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1. Introduction

Shellability is a fundamental and important concept for $hedy of combinatorics
of simplicial complexes. After the proof of the Upper Bounarizcture for convex
polytopes, due to McMullen ([11]), many researchers stidy toncept in many fields
of combinatorics. It is known that every shellable pseuduifold is either a ball or a
sphere. Furthermore in dimension 2, if a pseudomanifold tsalkh or a sphere, it is
always shellable. On the other hand, many examples of nbableeballs and spheres
are known in dimension more than 2. Many related examplesapin [16].

Constructibility can be viewed as a relaxation of shelighilThis notion appears
in different combinatorial contexts in [1], [4], and [14].h& same as shellability, it
can be shown that every constructible pseudomanifold ieeid ball or a sphere, and
for the converse, examples of nonconstructible balls amgrgs are studied in dimen-
sion more than 2 in [5], [6], [8] and [9]. As is mentioned in [1donstructibility is
strictly weaker than shellability. In fact, it is known thtte examples of nonshellable
3-balls which are presented by Rudin, Grinbaum, and Zieglgl3], [4], and [17] re-
spectively are all constructible ([6]). On the other hartgré are still no examples of
nonshellable but constructible 3-spheres. Then it rousenerest whether there exists
a nonshellable but constructible 3-sphere or not.

To obtain a 3-sphere, it is a natural way to take a cone overbthendary of
some 3-ball. So it is a natural approach for exploring théediéhce between shellabil-
ity and constructibility of 3-spheres to study cones over bloundaries of nonshellable
but constructible 3-balls. Recently Hachimori constrdcghellings of cones over the
boundaries of above nonshellable but constructible FHajl using the computer pro-
gram which he developed ([7]). In this paper we will considetheoretical explanation
for the shellings of the spheres, and study more compliceéseés. Concretely we will
prove the following theorem.

Theorem 3.3. Let B1, B, ..., B, be constructible3-balls which satisfy the fol-
lowing condition each B; can be decomposed into t8dalls C; and C/ such that
eachC; andC/ has a shelling starting with an arbitrary facet and that N C/ is a
2-ball. Consider a boundary connected sumBf Bo, ..., B, which is homeomorphic
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to a 3-ball such that eachC; (C/) is glued at most one other baB; together. Then
a cone over the boundary of the boundary connected sum itaBleel

The condition of this theorem seems very strict. Howeveg, ¢ikamples of non-
shellable but constructible 3-balls mentioned above dikfsathe condition. Further-
more we will prove the following theorem.

Theorem 4.1. Let By, Bo, ..., B, be constructible3-balls which satisfy the fol-
lowing condition each B; can be decomposed into t®dalls C; and C/ such that
eachC; andC] has a shelling starting with an arbitrary facet and thé&t N C/ is a
2-ball and that there are no inner edges 8t; N 9B; and dC! N dB; of which ver-
tices are both contained i®C; N 9C;. Consider any boundary connected sumBaf
By, ..., B, which is homeomorphic to 8-ball. Then a cone over the boundary of the
boundary connected sum is shellable.

It seems that the examples stated in Section 2 do not sakisfgdndition of this
theorem. But later we will see another example which sasidgfie condition.

In Section 2, we define notations, and see some examples.chivoi$e, we con-
sider shellings of some easy cases and prove Theorem 3.3edtio 4, we prove
Theorem 4.1.

Remark. There exists an easy example of a 3-sphere as a pseudasainptim-
plex which is nonshellable but constructible. Consider aglr's ball, that will be
stated in the next section precisely, and its mirror symyné&itue them together along
the corresponding 2-faces. Then the obtained pseudosialptiomplex is nonshellable
but constructible. See [10] for the definition of the pseumpdicial complex. Also
see [15].

