Matthey, M.
Osaka J. Math.
41 (2004), 485-490

SOME HOMOTOPY OF THE UNITARY GROUPS DETECTED
BY THE K-THEORY OF 2-CELL COMPLEXES

MicHeL MATTHEY
(Received May 2, 2002)

1. Introduction

Let k > 1 andm > 2k + 1. Consider the real Hopf-Whitehead -homomorphism

J: Ta—1(SO2n ))— Tom+a—1(S?™). Since the quotient SPSO(2n ) is 21 -connected,
by real Bott periodicity, we haversy_1(SO(2n)) = 7g_1(SO) = Z. Fors > m,

BU and BU(s) admit CW-complex structures with the samen(2 + 1)-skeletso,
we have isomorphismsSp”, BU(s)] = [$2", BU] = K9(S2") = Z, using complex
Bott periodicity. By the Freudenthal Suspension Theorehere is an isomorphism
Tom+a—1(S2") w31 (We refer to p. 480 in [12], p. 216 in [8], Theorem I in [2],
and Theorem VI.2.10 in [4] for the details.) We prove the daling result:

Theorem 1.1. Fork >1,m >2k+1landm < s < m+2k, let jy_1 € 75 _,
denote the image of a generator @f;_1(SO) under theJ -homomorphisnand letxy,
be the Bott generator of(O(Sz'”). Then the compositiony, o j4_1 represents a non-
zero element inry,+4.—1(BU(s)), whose order is given by

By, . .
denom<ﬂ) , if kis even
Bk 1 Bk . .
denom(ﬂ> or > denom(ﬂ) , if kis odd

where B, is thek -th Bernoulli number. Whén is odd and is equaht® 2k — 1,
the order Ofom o j4k—l is (1/2) denom(Bk/(4k)).

Unfortunately, we were unable to determine in full gengéyathe precise order
when k is odd. Notice that for giveh and , the order might depend (neither
could we settle this question.)

We single out that the element,, o j4—1 Of m,+4—1(BU(s)) can be written down
explicitly by means of the/ -homomorphism and of the real amel tomplex Bott
periodicity isomorphisms. Let us now give some numericaneples, where the indi-
cated homotopy groups of the GrassmanniBhin) can for instance be found either

Research partially supported by Swiss National Fund foer8ific Research.



486 M. MATTHEY

in Mimura’s survey article [9] or in Lundell’s tables [6].

Exavpies 1.2. i) Fork =1 andn = 3, denoifB1/4) = 24 holds and we can
take s = 3 or 4; the corresponding groups argBU(3)) =~ Z/12 andmg(BU(4)) =
Z/24. We see thats o j3 is a generator of the former, but only generates a subgroup
of index 2 in the latter. Changinge  yields in each case an aedrokorder 12 or 24
in the first indicated group and of order 12 in the second one:

m=4:
7 7 7 7 7
m11(BU(4)) = SP5,%9% m11(BU(5)) = 2% 5
m=5:
Z Z Z Z
m13(BU(5)) = 75 ® T m13(BU(6)) = 12.°® T

i) Since denon(B,/8) =24, fork =2 andm =5, we get an element of order 24 in
the groups

| N

m7(BU(5)) =

‘NI\HN

S »
%)
ol N
~NIN

m17(BU(6)) =

H
‘N-b
i

m7(BU(7)) =

ol N o N
~NN NN

7675 "

Z 7 7
m2(BU() = 1755® £ @ -

[&)]

We observe that even fdr even, the elemept,o ji_1 does generallyhot generate
a direct summand imrg;+1(BU(2k + 1)).

iii) In Theorem 1.1, the case of most interest for> 1 fixed is whenm and are
as small as possible, namely s= % 2 +1: it predicts that, o ji_1 is of order

denom(By/4k) (or possibly half of it fork odd) in the groupmsc+1(BU(2k + 1)). As

an illustration, fork =6, we get the elemeris o jo3 of order 65520 inm49(BU(13)).

