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Abstract
The Hermite constany,(D) of a quaternion skew field over a global field
is defined and studied. We obtain an upper bound/gD). In the case that the
base field is a number field, we introduce the notion of quaieic Humbert forms
over D. Theny,(D) is characterized as a critical value of the Hermite invasdor
n-ary quaternionic Humbert forms. We extend Vorésidheorem on extreme forms
to quaternionic Humbert forms.

Introduction

An analogue of Hermite's constant for a division algebraravenumber field was
first studied in [10] as a typical case of generalized Hermsit@stants of linear al-
gebraic groups. But the definition of this constant given if][was not canonical in
the sense that it depends on the choice of a splitting fieldhefdivision algebra in
guestion. After this work, the second author introduced théon of the fundamental
Hermite constant associated to a pair of a connected redualjebraic group and its
maximal parabolic subgroup both defined over a global fietd[{d]). This notion es-

pecially yields a canonical definition of Hermite constamt & division algebra over a
global field.

To be more precise, leD denote a central division algebra over a global field
k, V = ¢D + ... +¢,D a right D-vector spaceG(k) = Autp(V) the group ofD-
linear automorphisms of/, and Q(k) the stabilizer inG(k) of the line e,D. As an
algebraic groupQ is a maximalk-parabolic subgroup of the affine algebr&igroup
G. We write G(A) and Q(A) for the adele groups o& and Q, respectively, and write
G(A)! for the subgroup consisting of aly € G(A) whose reduced norm satisfies
INrm,0yk(9)la = 1. If we fix a maximal compact subgrould of G(A) such that
G(A) possesses an lwasawa decompositigih)K, we can define the height function
Ho: G(A) — R_o by Ho(gh) = |@o(g)l,* for g € Q(A) andh € K, where@g
denotes some basis of ttf&module ofk-rational characters 0@ modulo the center
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of G. Then the Hermite constant @ is defined as

(D)= max mi

n Ho(xg).
geG(A)! xeQ(k\G(K) ox9)

This definition ofy;,(D) is intrinsic and does not depend on a splitting fieldmof If k
is a number field, one can see a relation betwggiD) and a generalized Hermite
constant defined in [10] in the Remark following Lemma 3.45%

In the case thatD is a quaternion skew field, we can expresgD) in terms
of the twisted heights on the vector space i.e., we will show in§2 the following

equality:

— H 2n
(0) M(D)= max min Hy()™.
Here Hy denotes the twisted height on for g € G(A)?, whose precise definition will
be given in§2. As explained by Lieberidfer [3], it is not easy to define appropriately
the twisted heights oV. Liebendrfer has studied recently heights @vector spaces
in details, but only in the case whei2 is a definite quaternion skew field over the
rational number fieldQ. At least, our definition ofHy is more general, and coincides
with hers in that case. The aim of this paper is to styd¢D) more closely, based
on the equation (0). In the first half, we shall yield an uppeur® of y,(D) for any
guaternion skew field over any global field, and in the second half, a Vorotype
theory of quaternionic Humbert formsvill be developed in connection withy, (D),
provided thatk is a number field.

Because of the difficulty of definition of the twisted heighige restrict ourselves
to the case of a quaternion skew field in this paper. Howewvern subsequent paper,
we will remove this restriction, i.e., we will give a defirmiti of the twisted heights on
a vector space over any division algelba and then we will study a generalization
of successive minima and Minkowski's theorem with respecthte twisted heights.
In this work, the Hermite constant,(D) will play a crucial role, and an estimate
of yn(D) will have an application to Siegel's lemma ovEr.

In the rest of this introduction, we briefly explain the rdésubf this paper. An
upper bound of some generalized Hermite constant was glrgaen in [10, Theo-
rem 3] in the number field case. However, this theorem (or étgeproof) can not be
applied to the present case. Thus we have to make a diffepgmbach to get an up-
per bound ofy, (D). We first realizeD as a cyclic algebral(/k,u) = 1-L +i-L,
where L/k is a separable quadratic extension containedinu is an element irk*
andi is an element inD such thati? = u. RegardingV as anL-vector space, one can
define the twisted heigh'tf:}: VAV = Ry for & € G(AL), whereA| = A ® L,
(see §3 for details) and the twisted heightH:: V. — R.o: “H; is just defined by
LH:(x) = “F:(x A xi)¥4 for x € V. Theny,(D) has a description of the form

va(D) = min_“H,q(x)*",

— Mmax
LH, (e1)?" geG(a)t xeV—{0}
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where n is an element inG(A_) determined from the maximal compact subgroups
of G(A) and G(AL). (In general, is not contained inG(A). This is a reason why
[10, Theorem 3] does not work well fop,(D).) By making use of Hadamard’s in-
equality and some arguments of geometry of numbers, one stamage the minimum
of LH,g(x) (Lemmas 3.3 and 3.6). In this estimate, the functjoig) = wy (SNES)/wy (S)

in & € G(AL) occurs, wheravy is a Haar measure of the adele spae,_ AL andS

is “a unit ball” in V®_A,. The point is an explicit computation af(£) at& =5J,n~*
(Lemma 3.7, se&3 for notations). This leads us to an explicit upper bound haf t
minimum of “H,4(x), and hence of;(D) (Theorem 3.8).

If k is a number field, the expression (0) gf(D) leads us to the notion ofi-
ary quaternionic Humbert forms oved. Let k, = k ®p R = [], k,, wherev runs
over all infinite places ok. For g, € G(k,), the matrixS, = 9,7, is a positive definite
symmetric, Hermitian or quaternionic Hermitian matrix aating asD ®xk, = M(R),
M(C) or the Hamilton quaterniofil. This S, defines a form oV ® k,. We call a
systemS = (S)) = (9,9,) of forms for @,) € G(ksx) an n-ary quaternionic Humbert
form over D. The setP, p of all n-ary quaternionic Humbert forms ovéd becomes
a Riemannian symmetric space. If we fix a maximal or@eof D and representatives
A1, ..., Ay of equivalent classes of fulD-lattices inV, thenthe Hermite invariant
wi(S) for Se P, p is defined to be

1 m(9"
NTD/@(Q(i) DetS’

Su]

(g) = min ,
©i(S) ueAiI—{O} Nrp,o(2u)

where m;i(S) =

for eachi = 1,2,...h. Here Ju] denotes the value o8 at u, Nrp,g(2,) the norm
of some integralD-ideal defined fromu € A; and DetS “the determinant” ofS, see
§4 for their precise definitions. Then the equation (0) imgplie

(D) = max max u; ©)

(84, Proposition 4.5). Thus,(D) is characterized as a critical value of the Hermite
invariants u;. An investigation of the critical values of such “Hermitevamiants” is
known as a Voroniotype theory. The second subject of this paper is to develop a
Vorond type theory for the Hermite invariantg;. As usual, a quaternionic Humbert
form S is said to beu;-extremeif S achieves a local maximum qf;. To define the
notion of u;-perfectionand u;-eutaxyfor quaternionic Humbert forms, we make use
of Bavard's fundamental work [1] on a Vorohtype theory. Some equivalent condi-
tions for p;-perfection andu;-eutaxy will be given in§6, Proposition 6.1. Then we
will prove the following Vorond type theoremA quaternionic Humbert form S ig;-
extreme if and only if it isu;-perfect andu;-eutactic (§6, Theorem 6.3).

The interest of this Vororiatype characterization is twofold: first it allows to prove
that (D) is algebraic, having noticed that -perfect forms are algebrai¢q, Proposi-
tion 6.4). Secondly, a classification pf -perfect (respu;-eutactic) forms, if possible,
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allows the computation of,(D). In the case of the classical Hermite invariant, such
a classification is obtained as a by-product of the so-caieend’s algorithm. Un-
fortunately, this algorithm does not generalize easily to situation. Nevertheless, we
can prove that there are finitely many perfect quaternionienblert forms in a given
dimension §6, Theorem 6.7), which is the first required property if oneki® for a
classification.

In the last part of§4, we treat, as an example, the case of binary quaternionic
Humbert forms over Euclidean quaternion fields, and comphi& corresponding
Hermite constants. This is in fact an easy case, and doeschwllg require the use
of the Vorond type characterization of extremality.

Notations

Let k be a global field, i.e., an algebraic humber field of finite degoverQ or
an algebraic function field of one variable over a finite fidllle denote byl, U,
and U; the sets of all places df, all infinite places ofk and all finite places ok,
respectively. Fow € %, let k, be the completion ok at v and | - |, be the absolute
value of k, normalized so thatalx, = u,(aC)/u,(C), where u, is a Haar measure
of k, and C is an arbitrary compact subset kf with nonzero measure. If is finite,
ok, denotes the ring of integers ik,. The adele ring ok is denoted byA and its
idele norm is denoted by- |4, i.e., |- |a = [[ye | - Ik,- We will write ky, and Ay for
the infinite part and the finite part of, respectively. The restrictions df |, to k3
and A are denoted by- |, and|-|a,, respectively. Ifk is an algebraic number field,
then ok denotes the ring of integers i

For a unitalk-algebraR and positive integersn andn, My, ,(R) stands for the set
of m by n matrices with components iR. The transpose of a matriA € My n(R)
is denoted byA'. The unit group of the total matrix algebtd,(R) = M, 1 (R) is de-
noted byGL,(R). In general, for a given algebraic-group &, &(R) stands for the
group of R-rational points of&. If R is a finite dimensional central divisidk-algebra,
Nru,ryk stands for the reduced norm of the central simpialgebra M,(R) and
Trum.(ry/k for the reduced trace.

