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1. Introduction

1.1. It is one of the most important problems in the theory of Kig@mgroups to
decide whether or not a subgrotp  of the Mobius transfomagiroup is discrete.
For this problem there are two important and useful theorédme is Poincaré’s poly-
hedron theorem, which gives a sufficient condition for to lscmkte. The other is
Jargensen’s inequality, which gives a necessary condftiora two-generator Mobius
transformation group(A, B) to be discrete. Here we will consider extreme discrete
groups (Jgrgensen groups) for Jargensen’s inequality pdwper is the second part of
a series of studies on Jgrgensen groups (cf. Li-Oichi-Sat®]).

1.2. Let Mob denote the set of all linear fractional transforiiag (Mobius
transformations)

az+b

A =
(@) cz+d

of the extended complex plan@ = C U {cc}, Wherea ,b ,c ,d are complex num-
bers and the determinaatd — bc = 1. There is an isomorphism between Modb and
PSL(2,C). We always write elements of Mob as matrices with deteaminl in this
paper. We recall that Mob (SL (Z)) acts on the upper half spadé® of R® as
the group of conformal isometries of hyperbolic 3-space.

In this paper we use a Kleinian group in the same meaning asaeti group.
Namely, a Kleinian group is a discrete subgroup of Mob. AiliEn groupG is of
the first kindif the limit set A (G) of G is all of the extended complex plaﬁlaand
it is of the second kindbtherwise. A subgroug; of Mob is said to leéementaryif
there exists a finites -orbit ifRS.
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1.3. The trace tr(A) of the matrix

A:(i Z) (ad — be = 1)

in SL(2,C) is defined by trd ) =a + . We remark that the trace of an element of
Mob (= PSL(2 C)) is not well-defined, but Jargensen number (defined latestill
well-defined after choosing matrix representatives.

1.4. Let A* and B* be matrices inSL (2C) representing the Mobius transfor-
mationsA andB , respectively. A4* and B* are determined byA an# to within
a factor of —1, we see that the commutatot*B*(A*)~%(B*)~! (resp. @4*)?) are
uniquely determined byA an# (resg. ). Thus we may writel BA~1B~1) =
tr(A*B*(A*)~Y(B*)~1) and tP(A) = tr’(A*).

In 1976 Jagrgensen obtained the following important theoretrich gives a nec-
essary condition for a non-elementary Mobius transfoionagroup G =(A, B) to be
discrete.

Theorem A (Jgrgensen [1]). Suppose that the &bius transformationsA and
generate a non-elementary discrete group. Then

J(A, B) := [tr’(A) — 4| + |tr(ABA™1B7Y) — 2| > 1.
The lower boundl is best possible.

1.5.

Derinmion 1. Let A and B be M0obius transformations. ThHergensen number
J(A, B) for the ordered pair4, B ) is defined by

J(A, B) := [tr’(A) — 4| + |tr(ABA™1B 1) — 2.

DeriniTion 2. A subgroupG of Mob is called dagrgensen groupf G satisfies
the following four conditions:
(1) G is a two-generator group.
(2) G is a discrete group.
(3) G is a non-elementary group.
(4) There exist generatord arl 6f such tha#, B )=1.

1.6. Jargensen and Kiikka showed the following.

Theorem B (Jgrgensen-Kiikka [2]). Let (A, B) be a non-elementary discrete
group with J(A, B) = 1. Then A is elliptic of order at least seven or A is parabolic.
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If (A, B) is a Jgrgensen group such that is parabolic dnd, B( ) = 1, then
we call it a Jgrgensen group of parabolic typ&here are infinitely many Jgrgensen
groups of parabolic type (Jgrgensen-Lascurain-Pignd@&rdsato [8]).

Now it gives rise to the following problem.

Problem 1. Find all Jgrgensen groups of parabolic type.