Here is a brief outline of the content of the paper. In Sectprwe study the
K-theory of 2-cell complexes with even dimensional cellsy $a = 2" U, ¢?"*2,
In particular, we determine the Chern classes of the elesneh&°(X) in terms of
the Adamse -invariant of the attaching mgp . The connectioth Wie homotopy of
BU(n) is obtained by studying the set of bundles ovér that iesto a given mul-
tiple of the Bott generatox,, over the spheres?”. Section 3 contains the proof of
Theorem 1.1.
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some improvements.

2. On the K-theory of 2-cell complexes

In this section, we recall some basic and well-known properof the K -theory
of 2-cell complexes, in order to establish a key ingrediétroposition 2.2 below) for
the proof of Theorem 1.1.

Let f: §¥"*2-1 __, §27 pe a pointed map witn [ > 1, and letX be the
mapping cone off , i.e. the 2-cell comple$¢” U, ¢2"*2. Denote by. the inclusion
of 2" in X, and letp :X — X/S?" ~ §2"*Z pe the collapsing map; they fit in
the cofibre sequenc?” — X — $2"*2 For a sphereS%, we designate the Bott
generator ofI~((S2‘1) by xz,. Taking & € (¢*)~(x2,) andn = p*(xzm+2), We get

KX)2ZOZ-£SZ-n= T2

Notice that¢ is uniquely determined up to addition of an integral muétigf . Sim-
ilarly, the integral cohomology ok is given by

H'X;ZL)=Z®Z -y® L -z =75,

with y corresponding via* to a generator of42"(52"; Z), andz corresponding via
p* to a generator off2"*2(52"*2; 7). we use the same notation for the rational co-
homology of X . The ring structure is given by =€ =0 andy? = H(f)-z, where
H(f) denotes the Hopf invariant off[ & m4,_1(S?") whenm =1[, andH { ) := 0
whenm # [. The Chern character is given lyr §)(= y + A -z andch @) = z, for
some rational numbek. Because of the different possible choices {orthe rational
number\ is only determined modulo 1, i.e. it represents a unique efg(f ) in the
group Q/Z, called the Adams -invariant of (also denoted &y f)). It only de-
pends on the homotopy class ¢f . Without loss of generality,can considee f )
as a uniquely determined element@f] —1/2, 1/2]. (See [1], pp. 321-323 for some
more details on the -invariant.) Sincé is an injective rirggmomorphism X being
torsion-free), the product ik (X) is given by &2 = H(f)-n, &n =0 andn? = 0. We
would like to compute the Chern classes find n. They are closely related to the
Chern character, as we now recall. For a connected finite GWptex Y , we denote
by chy the component otk inH?(Y; Q). One haschy = (1/kY)si(c1, ..., cx) (for

k > 1), where thes; s are the Newton polynomials. They are definedhb relation

se(on, ... 0%) = tf + - +1tf, with o; the j-th elementary symmetric polynomial in
f, ..., (see for example [5], p. 92). Newton’s formula reads
Sk — C1Sk—1 t CcoSj_p — -+ - + (—1)kilck_1sl + (—1)kk - =0

(seeloc. cit). Coming back toX , it is straightforward to check that

en(€) = (-1 Hm — 1)l y and ¢ @) = 1+ (1) Yom+1 - 1)1z,
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Clearly, for j & {m, m+I} and 1< k < m—1, one has the equalitieg, {)(=m!-y and
cj(&) = sk (§) = 0. In Newton’s formula fors,+;, the only possible nonzero contributions
are 1y (m+{)c,+ and, itm =1, the product{1)"c,,s,. After a short computation,
we get

o§) =1+ ()" Hm - 1)y

+ (M CH()+ (0" Ym + 1 — 1) -e(f)) "2z

Now, for a, b € Z, we find

caé+bn) = c(€)* - c(n)’
=1+(=0)""Ym—Dla-y
2
+ (@az CH(f) + (1" Y m +1— 1) a - e(f) +b)) $Z.