1. Fundamental Hermite constants ofGL,(D)

We fix integersd > 1 andn > 2. Throughout this sectionD denotes a central
division k-algebra of degreel and G the affine algebraik-group defined byG(R) =
GL,(D ®k R) for any k-algebraR. Let P be the minimalk-parabolic subgroup o6
which consists of upper triangular matrices . Then the standard maxima-
parabolic subgroup®m, 1 <m<n -1, of G are given as follows:

Qm<k>={(g ;’):aeGLm(D), b & Mun_m(D). deGan<D)}.
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In this section, we recall the fundamental Hermite constap{G, Qn, k) and
Y (G, Qm, k) introduced in [11].

In the following, we fixm and write Q for Qmn. Let Ug be the unipotent radical
of Q and Mg the Levi subgroup ofQ given by

Mq(K) = {diag(a, b) = (g 8) :ae GLn(D), be Gan(D)} .

Denote byZs and Zq the central maximak-split tori of G and Mg, respectively, i.e.,
Ze(K) = {Ala: A ek} and Zg(k) = {diag@Im, pln-m): A, n € K*}.
We define thek-rational characterag: Zg — GL; andwg: Mg — Gl as follows:
aq(diag@lm, wln-m)) = A"
for diag@Im, nln-m) € Zg(k) and
@o(diag@, b)) = Nry,(oyk(@) ™™/ 990N Nry, - o) (b) =™ 9edn=m)

for diag@. b) € Mg(k). Then aq (resp.ag) is trivial on Zg and forms aZ-basis
of the module X;(Zg\Zq) (resp. Xj(Zc\Mg)) of k-rational characters oZg\Zq
(resp.Zg\Mg). The index Ki(Zc\Zgq) : Xi(Zc\Mg)] is equal todm(n—m)/ gcdm,
n—m).

Define the unimodular subgrouf(A)!, Mo(A)* and Q(A)! as follows:

G(A)' = {g € G(A): [Nrw,o)k(@)la = 1},
Mo(A)! = {diag@, b) € Mg(A): [Nry, oyk(@)]a = INry, . o)k(D)]a = 1},
Q(A)! = Ug(A)Mq(A)*.
Let K be a maximal compact subgroup G{A) such thatG(A) possesses an lwasawa
decompositionG(A) = Ug(A)Mg(A)K. Then the height functiodg: G(A) — R.q is
well defined by
Ho(u - diaga. b) - h) = [@o(diagla. b))[;*

—(m—n)/ ged(n,n— d@m.n—
= INme(D)/k(a)IA(m "/ gedtnn m)|Nan,m(D)/k(b)|,n§/gC fn=m

for u € Ug(A), diag(@, b) € Mo(A) and h € K. By definition, Hg is left Zg(A)Q(A)*
and rightK invariant.

We setXq = Q(K)\G(K) and Yo = Q(A)'\G(A)!. Then Xq is a subset offg and
the natural mapro — (Zc(A)Q(A))\G(A) is injective. Thus the height functiohig
is restricted toYq. Then the Hermite constanis(G, Q, k) and ¥(G, Q, k) are defined
to be

G, Q,k) = max min Ho(xg), ¥(G, Q,k)= max min Ho(xg).
7(G.Q.K) = max min Ho(xg)., 7(G,Q.K)= max min Ho(xg)
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If k is an algebraic number field, ther(G, Q, k) equalsy (G, Q, k) as Z¢(A)G(A)! =
G(A). In the case ofn = 1, we writey,(D) andy,(D) for (G, Q1, k) andy (G, Qg, k),
respectively.

2. y,(D) for a quaternion skew field D

Hereafter, throughout this paper, IBX be a quaternion divisiok-algebra. In this
section, we describg,(D) and¥,(D) in terms of a height on a projective space. These
descriptions will be used in the latter sections.

We write Dy and Dy, for D ®« A and D ® A, respectively. For each € U,
D, = D ® k, is a quaternion algebra ovéy. Let ¢, € 271Z/Z be the Brauer-Hasse
invariant of D,, namelye, is equal to 0 or 12 moduloZ according asD, = My(k,)
or not. Then the sef is divided into two subset®) = {v € U: ¢, = 1/2 modZ}
andU” = {v € U: e, = 0 modZ}. The sety’ is a finite set and its cardinality is
even. We writel, U7, U and W for Voo NY', Voo NY", B NY and Bt NY”,
respectively.

Let O be a maximal order oD. Forv € U¢, the completionD, of O in D, is a
maximal order ofD,. For eachv € ", we fix an isomorphism,: D, — My(k,) such
that (,(O,) = Ma(oy,) if v is finite. Then we define elemenés, € and J, of D, by

(3 9) 4 (E D) 2= )

LetV =eD+...+e,D be a rightD-vector space with the standard basis. ..,
e,. We define the local heightl” on V, =V ® k, for eachv € U as follows.
(i) The case ofv € . In this caseD, is division andV, is a right D,-vector space.
The local heightF, = H" is defined to be

1/2
INFo /(%) K, (v € Ty).
H(Z e|Xi>:Hv<Z e1Xi>: (1;n o k>

Lsi=n sup (INrp(0)%) (v e ).

1<i<n

1<i=n

(i) The case ofv € W”. In this case,V, is a free rightD,-module of rankn and
decomposes into a direct sum kf-vector subspace¥,e, and V,€,. We write W,
for V,e,. As ak,-vector spacel, is of dimension B. From J,€, J, = e,, it follows
V,€,J, =W,. Put fj _, =ee, and f; = g€ J, for L <i <n. Then{f?, £}, ..., f}}
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forms ak,-basis ofW,. We define the norm&, on W, and fv on the wedge product
W, AW, as follows:

1/2
( > mﬁ,) (ve VL, k =R),
1<i<2n
Fv< ) fi”Ai> 1 D0 Il (v e VL. k =0),
1<i<2n 1<i<2n
sup (|Ailk,) (v € TY).
1<i<2n
1/2
> g, (v e VL, k, =R),
( 1<i<j<2n
I/:\ Z (fiv AN f]v))\’” = "
v Aii vey , k,=0),
l<i<j<2n l<i;'<2n | " |k” ( oor T )
sup  (IAij lk,) (v € T%).
1<i<j<2n

Then the local heighH” on V, is defined to be
HY(x) = fv((xeu) A (X(;()Jv))l/2
for x e V,.
Lemma 2.1. Letv €Y. Then
H"(xa) = INrp (@)l *H"(x)
holds for all xe V, and ae D).

Proof. This is obvious by definition ib € U’. Thus we assume € U”. Let
w@=(%7%). Then

xa= (xe, +x€ )a = (xe +x€ )ae, + (xe, + x€ )a€
= {x(e.a&) +x(e)ae)} + {x(e,a€)) +x(e,a€))}
= {xer +x€ Jyu} +{xe 1\ +xeu'}.

Therefore,

xag A xa€ J, = {xer +x€ J,u} A {xer +x€ J,u'}
= xe, AX€J, (' — X' 1),

and henceH"(xa) = F,(xae, A xa€,J,)%2 = [Nrp (@)l > H?(x). O
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In any case, the subgroup
Ky ={g € G(k,): Fu(gX) = Fu(x) (x € V,)}

is a maximal compact subgroup &(k,) = GL,(D,). If v € U, then K, is the sta-
bilizer of the freeD,-lattice O, +--- + 6,9,. We fix, once and for all, a maximal
compact subgroufk of G(A) as

K=]] K
vesy

and then definéHg for Q = Qq as in§l.
For g = (gv) € G(A), the global twisted heighHy: V — R is defined to be

Ho(x) = ] H (@)
vey

It is easy to see that
1) HAIn-h-g = [Ala Hg

for all Al € Zg(A), h € K andg € G(A). We define the functiond: G(A) —
R>0 by
Hq(er)
®(g) = :
INrm, ()/k(9)1

The stabilizer of the rightD-subspace spanned k& in G is the maximal parabolic
subgroupQ = Q. By (1), @ is left K and right Z¢(A)Q(A)?! invariant.

L/(2n)
A

Lemma 2.2. The equality®(g)®" = Ho(g™?) holds for all ge G(A).

Proof. Since bothd(g) and Ho(g™?) are left K and right Zg(A)Q(A)! invariant,
it is sufficient to proved(diag@, b))* = Hg(diag@, b)) for all diag@, b) € Mqg(A),
wherea € GL;(D,) andb € GL,_1(D,). On the one hand, it follows frorfl that

Ho(diag@, b))~ = [Nrpk(@)[} 2 INrw, . oyk(B)l 5
On the other hand,

[Tyew H (18,)*"

o(diag@, b))*" = )
(diage. b)) INrp/k(@)]aINIm,_; (Dy/k (D)4

By Lemma 2.1,H'(e1a,)?" = |NrD/k(av)|’k‘U. Then we obtain

®(diag@, b))™ = INrp(@)[57 N, o)k (0)15 O
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By this lemma andG(k)e; = V — {0}, we have the following expressions gf(D)
and y,(D):

D)= max min Hqy(x)%",
¥n(D) 9B (A): XEV- (0] g()

N Hg(x)2"
(D) = max __Ho™
9eG(4) xeV—{0} |NIw,(Dy/k(9)]4

Note thaty,(D) = %,(D) if k is a number field.

3. An upper bound of y,(D)

In this section, we give an upper bound®f(D). For that purpose, we need to fix
a realization ofD as a cyclic algebra. Namely we fix a separable quadratic sixten
L =k(@) of k andu € k* such thatu ¢ N_(L*) and

D=(L/k,u)y=1-L+i-L, i2=u, ir=xi (rel),

where . +— A denotes the Galois automorphism bfk. The reduced norm o& =
A+iu, A, uelL,is equal to

Nrp k(@) = Nrpk(A +ip) = Ak — UpL.