2. Definitions and examples

A simplicial complexC is a finite set of simplices in some Edeln space such
that (1) if o € C, all the faces ofs (including the empty set) are contained ¢h
and (2) ifo, ¢’ € C, theno N ¢’ is a face of bothr and ¢’. The 0-dimensional sim-
plices in C are theverticesand the 1-dimensional simplices are tbdgesof C. The
inclusion-maximum faces are callddcets The dimension ofC is the largest dimen-
sion of facets. Ad-complexis short for ad -dimensional simplicial complex. If all the
facets of C have the same dimension, thén is caflece In particular, the simpli-
cial complex which has only the empty set as a face is a pureplesiof dimension
—1, with a single facet. For a set of simplic€¥ C C, the simplicial complexC’
consists of the simplices if” together with all their faces. The unid@| of the sim-
plices of C is called theunderlying spaceof C. If |C| is homeomorphic to a man-
ifold M, then C is atriangulation of M. If C is a triangulation of ad -ball or of
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a d-sphere, therC  will be simply called dball or a d-sphere For any triangula-
tion C of a manifold, theboundary complexdC is the collection of all simplices of
C which lie on the boundary of the manifold. The interior @ht tlee setC \ OC.
A d-dimensional pure simplicial complex istrongly connectedf for any two of its
facets F andF’, there is a sequence of facets K, F, ..., F, = F’ such that
F; N F;41 is a face of dimension/ — 1, for 1 < i < k — 1. If a d-dimension pure
simplicial complex is strongly connected and eadh-(1)-dimensional face belongs to
at most two facets, then it is called gseudomanifoldEvery triangulation of a con-
nected manifold is a pseudomanifold. For a simplicial caerpl’ and a facer, the
star neighborhoodstag o is the subcomplex o€ which contains all faces of facets of
C containingo. For a simplexs and a vertex ¢ o, thejoin v«o is a simplex whose
vertices are those of plus the extra vertex . The joinx C of a simplicial complex
C with a new vertexv is defined asxC ={v7:7¢€ C}UC. For some simplicial
complexC , we consider aone over the boundanthat is, by formingC U (v * 0C).
v* JC is called thecone partof C U (v * 9C).

DeriniTion. A pure d -dimensional simplicial complex ghellableif its facets can
be orderedFy, F», ..., F, so that({J/;' F;) N'F; is a pure ¢ — 1)-complex for 2<
Jj <t. This ordering of the facets is calledshelling

In the followings, we also use another definition of shellghithat is, a pure
d-dimensional simplicial complexX’ is shellable if () is a piex, or (2) there ex-
ist a d -dimensional simplexA and -dimensional shellable soimlex C’ such that
C =AUC’ and thatANC’ is a @ — 1)-dimensional shellable complex. We can see
this definition is equivalent to the definition above. We dhié shelling order of the
first definition theregular order and of the second definition threverse order There
will be the cases where the orders are not mentioned. In teesceve will consider
the regular order.

DeriniTioN. A pure d -dimensional simplicial comple®  ionstructibleif
(1) C is a simplex, or
(2) there existd -dimensional constructible subcompleggsand C, such thatC =
C1UCy and thatC1 N C; is a (@ — 1)-dimensional constructible simplicial complex.

Now we will see some examples. The following examples arenafishellable
3-balls. Furthermore the first three examples are showedtrmamtible in [6]. In fact,
we can decompose each 3-ball into two shellable 3-b@llsand C», whereC; is a
simplicial complex specified at the lists below, and also @ checkC; N C; is a
2-ball.
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ExampLE 1. The first example which is presented by Ziegler has 10 ocesti
and 21 facets ([17]). The following list is all facets of thallb

C1{17234} {1,2,5,6} {2v3v677}{471v&5} {175769} {1v6v29}
{1,249 {1489 {1859 {2560 {2670 {27.3 0
{2310 {2150

C;:{3478 (36783248 {3268 {4578 {4137
(4157

ExampLE 2. The second example which is presented by Rudin has l4ceerti
and 41 facets ([13]). The following list is all facets of thallb

C1:{3.47 1% {34712 {4711 12 {4811 12 {56 9 13
{56,914 {6,913 14 {6,10 13 14 {7,11 12 13 {3,7, 12 13
{3,912 13 {91314 1% {59 14 1% {57 14 1% {1,3 9 13
{1,3713 {1,711, 13 {157 1% {159 1% {1,911 13

C,: {45812 {45813 {581213 {59 1213 {63 10Q 14
{6,310 13 {3,10 14 13 {3,714 1 {8 12 13 14 {4,8 13 14
{4,10 13 14 {1014 11 12 {6,10 11 12 {6,8 11 12 {24 1Q 14
{24814 {2,81214 {26812 {2,610 12 {210 12 14
{11, 12 13 14

ExampLe 3. The third example which is presented by Griinbaum has tidcee
and 29 facets. This example appears in [3] first, but the fégtein it has a typo. The
correct list appears in [6]. The following list is all facet$ the ball.

