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1. Introduction

Although proper modifications modify the geometry of thecgpanly along a rare
analytic set it is enough to “disturb” important analyticdageometric properties.

For instance, Moishezon [8] proved by an example that for gestive, proper
modification p : X — Y between compact complex spaces such that has a Kahler
metric it does not follow necessarily that is also Kahler.

Among the compact complex manifolds the Kahler manifoldfoy a number of
remarkable properties. Kahler spaces were first intradluzge Grauert [6] and their
study was continued by Moishezon [8]. (It is known that thdindigon of Moishezon
of a Kahler metric coincides with that of Grauert at least fiormal spaces.)

The example of Moishezon gives naturally rise to the quastbich special prop-
erties proper modifications of compact Kahler spaces tlestess still might have, in
particular, how far away isx from being Kahler?

In the manifold case there are several results in this dmectFor example,
Alessandrini and Bassanelli introduced the notion of armzdd metric. Every Kahler
metric is balanced and they proved that balanced metricangegiant under proper
modifications.

In this paper we study this problem in the singular case. Wdice in Defini-
tion 2.4 the notion of a generalized Kahler metric and prtheg this notion is invari-
ant under proper modifications (Theorem 2.5).

Our notion of a generalized Kahler metric differs only dlditbit from the defini-
tion of Moishezon: we admit-co as value for the system of defining functions.

Using the Stein factorization Theorem we prove that TheoBebnadmits a gener-
alization to the more general context of Theorem 3.1.

This paper is part of the authors doctoral thesis written iop@értal. | thank
Prof. M. Coltoiu and Prof. K. Diederich for their helpfulistussions and advises dur-
ing the whole time of preparing my thesis. | thank the Departtrof Mathematics of
the University of Wuppertal for providing me a nice workingnmsphere.
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2. Setup and main result

Throughout this paper all complex spaces are assumed todoaveable topology,
unless it is otherwise stated.

DeriniTion 2.1. A holomorphic map X — Y is called a proper modification if
it is proper and there exists a rare analytic 4et Yin  such pha{A) is rare in X
and such thap|x ,-1(4) " X\p~Y(A) — Y\A is biholomorphic.

DeriniTion 2.2. A reduced complex spacg is called Kahler (in the serise o
Moishezon) if there exists a covering;(;c) of Y with open sets such that for each
index i there exists a strongly plurisubharmonic function V; — R which is regular
of classC*> and such that on each nonempty intersectipm V; we have the pluri-
harmonic compatibility condition; — A; = Reg;; , locally onV; N V; for some holo-
morphic functiong;; .

Two such collections ¥, A;);e; and W;, ;) cs define the same Kéahler metric
on Y if each); — v; is pluriharmonic (i.e. is locally the real part of a holombip
function) onV; N W; # 0.

Remark 2.3. If Y is a complex manifold such a collectioi;(\;);c; defines in-
deed a metric ort , by endowing  with the, (1 1)-form given locgbn each open
setV;) bydo,.

We want to generalize the above concept of Kahler metrics.

DeriniTion 2.4. We say that the reduced complex space has a generalized
Kahler metric if there exists a covering of  with open set§ ( slich that on
each setU; there exists a functign: U; — [—o0, ), ¢; Z —oo on each irreducible
component ofU; , which is strongly plurisubharmonic, regutdirclassC> outside
the set{y; = —oo} and such that on each nonempty intersectlgnn U; we have
(locally) the pluriharmonic compatibility conditiop; = ¢; + Re f;; for some holomor-
phic function f;; .

The main result of this paper is the following:

Theorem 2.5. Let X andY be two reducedompact complex spaceéwith sin-
gularities) and p: X — Y a surjective holomorphic mapwhich is a proper modifica-
tion. Suppose that is &ler. ThenX has a generalizedakler metric

ProOF. Consider the covering of  given by Definition 2.2 and the cimge
of X given by U; := p~Y(V;), i € I and on eachU; the functiop; "= ); o p.
Then it follows at once thap;"e C°>°(U;) and thaty; is plurisubharmonic orU;  but
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not necessarily strongly plurisubharmonic. The idea in twiatlows is to modify in
a first stepy; such that they become strongly plurisubharmonic. But thendestroy

the “pluriharmonic compatibility condition’p,"= ¢; + Re(g;; o p) locally on U; N U;.
In a second step we also get this condition back.