1.7. Let (A, B) be a marked two-generator group such that is parabolic. Then
we can normalizeA an® as follows:

(1 1 _(po pPo—1/c
A—<O 1) anng_#—(J Lo ,

wheres € C\{0} and u € C. See [4] for this normalization. We can easily see that
J(A, B, ) = o]

We denote byG,, the marked group generated hy am} . Gop =
(A, B,,,.). We say that ¢, ) € C\{0} x C is the point representing a marked group
G, and thatG, , is the marked group corresponding to a pofat, ).

1.8. In [8], Sato considered the case pf= ik (k € R). Namely, he considered
marked two-generator groufi, ;x = (A, B,.ix) generated by

(1 1 _[ikoc —k?c —1/c
A’<o 1) andB"*"’"( o iko )

whereo € C\{0} andk € R.
Now we have the following conjecture.

Conjecture. For any Jgrgensen grou@  of parabolic type there exists aadark
group G, ix(c € C\{0}, k € R) such thatG, ;. is conjugate toG .

If this conjecture is true, then it is sufficient to considée tcase ofy = ik in

order to find all Jgrgensen groups of parabolic type. In tldpep we only consider
the case ofu = ik.

1.9. Let C be the following cylinder:
C ={(o,ik) | |o| =1,k € R}.
Theorem C (Sato [8]). If a marked two-generator groufy, ix = (A, Bk} (0 €

C\{0}, k € R) is a Jargensen groyphen the point(c, ik) representingG, ;; lies on
the cylinderC .
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If (o,ik) is a point on the cylindeC , then we can set —ie!? (0 < 0 < 2n).
If a point (—ie'?, ik) on the cylinderC represents a Jgrgensen group, then we aay th
the group is algrgensen group of parabolic tyfé, k).

Now it gives rise to the following problem.

Problem 2. Find all Jgrgensen groups of parabolic typek(.

We divide Jgrgensen groups of this type into three parts lksnvs
Part 1.|k| < /3/2, 0< 6 < 2r (finite case).
Part 2.4/3/2 < |k| <1, 0< 0 < 27 (countably infinite case).
Part 3. 1< |k|, 0< 6 < 27 (uncountably infinite case).

By some lemmas in [8], it suffices to consider the case ef®< x/2 andk > 0
in order to find Jargensen groups of parabolic ty@ek).

In the previous paper [4] we found all Jgrgensen groups incee where G<
0 <m/2and 0<k < \/§/2, that is, we obtain the following theorem.

Theorem D (finite case) (Li-Oichi-Sato [4]). (i) There are sixteen Jgrgensen
groups inD = {(0.k) e R|0< 0 < 7/2,0< k < /3/2}.
(i) Nine of them are Kleinian groups of the first kind and severugsoare of the
second kind.

Furthermore, in [5] we found all Jgrgensen groups in the edsere 0< 6 < /2
and k£ > 1 (uncountably infinite case). Therefore we found all Jgsgengroups of
parabolic type 4, k), that is, Problem 2 is completely solved.

Thanks are due to the referees for their careful reading ahghble suggestions.

2. Main theorem

In this section we will state that we find all Jgrgensen groupBart 2.
For simplicity we write By, for B_;,i0 ;. Let A and By (k € R,0 < 0 < 7/2)
be the following matrices:

1 1 ke ie 0 (k%e?? — 1)
A= B = .
<o 1) and Bo,i (—ie’e kel?

We obtain the following theorem.

Main Theorem. The groupGy, with 0 < 0 < /2 and v3/2 < k < lis a
Jargensen grougdiscretg if and only if one of the following conditions holds.
(8 6 =0andk = 1. In this case Gy, is a Kleinian group of the second kindnd
Q(Gyx)/Gox is a union of two Riemann surfaces with signat@@?2, 3 co).
(b) 6 =0andk = cos@/n) (n =7,8...). In this case Gy, is a Kleinian group of



JBRGENSEN GROUPS OFPARABOLIC TYPE Il 495

the second kindand Q2(Ggx)/Ggx is a union of two Riemann surfaces with signatures
(0;2, 3n)and (0;2 3 o0).

