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1. Introduction

This paper concerns the spectral gap for a Markovian particle system, which we
call a zero-range-exclusion process. The process is a kind of lattice gas onZ , which
consists of particles carrying energy and whose transitionmechanism is made up with
a combination of dynamics for an exclusion process (for particles) and that for a zero-
range process (for energy). It has two conserved quantities, the number of particles
and the total energy, so that its hydrodynamic behavior mustbe of interest. Our pro-
cess is reversible relative to certain product probabilitymeasures (serving as the grand-
canonical Gibbs measures), but of non-gradient type. It will be proved that for the lo-
cal process confined to a cube inZ of width , the spectral gap is bounded below by

−2, where is independent of but depends on the two order parameters, namely
the number of particles per site and the energy per particle.

For the models whose grand-canonical Gibbs measures are product measures as in
the present case the estimation of the spectral gap may be naturally reduced to estab-
lishing two things: one is a suitable estimate of the spectral gaps for the corresponding
mean-field dynamics and the other is a certain inequality (sometimes called a moving-
particle lemma) that compares a Dirichlet form for two-sitedynamics of a distant pair
(i.e., a pair of two sites that are far apart from each other) with a sum of those of
nearest neighbor pairs (cf. [7], [2]). The former one can be obtained by adapting the
arguments developed by Landim, Sethuraman and Varadhan in the paper [3] which
establishes the uniform bound of the gap for zero-range processes; it has also been
proved in a recent paper by Caputo [1] based on a somewhat different idea. The ma-
jor ingredient in this paper therefore is a verification of the latter one, namely that of
the moving-particle lemma for the present model, which is not so simple a matter as
for zero-range or exclusion processes and causes the dependence on the order param-
eters of the constant in the bound of the gap mentioned above.We shall also pro-
vide an indication of how to adapt the proof of [3] as well as a brief description of
the approach in [1]. The uniform bound of the spectral gap fora model similar to the
present one is obtained in [4], but the energy values and transition rates are uniformly
bounded therein whereas they are unbounded in our model.

Our estimate of the gap, though not uniform with respect to the order parameters,
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is sufficient to prove a theorem (the fluctuation-dissipation equation) that is fundamen-
tal in the study of the hydrodynamic behavior of the process [6]. This theorem, origi-
nally discovered by Varadhan [7] for a stochastic Ginzburg-Landau model (cf. [8], [4]
or [2] for other models), describes a structure of the quadratic form of central-limit-
theorem variances and owing to this structure one can identify the bulk diffusion co-
efficients and prove the convergence of the equilibrium fluctuation fields to an (infinite
dimensional) Ornstein-Uhlenbeck process (cf. [7], [2]).

2. The model and the result

Let (also written ( ) in sub- and superscripts) be a -dimensional cube with
width 2 + 1, centered at the origin. The lattice gases that we are to study are Markov
processes on the state spaceZ ( )

+ , whereZ+ = {0 1 2 . . .}. Denote byη = (η ∈
) a generic element ofZ ( )

+ , and define

ξ = (η ≥ 1)

where ( ) is 1 or 0 according as a statement is true or false. Foran ordered pair
( ) of two distinct sites , ∈ we define the exclusion operatorπ and the
zero-range operator∇ which act on a function onZ ( )

+ by

π (η) = ( ex η) − (η) and ∇ (η) = ( zr η) − (η)

where the transformationex of configurations is defined by

( ex η) =





η if = ,
η if = ,
η otherwise,

if ξ = 1 andξ = 0; and zr η by

( zr η) =





η − 1 if = ,
η + 1 if = ,
η otherwise,

if η ≥ 2 andξ = 1; and in the remaining case ofη, both ex η and zr η are set to
be η, namely

ex η = η if ξ (1− ξ ) = 0

zr η = η if (η ≥ 2)ξ = 0

We shall interpretξ as the indicator of occupation of the site by a particle andη

as the energy possessed by the particle.
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Given two non-negative functionsex and zr on Z+, we define

= ex(η )(1− ξ )π + zr(η )ξ ∇

It may be worth noticing that the factors 1− ξ and ξ on the right-hand side are
superfluous because from our definitions ofex and zr it follows that π = ξ (1−
ξ )π and ∇ = (η ≥ 2)ξ ∇ . (Here we put them to stress the condition for
possible transitions of a configuration.)