First step of the proof. To modify ; such that they become strongly plurisub-
harmonic we use a technique from an article of Coltoiu-Ndbbhe [3]. We look at
the following commutative diagram given by Chow's lemmae(ser instance [7]
and [9] or [5, p.171)):

(1) \W\ LP

More precisely, given the proper modificatign  and so implicthe rare ana-
lytic set A, the lemma of Chow ensures the existence of a cohédeal 7 on Y,
with supp@y/J) = A such that, denoting by: Y* — Y the blowing-up ofY with
center @, Oy/J)|a), it follows the existence of a holomorphic, proper and etH]
tive map F making the above diagram commutative. The i¢déak called the ideal
of Hironaka.

Without loss of generality we can suppose that the open setheo covering
of Y given by the definition of the Kahler metric are all Steipea sets. Fix now for
the moment an arbitrary Stein open 3&t of the finite covering:{; of Y.

There exist sectiongy ;, ..., fs.; € J(V;) generating each fiber of such that

ANVy={x e V;| fuj(x)=---= f;{x) =0}
It then follows for the map
fi =g )V — C
that we have:
f7H0) = (AN V;, (O /T)|anv,).
Now consider the function
Yj: Vi — [—00, 00)

given by

r[/)j :)\j +|Og <Z|fk1|2> .

k=1
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It is clear thate; is strongly plurisubharmonic otv; {¢; = —oco} = AN V; and
that v;|y\a € C>(V;\A). Considering now the composed functign o p we have
that ¢; o p is plurisubharmonic or/; V), C>* on U;\p~*(A) and {¢; o p =
—oo} = p~H(A)NU;. We will see below thaty; o p is even strongly plurisubharmonic.

We use the following lemma which is true for all reduced commpspaces (hot
necessarily compact). For a proof see [3], [2].

Lemma 2.6. Let X andY be reduced complex spaces andX — Y a proper,
holomorphi¢ surjective map Let ®: ¥ — [—o0,0) be an upper semicontinuous
function such thatd o p is (strongly plurisubharmonic onX. Then ® is(strongly)
plurisubharmonic ony.

Using diagram (1) we can conclude with help of this lemma,thabrder to show
that; o p is strongly plurisubharmonic, it is enough to prove thigtw = (;op)o F
is strongly plurisubharmonic on~(V;).

For this we need the explicit description of the analyticvbig-up. Letm C
Oc¢: denote the maximal ideal of the origin i@°. One has then an exact sequence
(the syzygy-theorem) of the form:

o) * o5 Lm0

where 3 is given by multiplication with the coordinatesgi(...,z,) of C* and « is

s

given by thes x (3) matrix:

> 73 74 -+ 2z, 0 0 - 0 0O --- 0
-z7 0 O 0 zz3 z4 -+ 2z 0o - 0
0O —z1 O 0 —z2 O 0 o --- 0
0O 0 —zz--- 0 0O —z2--- O o .--- 0
zj
—Zi
O 0 0---0 O 0 -0 -+ 0 - gz
0 0 0 -+ —z1 0 0 ++v —zp-++ 0 -+ —z,4

Via the analytic inverse image this gives rise to an exacusege onV; (remark that
here fim = J|y,):

5) I ;8
OS/,Z-) i o3, <5 Ty, — 0.
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Let P(J) denote the projective space ovér associated to the cdhateal
sheaf 7 (see for instance [5]).
By construction of the blowing-up we have the following comtative diagram

Vi P(ffm) - V; x P*~1(C)

Vi
Therefore it is enough to prove that
Yj o0& P(fim) — [—o0, 0)

is strongly plurisubharmonic.
But in this form the advantage is that for the closed subspace

P(ffm) < V; x PP"X(C)
we can give the defining equations explicitly. They are
Je.iOzm — fu,j(Nze =0, V1i<m <k<s

where ¢; : ---: z,) are the homogeneous coordinatesRn*(C).
Let

Vix V,:={(v,2) € V; x P"C) |z, #0} forve{1,...,s}
and
(e Vj X VV — Vj X Cs_l

be the biholomorphic map given by

_ 71 Iv—1 Zv+l s
aV(yaz)_ y7_5"'5 3 s e eey T 3
v Iy v re7
and define
o V; x C* 1t — [—o0, x0)
given by

s—1
Ty 11,5 1-1) = A (0) +log] £,,,;(1)|? + log (1 > |fk|2)

k=1
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where (1, ..., t,_1) denote the coordinates of¥ .