(c) 8 =x/4 and k = 1. In this case Gy, is a Kleinian group of the first kindand
the volumeV (G /4,1) of the 3-orbifold for G 41 is

v =sfan(3) - 1(5) ()}

where L(0) is the Lobachevskifunction

0
L(9) = —/ log |2 sinu| du.
0

(d) (Sato-Yamada [9]p = n/2 and k = 1. In this case Gy, is a Kleinian group of
the second kindand ©2(Gyx)/Ge.x is @ Riemann surface with signatu(®; 3, 3 o).
(e) (Sato-Yamada [9]Y = /2 and k = cos@/n) (n = 7,8 ...). In this case Gy
is a Kleinian group of the second kindnd ©2(Gg)/Gex is a Riemann surface with
signature(0;3, 3 n).

The proof of the main theorem is given in Sections 4-9.

Corollary. There are countably infinite Jgrgensen groups on the regdiohk) |
0<0<7/2,V3/2<k<1}.

3. Poincaré’s polyhedron theorem

In this section we will state Poincaré’s polyhedron theorllowing Maskit [6,
p. 73]. The theorem gives a sufficient condition for a subgrof the Mobius trans-
formation group to be discrete.

Let P be a polyhedron in the upper half spa#e€. We assume that for each side
s of P, there is a side’, not necessarily distinct from , and there is an elemgnt
Mob, satisfying the following conditions:
(i) gl(s)=s
(i) gv =gt
Then the isometrieg, are called thgle pairing transformations

Let G be the group generated by the side pairing transformstitf there is a
side s, withs’ = s, then condition (i) implies thag? = 1. If this occurs, the relation
g2 =1, is called areflection relation

The side pairing transformations induce an equivalencatiosi on P (the closure
of P). Let P* be the space of equivalence classes so that projegtioR — P* is
continuous and open. We assume that for every poiatP*, p~1(z) is a finite set.

Next we will define a cycle of edges &f and a cycle transformation. Let be
an edge. It lies on the boundary of two sidesRofLet s; be one side of them. Then
there is a sides; and there is a side pairing transformatign with gi(s1) = s7. Set
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e2 = gi(e1). The edgee, lies on the boundary of two sides, one of themsjs Let
s2 be the other side. Then there are a sideand a side pairing transformatiog
with ga(s2) = s5. Continuing this manner, we generate a sequefegé of edges and a
sequence(g, } of side pairing transformations.

Since each point ok, is equivalent to at most finitely many other points i
the sequence of edges is periodic. et  be the least period.cyblically ordered
sequence of edgefes, ea, ..., ey} is calleda cycle of edgesnd m is theperiod of
the cycle. Two cycles arequivalentif they both contain the same set of edges. Each
edge lies in exactly one equivalence class of cycle. We hgve - gi(e1) = e1, and
call h = g, --- g1 the cycle transformatiorat ¢;. The relation of the form:’ = 1 is
called thecycle relation The following theorem is well-known.

Theorem E (Poincaré’'s Polyhedron Theorem (Maskit [6, p. 73])Let P be a
polyhedron with side pairing transformations satisfyirfee tfollowing conditions(1)
through (6). Then G, the group generated by the side pairing transformatjaasdis-
crete andP is a fundamental polyhedron fai, and the reflection relations and cycle
relations form a complete set of relations far.

(1) For each side s oP, there is a sides’ and there is an elemeng; € G satisfying
gs(s) =s" and gy = g%,

() &PNP=0.

(3) For every pointz € P*, p~1(z) is a finite set.

(4) Lete be an edge and let h be the cycle transformatior at . Therdoh edge

e, there is a positive integer t such that = 1.

(5) Let{e1, ez, ...,en} be any cycle of edges &f and leta(e) (k=1,2...,m) be

the angle measured from insideat the edges;, . Let q be the smallest positive integer
such thath? = 1, where h is the cycle transformation af. Then the equality

m

2
Za(ek) =

k=1
holds.
(6) P* is complete.
4. Proof of the cased =0

In this section we will prove the main theorem in the cas# ef0. Forf = 0 we
have

(12
A:(é 1) and By ::Bo,kz(_ki l(kk l)) (k € R).