We sometime writg for 6. The map:: D ®« L — My(L) defined by

a(i)=(2 ;;), L(j)=<f, g)

gives an algebra isomorphism. By using this realizationDof we first give another
expression ofy,,(D), and then we will make use of this expression to obtain areupp
bound of ¥,(D).

Let 20, W, and 2W; be the sets of all places df, all infinite places ofL and
all finite places ofL, respectively. Fow € 29, L,, stands for the completion df at
w. The normalized valuation of,, is denoted byj - |_,. If w € 2%, o, stands for
the valuation ring ofL,. The adele ring ofL and its idele norm are denoted By
and|-|, , respectively. As irt2, we letV =e;D+---+e,D be a rightD-vector space.
We fix an L-basis ofV as follows:

fri=6, fi=ei (1<i<n)

For x =fid1 +--- +fondon € V, Ag, ..., Aoy € L, the conjugatex of x with respect to
L/k is defined by

X =fihg + -+ + fonhan.
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As an L-vector space, the wedge prodL}’E[c =V AV has a basidi Afj, 1 <i <
j < 2n. For eachw € 20, the L, -vector spaceV QL Lw is denoted byv,, to avoid
confusion withV, defined in§2. We write V._ w for V._ ®L Ly =V, AV,.Bya
similar fashion to§2, the local heightd-F,: V|, — R.o and ‘F,,: \7L,,,, — Rsg are
defined by

1/2
< > wiw) (w € Wee, Ly =R),
1<i<2n
L B _
Fw( Z fl)».)— Z IAilL, (w e Wy, L, =0C),
1<i<2n -
1<i<2n
sup (IAilL,) (w € 2y)
1<i<2n
and
1/2
>l (w e Wao, Ly =R),
1<i<j<2n
LFw fi AT =
1<i;<2n( i A4 Z Aij L, (w € Wy, Ly, =0C),
o 1<i<j<2n
sup (I2ijl.,) (w € Wy).
1<i<j<2n

Then the global heightsF: V — R.o and -F: V. — R., are defined to be

"Feo =[] Fu), R =TT “Fu(X)

we0 we0

for x € V and X € V.. More generally, we can define the global twisted heigfit
andF; for £ = (£,) € GLan(AL) by

R0 =FEX) = [ TFu@ax). SRe(X) =tFEX) = [ R X).

weW wey
Lemma 3.1. For x € V and& € GlLa(AL), we have-F(&x) = "F(£x).

Proof. This is easy by the definition 6F. ]
We take a maximal compact subgrobild of GLy,(A.) as

K= "Kue Ky =1{g € Glan(Ly): "Fu(@) ="Fu(x) (x € VL))
we
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Then both'F and 'F are left 'K invariant.

Let PV, be the projective space & andPpV be the set of 1-dimensional right
D-subspaces o¥/. By definition, LF gives rise to the heighPV, — R.o. For x €
V — {0}, the subspaca&D € PpV spanned byx is the same as the 2-dimensional
subspace spanned by xi. The correspondenceD — (X A Xxi)L yields an injection
PpV —> PV.. Thus we can define the heighH on V, more generally the twisted
height 'H; for & € GLon(AL), by

LH(x) = "F(x A xi)Y4, He(x) = SFe(x A xi) Y4

for x € V. Since'H; factors throughPpV, the equality*H;(xa) = “Hs(x) holds for
allae D* andx e V.

Lemma 3.2. For a=(a,) € DS and xe V, one has
“He(xa) = [Nrp (@)l - “He (x).
Proof. Leta=A+iu, A,u € A, . Then

(xa) A (xai) = (XA +Xip) A (Xid +xum) = (X A Xi) (AL — upr)
= (X A Xi) Nrp(a).

Therefore,
“He (xa) = “Fe ((x A xi) Nrp (@) * = INrp @)/ * - "He (x) = INrp @) [}/ - He (x). O
Lemma 3.3. For £ =(§,) € GLon(AL) and xe V, one has
LR (x A (x1)) < “Fe(0) Fey, (%),

where

S )
oc

o)

oc

I € GLon(K).

= O
o <
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Proof. By Hadamard’s inequality,
“Fe(x A (i) < “Fe (%) SR (xi).

Let
n n
X= faada 1+ faka, (A.....h;n€ L)
i=1 i=1

From the relationsy_1i = f5, foi =fy_1u, it follows

n n
Xi = ZfZi hai1+ ZfZiflxzi u=JuX.
i=1 i=1
Therefore, by Lemma 3.15F¢(xi) = “F;(J,X) = “Fg, (X). O

Viewing V as anL-vector spaceG(k) = GL,(D) is realized as a subgroup in
GLyn(L). More precisely, we have

G(K) = {€ € GLn(L): JEI L =¢).

Note that the condition},£J;! = ¢ is the same as);£J, = & because ofJ;! =
u~1J,. We fixed the good maximal compact subgrokipof G(A) in §2. Since maxi-
mal compact subgroups @L,,(A.) are conjugate to each other, there existsnaa
GLon(AL) such thatk =n~ttKn N G(A).

Lemma 3.4. Being the notation as befgr¢hen one has

1 . LHz]g(el)zn
LH,(e1)>"  [Nru,oyk(9)la

Ho(g ™) =
for g € G(A).

Proof. This follows from Lemma 3.2 and the same argument ahenproof of
Lemma 2.2. O

Therefore,y,(D) and y,(D) are represented as

LH 2n
(D) = t————= max min_ — L
LH, (e1)2" geG(4) xeV—(0} [Ny, (D)/k(9)]a

vn(D) = min_“H,q(x)?".

——— Mmax
LH, (€1)?" geG(a) xeV—(0)
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REMARK. If k is a number field, we have

7n(D) = (D) = Yn1(Dy, Hy)"c @2,

1
HH, ()

where the right-hand side is a generalized Hermite constefihed in [10,52]. (This
relation holds for any division algebf of degreed if we take L as a cyclic splitting
field of D and “H as a height induced from the standard height on di& wedge
product of theL-vector spaceD" = L") In general,y is not contained inG(A)* and
we can not immediately apply [10, Theorem 3] to get an uppemboof y,(D).

In order to obtain an upper bound gf(D), we need some arguments of geometry
of numbers. In the following, we seh = 2n for simplicity. Let V4, =V ®_ A, be the
adele space oV and wy the Haar measure oW, normalized so thaty (Vy, /V) =
1. We define the subs& of V,, by

S= l_[ Su, Sn = {X S VLw: LFw(X) < l}

we0
Then S is a compact subset ofy, . We define the functiony : GLn(AL) — R.o by

wy(SNES)

v(§) = )

Lemma 3.5. Let &, & € GLn(AL). If one has

2MLQ - (ch(L) = 0),

wy(£1SN &S) > 1 (chL) > 0).
then £,SN £SNV 2 (0).

Proof. This follows from a standard argument of geometry wfnhers (cf. [8]).
For the sake of completeness, we mention a proof.{kdie a fundamental domain in
V4, moduloV. We set

s=1J] 2's.x [] s

weW weW ¢

Thenwy (6.8 N &,S) > 1. Since& S N &S is compact, the set
XxeV:(X+Q)N (1S NES) #0)
is finite. We denote the elements of this finite setXay. .., x.. Let

Qi = (1S N&ES)—x)NQ
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for L<i <r.ThenQi+xy,...,Q +X% cover €S N§&S), so that
r
D ov(@) = ov(ES NES) > 1=y (Va, /V) = ov(Q).
i=1

Thusr > 1 and there ar&?; 7 ©; such thatQ; N Q; # @. Let x € & N Q. Then
X+ X, X +Xj € (528 N&S), and hence

07X —Xj € {(51S N&ES)+(ES NES) NV C(E1SNESNV.
Here we note that the finite part of;§ N &,S) is a module. [
By the definition ofy, one has
v (1SN £9) = [dets]s, ¥ (61 62)wv (S) = detsala, ¥ (5, E1)ov(S).

We put

(L) = g™ (chw) > o).

1 2mLQ (ch(L) = 0).
wv(S)

Lemma 3.6. Let &, & € GLy(AL). Then

2/m
min “Fe,(X) "Fe,(x) < |det&; 2™ - _kmlL) )
o¢x|ev & (X) “Fg(X) < [detéa <1ﬂ(§1$21)

Proof. Let

1 :2'“[“@1 (ch(L) = 0).

L= 1 (chL) > 0).

We take ar € A such that
I [dete Y, v (68, ") > k(L)

Then, by Lemma 3.5, there is®x € A&7 SN A& 1SN V. Let x = A&ty = 285 tys,
(Y1, ¥2 € S). Then

1> YF(y2) "R (y2) = IALL7 - R () HFe ().

Therefore,

oM, 1P () Py () < inf{[A ], (21, [dets; ], vr(68, ) > k(L))

1/m
< |detiy| " (ﬁ) | N
152
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Next we determine; = (17,) € GLan(AL) such thatk = 'Ky N G(A) for the
maximal compact subgroup& C G(A) and "K C GLy,(AL). Let v € U and 27,
be the set of places df which lie abovev. What we need is the form of the coset
(nuw)weaw, G(ky) in Hweﬂn‘, GLan(L ).

(i) The case thabv € U” andv splits in L. Let 20, = {w, w’}. ThenGLy,(L,) =
GLon(Ly) = Glon(k,) and the Galois automorphism becomés g') = (g', g) for
(9,9) € GLon(Ly) x GLon(L,), and hence

G(k,) = {(9. g t) € G(Lw) x G(Luw): g € Glon(ky)}.