C;: {1,237 {1248 {1278 {1357 {14810
{1,5,6,13 {1,57 13 {1,611 13 {1,7,8 10 {1, 7 11 13
{2379 {2789 {3579 {57913 {7.89 13

C;: {2468 {25614 {251214 {26814 {2812 14
{4,6,8 10 {56 13 14 {5 12 13 14 {6,8 10 14 {6, 11 13 14
{7,810 14 {7,813 14 {7,11 13 14 {8,12 13 14

Remark. (1) Example 1, 2 and 3 can be realizedRi. See [17], [13], and [6]
respectively. (2) Eaclt; in Example 1, 2 and 3 has a shellingirsgawith an arbi-
trary facet. We will use this property in the followings.

The next example is classically known as a nonshellablell3dbds also proved
nonconstructible in [6].

ExampLE 4. Consider a pile of cubes with a plugged knotted hole, aizhdu-
late each cube so that the edges of the cubes are also the @&fdtes triangulation.
This example is called “Furch’s knotted hole ball”. For matetails, see [6] and [17].
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A cone over the boundary of the 3-ball of Example 4 is showedcanstructible
in [9]. In the next section, we will see that cones over theraaury of the 3-balls
which are stated in Example 1, 2 and 3 are all shellable.

3. Unions of shellable 3-balls and cones over their boundas

The following terminology was defined by Danaraj and Kleee $§ and [16].

Derinimion. A simplicial complex isextendably shellablef for every shellable
subcomplex of the same dimension there is a shelling of thelevtomplex that shells
the subcomplex first.

For 2-balls and 2-spheres, the following property is ctzdi known ([12], [4]).
Lemma 3.1. Every2-sphere and2-ball is extendably shellable.

From this lemma, we can see that for every 2-ball there is dirshestarting with
an arbitrary facet, and for every 2-sphere there is a slgeltarting with an arbitrary
facet and ending with another arbitrary facet.

Theorem 3.2. Let B be a constructible3-ball which can be decomposed into
two shellable3-balls C and C’ such thatC N C’ is a 2-ball. Then a cone over the
boundary of B is shellable.

Proof. Letv be a cone point. We will remove facets in turn andstct the
reverse order of a shelling @ U (v x 9B) concretely.

First we remove the facets af  along the regular order of alisgebf C. At
each step, the union of the removed facets is a 3-ball so figatemplement is also
a 3-ball and the intersection of them is a 2-sphere. The siraplcomplexdB is a
2-sphere, then there is a shelling @B which shellsoB N oC first from Lemma 3.1.
So remove the facets af « 9B along the regular order of the shelling. The remained
subcomplex isC’. Then remove the facets @’ along the reverse order of a shelling
of C’. At last we obtain the reverse order of a shelling®t) (v« dB) U C’. O

From this theorem, we can see cones over the boundaries &ltlaéls which are
stated in Example 1, 2 and 3 are all shellable. On the othed,hae can construct
constructible 3-balls which do not satisfy the condition Tdfeorem 3.2. To see this,
we define an operation as the following.

DeriniTion.  Let C1, Co be 3-dimensional simplicial complexes with boundaries.
Let §; be a 2-face oDC;. Consider an isomorphic map from to J, and glueC; and
C, together along the map. The simplicial complex thus obthiisecalled aboundary
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connected sunof C; and Cs.

A boundary connected sum of some two 3-balls which are stmtdeixample 1,
2 and 3 is also a constructible 3-ball. It is obvious that theaB cannot be decom-
posed into two shellable 3-balls such that the intersectibthe decomposed 3-balls
is shellable. But for some simple cases, we can prove thewolh theorem.

Theorem 3.3. Let Bi, B»,..., B, be constructible3-balls which satisfy the fol-
lowing condition each B; can be decomposed into t®dalls C; and C/ such that
eachC; andC] has a shelling starting with an arbitrary facet and th&t N C/ is a
2-ball. Consider a boundary connected sumBif B, ..., B, which is homeomorphic
to a 3-ball such that eachC; (C]) is glued at most one other baB; together. Then
a cone over the boundary of the boundary connected sum itableel

Proof. Letv be a cone point. We may reorder the index so Hhat Rpdare
glued together at 2-faces @f and C;+q for 1< <n —1.