We setG, =(A, By) .
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4.1. We setC, =AB,A~*B;* and D, =B 'C;. Then we have

=ik —(k®—1)+ik =i
Ck_(—l 1+ik )andD"‘(o i)'

Furthermore we have

=ik —(k?-1) )
CkA—(_l ik )andeA—(o i)'

We can easily see the following lemmas and so omit the proofs.

Lemma 4.1. Let A, By, Ci, Dy, CrA and DA be the Mbius transformations
represented by the above matrices. Then the following hold.
(i) A is a parabolic transformation with a fixed poinb.
(i) (1) By is a parabolic transformation with a fixed poiltif & = 1.
(2) By is an elliptic transformation of orden (integern > 7) if 0 < k < 1,
where k = cosr/n).
(i) C; is an elliptic transformation of order three with fixed par(+i (2 ++/3))/2.
(iv) Dy is an elliptic transformation of order two with fixed pointg2 and cc.
(v) CiA is an elliptic transformation of order two with fixed poinfs + 1)i.
(vi) Dy A is an elliptic transformation of order two with fixed poinBsand oc.

Lemma 4.2. Let A, Bi, Cx, Dy, CtA and DA be the Mbius transformations
represented by the above matrices. (gt be the group gemkated and B, and
G; be the group generated by, C, and Dy : Gy = (A, Bx) and G; = (A, Cy, Dy).
ThenGy = G;.

4.2. We will prove (a) and (b) of the main theorem. The part is ptoyparallel
to 6.2 in [4]. Letd =0 andk =1 ork =cos/n (n=7,8 ...). Let G{ be the group
generated by AC; and), , that i§ = (A, Ci, Di). We denote byH3 and H3 the
upper half space and its closure, respectiva#i? = {(z,t) € C x R | t > 0} and
H3={(z.t) e Cx R |1 > 0}. We will define some side§; j( =1,2.,6)in H3
as follows:

Fi={(z.t) € H3|x=0, y>0, t >0, |z—ik|?+2>1},
F,={(zt)e H3|x=1 y>0, t >0, |z— (1+ik)|2+:2> 1},
F3={(z.1) € H3|0<x<1/2,y=0, t >0, |z—ik|2+2>1},
Fa={(z.1) € H3|1/2<x<1,y=0, >0, |z— (1+ik)2+r2> 1},
Fs={(z.1) € H3|0<x<1/2,y >0, |z—ik?+2=1, t >0},
Fs={(z,t) e H3|1/2<x<1,y>0, |z— (A +ik)2+2=1, t >0}.

Let P be the polyhedron inH® bounded by the above six side§; j ( =
1,2 ...,6) and the complex plan€. Then there are three side pairing transforma-
tions A, D, andC; ofP as follows: F, = A(F1), F4 = Dy(F3), F5 = Cy(Fs) (see
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R

Fig. 4.1. € =1)

Fig. 4.1 and Fig. 4.2).

Next we denote the edges j ( 51.2.,6) of P as follows:

e1=F1NF3 eo=FoNFy, e3=F3NFy, ea=F1NFs, es=F>N Fg, eg = F5N Fg.

Let §; = afe;) (j = 1, 2...,6) be the angles measured from insiBeat e; .
Then it is easily seen thaty = 6, = 7/2, 03 = 7, 04 = 05 = w/2, 06 = 2r/3. Then
01+0,=21/2, 03 =21/2, 04+ 05 = 21/2, 05 = 21 /3. Sincee, = A(e1) and er = Dy (e2)
(resp.es = A(es) and eq = Ci(es)) we have thatD,A (respCiA ) are the cycle trans-
formations ate; (resp.es) and that both of the cycle transformations are elliptic of o
der two by Lemma 4.1. Sinces = Dy (e3) (resp.es = Ci(es)), we haveD; (respCy )
are the cycle transformations & (resp.eg) and that both of the cycle transformations
are elliptic of order two (resp. of order three) by Lemma 4.1.