Let

∗ = { = ( ) : ∈ | − | = 1}

namely ∗ denotes the set of all directed bonds connecting two neighboring sites in
. Here | | :=

∑
=1 | | for = ( 1 . . . ) ∈ Z . For = ( ) ∈ ∗ we write

π , ex, , etc. forπ , ex , etc. Then the infinitesimal generator ( ) of our
lattice gas on is given by

( ) =
∑

∈ ∗( )

The process is regarded as a gas of particles having energy asalluded to above. The
site is occupied by a particle ifξ = 1 and vacant otherwise. Each particle has en-
ergy which takes discrete values 1, 2, . . . and for whichη stands. A particle at site
jumps to a nearest neighbor site at rateex(η ) if it is vacant. Between two neighbor-
ing particles the energies are transferred unit by unit according to the same stochastic
rule as that of the zero range processes. It is assumed that for some positive constant

0, ex( ) ≥ 0 for ≥ 1 and zr( ) ≥ 0 for ≥ 2. This especially implies that
the lattice gas on with both the number of particles and the total energy being
specified is ergodic. We call the Markov process generated by( ) the zero-range-
exclusion process. For sake of convenience we set

ex(0) = 0 and zr(0) = zr(1) = 0

We need some technical conditions on the functionsex and zr:

| zr( ) − zr( + 1)| ≤ 1 for all ≥ 1;(1)

zr( ) − zr( ) ≥ 2 whenever ≥ + 0;(2)

ex ≥ 3 zr(3)

where 1, 2 and 3 are positive constants and0 is a positive integer.
Take a pair of constants 0< < 1 andα > 0 and letν α = ν ( )

α denote the
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product probability measure onZ ( )
+ whose marginal laws are given by

ν α({η : η = }) :=





1− if = 0

1

α
if = 1

1

α

α −1

zr(2) zr(3) · · · zr( )
if ≥ 2

for all . Here α is the normalizing constant:

α := 1 +
∞∑

=2

α −1

zr(2) zr(3) · · · zr( )

andα is supposed to be less than the radius of convergence of the power series on the
right-hand side above. Our lattice gases are reversible relative to the measuresν α,
(namely ( ) is symmetric relative to each of them), as is easily shown (see (4) be-
low). For each pair of positive integers ≤ and ≥ the lattice gas which con-
sists of particles whose total energy is is ergodic. The invariant measure is the
conditional law:

[ · ] :=
ν α( · ∩ {η : |ξ| = |η| = })

ν α({η : |ξ| = |η| = })

Here

|ξ| =
∑

∈ ( )

ξ and |η| =
∑

∈ ( )

η

This definition does not depend on a choice of the pair ,α. We denote by
the corresponding expectation.

The reversibility is equivalent to the detailed balance condition, namely the fol-
lowing set of conditions:

(4) zr(η )ξ {η} = zr(η + 1) (η ≥ 2) { zr η}

and

(5) {η} = { ex η}

both of which are valid for any , , ∈ Z+ ( ≥ ), for any two distinct sites
, ∈ and for any configurationη on . Here {η} denotes the -measure of

the one point set{η}. From (4) it follows that for any functions and ofη,

[ zr(η )ξ ( zr η) (η)] = [ zr(η )ξ (η) ( zr η)]
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(here ξ or ξ cannot be removed); an analogous relation involvingex also holds.
The Dirichlet form

{ } := − [ ( ) ]

is accordingly written as

1
2

∑

∈

∑

| − |=1

[
ex(η )(π )2 + zr(η )(∇ )2

]

The objective of this paper is to find a suitable bound of the variance

V ( ) =
[
( − [ ])2

]

by means of the Dirichlet form { } as stated in the following theorem.

Theorem 1. Suppose that the conditions(1) through (3) are satisfied. Then there
exists a constant such that for all positive integers, and , satisfying ≤ | |
and ≥ , and for all real functions onZ ( )

+ ,

(6) V ( ) ≤ ·
( | |)2

· 2 { }

Here | | denotes the cardinality of a set .