First we remove facets of’; along the regular order of a shelling ¢f;. Let §;
be C{NC,. Consider a shelling 0§C; which shellsoC1N9dB; first and ends withj;.
Remove the facets af«(9B; \ d1) along the regular order of the shelling. Furthermore
remove the facets of; along the reverse order of a shelling starting with the facet
containingds.

Continuously we remove the facets the same as above. Theraweemove all
facets and construct a shelling the same as Theorem 3.2. O

4. More complicated cases

In this section, we will study more complicated cases. Foudase S , a 1-face
of S is called aninner edgeif it is not contained inds.

Theorem 4.1. Let By, B>, ..., B, be constructible3-balls which satisfy the fol-
lowing condition each B; can be decomposed into t®dalls C; and C/ such that
eachC; andC/ has a shelling starting with an arbitrary facet and th&t N C/ is a
2-ball and that there are no inner edges 8t; N 9B; and 9C; N dB; of which ver-
tices are both contained i@C; N 9C;. Consider any boundary connected sumpBaf
By, ..., B, which is homeomorphic to &ball. Then a cone over the boundary of the
boundary connected sum is shellable.

Remark. Take two 3-balls which satisfy the condition of Theorem, 3a8d con-
sider a boundary connected sum of those 3-balls. We can seeeaaver the bound-
ary of the boundary connected sum as a connected sum of twes aaer the bound-
aries of those 3-balls. (We will see this in the proof of Lem#hd@ again.) So if the
statement “any shellable 3-sphere has a shelling startittgam arbitrary facet” should
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Fig. 1. The decomposition of the boundary of the 3-ball whishstated in Exam-
ple 5.

be available, any 3-sphere which is a connected sum of twdlable 3-spheres is

always shellable and thus Theorem 4.1 follows immediat&lysimilar statement for

constructible 3-spheres is proved in [9, Theorem 4]. Alse g& added comments of
the theorem.

There is an example which satisfies the condition of Theoreln Bhis example
is also presented by Ziegler. In [17], Example 1 is consediddy modifying this ex-
ample.

ExampLE 5. This 3-ball is also nonshellable but constructible. Is H2 vertices
and 25 facets. The following list is all facets of the 3-ball.

C1:{1,234 {1,485 {3478 {1L249 {1489 {1589
3,78 1% {3,4,8 11 {2,3 4 11 {1,3 4 12 {1,4 5 12 {4,5 8 12
{47812 {3,4.7. 13

C2{1’256} {2’356’7} {1’556’9} {1’6529} {2’5’6’1(}{2’6’7’1(}
{23710 {1,2310 {12510 {23 6 11 {3,6 7 11

This 3-ball can be decomposed into two shellable 3-b@llsand C, such thatC; N C»

is a 2-ball the same as Example 1, 2 and 3. Cet (he& C,. Fig. 1 specifiedC1 N

0C and 9C,NAJC. We can check this example satisfies the condition of Theatem
To prove the main theorem, we prepare some lemmas.
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Fig. 2. Constructions of;

Lemma 4.2. Let A be a simplicial complex which is homeomorphic to an an-
nulus. LetdA; and 0A, be the boundary components af . Suppose that there are
no inner edges of which vertices are both contained#y or JA,. Then there is a
subcomplexxz ofA which is homeomorphic t®dall such that eachz N 0A; is a
1-face (Fig. 2a)

Proof. In the followings, we sefA; above anddA, below as Fig. 2, and de-
termine the right and the left directions. L&t be a simplehpahich connects)A;
and 0A,. We will constructX alongP . Lebq, vy, ..., v, be vertices onP ordered
from vy =0A1N P to v, =0A,N P. Fori > 3, if somewv; is connected tOA; by an
edge, we take the largest number of such and exchapder v;. Also choose the
leftmost point which is connected tag, by an edge, and exchange for the point.
Similarly we improvev,_1 and v, .