By the above we see that the conditions (1) through (5) in TéraoE are satis-
fied. The completeness condition (6) in Theore E is easilyvshby using Ratcliffe [7,
Theorem 11.1.2]. Thug; is a Kleinian group of the second kind. By Lemma 4G,
is a Kleinian group of the second kind and so a Jgrgensen group

We define some half lines, segments and circular afcsi  (, 5.1.28) on the
complex planeC as follows:
s1={z€C|x=0, y>k+1}
s2={zeClx=1 y>k+1},
s53={z€CNFs|0<x<1/2 k+/3/2<y<k+1},
54={z€CNFs|1/2<x<1 k+V3/2<y<k+1},
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I3

Fig- 4.2. (% <k <1)

ss={z€CNFs|V1I-k2<x<1/2, 0<y<k—+3/2},
s6={z€CNFs|1/2<x<1-vV1-k2 0<y<k—+3/2},
s7={z€C|V1-k?><x<1/2, y=0},
ss={z€C|1/2<x<1-+V1-—k? y=0}

We denote byS; (resp. S2) the polygons bounded by the curves sz, s3 and
s4 (resp.ss, sg, s7 andsg), and we denote by (resp.S4) the mirror images ofS;
(resp. S>) with respect to the real axis. Let; j( 51 .2.,7) be the vertices of the
polygons S; and S, as follows: p1 = s1 N s3, p2 = s2 NS4, p3 = 53N S4, pa = 550 Se,
Ps = 55187, ps = Se M sg and p7 = s7 N sg. Since p2 = A(p1), p1 = Ck(p2), p3 = Ci(pa)
(resp. pa = Cx(pa), ps = Cik(ps), pe = Di(ps) and p7 = Di(p7); s2 = Als1), sa = Ci(s3),
s5 = Ci(se), s = Di(sg) and S3 = Dy (S1) (resp.Ss = Di(S2)) we have by Lemma 4.1
that Q (G« )/Gy is a union of two Riemann surfaces with signature (0;2d3 for k =
1 and that@ G, )Gy is a union of two Riemann surfaces with signatures (0;2 3 )
and (0;2 3o0) for k =cosfr/n) (n=7,8...). [l

4.3. We will prove thatGy, is not discrete in the case & = 0 andk with
cosfr/2m) < k < cosfr/(2m +2)) andk # cos@r/(2m +1)) (n =3 4...). We set

Tk:< 1 )1/2<1 —VI-#2

vi—e) \a m) O<k<
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Then we have

2V/1—k2 -1 1
A* = T,AT,:lz; (0< k < 1),
2V1— k2 -1 2V/1-k2+1
k+iv1— k2 0
B = T\B. T = 0<k<1).
= LT ( k k_i_l_k2)< )
Thus
k+iv1—k2)" 0
(By)' = ( ) n | (0<k<1)
0 (k—ivI—42)

We set co® = k. Thene!? =k +ivV1—kZ ande 9 =k —ivV/1—k2 .
Then we have

2
. e —2+2cos 20
J(A, By) = J (A", (By) )=’7‘

4(sind)2

Thus 0 < J(A, B}) < 1 if and only if cosfr/2m) < k < cos@r/(2m +2)) @ =
2m+1m =3 4...). We note that ifc = cos{/(2n +1)) m =3 4...), thenG, =
(A, B?"*1) is an elementary group. For the other caéks is a non-elemegriaup.
By Theorem A, we can see thal;, is not a Kleinian group and notrgedgen group
for k with cosgr/2m) < k < cos@r/(2m +2)) andk # cosgr/(2m +1)) (n =3 4...).

]

5. Proof of the cased =t/ 4

In this section we will prove the main theorem in the casefef 7/4. For6 =
/4, we have

a=(r 1 B=p .= e™ /A jem /M (—1 +i)
“\o 1) TERALT N omifa omi/4 :

We setG =(A, B).

5.1. We setS :=ABAB 1A-1BA-1B-1ABAB1,
T :=ABAB 1A 1BA1B1AB-1A-1B andU :=ABAB1A—1BA-1B~1A.

Then we have
(i 2 (=i -2
s=(0 %) (0 7).