REMARK. i) We shall actually prove that

V ( ) ≤ 2

( | |)2


 { } +

∑

∈ ∗( )

[(π )2]





(If = 1, the factor (| |/ )2 on the right-hand side may be deleted.)
ii) It is natural to have the factor2 (the square of the length of the underlying phys-
ical space) in the bound (6), while the dependence on/| | and / of the right-
hand side of it might not be intrinsic and seems to be caused byshortcoming of the
method. The non-uniformity of the bound, however, would notbe serious obstruction
in its application to the hydrodynamic limit of the model. Infact, by applying Theo-
rem 1, we can determine the structure of the quadratic form ofcentral-limit-theorem
variances and thereby identify the limit of the equilibriumfluctuation field under the
hydrodynamic scaling [6]. We have difficulty for proving thehydrodynamic limit itself
because of the lack of sufficient moment bounds.

An outline of the proof of Theorem 1. We fix , and , and simply write E[ · ]
and [· ] for [ · ] and [· ], respectively. We take the conditional expecta-
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tion given the occupation variable

ξ := {ξ : ∈ }

which we denote byE[ · |ξ]. Then

(7) V ( ) ≤ 2E
[(

− E[ |ξ]
)2
]

+ 2
[(

E[ |ξ] − E[ ]
)2
]

The second term on the right-hand side is easy to dispose of. Since E[ |ξ] is a
function of ξ, we can use a spectral gap estimate for the simple exclusion process to
see that

E
[
(E[ |ξ] − E[ ])2

]
≤ 0

2E
[ ∑

∈ ∗( )

(
π E[ |ξ]

)2
]

(cf. [5]). For , ∈ the operatorπ and the conditional expectationE[·|ξ] com-
mute sinceξ is distributed uniformly on its configuration space under . On using
Jensen’s inequality, the last term therefore is at most0

2∑ E[(π )2]. Thus

(8) E
[(

E[ |ξ] − E[ ]
)2
]
≤ 0

2
∑

∈ ∗( )

E[(π )2]

Estimation of the first term of (7) is made by applying the following two lemmas.

Lemma 2. Suppose that the conditions(1) and (2) hold true. Then there exists
a constant such that

E
[(

− E[ |ξ]
)2
∣∣∣ ξ
]
≤ 1

E
[ ∑

(6= )

zr(η )ξ
(
∇

)2
∣∣∣ ξ
]

Here the summation on the right-hand side extends over all ordered pairs ( ) ∈
× such that 6= .

Lemma 3. Suppose that the conditions(1) and (3) hold true. Then there exists
a constant such that

1
| |E

[ ∑

( 6= )

zr(η )ξ
(
∇

)2
]
≤ 2 | |{ { } +

∑

∈ ∗( )

E[(π )2]
}

We shall prove Lemmas 2 and 3 in Sections 4 and 3 respectively.By applying
Lemmas 2 and 3 in turn, the first expectation on the right-handside of (7) admits the
bound

E
[(

− E[ |ξ]
)2
]
≤ ′′ 2 | |2

2

{
{ } +

∑

∈ ∗

[(π )2]
}
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The inequality of Theorem 1 is now obtained by combining thiswith (8).

REMARK. Lemma 3 is an averaged version of the moving-particle lemmafor en-
ergy exchange (by the zero-range interaction) in our mixed dynamics. Without such
averaging our model would not admit any relevant bound written by means of Dirich-
let forms only, while the zero-range or exclusion processesdo (cf. Lemma 4 in Sec-
tion 3). Owing to the inequality (8) we do not need the corresponding one for particle
exchange, which seems not easy to prove if = 1.

3. Proof of Lemma 3

As in the outline of the proof of Theorem 1 given in the preceding section we
fix , , , and simply writeP[ · ], E[ · ] and { · } for [ · ], [ · ] and

{ · }, respectively.
Let γ( ) denote the canonical path from to . By this we mean that

(9) γ( ) = { : 0 ≤ ≤ | − |}

with = ( 1 . . . ) which are defined in the following way: for = 1. . . , ( ) =∑
=1 | − | and

= for = 1 . . . ( − 1); = for = ( ) . . . ;

= + ( − ( − 1))
−

| − | for ( − 1)< ≤ ( )

namely γ( ) denotes the (shortest) path of successive nearest neighbor sites that
goes from to , moving firstly along the first coordinate axis upto the (1)-th step,
secondly along the second coordinate axis up to the (2)-th step, and so on. For the
following lemma we do not need any of the conditions (1) to (3)imposed on ex

and zr.