Since Ky = (w, Nw) H(*Kyw X "KM, 1w) N G(k,) and “K,, = K, by Lemma 3.1,
we must havedyn;t K, n, 37t = nt "Kymy, SO that we can take, as n,J;>.
Therefore, ., n,)G(k,) = (1, I71)G(k,).

(i) The case thab € " and v remains prime inL. Let 20, = {w}. Then

G(kv) = {g € GLZn(Lw): ‘]ug‘]ufl = g}
Let
G'(ky) ={g € GLon(Ly): § =g} = Glon(ky).

Since L, = k,(f) is a quadratic extension df, and D, = Ma(k,), there exists, €
L* such thatu =4§,8,. Then we define therRby 2n matrix T,, € GLx,(L,) by

w

8w 8u0 0
1 6
Ty =
8w w0
0 1 0

The inner automorphism inf,): g — T,gT; ! gives an isomorphism fron&’(k,)
onto G(k,). Therefore,T,,"K, T, N G(k,) is a maximal compact subgroup €(k,)
and there existh, € G(k,) such thath,*(T,"K,T,* N G(k,))h,* = K,. Hence we
have ,G(k,) = T,;1G(k,). This implies thaty,, satisfies

ﬁw Ju’);l = 811} I2n-

(i) The case ofv € U;. In this case,y remains prime inL. Let 20, = {w}.
The maximal compact subgrotK,, is the stabilizer of thes  -lattice

Ay =fpo, +fo0, +-- - +Ton_g01, +Ton0.,.

Since botho,, +io., and O, are o_, -lattices of rank 2 inD ®_ L,, there exits
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T, € GLy(L,) such thatT, (o, +io.,) = ©,. We define the 2 by 2n matrix T,, €
Glon(Ly) by

T, 0
0 T,

ThenT,A, = Ay, = €10, +--- +€,9,. Therefore,T,"K,, T, 1N G(k,) coincides with
the stabilizer ofA;, in G(k,), and hence we have,G(k,) = T, 1G(k,).

(iv) The case ofv € U, . Thenv remains prime inL and G(k,) = GLn(H),
whereH denotes the Hamilton quaternion algebra, &id,(L,) = GL,n(C) for 29, =
{w}. We recall thatK, preserves the norm

n 1/2
Fu(€axa +---+enXn) = (ZINrD/k(xi)lk,) ;o (X1, ..., %0 € D).
i=1

For xi = A +iui, Ai, i € L,, one has a relation
n n 1/2
Fy (Za(ki +iMi)> = (Zkiki - UMiﬁi)
i=1 i=1
n 1/2
='F, (Z(fzil)\i +fa Hi)) :

i=1

where

J=u

€ GLan(C).

0 V-u

Note that—u > 0 in k, = R becauseD, = H. Therefore, we have,, G(k,) = 1,G(K,).

Lemma 3.7. Letn € GLy(AL) be an element such that K n~1'Kn N G(A)
and he G(A) be an arbitrary elementThen for £& = nh and & =7hJ,, one has

= = = 1, —2n
v(EEY)  v(Esh)  v(Tdn?) vl;[] max(L, |uly,*")

= [T max(iulg, . lul").

ve’J
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Proof. By the definition ofyr and |det&q|s, = |detés|s, = |detphly, , we have
¥ (816 1) = ¥ (667 Y). From Juh 7t =h for h e G(Ay), it follows

v (&Ert) =v(mhLh ™) =y (7duinY).

Especially,w(szégl) is independent oh. This allows us to consider only modulo
G(A). For w € 29, let w, be a Haar measure ovi , and7, the w-component ofy.
We evaluatew,,(S,)/ww (S, N7, JunytSs)-

(i) The case thaRl0, = {w,w’} andv € U". In this case, f,, n.) = (L ;%)
modulo G(k,). From 7, = n,, and7,, = n,, it follows 7, Jn;* = J;7*J = 1 and
T dutly,t = J2 = Ul Therefore,

@u(Sw) _ @ (Sw)
@ (Sy N7y W5 Se) @ (Sw N7y Juny Sur)
- ww’(Sv’)
wyw (Sy N Syru)

=max1, |u|[3f‘) = max(1, [ul*").
(i) The case that?d, = {w} and v € U”. In this case, we have a relation

N Junujl =8wlon, wheresd,, € L and N, (6») = u. Therefore,

ou(S)  _ o N
0u(Sy N Sudy) max(1, |8, ") = max(1, [u[?").

(i) The case thatw € 20, andv € ;. In this case,S, = Ay, nw = Tw*1
modulo G(k,) and T,A,, = A1,. Note that

TwlAy =TyuAy =Ary.
Since J,X = xi for x € V|, we obtain
I T WA, =u A, = Agy - iut = Ay, 0T
Therefore,

a)w(Sv) - a)w('Ju_lTwSu) _ Wy (Al.vi_l)
o (s,, N T;lJuTwS,U) 00(J TS, NT,S,)  @u(ALitNAL,)

- o(d) 2 (O, € D)
ou(Ary NALT)  |[9,: 0,0 (D, c D))

max(L., [Nrox(i)2") = max(1., [ufc?").
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(iv) The case thaw € 20, andv € U/_. In this case,—u > 0 in k,, n, = Iy
modulo G(k,) and T = I, so that

0 1 0
10
0 1
Tedl t=v=ud, where J= 10 € Glon(K).
01
0 1 0
Therefore,
a)w(Sﬂ) U)w(SU) —-2n —2
— = =max1, |v/—u =max1, julz").
0u(Sy NTudili'S))  @uw(Sy N Spv/=U) . ) = e )
Summing up, we obtain the assertion. O

Theorem 3.8. Let k be a global fieldL/k a separable quadratic extension and
D = (L/k, u) a quaternion skew field over. Khen we have

n/2
vn(D) < %(D) < (]_[ max(|ul, IUka)> - tean (L),

ve’¥

Proof. The inequalityy,(D) < (D) is trivial by definition in §1. There is an
h € G(k) = GL,(D) such thath is a permutation ofe, ..., e,} and

“H,n(€n) < “Hyn(en1) < --- < “Hyn(e).
From Hadamard’s inequality, it follows
| detn]}* = |detnh[}* < “Hyn(ey) - - “Hyn(en) < “Hyn(e)",

and hence

dety|*/?
| 7|AL <1

L th(el)zn N

Sinceh is a permutation matrix and hentee K, we can replace) with nh and g
with h—1g in the formula following Lemma 3.4. Then we have

LHﬂg(X)Zn

(D)= ———— - max min —=—
7n(D) LH,n(€1)2"  geG(a) 0#xeV NIy, (py/k(9)la



HERMITE CONSTANT AND VORONO' THEORY 535

LH,]g(X)Zn
< ——5 - max min ST
|detn[,/> 9eG(A) 07xeV NIy, (0)/k(9)la

By Lemma 3.3,

2
LH, (0 < (“Fyg(x) “Fga, ()"

Applying Lemma 3.6 to5; = ng and & =g, =7J,0, one has

1/n '<2n(|—)l/n

iq L L
,min, Fag(X) "Frga,(x) < [detng]/ S dn D
Therefore, by Lemma 3.7,

m LH"g(X)Zn
|dety[;/> 07xeV INFv,0)/k(9)la

n/2
< <l_[ max(|ul, . IUIK,1)> - kan(L)Y?

veJ

holds for allg € G(A). ]

The explicit value ofkon(L) is given as follows:

Dy 247 (L is a number field)
kon(L) = { 7"/ (T2 +n))2((27)2/(T(1 + 2n)))r=
q" (L is a function field)

Here if L is a number field,D_ denotes the absolute discriminant bof r; (resp.ry)
the number of real (resp. imaginary) placeslgfand if L is a function field,g_ de-
notes the genus df andq_ the cardinality of the constant field df.

REMARK. Fundamental Hermite constants satisfy a Rankin type mléagu([11,
Theorem 4]). This especially deduces the following Mordeitiequality fory,(D):

(D)™ < Pa_a (D)2,
If k is a number field, this is written as
(yn(D)l/n)l/(”—l) < (yn_l(D)l/(nfl))l/(n—Z).
See [4, Theorem 2.3.1] for the original form of Mordell’s inedjty.

REMARK. Lower bounds of fundamental Hermite constants were algengin
[11]. A lower bound ofy,(D) was explicitly computed in [6].
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4. The case of a number field

In the rest of this paper, we assume tkas a number fieldD a quaternion skew
field overk. The aim of this section is to translate the adelic definibdrthe constant
yn(D) given in §2 into a global setting. We will describg,(D) by using the notion
of quaternionic Humbert forms ovdd. This description will be used to develop the
Vorond theory for the quaternionic Hermite invariant §6.

In §2, we fixed a maximal orde of D and the maximal compact subgrodp
of G(A) whose finite componerK,, v € Uy, is the stabilizer of the free®,-lattice
e, +---+e 0, in V,. Let L5(V) be the set ofD-latticesA in V such thatA ®,, k =
V, and letL5(V)/= be the set oiG(k)-equivalent classes of elements A (V).

We define the reduced norm & over Q as Nip,g = Nk/g o Nrp (it applies to
elements ofD and O-ideals as well).