The 2-ball stag v; is divided by the 1-ball star; . Take a subcempf stay v;
which contains all faces which belong to the left side of star and denote it by
;. We construct the uniotljf.‘:1 %; in turn, and denote the vertices contained ¥)
¥i_1) \ starp v; byw;; which are ordered from the point closedd,. If each =; N
P coincides with starv; , the uniofJ_; ; satisfies the assertion. So we seg in
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lexicographically order and assume that some coincidels somev, first. There
are the following three cases.

Case 1. w;; coincides withv; such that > i and that the simple closed curve
{vi, vi+1, - . ., Uk, v; } is null-homotopic inA (Fig. 2b). In this case, we take a newhpat
as P with exchanging the subcompléx;, vi+1, ..., v¢} for the subcompleXu;, vy }.

Case 2. wj;; coincides withv, such that > i and that the simple closed curve
{vi, Vi+1, - - -, Uk, v; } IS not null-homotopic inA  (Fig. 2c). In this case, we take a new
path P with exchanging the subcompléx;, vi+1, ..., vc } for the subcompleXv;, vy }.

Case 3. wj;; coincides withv;, such that < i and that the simple closed curve
{vk, Vk+1, - - -, Ui, v} IS not null-homotopic inA  (Fig. 2d). In this case, we take a
new path P with exchanging the subcompléy, vi+1, ..., v;} for the subcomplex
{w, v;}. Notice thatX; which we take newly never contains a vertex ef shbcom-
plex {vi, ..., vu_2} if k > 2. Then after we take the new,; , the above two cases
may occur but this case does not occur again.

We can proceed the index in the first two cases and in the tlaisé,c¢hen the
construction is terminated after finite steps|Jf-; =; is a 2-ball, we adoptJ_; =; as
. If UL, % is not a 2-ball, we fill up the holes which are bounded by eddes o
(U= =) \ (P UDALUDAy). Then we obtain a 2-balE . From the improvement of
the pathP and the condition that there are no inner edges afhmrertices are both
contained in0A; or 0A», only one facet of contain N9JA; (i =1, 2). Thusz N
0A; (i =1,2)is a 1-face. At last we obtain a 2-ball which satisfies #ssertion.

]

Lemma 4.3. Let D be a2-ball such that there are no inner edges of which ver-
tices are both contained i0D. Let$ be a facet ofD such thatndD is empty and
e be al-face ofd. Then there is a subcompl&2 &f  which is homeomorphic to a
2-ball such thatx N 9D is a 1-face and thatz N4 is a 1-ball containinge .

Proof. In the followings, we sef above andD below so that we can determine
the right and the left directions the same as Lemma 4.2.

Let v; be a vertex of . First we assume that there is a path which conneand
vertices ofoD. Furthermore we assume that belongs to the left side;ofConsider
the leftmost edge connecting and 9D and denote it byf . Leb, be the vertex of
oD incident to f . Consider the union of the faces of Htghy U star; 5 va which be-
longs to the left side off and denote it . If ' U is a 2-ball, T’ satisfies the
condition of . If X’ U § is not a 2-ball, the union of the subcomplex @&’ and
of 96 bound a 2-ball inD\ (6 UX’) (Fig. 3). ThenX’ and the bounded disk form
a 2-ball which satisfies the condition & . In the case whére lorgs to the right
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0D

K%

Fig. 3. An example of the case wheB& U § is not a 2-ball.

side of v1, we can discuss the same as above.

Let w be the vertex opposite ®© am. Consider the case where there are edges
connectingw and a vertex @D, and no edges connecting the verticeseof and of
OD. Let ¢’ be the 1-face of which belongs to the left side ab . We can construct a
2-ball X’ such thatx’ Nnd = ¢’ and thatx’ NdD and X' N9 are 1-faces the same as
above. Letv; be X' Ne. If X' Ustar5v; is a 2-ball, we adopt’ Ustarzvy asx.