Lemma 4. There exists a constant such that for any, ∈ ( 6= ),

E
[

zr(η )ξ [∇ ]2
]

≤ | − |
∑

∈γ( ):| − |=1

E
[

zr(η )
(

[∇ ]2 + [π ]2
)
ξ
]

+ | − |
∑

∈γ( ):| − |=1

E
[
[π ]2

zr(η )
]
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Proof. Let us define the transformation ofη by

η :=





ex η if ξ = 1 ξ = 0,

zr η if η ≥ 2 ξ = 1,
η otherwise,

Let ( ) = (0≤ ≤ | − |) be the -th site from on the canonical pathγ( ) as
defined just after (9). Put

= | − |

and suppose thatη ≥ 2 and ξ = 1. Then the transformationη 7→ zr η is achieved
first by applying the transformations ( −1) ( ), 1 ≤ ≤ , successively along the
canonical pathγ( ) until arriving at the site and then, in the return trip starting
at ( − 1), by applying the transformations (2 − ) (2 − −1)

ex , + 1 ≤ ≤ 2 − 1 to
recover the original configuration between and ; formally

zr η = (1) (0)
ex ◦ (2) (1)

ex ◦ · · · ◦ ( −1) ( −2)
ex

◦ ( −1) ( ) ◦ ( −2) ( −1) ◦ · · · ◦ (0) (1)η

Let us define η by 0η := η,

η = ( −1) ( )
−1η for 1 ≤ ≤

and

η = (2 − ) (2 − −1)
ex −1η for + 1 ≤ ≤ 2 − 1

Then the relation above may be written as

zr η = 2 −1η

It follows from the reversibility relations (4) and (5) thatfor any two distinct sites
,

zr(η )P{η} = zr(η )P{η}ξ + zr(η )P{η}(1− ξ )

= zr(η + 1)P{ zr η} + zr(η )(1− ξ )P{ ex η}

wheneverη ≥ 2; hence

(10) zr(η )P{η} = zr(( η) )P{ η} (η ≥ 2)

One notices that the argument ofzr is unaltered (namely ( η) = η ) if the jump is
done by exclusion rule.
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By repeated applications of (10), we see that

zr(η )P{η} = zr(( η) ( ))P{ η} (η ≥ 2) ( η) = η

for 0 ≤ ≤ − 1, and that ifη ≥ 2 andξ = 1, then

zr(η )P{η} = zr(( η) )P{ η} ( η) = η + 1

for ≤ ≤ 2 − 1. (In the last stage of the onward trip one unit of energy is handed
over by a particle at (− 1) to that at = ( ) when an application of the rule (10)
changes the argument ofzr to η + 1, which since then remains to beη + 1 all the
way back.) Using these equalities, we have

E
[

zr(η )ξ [∇ ]2
]

≤ E
[

zr(η )
(∑2 −1

=1 ( ( η) − ( −1η))
)2
ξ
]

≤ 2
2 −1∑

=1

E
[

zr(η )[ ( η) − ( −1η)]2ξ
]

≤ 2
∑

=1

∑

η

P{ η} zr(( η) ( ))[ ( η) − ( −1η)]2 (( η) > 0)

+ 2
2 −1∑

= +1

∑

η

P{ η} zr(( η) )[ ( η) − ( −1η)]2

Since is one to one on the set{η : η ≥ 2 ξ = 1}, the right-most member equals

2
∑

=1

E
[

zr(η ( ))
(

[∇ ( ) ( −1) ]2 + [π ( ) ( −1) ]2
)
ξ
]

+ 2
2 −1∑

= +1

E
[
[π ( ) ( −1) ]2

zr(η )
]

Thus we obtain the required inequality.