It is then clear thatr; is strongly plurisubharmonic o; x C*~1. Becausen,
is biholomorphic it follows thatr/ o o, is strongly plurisubharmonic of; x V,. But
on (V; x V,)N&£-X(V;) we have that

Tgoauzwjof

so that finally it follows thaty; o ¢ is strongly plurisubharmonic og~(V;). So we
also obtain that); o is strongly plurisubharmonic off. As already seen above this
implies thaty; o p is strongly plurisubharmonic oW,

As a conclusion of the first step of the proof we obtain thedfsihg properties
for 4; o p: it is strongly plurisubharmonic ow/; , regular of cla8¥ on U;\p~—1(A)
and{t; o p=—oo}=p~1(A)NU;. Butwe have destroyed the pluriharmonic-compatibility
condition, because now

Yjop=Ajop+log <Z|fk,j 0P|2>
k=1

the last term being a “perturbation factor”.

Second step of the proof. In order to obtain onX a collection of strongly
plurisubharmonic functions with the pluriharmonic conipiity condition we proceed
as follows.

Let

aj = | fuilP+- | foP ony;
and
ap = | fulP+ -+ | fix* on Vi

Consider now a relatively compact subcover of  with open etabs’; c Vv
Vj € I. Then the quotient

aj _ [fuilP P
ax |f1,k|2+“'+|ﬁ.k|2

remains bounded (upper and lower) oW/ (0 V/)\A. The problem is only in small
neighbourhoods ofA in |/ N V;)\A. But we know that onV; N V; the sections
in J(V; NVi) are generated byf( ;. ..., fi.;)lv,ny, and also by fix. ..., fix)lv,nw
because the respective germs genergtdor all y € V; NV, and V; NV, is Stein. So
the boundedness is clear and therefore we also know thai; legoga, is bounded
on (V/NV\A.
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In what follows we apply a glueing technique of Demailly [4)rfa collection of
certain functions, which has the advantage that the glusssglt is of classC*°.

More precisely, we can suppose, without loss of generdlityn the begining that
the open setsvjf are isomorphic with analytic sets in open balls , {0 C IC"/.

Let ;. VJf — B(0,r;) denote the chart. We can assume that @j(vj’). Con-
sider for each; the function

vj: V] — [—00, 00)

J J f |q)j( )|2 J J

One sees at once that € C*°(V/\A) andv;(z) — —oc for z — 9V/, z € V; (we
also have thab;(z) = —oo for z € AN V)).

In order to get aC*-glueing of the functions; on Y\A, to overcome the fact
that the function maxy(); is only continuous, one proceeds as follows:

Let o: R — R be a function of clas€> with ¢ > 0, supp C [-1/2, 1/2] and
with [; o(u)du =1 and letm denote the function

m:RI — R
given by

m(ty, ..., t;) = / max{ty +ux, ..., 1, tug} H o(u,) du,
R 1<n<q

(in our caseg will be the number of open sets of the finite coge(V;); of Y).
It is clear thatm is increasing in each variable, that it isveonand of clas€ >
and that the following property holds:

2) Mty ..ty tg) =mltn, ..oty 1)
whenever
tp<max{ry, ... tj_1,tj+1, ..., 0} — 1

(where " denotes, as usual, that the respective variable is missing)
Let now v denote the function oy  given by

0(z) = m(v1(2), . . ., v4(2)).

We then have thabt € C*°(Y\A). However, written in this form we have to ignore
the v;’s for which z ¢ V/. This can be done because of the following: the maximum
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is taken over thev;’s with z € V/, so for different positions ot we have a differ-
ent number of functions over which we take the maximum. Buthaee thatv;(z) —
—o0, for z — 9V/, z € V/, i.e. the values ob;(z) with z near the boundary of//
doesn’t play an effective role in the maximum. This fact thge with (2) shows thab

is globally well defined.