If X" U stat5v;1 is not a 2-ball, we fill up the holes the same as Lemma 4.2. Then
we obtain a 2-ball which satisfies the condition Bf

Consider the case where there are no edges conneddn@gnd OD. From
Lemma 4.2, we can construct a 2-ball such thatz’NdD and ' N d§ are 1-faces.
Assume thatz’ N 9§ is note. If stamvl UX’ is a 2-ball, we adop&’ U stam V1
as ¥ . Consider the case wheE U stalm vy is not a 2-ball. Letv; beenN X/, Py
be a component ofX’ \ (§ U D) containingv, and P, be another component. If no
vertices of staﬁwvl coincide with vertices ofP,, we fill up the holes. If some
vertices of sta-Derl coincide with vertices ofP,, we adoptP, as P and con-
struct ¥’ in the right side ofP again. After all we obtain a 2-ball . U

Lemma 4.4. Let D be a2-ball such that there are no inner edges of which ver-
tices are both contained iAD. Let § be a facet ofD such thatndD is not empty
and e be al-face ofd. Then there is a subcompl& ©f  which is homeomorphic to
a 2-ball or a 1-ball such thatx NoD is a 1-face and that N is a 1-ball containing
e.

Proof. Consider the case whef N § is a vertex which is not contained n
(Fig. 4a). In this case, we can construct a 2-ball the sameeasmia 4.3. Notice that
the constructed 2-balE  satisfiés N ¢ = e since there are no inner edges of which
vertices are both contained iD.

Consider the case whei@D N § is a vertex which is contained ia  (Fig. 4b).
Let v be the vertex. The simplicial complex %ng can be seen as the union of two
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oD oD oD

/7

(@) (b) (©)
Fig. 4. Examples of balls which satisfies the condition of bhean4.5.

2-balls such that the intersection of them is only . Then ohthe 2-balls containing
e satisfies the condition oE

Finally we consider the case whefd N is e (Fig. 4c). In this caseg satisfies
the condition ofX . ]

Lemma 4.5. Let D be a2-ball such that there are no inner edges of which ver-
tices are both contained iAD. Let § be a facet ofD . LetD’ be a subcomplex ab
which is homeomorphic to @-ball such thatD’ N § is a 1-face and thatD’ N 9D is
a l1-ball. Then there is a subcomplex &f which is homeomorphic to &-ball such
that XN oD and £ N§ are 1-faces.

Proof. Consider a component @D’ \ (06 U9OD) as a path and construct a
2-ball the same as Lemma 4.2. Then we obtain a 2-ball whidkfiest the condition
of Z. [l

We will prove Theorem 4.1 by induction. The following lemng&the initial state
of the induction and we will proceed the induction by Lemma. 4.

Lemma 4.6. Let B be a constructibleg-ball which can be decomposed into two
shellable3-balls B; and B, such that eactB; has a shelling starting with an arbitrary
facet and thatB; N B, is a 2-ball. Then a cone over the boundary Bf has a shelling
ending with an arbitrary facet of the cone part.

Proof. Letv be a cone point. We will remove facets o#@B)U B in turn and
construct the reverse order of a shelling concretely. Aet sbme facet ofv x IB.
There is a facetA’ of B such thatA N A’ is a 2-face ofdB. We may assume that
A’ belongs toB;. There is a shelling ofB; starting with A’. Then we removeA at
first and continuously remove facets 8f along the regular order of the shelling. At
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each step, the union of the removed facets is a 3-ball bedaesetersection of the
removed subcomplex contained iy and A is alwaysA N A’. So we can remove the
facets of B; U A. Next consider a shelling o®B which starts with the facen N A’
and shellsoBNoB; first. Remove the facets @b =« 9B) \ A along the regular order of
the shelling. Then the remainder is onBg. We remove facets oB, along the reverse
order of a shelling ofB,. At last we obtain the reverse order of a shelling o¢@dB)U
B which satisfies the assertion. O

Lemma 4.7. Let B be a3-ball such that a cone over the boundary 8f has

a shelling ending with some facet of the cone part. Bétbe a constructible3-ball
which satisfies the following conditioifl) B’ can be decomposed into tvsballs B}
and B; such that eachB; has a shelling starting with an arbitrary facet and th&iN

By is a 2-ball, (2) there are no inner edges ofiB; N 9B’ and 0B, N OB’ of which
vertices are both contained iiB; N 9B;. Consider any boundary connected sumpBof
and B’. Then a cone over the boundary of the boundary connected ssna Ishelling
ending with some facet of the cone part.