Proof of Lemma 3. First we prove Lemma 3 in the case = 1. We sum upboth
sides of the inequality of Lemma 4 over and , and dominate| − | by 2 to see
that

∑

( 6= )

E
[

zr(η )ξ [∇ ]2
]

(11)

≤
∑

(6= )

∑

∈γ( ):| − |=1

E
[

zr(η )([∇ ]2 + [π ]2)ξ
]
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+
∑

( 6= )

∑

∈γ( ):| − |=1

E
[
[π ]2

zr(η )
]

Taking summation on , first and applying the inequalities
∑
ξ ≤ ,

∑
η ≤

and zr ≤ ex/ 3 we derive the inequality

∑

( 6= )

E
[

zr(η )ξ [∇ ]2
]
≤ ′ 2

(
{ } +

−1∑

=1

E[(π +1 )2]
)

which in turn implies the inequality of Lemma 3.
In the case ≥ 2 the argument made above is inadequate. This is because in the

summation over the bonds ( ) there occurs concentration on particular ones which
depend on (so that if ( ) is fixed first, the multiplicity of significantly varies
with ( )) even if we choose any number of pathsγ from to any different ways
and make averaging over them. However, for the first term on the right-hand side
of (11) we obtain, by dominatingξ by 1, the bound

(12) ′ 2| | { }

as is easily observed by applying the inequality

∑

( 6= )

∑

∈γ( ):| − |=1

( ) ≤ 2 | |
∑

∈ | − |=1

( )

valid for every non-negative function ( ). For the second term we cannot follow
suit: we have anyhow to dispose ofzr(η ). To this end we use the following variant
of Lemma 4.

Lemma 5. There exists a constant such that for any, ∈ ( 6= )

E
[

zr(η )ξ [∇ ]2
(

1 ≤ η ≤ 2 )]

≤ | − |
∑

∈γ( ):| − |=1

E
[

zr(η )([∇ ]2 + [π ]2)ξ
]

+ | − |
∑

∈γ( ):| − |=1

E
[
[π ]2ξ

]

whereγ( ) is the canonical path from to .

Proof. We may proceed along the same lines as in the proof of Lemma 4 but
with the function (η ) := (1 ≤ η ≤ 2 / ) being inserted in all the expectations
appearing there except for the last formula consisting of two lines in which we insert

(η − 1) instead of (η ).
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We resume the proof of Lemma 3. Using the inequality

2
≤
∑

∈ ( )

(
1 ≤ η ≤ 2

)

and making decomposition∇ = ◦ − ◦ + ∇ in turn, we dominate∑
( 6= ) E

[
zr(η )ξ [∇ ]2

]
by

2 ∑

(6= )

∑
E
[

zr(η )ξ
(

1 ≤ η ≤ 2 )
[∇ ]2

]

≤ 4 ∑

∈

{
E
[

zr(η )
(

1 ≤ η ≤ 2 )
[∇ ]2

]

+ E
[

zr(η )
(

1 ≤ η ≤ 2 )
[∇ ]2

]}

where Schwarz inequality and the reversibility (with a special care in the case = )
are applied for the last inequality and∇ is understood to identically vanish if =
. Noticing the symmetric role of and and then using Lemma 5, wecan dominate

the last member by ′ 2(| |2/ ) { } plus

′| |2 1 · 2
∑

∈ :| − |=1

E
[
(π )2

]

by the same computation as is done for obtaining the bound (12). The proof of
Lemma 3 is complete.

4. Mean field interaction

Let := {1 2 . . . }. In this section we consider a meanfield type zero-range
process on{1 2 . . .} with jump rate zr. Its generator is defined by

¯zr (η) :=
1 ∑

∈ (6= )

zr(η )∇ (η)

(Note that hereη ≥ 1 for all η.) It is reversible relative to the product measure
(the grand canonical measure), denoted byνα, whose marginal distribution at site
equals the conditional law of that underν α given ξ = 1 for every . We denote
by [ · ] the conditional measures given by

[ · ] = να [ · |η1 + · · · + η = ]

and the corresponding Dirichlet forms bȳzr { }, namely

¯zr { } := − [ ¯zr ]
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Lemma 2 clearly follows from the following proposition.

Proposition 6. Suppose that the rate functionzr satisfies the conditions(1)
and (2). Then there exists a constant such that

[( − [ ])2] ≤ ¯zr { }

Proposition 6 is the mean field version of the result for the zero-range processes
that is established by Landim, Sethuraman and Varadhan [3].Let zr denote the
Dirichlet form for the zero-range process under the canonical measure . Then they
have shown that

(13) V ( ) := [( − [ ])2] ≤ 1
2 zr { }

It is easy to see that̄ zr { } ≤ 2
2 zr { }. Hence (13) follows from Propo-

sition 6, but actually the latter is a corollary of the proof of the former given in [3]:
indeed, the proof of Proposition 6 can be carried out by adapting the proof of (13) for
replacement of 2 zr { } with ¯zr { } in various steps of it. In below we indicate
some main points for the adaptation of the proof. In a recent paper [1] Proposition 6
is proved in another approach, which we shall describe briefly at the end of this sec-
tion. We shall omit “zr” from the notations̄ zr, ¯zr and zr and let∇ = 0 if

= .