First, we recall some facts of the ideal theory of simple latge. LetR be a max-
imal order of Mp(D) andfR, be the completion ofk atv € Y. For g =(g,) € G(A),

g% = (] (Mn(D) N g,%,)
vesU¢

yields a rightfi-ideal in M, (D). We define the subgrou(A)s by
G(A)x ={g € G(A): gR =R}

Then the double cose®(A)xg 1G(K) of g € G(A) corresponds to the righi-ideal
class ofgi, and G(A)x\G(A)/G(K) is identified with the set of righfi-ideal classes
of Mp(D). It is known that the cardinal numbet(G(A)x\G(A)/G(K)) is finite
and is independent of the choice of a maximal orderM{f(D). Thus we denote
2(G(A)rx\G(A)/G(Kk)) by hg). The class number of lefR-ideal classes is also equal
to hl. We let R = M,(9). For A € Lo(V), the set

Ar = {A e Mp(D): A(e O +---+e,0) C A}.

is a right M, (O)-ideal of M,(D). The correspondenca — 2, gives a bijection from
Lo(V)/= to the set of rightM(D)-ideal classes (cf. [2, Toreme 7]). As a conse-
quence, (Lo (V)/=) is equal toh?, and henced(Lo(V)/=) is independent of the
choice of a maximal order ob.

We denote byZ, the set of all rightO-ideals inD, by Zy/= the set of all right
-ideal classes and bip the class numbef(Zy/=). For 2 € |y, the ideal class
of 2 is denoted by Jl]. We put

AR =e O+ +en 1O +ell,

which is anO-lattice in V. By [2, Théoeme 3], it is known that the correspondance
A — A(R) give a surjection froniZy /= to LH(V)/=, and hencm(g) < hp. We fix,
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once and for all, a complete systefl,,...,2,,} of representatives ofp/= such
that %; = O and {A(Qli): 1<i < hg‘)} forms a complete system of representa-
tives of Lo (V)/=. We write A; for A(2;). The adele groups(A) acts transitively on
Lo(V) by

gA = [ (VNgA,)

veU¢

for g = (9,) € G(A) and A € L5(V), where A, denotes the completion ok in V,
for v € U¢. Let G(A),, be the stabilizer ofA; = e O +--- +e,O in G(A), namely

G(A)a, = G(ko)Ks, where G(ky)= [] G(k). Ki= [] K.
veUy veU¢

The mapg — g 1A; on G(A) gives rise to bijections fronG(A),,\G(A) to Lo(V)
and G(A),,\G(A)/G(k) to Lo(V)/=. For eachi, we fix g € G(A¢) such that
g(1A1=Ai. Then G(A) is decomposed into a disjoint union of double cosets
G(A)x, 0 G(k), i.e.,

G@A)= || G(4)aGGK).

1<i<h®)

With the notation of§2, we define the constam,(D); by

Hq(X)2
Vn(D)i = max L
9€G(A)a, 6 G(K) xeV—(0} [NFw, (Dy/k(9)|a
00 2i f
Hg ()™ Hg ()"

= max min . ,
9€G (ko) xeV {0} [NIm (D)/k(D) Ik INTML(D)/k(Gi) A

where

Hee) = [ HY@x). Hex)= ] H(@.%.

VeV o veV¢

Note thatHgo(x)Hgfi(x) is invariant by multiplesx — xa (a € D*) by Lemma 2.1
and the product formula. Sincé = {xa: x € A;, a € D} by [2, Theoeme in Appen-
dice 1], the minimum of the defining equation ¢f(D); is attained at a point im;.
Therefore,

HZ°(x)2" H.f ()2
¥n(D)i = max_ min g ) , g (X)
9eG(e) x<i~10) Ny 0)Ac(@lks,  INF(01(G)

and

¥n(D) = ¥n(D) = max yn(D);.
1§i§hg)
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REMARK. If hp =1, then we have

(D) = va(D) ' Ry

= = max min —2 -~

Y Yt = Glice) e (o) INIM, (0)/k(9) Ik
Hgo(5e)™

= max mn —m——.
geG(kx) 8€GLA (D) |NI’|\/|H(D)/|((Q)||(OO

Indeed, forx = e;x; +--- +enx, € Ay — {0}, there existsy € O such thatOx; +
-+ OX, = Oy because ohp = 1. Eachx is written aszy, z € ©. Thenz =
€21+ --+€,2, is primitive in the sense thabz +- - - +9z, = 9. From the primitivity
and [2, Tleoeme 1], it follows that the sefa € D: za€ A;} is equal to9 and zO
is a direct summand of\;. This implies that there exitd € GL,(9) such thatse; = z.
Then, by Lemma 2.1 and the product formula,

HE () H, (X) = INrp ()3 2 HE (der) Hy (8er) = HE®(Sen) Hy (sey).
From GL, (D) C Ky, it follows that Hgfl((Sel) = Hlfn(el) =1.

In the following, we show that each,(D)i, 1 <i < h(g), is independent of the
choice of a maximal order oD and a family of isomorphisms,: D, — My(k,) (v €
U"”) which was fixed in§2 to define local height$1”. For a given subsdt) of D and
h = (h,) € D}, define the subsat" of D by

uh = ﬂ (D nh;tu,h,),
ve‘Bf

where U, denotes the closure df in D,. We take another maximal orded’ of D
and a family of isomorphismg,: D, — Ma(k,) (v € U”) such that) (O]) = My(oy,) if

v € U7. By Skolem-Noether's theorem, there exisfse D) such that! =, oint(h))
for eachv € U”. Then @,)~1O,h! is equal toD) for v € V;. Therefore we can take
h = (h,) € D} such thatO" = O andh, = h/ for all v € ¥". If %A C O is a right
integral O-ideal, then2" gives a right integrak)’-ideal. Defineh G(A) by

h 0
h=hl, =

Then the family

A= () (VnhtaLh), 1<i<hd)
v€‘Uf

of ©’-lattices forms a complete system of representative€£ei(V)/=. We put A =
Ay (resp.A’ = A}) and denote bYG(A), (resp.G(A)a/) the stabilizer ofA (resp.A’)
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in G(A). It is obvious thatG(A)x = h"1G(A),h. If we takeg = h-lgh € G(Af),
then @) 1A’ = A[. Furthermore, we define the local heightt® on V, for v € U and
the global heighf'H on V as follows:

"HU (%) = H (huxbTh),  "Hx) = [ ] "HY ).
vey

We show that'H is the height corresponding ©’. For v € 9", put
("1 10 ;o (1L 0 0 ;e ("1 01
(@) e (9) e (@)
fi_1:=ee, f3 =aqed,.
Then we have the following relations:
e, =hteh,, € =h*h, I =h13h, f=h1fh, (@<i<2n).

We define the norm?,j on (V,e,) A (Vye,) for v € U” as in §2 with respect to the
k,-basis 1", ..., £ of V,e,.

Lemma 4.1. One has
e () = [ E,U(X) y (ve m:,)
F.(xey A xe,J)) (veYy)
for x € V,.
Proof. If v e U, this follows from
., Xn € Dy)

"HY(erxq + -+ +nXn) = HY (erhyxahyt + - + edhyxahy ), (xa. .

and |Nrp(hyxih3?) |, = INrpi(Xi)lk,- Thus we letv € 2. Note that

F (ﬁ( > (fiv’Afjv’)xij)hgl)zﬁv( > ((ﬂufiv’hu—l)A(ﬁvfjv/hv—l))xi,)

Lsi<j=an 1=i<j<2n
=F, Z (fi” A fiu))\'ij = sup (|)"ij |kv)'
I<i<j<2n I<i<j<2n

This means that

Fl(x Ay) = Fu(Ry(x A y)hiY)
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for any x Ay € (Vo) A (Vy€,). Then

"Hr(x) = HY(h,xh,?) = F,((h,xh; %e,) A (h,xh; %€, Jv))l/2

= ﬁv((ﬁuxevh;l) A (HUXG’ J’h*l))l/2 = ﬁv(hU(Xev A Xe;J;)h*1)1/2

vTuvv v

= FJ(xe, A Xe, J;)l/z. O

This lemma shows thdtH is the height with respect t&’. For g = (g,) € G(A),
define the twisted heightHg on V by

"H(x) = [T "H*(g,x.)-

vesy
We set
hH X 2n
yn(D) = max min %
9eG(A) xeV—{0} [N, D)/k(9)|a
hH X 2n
J/n(D)i, = max m %
9eG(A) g G(K) xeV (0} [Nry, (py/k(9)]4
h 2 hy fryy2n
HE ()™ Hy (%)

= max_ min - v
9eG (k) xeA{—{0} NI M, (D) /k(D ks NV (D)/k(G) 14

for 1 <i < hg‘). Let h,, (resp.h.) be the infinite component ofi (resp.h) and
ht (resp.h¢) be the finite component df (resp.h). Sinceg = h~'gih = h;lgihf,
we have

R _1)2 "(Rh-1g h -1)2n
(DY = max  min e, H (Rgoxty )™ e, HY(hoh7 g shxh?)
n i =

9€G(keo) XA (0} INPM, (D)/k(9) i, . INFM, (D) /K (914
_ v o _1\2n
= max m INFD k(Noo) " TThew, HY(@X) Tloes, H(9i0hoxby?)
9eG (k) xe A} —{0} |NrMn(D)/k(ﬁgolg)|k INIM, D)k (94
HEo(x)2" Hg (Rrxhyh)™

= max min . s
9€G(kx) xeA] {0} NPm,(D)/k(D) ks, NP, (D)/K(Gi) 4

where we WriteHgfi (’h\th?l) for [T e, H”(gi_v’ﬁvxh,jl).

Proposition 4.2. yn(D); = ya(D); for i =1, ...,h(g).