Recall that for a connected finite CW-compléx , theometric dimensiomf a
stable bundley € K(Y) = [¥, BU] is the smallest integer > 0 such thatd lifts, up
to homotopy, to a may — BU(n), in other words, such that yecZ @ I~((Y) can
be represented by a complex -bundle o¥er ; we denote it by ). We also
define c-dim@) as the smallest positive integer such thatd) £ 0 in H?(y; 7) for
all j > i. Clearly, c-dim{)) < g-dim(@). (The reader may refer to [7] for details on
the functions g-dim and c-dim.)

Now, suppose that < m (as a consequence of whigd f ( ) = 0 holds). Fix an
integera and leué +bn € I~((X), whereb is considered as an unknown integral pa-
rameter; lets satisfyn < s <m+[— 1. Denote byi; the inclusion of W( ) in U, and
consider the following diagram representing a lifting antieasion problem:

S2m+2[71
I (aerl)of
§2n —=> BU(s)
l 32 7 l
¢ Bi
X g BU

Clearly, there exists, up to homotopy, an extensiona®f, to X if and only if
the composition dxz,) o f is zero inma,+2-1(BU(s)). In this case, the composition
Bijoa € I~((X) is a stable vector bundlé over X such that*(¢) = axz, and with
g-dim() < s. It follows that there exists an integér (our parameter 'ghsthat
¢ =a¢+bnand c-dim() < s < m+1 — 1, and therefore,,;({) = 0. We have
thus proved that

(axzm) o f =0 € mop+2-1(BU(s)) = Ib € Z s.t. curi(a& +bn) = 0.
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We call this condition &). Since H (f ) = 0, the above computation of the Chern
classes forX shows that

Ccm+1(@&+bn)=0<a-e(f)+b=0.

This means that the denominator off (€)QN]—1/2, 1/2], expressed in lowest terms,
must dividea . By Theorem 41.5 in Steenrod [11], we have

g-dim@¢ +bn) < m+1 < cpy(ak +bn) =0.

So, fors =m +I — 1, condition &) is an equivalence. Now, the following lemma
provides the necessary control, with respectito , of the efn@x,,) o f.

Lemma 2.1. For [ <m and fora € Z, we have
(axom) o f =a - (x2n o f) € wom+a—1(BU(s)).

Proof. For! < m, the Freudenthal Suspension Theorem (see [4], Theo-
rem VI.2.10) implies thatf is a suspension and the lemmayalldirectly from The-
orem VI.2.3 in [4]. ]

The groupma,+2—1(BU(s)) is finite for 1< s < m+1[ — 1, as is well-known (see
for example Lemma 4.2 in [7] for a proof). We now collect thesuks obtained so far
in a proposition.

Proposition 2.2. For 1<1<m—1,let f: §2"*2=1 _, §2" pe a pointed map
let x,, be the Bott generator ok (S2") = [$2", BU(s)], m < s < m+]— 1. Then the
compositionx,, o f represents a class ifr,+2—1(BU(s)), whose order is a multiple
of denomé (f )),the denominator of the Adams -invarianff) expressed in lowest
terms. Fors =m +1 — 1, the order ofx,, o f is preciselydenomeé (f ))

3. The proof of Theorem 1.1

We apply Proposition 2.2 witlf  Fg4_1: S2"*%-1 — §2" and with/ = Z . By
Adams [1] and Quillen [10], the image of is a direct summandrif+a_1(S%")
and is of order exactly;, := deno(B/4k) (see also Switzer [12], p. 488). This
means thatjs_1 is of order M, and generates a direct summand. On the other hand,
by Theorem 1 of Dyer [3], the Adams -invariaatjs(_1) (expressed in lowest terms)
has denominaton, /b, whereb, is equal to 1 (resp. 2) féar even (resp. odd). (This
result is also a consequence of Adams [1], Proposition 7rid theorem 7.16.) The
proof is complete. O
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