At the same time it allows us to choose coveringg’y; and W; ) of Y, V!
W; € V; such that already eaah;(z) for z € V;\ V" does not play an effective role
in the maximum, in particular we have vy, (z), - ..., (2)) = m(va(z), ..., 04(z))
for eachz € Y. We will need the coveringW; ;) in what follows.

Remark first that we havéz € Y | v(z) = —oc0} = A.

The listed properties of the functiom  imply that 7.(. .., 7,) is still plurisub-
harmonic if#, ..., n, are plurisubharmonic. Because of the special formnmof it fol-
lows that it also preserves the strongly plurisubharmonici

Indeed, we have to check that for any strongly plurisubhaiméunctions (such
that the composition makes sensg) ..., n, and for eachd € C§° there existsso > 0
such thatm 4) + <6 is plurisubharmonic for all & ¢ < .

But this follows at once from:

mi)+=0=m@+ [ <0 T[ own)du,
R? 1<n<gq

:/ max@ +ui+eb, ..., 0, tu, +eb) H o(u,)du,
R 1<n<q

=m(n+&b).
Now consider onV; , for each index , the function
MM\ +ovly,.
We will show that, if M is a sufficiently big constant then
;= (MA;+0)0p|pyy,

is strongly plurisubharmonic op—%(V;).

To do this consider first the functio A; — 6; on V; N W;. Becaused; and its
derivatives are bounded oW;  arld is strongly plurisubharmonic oi; it follows
that there exists a constam  such thah; —6; is strongly plurisubharmonic oi; N
Wi.
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Now look on p~1(V;) at

@i =(MXjop+vop)|,—yy,

:MAj Op+/ maX(UloP"'ul,---,Uq OP"'”q) H Q(un)dun
Re 1<n<gq

:/ maX(M/\jOp+nlop+u1,...,M/\j0p+UqOp+uq) H Q(un)dun
Re 1<n<gq

(where M\ o p+v; 0 p=M\jop+loga; o p —0; o p is defined onp=2(V; N W;)).
We have shown in the first step that

ijP:/\jop+|09<Z|fk,j|2> op=Ajoptloga;op

k=1

is strongly plurisubharmonic oty; :p~1(V;). Concerning);, in the proof of the first
step it is only important thak; is strongly plurisubharmonic off; . So we can replace
it by any other strongly plurisubharmonic function, for exgle by MA; — 6; on V; N

W;, to obtain by the same type of argumentation the analoguelusion, namely that

MXjop+loga;op—0;0p
is strongly plurisubharmonic op~(V; N W;), Vj, Vi.
So, it finally follows from the above listed properties mf  thhe functiony; is

strongly plurisubharmonic ow/; :p~(V;).
In conclusion, we obtained a covering

U; = p  (V))jer
of X and on each open séf; a strongly plurisubharmonic function
pj: U;j — [—00, 00)
with the property thatp is regular of clas€*° outside the rare seftx € U; | ¢;(x) =
—oo} =U; N p~HA).

This collection of functions also satisfies the desired ibnmonic-compatibility
condition, that is we have, on each non-empty intersedtipn U;, locally that

i = MAi o p+00plysny-iy)
=MM\jop+MRe(fij o p) +v0 pl,ywynp-yv) = ¢ + Reg;;

with g;; holomorphic. This completes the proof of our Theorer. 2. O
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Remark 2.7. With almost the same proof it follows that Theorem 2 $odholds
if one only supposes that is generalized Kahler.

3. A generalization of Theorem 2.5

Now we can extend our result to the following more generaltexin

Theorem 3.1. Let p: X — Y be a holomorphic and surjective map between
two reduced compact complex spaces with singularities and with the propertyt tha
sends each irreducible compone@t xf (surjectivg onto an irreducible compo-
nent Cy ofY of the same dimensijiodimCy = dimCy . If Y is Kahler, then X has
a generalized Ehler metric

Remark 3.2. 1. In the context of the above theorem it follows that dinF
dimY.
2. The hypothesis of the above theorem concerning the iciblgucomponents o
andY is satisfied for example in the following special cases:
(&) X andY are irreducible (and therefore pure dimensional) dimX = dimY .
(b) X andY are pure dimensional with dixh = dim and they have theesa
number of irreducible components.