Proof. We provey,(D)i < yn(D). Fix a g € G(ks) and take arxg € A{ — {0}
such that

Hg® (Xo)Hg (Rxohtt) = min }HSO(X)Hgfi (hexhi?).

xeA{—{0
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From h A] hol = A, for all v € Uy, it follows ’ﬁfxohf € Hvemf Aj,. We put

Lo v

(g._uhvxoh,jl) for v € Y;. Clearly, ¢, > 0 and, for almost alb, ¢, = 1. We
define the open subsétl, in Aj, by

U _{YUEAIU H (glvyv)<cu

SinceU, = Aj, for almost allv, the productU =[], o, U, gives an open subset of
[le, Aio- From the density ofA; in [] .y, Ai, it follows Aj N (U —{0}) # 0, so
that we can take a nonzerg € A; NU. By the definition ofU, yy satisfies

Hg (Yo) < Hy (hrxoh7h).

Since the grousL,(D) = {g € GLa(D): Nrw,(p)(9) = 1} acts onV — {0} transitively,
there existst € SL,(D) such thatéyy = Xo. Let & be the projection of to G(ky).
Then

Hee (Yo)Hg (Yo) < Hg°(xo)H "(Rrxoht?) = mlnlo} Hg®(X)Hg "(Rexhed).

Therefore

) f ; 00 f (A —1
e rplln{ Hge (Y)Hg (¥) < xeT;an} Hg(x)Hg (hexhi?).

From [Nrw.0)/k(98s0) Ik, = INIm,(0)k(9)lk,, , it follows that

2 f

L HROP WP
yeAi—{0) [Ny, (D)/k(9E00) Ik INTM,(D)/k(G1) 2
HE(x)?" Hg (Rxhyh)™

< min : i
xeA,—(0} INFm.0)k(D ke INPM D)k (Gi) A

Taking the maximums of both sides ovgre G(ky), we obtainy(D)i < yn(D);.

If we change the roles aD and©’ each other, then we get (D) = yn(D);. ]

Now we define the notion of quaternionic Humbert forms overuatgrnion skew
field. To that end, we introduce some notation. We denotelhy; (resp.U...2), the
set of real (resp. complex) places bf and byrq, r, the corresponding cardinalities,
so thatr; + 2r, = [k : Q]. The ramification index ab € U, over Q is denoted by
d,, and is 1 or 2 according t&, ~ R or C. The set of real places df which ramify
in D (resp. which split), is denoted 0, (resp.7, ,), with cardinalityr; andry
respectively. Finally, the index oD, is denoted bym, (m, =2 if ve Y, ,, 1ifve
T, 1 UV 2). We fix, at anyv € U, an isomorphism, from D, onto H or Mz(k,),
depending on whether is ramified or not.
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DEFINITION 4.3. Ann-ary quaternionic Humbert form oveD is a (1+r2)-tuple
S=(S)vew,,, Where:
- ifveY, ,, S is ann-ary positive definite Hermitian form o) ~ H".

- if v e W, (resp.v € Vn2), S is a h-ary positive definite symmetric
(resp. Hermitian) form oR?" (resp.C?").

We denote byP, p the set ofn-ary quaternionic Humbert forms ovéy. One can
view P, p as a cone in the spack = Hvemx Hn.v, WhereH,, stands for the space
Hn(H) of n-ary Hermitian forms oveft if v € U ,, the spaceSx(R) of 2n-ary
symmetric forms oveR if v € U, and the spacéi,(C) of 2n-ary Hermitian forms
over C if v € Yy 2. The groupG(ky) acts onP,p by S-g = §g] = gSg. In

particular, we get a natural diagonal actionkif on P, p:
A-S= (MaS), for A=()ew, €kl and S=(S).ew. € Pop.

We want to endowP, p with a structure of Riemannian symmetric space. To that end,
we associate to an$ € P, p a scalar product , )s on H, defined by:

d .
(X, YV)s= Y —CTn(S1X§MY),

v
ve€V o

in which Tr, stands for the reduced trace bf,(D,)/k, (more precisely, ifv is split,
one identifiesM,(M>(k,)) with Mo (k,) and Ty, is just the ordinary trace, while for
ramified, Mp(D,) = My(H) and Tr, = Trgr o Tr, i.e. Tr, A= Tr A+ Tr A).

This scalar product i$5(ky,) invariant, in the sense that

) (X-9,Y -g)sg=(X,Y)s, SePip,geGke), (XY)eH

We define the determinant of a fore P, p as follows:
(i) if veY,, tenS = g,0, for a suitableg, € GL,(H), and we set deB, =
Nrv,.am/=(9y). Alternatively, one can also writ§, asS, = h, diag@y, .. ., an)h_v', where
h, is an upper triangular unipotent matrix aad> 0, and set de§, =[], &.
(i) if v € Y., then des, is the usual determinant of,. The determinant ofS
is then

DetS= [] (dets,)™*/2

ve€V o

For any vectoru in D", we denote, for simplicity, by, its image in¢,(D"). If v
is ramified, thenS,[u,] = u,S T, just stands for the value of the positive definite
Hermitian form S, at u,. If v is split, we identify¢,(D") = Ma(k,)" with Man 2(ky).
We choose this identification, rather th&h »,(k,), since then the right action dfl»(k,)
on Mz(k,)" coincides with the natural right action 82(k,) on Mz, 2(k,), whereas there
is no natural right action of Mx(k,) on Mz 2,(k,). Then the imagau, of a vectoru in
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D" may be identified with a matrixJ, in M, 2(k,), and the value of5, at u, is then
defined as

S[u,] = det§[U,] = detU,S,U,

(note that the transpose is on the left-hand side, becautte aflentificationM;(k,)" ~
Mzn.2(ky)). Finally, for Se P,p andu € D", we define the value 08 at u as:

Sul = [] Slug™e?

PISDINS

The verification of the following lemma is straightforward.

Lemma 4.4. For any » € kX, Se P,p and ue D", one has
(i) Det(x-S)=|Ar|2"DetS.
(i) (x-9[u] = [AZHul.
For anya € D, Se P,p and ue D", one has

(i) Seeu] = Nrp,g(e)?Su).

We want to express the constangs(D) and y,(D); in terms of quaternionic
Humbert forms. In the following, we often identify the vectspaceV with D". To
U=eu;+---+e,_1Un_1 + €U, € Aj, One associates a lefd-ideal 2, defined as

Ay = Oug +- -+ Oup_g + A up.

This is an integral left ideal, sinca; € © for 1 < j < n-1, andu, € 2. A
vectoru € A; is said to beprimitive if its associated leftO-ideal 2, satisfies the
minimality condition, i.e., Np,() > Nrp,g(Rly) for any integral leftO-ideal A in
the same class &%,,.

The minimum of a formS € P, p with respect toA; is defined as:

m;(S) = min S ,
07 UEA; NrD/@(Qtu)

and its Hermite invariant with respect ty; as

1 m(9"

Hi(S) = Gro @) Dets

From the previous lemma, we see that the are invariant under the natural action
of kX on P, p. This allows us to restrick; to the setPnl_D of quaternionic Humbert

forms S = (§,)) satisfying de§5, = 1 for anyv € U. The y; are related to the con-

stantsy,(D); through the following proposition:

Proposition 4.5. Fori =1,..., h([')‘), MaXsep, , i (S) = MaXsepz 1i(S) = va(D);.
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Proof. First we note that the group(k,) acts transitively onP, p. Then, if S=
I[g] = 9@, an elementary calculation shows that, foe A;

Hg®(u)? = u]

Hg (U)? = Nrp ()"
INFm, D)k (9) Ik, = DetS
INFm,()/k(Gi) 14, = Nrp/o(2li),

whence the conclusion. O

ReEMARK. If the class number oD is 1, which will be the case in the examples
below, then we denoten;, «1 and y»(D)1 by m, u and y,(D) respectively.

ExXxAMPLE. Here we assum& = Q and D,, >~ H. Let © be a maximal order
of D. We define

8o = Qﬁe%xgr;g\Nro/@(x -y,
and we say that) is (right)-euclidean if§o < 1. If this is the case, then the class
number ofY is one, and the type number &f as well. Consequently, the value &

is independent oD, and we denote it byp. For such a quaternion skew field, the
methods of Newman [7], Chapter 11, carries over and give Kaetevalue ofy,(D)
as well as an upper bound fof,(D). According to [9], p.156, there are exactly 3
such euclidean quaternion fields ov&; namely, with the standard notatiol, =
(-1, —1)g, D3 = (=1, —=3)g and Ds = (-2, —5)q, (recall that &, b), stands for the
quaternion algebra ovet generated by and j with i2=a, j?>=b andij = —ji). A
maximal order ofD,,, m=2, 3,5, is described as follows:

e mM=29=Z1i j @A+i+]+ij)/2]

e m=39O=7Z[1,i,>(+])/2 (1L+ij)/2].

e m=59O=Z[1,Q+i+j)/2,j,2+i+ij)/4].

Their norm constantsp,_ are given by

From this we deduce

Proposition 4.6. For m= 2, 3,5, one has
(i) yn(Dm) < mn=1r2,
(i) y2(Dm) =m.