_ 0 1 ~ e~ Ti/4 efm'/4(1+l~)
U= (_1 0) and SB _<—ie_’”/4 omi/d .
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We easily see the following lemma and so omit the proof.

Lemma 5.1. Let A, B, S, T and U be the Mbius transformations represented
by the above matrices. Then the following hold
(i) A is a parabolic transformation with a fixed point.
(i) S is an elliptic transformation of order two with fixed points ndaoc.
(i) T is an elliptic transformation of order two with fixed points and oc.
(iv) U is an elliptic transformation of order two with fixed points nda—i.
(v) SA is an elliptic transformation of order two with fixed points1+2 )/2 and oc.
(vi) TA is an elliptic transformation of order two with fixed poinfs-1 — 2i)/2 and
0.
(vii) UA is an elliptic transformation of order three with fixed paint—1 ++/3i)/2
and (—1 — v/3i)/2.
(viii) Ut -(SB)™1- AB =1, where is the identity mapping.
(ix) T71-(SB)"t-B=1.
x) S.SB-B~t=1.
(X)) U-SB-A"1.B~1=].

We can easily see the following lemma.

Lemma 5.2. Let A, B, §, T and U be the Mbius transformations repre-
sented by the above matrices. L@t be the group generated bgdABa and G*
be the group generated by, S, T, U, B and SB : G = (A,B) and G* =
(A,S,T,U, B,SB). ThenG = G*.

5.2. We will prove (c) of the main theorem. The part is similar t@ @& [4]. Let
0 = n/4 andk = 1. We denote by/® and H® the upper half space and its closure,
respectively:H3 = {(z,1) e Cx R |t > 0} and H3 = {(z,1) e Cx R | t > O}.

We will define some side$; j( =1,2..,12) in H? as follows:

Fro={(et) € H® |x=-1/2-1<y <1 t >0 [P+2>1 [c—iP+2>
1 |z+il2+12 > 1},
Fp ={(z,t) € H3 | x =1/2,-1 <y <1 t >0 [z2+2>1 |z—il>+* >

1, |z+i|?+12 > 1},

F3:={(z.t) e H}| -1/2<x <0, y=1 t >0, |z—i2+12>1},
Fa={(z.t) e H}|0<x<1/2, y=1 >0, |z—i|2+2> 1},
F5::{(z,t)eﬁ3|—1/2§x§0,y =—1, t>0, [z+i]?+1*> > 1},
Fo:={(z.1) e H3|0<x <1/2, y=—1 1>0, |z+i?+12 > 1},
Fr={(z.1)e H}| -1/2<x <0, —1/2<y<1/2, t>0, |z2+2=1},
Fg:={(z.1) e H}|0<x<1/2, —1/2<y<1/2 >0, |z2+2=1},
Fo={(z,) e H3|0<x<1/2, —1<y<-1/2, t >0, |z+i|2+2=1},
Fio={(z,t) e H3| -1/2<x <0, 1/2<y<1, t>0, |z—i2+2=1},
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F

F3 Fy
Fio Fi
F1 F7 Fg
F11 Fy
Fs Fs
Fig. 5.1.

ey
e41 es2
€91 €93
€72 €82 €73
€101 €104
€61 €3 €62
€74 €71
€10,3 €92 €102
€83 €81
e51 ) €52
Fig. 5.2.

Fii={(z.1) € H}| -1/2<x <0, —1<y<-1/2, 1 >0, [¢+i]?+12=1},
Fiz:={(z,) e H3|0<x <1/2, 1/2<y <1, t>0, [z—iff+2=1]},

wherez =x +y , that isx

=Re( ) and

=lm( ).

Let P be the polyhedron inH® bounded by the above twelve siddg j (
1,2 ...,12). Then there are six side pairing transformatienssS 1 U ,B , d &8
of P as follows: F, = A(F1), F3 = S(Fy), Fs = T(Fs), F7 = U(Fg), F10 = B(Fy),
Fi12 = SB(F11) (see Fig. 5.1 and Fig. 5.3).