Proof of Proposition 6. As in [3] we proceed by induction on toprove that
for each there exists a constant −1 such that if 2≤ ≤ − 1, then

(14) V ( ) ≤ −1 ¯ { }

for all ≥ and = (η1 . . . η ). In the case = 3 (implying = 2) the as-
sertion (14) follows from Lemmas 2.1 and 2.2 of [3]) (a bound for one-site spectral
gaps).

Suppose that > 3 and (14) holds for = 2. . . − 1. Let [ ] = 0. We
then observe thatV ( ) = [ 2] = + where

=
1 ∑

∈
[( − [ |η ])2]

=
1 ∑

∈
[( [ |η ])2]

Regarding as the function of variables (η 6= ) with η fixed, we denote it by
|η . Then by integrating over the variables (η 6= ) first and applying (14),

=
1 ∑

=1

[V −1 −η ( |η )]
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≤ 1 ∑

∈
−1

[
¯ −1 −η { |η }

]

≤ −1
1 ∑

=1

1
− 1

∑

∈ \{ }

[
(η )[∇ ]2

]

=

(
1− 1

− 1

)
−1 ¯ { }(15)

Proceeding as in [3] with suitable modifications (with the help of Lemmas 2.1, 2.2
and 2.3 and Eq (3.1) of [3]) one will deduce that

(16) ≤ ( ′′
−1 + 1) ¯ { }

It is immediate from this and (15) that there exists a constant such thatV ( ) ≤
¯ { } for = 2 . . . , which completes our induction argument.
In what follows we denote by the same symbol the best possibleone (namely

the minimum) among such constants. Notice that (15) remainsvalid with this choice
of constants. It remains to prove that the sequence is bounded. For this end we
apply another fundamental result of [3] (Proposition 3.1) in the following version of
it:

Proposition 7. For every ε > 0 there exists an positive integer and a con-
stant = (ε) such that

1
[ (η1)]


V

(
;

1 ∑

=1

(η )

)


2

≤ ¯ { } +
ε V ( )

for all ≥ and ≥ and for all real functions ofη.

Proof. The proof is essentially the same as that of Proposition 3.1 of [3]. In the
latter the set is divided into intervals ( ) of size or + 1 for each . For the
present purpose of mean field estimation is partitioned intosubsets ( ) of cardi-
nality or + 1. We consider all such partitions and take the average over them. Since
the distribution of{η : ∈ ( )} under the law does not depend on the shape
of ( ), the all the relevant computations are carried throughwith these partitions in
the same way as with the partitions into intervals.

Employing (15) and Proposition 7 together with the arguments made for deriv-
ing (16) one will deduce

V ( ) ≤
(

1− 1
− 1

)
−1 ¯ { } +

′′′
¯ { } +

′ε

− 1
V ( )
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Taking ε small enough we infer that must satisfy

≤
{

1− 1
2

}
−1 + 1 for all ≥

with a constant 1 independent of . This is possible only if ≤ 2 1 for all
since cannot decrease. Proposition 6 is thus obtained.

On Caputo’s approach. Caputo [1] found out a remarkable inequality that holds
in product spaces obeying certain conditions (its proof relies upon some key results
in [3] in the case of zero-range processes). The Caputo inequality corresponding to the
zero-range process may read that if [ ] = 0, then

∑

∈
[( [ |η ])2] ≤

(
1 +

(
1
δ

))
[ 2]

or, what amounts to the same thing,

= [ 2] − ≥
(

1− 1
− 1

)(
1− β

1+δ

)
[ 2]

for sufficiently large, whereβ and δ are some positive constants less than one. This
combined with (15) shows that if is large enough, then may be taken so that

≤ −1/(1− β −1−δ), which immediately yields Proposition 6.
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