The idea of the proof is to reduce this problem to the now knaentext of
a proper modification between compact complex spaces, wihere'base” space is
Kahler. This is possible with help of the following “Steiadtorization theorem” (see
for instance [5, p. 70, Theorem 1.24]).

Theorem 3.3. Let p: X — Y be a proper holomorphic mapThen there is

a commutative diagram
X
pl \\‘7{
Y

-<T—Z

of complex spaces and holomorphic maps with the followirapgnties

1. 7 is finite

2. o is proper, surjective has connected fibers and the canonical mep O, —
0.Ox is an isomorphism

Remark 3.4. In our context we also have the following supplementagperties:
1. Z is compact.
2. T is surjective.
3. Z is reduced: Indeed, if there would exist an open 8et Z such thatOz(V)
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contains a nilpotent element, then because®f(V) ~ Ox(c—1(V)) it would fol-
low that Ox(c—%(V)) contains nilpotent elements, which is a contradictiorttte fact
that X is reduced.

4. 71 being finite and surjective it also follows that dim = diftn , d@t dimX =
dimZ.

5. Y being Kahler andr being finite it follows thatZ is also Kahler (see for in-
stance [1] or [11]).

Proof of Theorem 3.1. In order to prove Theorem 3.1 our go#b ishow thato
is a proper modification.
The subsets

SingZ)— 7z
SingX)— X
o(SingX))— Z

o }(SingZ))— X

and

o Y(o(Sing(X ))) — X

are all rare analytic sets.

Consider nowD = Sing U o(SingX ), D — Z which is a rare analytic set i@
For each irreducible componenty af we then have a surjectiap bretween two
connected manifolds

oleg\o-i(py: Cx\o H(D) — CZ\D

where C; is chosen such tha{Cy) = C, (in particular by our hypothesis we then
have that dinCxy = din€; ). Applying Sard’s Theorem it follows thdiere exists
a regular pointz € Cx \ 0~1(D) where the linear tangent map of Tu(0lc\o—1(p)) 1S
surjective. Because of the same finite dimension of the spadellows that the linear
tangent mapl,, d|c,\»-1(p)) iS in fact bijective. But this tells us that the set

{x € Cx\o YD) | detJ,(x) = 0}

is a rare analytic set itCx\oc (D), where J,(x) denotes the Jacobian matrix. This
being true for all irreducible componengsy  &f it follows that

B :={x € X\o X(D) | detJ,(x) = 0}

is a rare analytic set irk\oc~1(D). Note that we do not know whethe® is analytic
in X (where B denotes the closure &8 iX ).
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It is enough for us to find a rare analytic 6t Xh  such tRat C. To find C
we make use of some known notions and results about the tasgaoe and the tan-
gent map for complex spaces with singularities, namely thatset

C :=Sind(c) := {x € X | corank ¢ > 0} = {x € X | dimkerT,o > 0}

is analytic inX .
Moreover becaus€ N (X \ c~1(D)) = B, this set is also rare.
Let A := DU o(C) which is rare inZ and consider the surjective map

0—|X\o*1(A): X\O’il(A) — Z\A

We have for allx € X \ 0~%(A) thatx € Reg(X ) andx ¢ C. Thereforex ¢ B, so
that det/,(x) # 0 for eachx € X \ 0—1(A).

But this means that is locally biholomorphic onX \ o~*(A). Becauser|y\ ,—1()
has connected fibers it therefore follows tha, ,-1(4) is injective, so we finally de-
duce that the map

0—|X\o*1(A): X\O’il(A) — Z\A

is biholomorphic. Sar: X — Z is indeed a proper modification.
As we mentioned above this is enough to conclude, as deghlati X has a gen-
eralized Kahler metric. The proof of Theorem 3.1 is now ctatg U

Remark 3.5. Of course the statement of Theorem 3.1 remains true Wwhes
only required to be generalized Kahler.
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