Next we denote the edges amg, j (

follows:

712,10,k =1 2 3 4) ofP as

e1=F3NFy; ex=FsNFe, e3=F7NFg; es1= F1NF3, eq2= F2N Fy;, es; = F1N Fs,
es; = o N Fg; eg1 = F1NF7, egp = Fo N Fg; e71 = FgN Fo, e72 = F1N F1g, e73 = F2N Fp,
e74 = F7NF11; eg1 = FeNFog, egx = F1oNF12, eg3 = F5sMF11; eg1 = F3MNFio, egr = FoMFyy,

eg3 = Fa N Fip; e101= F7 N Fig, e102= F2 N Fo, e103= F1 N Fi1, e104= Fg N Fip (see

Fig. 5.2).

Let §; =ale;) (j=1,2...,8) be the angles measured from insi@et ¢;. Then

it is easily seen that?l =m, b =7, 03 =7, 041 = Osp = 7T/2, Os1 = 055 = 7T/2,
061 = 962 = 7T/3, 971 = 074 = 27T/3, 972 = 073 = 7T/3, 081 = 933 = 7T/2, 982 = T,
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F F3

Fig. 5.3.

fg1 = Og3 = 7T/2, Ogp = m, 910‘1 = 910,4 = 271'/3, 910,2 = 910,3 = 7T/3. Thus we have
the fO”OWiI’ng 01 = 271'/2, 0, = 271'/2, 03 = 271'/2, Oa1+ Oa0 = 27T/2, 051 + 050 = 27T/2,
Oe1+0g2 = 271'/3, 071+ 072+ 073+6074 = 27T/1, Og1+0gx+0g3 = 27T/1, Og1+ 09+ 093 = 27T/1
and 0101+ 60102+ 0103+ 0104 = 210/ 1.

By Lemma 5.1 we can see the following. Sinege= S(e1) (resp.ez = T'(e2) and
e3 = Uf(ez)), we have thatS (resgl” and ) are the cycle transformationrs étesp.
e, and e3) and that all of the cycle transformations are elliptic ofl@r two. Since
eq2 = Alesr) and eqr = S(es2) (resp.esz = A(ess) andesy = T(es2); es2 = A(est)
and egy = U(es2)) We have thatSA (respl’A antd A ) are the cycle transformations
at e41 (resp.es; and eg;) and that the cycle transformations are elliptic of ordep tw
(resp. two and three). Sinaes = B(e71), e73 = Ale72), e7a = (SB) (e73) and e71 =
U~ *(e7s) (resp.egz = Blesa), es3 = (SB) (es2) and es1 = T *(esa); eo2 = B~ *(eqn),
egs = (SB)(eo2) and egy = S~ Y(eqs); e102 = B (e101), e103 = A" (e102), €104 =
(SB)(e10.3) andeg1 = U(e14) We have that/ —1-(SB)~1-A-B (resp.T~1.(SB)~1-B,
S71.SB-B71, U-SB-A"t.B™1) are the cycle transformations at; (resp.esy, eg1
andeio 1) and that all cycle transformations are the identity magpin

By the above we see that the conditions (1) through (5) in Tém@oE are
satisfied. The completeness condition (6) in Theorem E islyeahown by using
Ratcliffe [7, Theorem 11.1.2]. Thu&* is a Kleinian group of the first kind. By
Lemma 5.2,G is a Kleinian group of the first kind and so a Jgrgrergroup.

We can easily calculate the volume of the polyhedRononstructed above, and so
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we omit the calculations. O

5.3. We will prove thatGg, is not discrete in the case éf= /4 and \/§/2 <
k < 1. We have

a=(Y Y aaB =B, = ke /4 (k2T — e/ k €R
=lo 1 and by =br/ak = _jemi/4 ke™i/4 EER

We setG, =(A, By).
We setP, =B 'AB;B:AB,'. Then we have/ 4, P, ) 92k — 2|?. Thus 0<
J(A, P) < 1if and only if /2 < k < 3/2. We easily see that the grouy is

an elementary group fot with =1 and; is a non-elementary grfoupc with
1/2 <k <3/2 (k # 1). By Theorem A we can see tha& is a not discrete group for
k with v/3/2 < k < 1. O

6. Proof of the case off =t/ 6

In this section we will prove thaGy, is not discrete in the case ¢f= /6. We
have

4 1 1 4B =B ~ kem’/6 i(kZETri/6_e—7ri/6) R
“\o 1 and by -=br/6x = /8 ke™i/6 (k € R).