Proof. (i) The proof follows the same lines as that of Hernnigequality, as given
for instance in [4, Theorem 2.2.1. p.39].
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(i) From the first part of the proposition, we know thgf(Dp) < m for m =
2, 3,5, so we just have to find, in each case, a binary quaternioniobért form, i.e.,
a binary Hermitian formS over H, achieving this bound.
e m=2 We claim that the formS, = ((lj) P (1+‘i)/2) satisfiesu(S) = 2. Its deter-
minant is Y2, so it remains to check that its minimum(S) is 1. For anyu = (X, y) €
02, one hasgu] = xX + yy + Tr(((1 +i)/2)Xy), and Su] € Z, since (1 4)/2 belongs
to the codifferent ofO. Consequently, one ha§u] > 1 for any 0# u = (x, y) € O?,
with equality for instance fou = (1, 0).

e m=3: One shows similarly that the forr§; = <(_11i)/j (] ) satisfiesi(Ss) = 3.

e m=5: Finally, the form$; = (7(55)]- (2/15)]) satisfiesu(Ss) = 5. O

5. Minimal vectors

To any quaternionic Humbert forn®s, we want to attach a set ahinimal vec-
tors with respect tou; (or m;). Namely, we want to consider the set of nonzero vec-
tors u € A; such that§u]/Nrp,g(2,) is minimal. First we take a complete system
{B1,...,Bn,} of representatives of lefD-ideal classes oD as follows:

(B1): B c O and B8] = [ '], where {2y, ..., 2, } is the set of representatives
of right ideal classedp/= we fixed in §4.

(B2): If B C O is a left O-ideal and §] = [%B;], then Nip,(B) > Nrp,q(Bi).

Then one can writen;(S) as

mi(S) = min m;(S),

where

Su]

m; (S = in ,
(9 07 ueA; . [2u=[B;] Nrp o (Ay)

so that we can split the minimal vectors according to the sclak their associated
ideal. So doing, we get infinitely many minimal vectors, sirfor anyu € A; and
any A € k*, one has

Sul  _ Sy

3) Nrp/o@u)  Nrpo(@hu)’

This is overcome by the following lemma.

Lemma 5.1. For1<i < h([')‘) and1 < j < hp, one has
() mi j(9=(1/Nrp,o(Bj)Minozueca; 21,=3; JUl=(1/Nrp,q(Bj) MiNoz uea; [21,1=[;] S[ul-
(i) There are finitely many nonzero vectors u M, up to multiplication by units
such that, =B; and u]/Nrp,pR) =m; ;(S).
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Proof. The first assertion is clear, because of (3) and theémmlity conditions
on %B;. As for the second one it will follow from classical propesiof height func-
tions. For 1< j < hp, let Ai”j stand for the set of primitive vectons e AiAWith
Ay = Bj. With the notation of§3, we have injections(\i’_j/DX — PpV — PV_. If
LH denotes the height function PV, defined in§3, we know, by standard properties
of height functions on projective spaces that, for any 0, the set

[xe PV tH(X) < T}

is finite. Letg € G(ks) be such thaS= gg'. Because of the relation betweéh and
Hgg (Lemma 2.2 and Lemma 3.4), we can conclude that the set

{ue A (/97 Hgg(u) < T}

is finite. But foru € A{ ., the finite partHg,fi (u) of Hyg (u) is constant, so that the set

ij
{ue A /9" JulY? = Hg°(u) < T}
is itself finite, which gives the desired result. U

In other words, one can restrict minimal vectorspiémitive minimal vectors, and
the set of primitive minimal vectors up to multiplication lnits is finite. From now
on, we fix a finite setM;(S) of representatives, modulo units, of primitive minimal
vectors.

6. \Voronoi theory

We prove in this section, using a general method developed byavard [1],
that Vorond theory holds for the quaternionic Hermite invariampts just defined. Ac-
cording to the classical terminology, we cal|-extremea form S that achieves a lo-
cal maximum ofy;, viewed as a function o, p, or Pnl_D. We want to characterize
ui-extreme forms via suitable notions perfectionand eutaxy To that end we need
to rephrase the definitions of the; in terms of length functions on a certain vari-
ety, check that the so-called ‘condition (C)’ (see [1], 2i®)satisfied, and then apply
Lemma 2.2 of [1] to conclude. As mentioned before, we canricdsi; to the sub-
variety Pl p.

The tangent spac&Pl, of Pl at Sis identified with

M=(M)ew, € [] Hoo: Tro(S§™M,) =0 forall veDy g,

PISDIS

and therefore has dimensiohn(2n — 1) +r/n(2n+1) +4,n? — (ry +r,). It is endowed
with the scalar product, )s defined above.
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To u € D", we associate a length functidn on P&D defined by

Sup?

9= i @

so that
) — : 1/2
1i(S) OQJ'E’L'“(S) :

An easy computation gives the gradiex(u) at S of 1,, with respect to( , )s,
namely

Xs(W) = 14(S) (axS(u)vs, - %a) ,
V€V

where
U u,
xs(U)y = (T, S [u,] tu,) = { Siu]
U,(U,SU)) U, (v eTL,UDu2).

(v eV ,),

We setxs(u) = (Xs(u),)vew.,- Note thatxs(u), and Xs(u) as well, depends oo only
modulo units, i.e.Xs(eu) = xs(u) for € € O*.

From this, we can deduce a definition far-perfectionand u;-eutaxy According
to the general theory developed in [1], it is natural indeedsay that a formS is
wui-perfectif the gradientsXs(u), u € M;(S), generate the tangent spaﬁSanl_D, and
wui-eutacticif O belongs to the open convex hull of these gradients. Frioenabove re-
mark, this does not depend on the choice of aMglS) of representatives of minimal
vectors modulo units. The following proposition gives a glen formulation of these
properties.

Proposition 6.1. (i) A quaternionic Humbert form S ig;-perfect if and only if
Conv{xs(u)y, U € Mi(§)} =M = (My)vew, € H: Tr(SM,) =2 (Vv € Vo)l
where Conv stands for the convex hulln other words S is u;-perfect if and only if
dim Sparxs(u), u € M;(S)} =r;n(2n — 1) +ryn2n+1) + &N — (ry +r5) + 1.

(i) A quaternionic Humbert form S ig;-eutactic if and only if the form S =
(S; Hyew,, belongs to the open convex hull of the vectprs(u),)ye.., U € Mi(9).

Proof. (i) Let ps. stand for the orthogonal projection on the orthogonal com-
plement ofS (orthogonality is with respect tp, )s). One hagps: (Sxs(u)S) = (1/1,(9)) x
Xs(u), whence (i). Assertion (ii) is straightforward. ]
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Lemma 6.2. The length functions,lsatisfy condition(C).

Applying Lemma 2.2 of [1] we obtain the foreseen characttiin of extreme
forms:

Theorem 6.3. A quaternionic Humbert form $ (S,) is ui-extreme if and only
if it is wj-perfect andu;-eutactic

Proof of the Lemma. The proof is absolutely similar to the gbrof Proposi-
tion 2.8 in [1]. In our context, condition (C) means that: famy S € Pnl_D, and any
finite setM of vectors inA; \ {0}, if there exists a nonzero vectet in TSPnl_D which
is orthogonal to theXs(u), u € M, then there exists &' curve c: [0, e[ — Pnl_D
such that
(C1): c(0) =S, ¢'(0) = X.

(C2): Vu e M, Vt € [0, €], lu(c(t)) > 1,(9).

From theSL, (D ®k ks )-invariance of(, )g, it is enough to check condition (C) at
S=1. In that case, we denote the scalar product), simply by (, ). The condition
that X = (X,),e,, belongs toT, P}, reads

Vv € Vo, Tr, X, =0,
and the orthogonality condition is equivalent to
Yue M, (x(u), X)=0.

We want to findY € T,P;y such that the curve(t) = exptX + (t?/2)Y) satisfies
conditions (C1) and (C2) above (the exponential is to be rgtded componentwise,
namely c(t) = (expt X, + (t2/2)Y,)),cn..). Setting f,(t) = lu(c(t)) one has

fi(0) = (xi(u), X) =0
and

f7/(0) = (X1 (u), Y) + (X (u), XZ) — (x; (U)X, x| (u)X).

As in the proof of Proposition 2.8 in [1], it's easy to see that(u), X?) — (X, (U)X,
X (u)X) is positive, unless
4) Xi (U)X = Xx; (u)
(5) i.e. Vv e Uy, X U)X, = XyX (U)y.
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If this commutation relation is not satisfied, then, for dnesloughyY € T, P,{D, we
can conclude that the second derivatif$(0) is positive, whencef,(t) > f,(0), for
small enought. For thoseu satisfying (4) to the contrary, one has

f&0)=0
and

f9(0) = 3((xi (U), Y)? + (x; (u), YZ) — (x| (W)Y, X, (W)Y)).

Arguing as in the proof of Proposition 2.8 of [1], one showattthere existsY e

Ti Pl such that(x, (u), Y?) — (x; (U)Y, x (u)Y) > 0, whencef{?(0) > 0. Moreover,
this Y can be chosen arbitrarily small so that, again, for smalugha, f,(t) > f,(0).
]

Proposition 6.4. Any p;-perfect form Se Pl is algebraic i.e. the entries of
each S, v € Uy, belong toQ.

Proof. LetS be a perfect form. Let us consider the algebraic varf$) = {T €
H:VYue M;(S), T[u]=1}. This is an algebraic subvariety &f, defined overQ. The
ui-perfect forms belonging td’(S) are isolated real points ot this variety, thus they
are finitely many, and they are defined ov@r ]

Corollary 6.5. Fori=1,..., h%‘), n(D); is algebraic

Proof. There exists ong;-extreme, hence-perfect, formS such thaty,(D); =
1i(S). The conclusion follows since:i(S) is a rational expression irs, and S is
algebraic. ]

We end this section by showing that there are only finitely ynan(S)-perfect
forms in a given dimension. To that end, we introduce theamotf y; (S)-perfect sets
of vectors inA;.

DEFINITION 6.6. A set{us,...,u} of vectors inA; is ui(S)-perfect if it is the
set of minimal vectors of au;(S)-perfect quaternionic Humbert form.

