2)

By the same method in [8], we can show the following inequalithere exists some
g2 > 0 such that ifv € C°(R"N satisfy supp C {x: |x| < &}, then, for any positive
integerk, we can takeog, Cy 1, Cx2 > 0 which satisfy

Ck1
< 22 (D /)™ To| 2., +Ck.2e_'\”2|IUIIH"o,

(84) H ST ” Lo = Ak

whereng is a positive integer dependent only on the dimensiorf-rom this inequal-
ity, for any positive integek, we have

(0P, (1 — 62)(€0)*™)(X, DX)T, Tv, T, T0)|

= ‘(gTU, Tv),,
(85) (1+n)®
”STU ”L(z1+ )0 |TU||L(21+U)¢
Ck 1
1 Du/Mm TGy + Gz vl Tolg, -
which completes the proof be051u$§z)||,_(z1 o = ITvllz = llvllz < lvling. ]
)

Theorem 3.5. For ISM, defined inTheorem 2.17there exist some positive con-
stants G, Cy, N, Ao, &, o such that for any v € CP(RMN with suppv C {x: |X| < &}
and A > Ao, we have

(86) CiA|PyTo| e +Coe M |03 > ||Tv||L(zl+ (€ HI (R

Proof. By Proposition 2.15, we have

QT o] = [T, ol
S CAARN N
= |8,

(1+n 7)d>

Moreover, by choosing; with ¢1 < d, it follows from Theorem 2.18 that there exist
some constant€, 1, Cm2 > 0 such that

RS A
PPl IRl 5],
C
< [Py Tol n:r.]l ITollg, , + Con2&™ M8y .

(1+)®
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On the other hand, if we take > 0 satisfyinge < &, by Lemma 3.4, there exist
some positive constantSy, 3, Cry 4 such that

27| (0p,((1 = 61)(66)™™)(x, DT, T, T, Tv)]

< Cma||(Da/M™ o2, +Cinar? e v]Z.

A+

87)

Then, becaus@?Me~*?/2 < 1 with A large enough, we have
A2 (0P, (1 = 62)(Ep)*™) (X, D) T, T, T To))|

(88) 2 — A0
= Cina [(Dx /W™ Tof 5 +Crmae ™20

It follows from these inequalities and Lemma 3.3 that) ifs large enough, there exist
positive constant€s, Cg, C;, Cg such that

Cs || ﬁ)LT v H 22 + (Cee—(k/Z)Go + C7e—(2/3)ki7d2) 0]l 170
Lame

(89) 8
> (EAzm - C8> I (Dxb/)">mTv||i2

(L4

Therefore settings = min(oo/2, (2/3)nd?), we have

~ 1)
00)  GolBTol?, +(Cor G Hluln = S (D o,

1+

which completes the proof. ]

4. Proof of Main Theorem

In this section, using the estimate proved in the previougis® we prove our
main theorem. Let us assume thatsatisfies the condition of Theorem 1.1, thais
a C*-solution near the origin of the equatidPu = 0 with suppu C {x € R": ¢(x) <
0}, and thaty is introduced in Proposition 3.1. Let € C°(R: [0, 1]) satisfy

1 > _27
(91) x(t) = 2
O t = —&2,

wheree, is a positive number small enough. We set

(92) ug(x) = x (¥ (X)u(x).

Then if &, is small enough, it follows that there exists some neighbodhV, of 0,
and some positive numbé® such that

(93) suppui N Vo C {X: |x|? < Cey).
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If & is small enough so that > \/Ce,, we have
(94) suppu; NVp C {X: [X] < &}.

Moreover we setPu; = f. BecausePu =0, f satisfies

(95) suppf C {x: —Sflﬁ(X)f—E}.
2

Let us set

(96) v=e"Vuy,

where p is a positive parameter. Then we have
ProyTv=TE ).

By Theorem 3.5, there exist positive constantso, Cy, C, such that, forh > Ao,
we have

(97) ITvll 2, (cra Hm@m) < CATE )z +Coe™ ] o

REOL

By using (95), we can show the following estimate:

(98) ITEPY f)2 =0 *3), 1 +oo.

(1+)d

Therefore, wheri is large enough, there exists sorig, > 0 such that
—3A

(99) ”TU”L(ZMUCD =< Cp.se s

whered = min(ep/3, o). By the same argument of the last section in [8]pikatisfies
the inequality:

1
(100) plly"(O) < 7

there exists some neighborhodtbf 0 whereu = 0, which completes the proof of the
main theorem.
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