We setG; =(A, By).
We setE, :=AB; 'A~'B,A~'B,'AB,A~'ByAB,'. Then we have/ 4, E; ) =
| —1/2 —i(3v/3/2— 2k)]2. Thus 0< J(A, E;) < 1 if and only if v/3/2 < k < /3.
We note thatG, is a non-elementary group for Wwitf8/2 < k < 1. By Theo-
rem A we can see thaf, is not a discrete groupior witB/2 < k < 1. a

7. Proof of the cased =t/ 3

In this section we will prove thaGy, is not discrete in the case ¢f= /3. We
have

4 1 1 4B =B ~ kem’/S i(kZEﬂ'i/B _ e—Tri/3) R
- O 1 an k = 7T/3.k_ —ie’ri/?’ keﬂ.i/e ( € )

We setG, =(A, By).

We setF, =AB.A~'B ' AB AB; ' - AB;'A'B,.
Then we havel 4, F; ) 3(vV3k — 2) +i(k — v/3)% Thus 0< J(A, F;) < 1 if and
only if v3/2 <k < /3.

We note thatG, is a non-elementary group for Wwitf8/2 < k < 1. By Theo-
rem A we can see thal, is not a discrete groupior wifB/2 <k <1 . O
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8. Proof of the casefd =t/ 2

The main theorem (d) and (e) are proved by Sato-Yamada [9fhitnsection we
will prove that Gy is not discrete in the case éf= n/2. For6 = n/2, we have

(11 . _[(ik —(k®+1)
A= (O 1) and By ._Bﬂ-/z'k—(l ik ) (kER)

We setG, =(A, By).
We setS, =AB, 'ABy, O := ABAB. !, V;, := A71S,1A"10, 1. We can easily
calculateV; :

V= %2 —1 2k — 2ik3
T 20k %2 -1 )

We set

T_< 1 )1/2 1 —V1-#2
T\oviok? 1 Vitke

Then for 0< k < 1 we have

) O<k<1).

A* = T AT =

1 (2\/1—k2—1 1 )

V1 — k2 -1 2V1—-k2+1
and
. (2k% — 1) — 2ikv/1— k2 — 1 0
Vk* = TkaTk = .
0 (%% — 1)+ 2kvV1—k2—1

We set co$ = k. Thene?? = (2k?—1)+2ik/1— k? ande=%% = (2k*>—1)—2ikv/1 — k2.

Thus we have/ 4, V" ) A*, (V)") = |(—1 + cos 40)/(1 — cos D)|?. We have
that 0 < J(A, V) < 1 if and only if cosf/(2n — 1)) < k < cosfr/(2n +1)) k #
cost/2n) n =3 4...).

We note that ifk = cosf/2n) (n =3 4 ...), thenG, =(A, V") is an elementary
group. G, is a non-elementary group fbr with cos(2n — 1)) < k < cosfr/(2n +1))
andk # cos@r/2n) (n =3, 4 ...). By Theorem A, we can see th&t, is not a discrete
group for k with cosf/(2n — 1)) < k < cosfr/(2n + 1)) andk # cosgr/2n) (n =
3,4,...). O

9. Proof of the other cases

In this section we will see thaty; is not discrete in the case where<Q6 <
7/6, /6 < 0 < /b, /4 <0 <73, 71/3<0 <72, and/3/2 < k < 1. The part
follows from the following proposition.
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Proposition (Li-Oichi-Sato [4]). Let Gy, = (A, By) be the group generated by

Aand Bg,. If0< 0 <7/6, m/6<0<7/4 m/4<0<7/3, m/3 <0< 72, then
Gox = (A, Bgy) is not a discrete group fok € R. O

(1]
(2]
(3]

(4]
(5]

(6]
(7]

(8]

(9]
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