Proof. Consider some boundary connected sumBof  Ahdand denote it by
BhB’. We consider cones over the boundariesBof B/, and BB’ with cone points
v, v/, andw, respectively. Let and ¢’ be the 2-faces oBB and 9B’ such thatB
and B’ are glued together ai and ¢’, and letA andA’ be the facets ofv x OB
and v’ x OB’ which satisfyANdB = 4§ and A’ N OB’ = §. RemoveA andA’ from
(v+dB)UB and @' *0B’)U B’, and glue them together along an orientation reversing
isomorphic map frombA to A’ such thatv coincides with’ and thats coincides
with ¢’ the same as the connected sum. Then the obtained simplariaplex is iso-
morphic to = d(BB’)) U (BhB’). We use this correspondence. In the followings, we
assume thab’ belongs todB;.

First we assume that there is a shelling o @B) U B ending with some facet of
v OB exceptA . We remove facets ofv(x (OB \ ¢)) U B along the reverse order of
the shelling, and at the step that the facet corresponding teill be removed next,
we remove the facets ofu(x (9B’ \ §’)) U B’ as the followings.

Let F be the facet ofB which satisfie N 0B = §. Assume thatF’ was already
removed. In this case, we remove facetsAif along the regular order of a shelling
starting with the facetr” which satisfiesF’ N F = §. For removing more facets, we
consider three facets ab« (9B \ ¢) each of which contains a 1-face 6f If all of the
three facets were removed, the shelling ends with  and atiotsathe assumption.
Then some of the three facets were not removed. Also notiae ah least one facet
had to be removed because we removed the facet #f0B \ ¢) at first and the re-
moved subcomplex contained in* (0B \ §) must be a 3-ball. LeD bé&B; N IB’.
Let ¢ be a 1-face ofd§ which is contained in the remained facet @f« (OB \ 9).
Then we can take a 1-ball or a 2-ball' which satisfies the condition of Lemma 4.3
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or 4.4. If ¥’ N ¢’ contains two 1-faces and the facet ©fx (OB \ ) which contains
06\ ¥’ remains, we denoté®j \ £’ by e anew. From Lemma 4.5, we can tak#
such thatE’ N ¢ is a 1-face again. Let be the facet o0B; N 9B’ such thatZ’ No

is a 1-face. We denot&€’ Uo by . Let~ be a facet ofoB’ \ (¢’ U Z) such that the
facet of w* (9B \ ¢’) which containsyN¢é was already removed. We remove facets of
wx (0B’ \ (¢’ U X)) along the regular order of a shelling 6B’ \ (¢’ U ) which starts
with v and shellsOB{NdB’ \ (¢’ U ) first. Continuously removes; along the reverse
order of a shelling starting with the facet containiag Finally we remove facets of
w * X along the regular order of a shelling &  starting with

Assume thatF was not removed. There are the following twoxa4d§ some of
the three facets were not removed, (2) all of them were retho@dnsider the case
(1). Let D bedB;NIB’. Lete be a 1-face oDd which is contained in the removed
facet ofw (0B’ \ ¢’). Then we can take a subcompl&X of 9B; the same as above.
Similarly take the facet and denoteX’ Uo by T. Let v be a facet ofoB’ \ X such
thatyN¢ is contained in the remained facet ©&(0B’ \ ¢’). In the case (2), we denote
a 1-face ofdd by e and constructc similarly. Ley be a facet ofdB’\ ¥ such that
vNdé is a 1-face. We remove facets af x X along the regular order of a shelling
of ¥ starting with the facet containing . Continuously we remdacets ofB} along
the regular order of a shelling starting with the facet cimitg 0. Finally we remove
facets ofw = (9B’ \ (X U ¢’)) along the reverse order of a shelling @B’ \ (X U §’)
which starts withy and shellsOB; N 9B’ \ (X U ¢’)) first.

In the above cases, we continue removing the remained fatdis x 9(BhB’)) U
(ByB') along the reverse order of the shelling af{9B) U B. Then we can remove
all facets and the order satisfies the condition of the reverder of a shelling.

Next we assume that there is a shelling of«(OB) U B ending with A . In this
case, we remove the facets af £ (0B’ \ §’)) U B’ and continuously remove the facets
of (w* (0B \ d))U B the same as Lemma 4.6.

At last we can construct a shelling ofv - 9(ByB’)) U (BhB’) starting with some
facet of the cone part. [l

Proof of Theorem 4.1. The assertion follows from Lemma 4.8 hamma 4.7.
O
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