Two sets{uy, ..., u} and{uj, ..., u;} of vectors inA; are equivalent if there ex-
ists g € GL(Ai), and unitsey, ..., €& in O* such thatu] = €jguj, 1 < j < t. The
main result of this subsection is the following:

Theorem 6.7. Modulo the actions of GlA;) and O, the set ofu;(S)-perfect
sets inA; is finite
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From this we easily derive the following corollary

Corollary 6.8. Modulo the actions of GlA;) and O, the set ofu;(S)-perfect
forms is finite

Proof. Let M be apui(S)-perfect set. We see as before, that the seudlS)-
perfect forms havingM as their set of minimal vectors is contained in the set of iso-
lated real points of an algebraic variety, so they are fipitahny. ]

The proof of Theorem 6.7 relies on the following sequel of nems.

Lemma 6.9. There exists a positive constant € C(k) such that for any Se
P..0o and any ue D",

Slesuy] <c

inf  sup Feu]ZMma,rs) =

{eeoy} {veVoo)

Proof. Letkl = {A = (Ay)vew.: [1I2s] = 1}. For fixedS e P,p andu € D",
we define an element &€’ by setting

. _Slu,]™”?
S TECIGE

From Dirichlet unit theorem, the quotiekﬁo/ofz is compact, so there exists a con-
stantC = C(k), depending only ork, such that any element ikl admits a represen-
tative A’ = (A ),ep., modulo multiplication by elements oj,fz, satisfying |A,| < C.
Applying this to the above defined elementwe can find a unit such that

Slaw™? _ , Sul™?

SENECIGE) =€ S TEE = C for any infinite place v,

which gives the desired conclusion. O

Lemma 6.10. There exists a positive constant €C’(D) such that for any &
P..o and any ue D",

inf sup Trslau.] <C.
{eeO*} ve!, UV, 5} detSv[Uv]l/Z
Proof. First, by homogeneity, we can restrict $oe Pnl,D andu € YD) =
{ue D" YL Nrpu(u) = 1}. If D does not satisfy the Eichler condition,
i.e. bothy , and V.. are empty, then the assertion is obvious. Otherwise, one
knows from [5], Theorem 8.12, that the image Of := {¢ € O*: Nrpsx(e) = 1} in
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[Toew uw.., Sle(k) is co-compact, from which the assertion of the lemma islgasi
derived. l

We can now proceed to the proof of Theorem 6.7 itself. In whdbwds, a vector
u € D" satisfying the conditions of Lemma 6.9 and 6.10, i.e.

S[uy]

(6) W < C for any v e moo
and

TrS[U
) SV _ C' forany ve Ul ,UDu.o,

detS,[U,]¥2 —

will be said to benormalized with respect to,®r simply normalizedfor short.

Let M = {ug,...,u} be apui(9-perfect set inA;. Using Lemma 6.9, we can
assume that thej, 1 < j < t, are normalized with respect t8 (this amounts to
multiply them by suitable units, if necessary). TBesubspace spanned by is D",
otherwise the dimension of the subspace spanned bwghe would be strictly less
thanrin(2n — 1) +r/n(2n+1) + 4,n? — (ry +r,) + 1, contradicting theu; (S)-perfection
of M.

So one can extract frolM a D-basisuy, ..., u, of D". The © sublattice ofA;
spanned by this basis is denoted hy Let u be any non zero vector imn;. Due to
the arithmetic-geometric mean inequality, one has

1
(Sup¥e = | YD S
eV
<[ X swar X despugs Y dersul
veU, , eV, 4 V€Yo 2
<2 [ 3 s+ 3 Imsugs Y Sarsu
— r +S v 2 v 4 v

! "
Ve, 4 el 4 V€W oo 2

One can writeu as ZT:]_(XJ'UJ', aj € D. Setn, = Nrp,p(2y) (resp.ny, = NrD/@(Qluui),
1 < i < n). Because of Lemma 5.1, we can assume thatis one of the%;, so
thatn, > 1 (B; C ©). Applying repeatedly the triangle inequality and inedfied (6)
and (7) one gets:

2
Slu] < (Z|ai|u3)[ui.v]l/2)

2
<C (Dai |US[ui]1/<2<”5”>
i
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2
<Z|a||u 1/(2(r+5))> mi (S for ve W .,

2
TrS[U,] < 2<Z|ai |i/dl(Trs)[ui,v])1/2>

2
<2cc (Z | |2/ S[Ui]l/(zm"&’(ﬁs)))

2
< 2C C/ <Z |Oli |$/dv nil/(zmvdv(l'+3))> m; (S)l/(ml,dl,(r+s)) for ve mgo,l U moo.z-

i
Combined with the previous inequality, this yields

(numi ()Y < (S[up**

- 1 Z C<Z|Ol| 1/(2(r+s))) Z cc <Z|“I l/(2(r+s))>2

“r+s
ve U, veyl,

4
+ Z (CC)? (Z|Ol 1¥/2n 1/(4(r+s))> mi (S)M*+9),

uemmz

whence

1/(2(+5)) / 1/(2(+5))
ZCZloMn + ) CC Z|a|n

L<niits < T

r+s
vel, 4 vel, 4
4
+ ) (ccy <Z o120 1/<4<”S>>>
veﬁlwz

In particular, the convex body

i Z C (Z i |, 1/(2(r+5))> Z cc <Z i, nl/(2(r+s))>

r+s
e, vel, 4

(8)

+ ), (ccy <Z|a /%n ”““”S”) <1

ve%w 2

in R®g D", contains no nonzero point in;.



HERMITE CONSTANT AND VORONO' THEORY 553

According to Minkowski convex body theorem, this implies ttligs volume is
bounded from above by*®@A;, where A; stands for the discriminant of;, viewed
as a lattice inR ®g D" ~ R*<Q_ On the other hand, an easy computation shows that
this volume can be expressed as

9) [Ai D A]V,

whereV is a constant depending only ¢nandn. Consequently, we see thak[: A]
is bounded from above by a constant, so that there are finitepy possibleA’s,
whence finitely many basefus, ..., u,} of D" up to GL(A;) satisfying (6) and (7)
and consisting on minimal vectors of a Humbert form.

It remains to prove that each of these bases is contained itelfimmany weakly
perfect sets. Without loss of generality, we can assumedees, = 1 for anyv € U,
(this amounts to scale the components by suitable positive factors, which does
not affect the set of minimal vectors). Lét, ..., u,} be an-tuple of linearly inde-
pendent normalized minimal vectors ofneary Humbert formS. If u is any minimal
vector of S, we can assume, from Lemma 5.1, t®§f is one of the®;, so that, in
particular,n, is bounded by a constant depending onlys®nOnce this is achieved we
can assume moreover, thatis normalized with respect t& (this amounts to scale
by a suitable unit, which does not affe#it)). If we write u as

n
U=ZUJ'Olj, (XjGD,
j=1

we will show that there are finitely many possibilities foett;, which will complete
the proof. To that end, we only need to bound the imaggs of «; in D ®x ky, v
in Voo

(i) If v e, we consider, for each = 1,...,n, the matrix P; € Mp(D)
the columns of which are the,, but for the j-th which is defined to be/’. Then, the

determinant of the hermitian forr,[P; ,] is given by

detSu[Pj,v] = NrH/R(aj.v) detS, = NrH/R(aj.v)~
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On the other hand, bounding the determinanSdfP; ,] by the product of its diagonal
entries (Hadamard inequality), we get

Nra/e(e).0) = detS[P;,] < S[u] [ [ Siluk.]

k|

1/(r+s)
<C" (S[u] H S[uk]) because of (6)

k7]

(10) 1/(r+9)
- (H) M

k7]

1/(r+s)
= c" ((nu l_[nuk) NrD/Q(Qli)Vn(D)i) .

k7]

From our assumption on, we know thatn, is bounded, so (10) gives a bound on
NI/ (aj,0)-

(i) If v e VL, UDuo, eache;, identifies with a 2 by 2 matrix(}! 1) €
Ma(k,), and what we want to show is th@tjl,, |vjl., Ixjl, and|n;|, are bounded.
We show it for |x;], (the other cases are similar). We denote Wy(resp. U;) the

image ofu (resp.uj) in Man2(ky), so that the equality = Z?zluja,- readsU =

>11Uj (2 1) or, transposing,

n
A W
11 U’ = J J)U-’.
- Z(”i ni) !

Let X, Y (resp.X;,Y;) in D" be the first and second rows bf (resp.Uj’). Multiply-
ing (11) on the left by(§3), we get

n
(12) X= hXi+ Y.
i=1

We now consider the matri®; , € May(k,), the rows of which are defined as follows:
for 1 < k < n, the X-th row is Yk, the (X — 1)-th row is X if k # j and the
(2] — 1)-th row is X. As before, we see that the determinant of the positive defini
Hermitian form S§,[P;,] is

detS,[P;.,] = 14;1%% detS, = ;7.
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On the other hand, applying the Hadamard inequality, we get

detS,[P.] < SIXISIY)] [ [(SIXSIYD)

K# |
< C"detS[U;] [ [ detS,[U] because of (7)
k# j
2/(m,dy (r +s))
<cme | ul [ [ Slud] because of (6)
(13) k#]
2/(mydy(r+s))
=cnen ny l_[ ny, m; (S)Zn/(m,,d,,(r+s))
k# j

2/(m, d, (r +s))

<chen nul_[nuk Nrp,o (i) yn(D);
K# j

Again, the assumption on ensures that, is bounded, so (13) gives a bound pg|,.

In conclusion, (10) and (13), together with the assumpttoat @ is in A;, leaves
finitely many possibilities for ther;, whence we conclude that there are finitely many
weakly perfect sets. [l
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