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1. Introduction

For an infinite 1-dimensional wordv = apazaz--- over a finite alphabetd
Teturo Kamae and Luca Zamboni [1] introduced the maximalepatcomplexity as

P (k) := supt{usr©)Qnir1) ** Qnare—1); =0, 1, 2...}
T

where the supremum is taken over all sequences of integers(0)=< 7(1) < --- <
7(k — 1) of lengthk , andiS denotes the cardinality of the st . They proved that
is eventually periodic if and only ip} (k) is bounded ink , while otherwises} (k) >
2k k=1 2...).

Teturo Kamae, Rao Hui and Xue Yu-Mei [3] considered the makipattern com-
plexity for 2-dimensional words defined Gff and proved that eithep? (k) is bounded
inkorptk)>2k (k=1 2...)Iif o satisfies a 2-dimensional recurrence condition.

In this paper, we consider the maximal pattern complexity 2adimensional
words defined on

Q:=N?\ {(0, 0)}.

Let a = (a(x, y).pea) € A® be a 2-dimensional word ovek = {0, 1} defined on
Q. Let 7 be a finite set inZ? with (0, 0) € 7 and i = k, which is called a window
For anyi € Q@ with i + 7 C Q, we denote

afi+ 7] = (ai + j))jer € A”.

We also denote

F (o) :
pa(k)

{(afi+7]; i e Qwithi+7CQ}
sup(fF,(r); 7:k-window} (k=1, 2...).

DerinmioN 1.« is called eventually2-periodic if there existp ,q € Z+ and a,
b € N such that for anyx,y ¥ @, a(x,y) =a(x+p,y) holds if x > a and a(x, y) =
a(x, y +q) holds if y > b.
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DeriniTioN 2. « is called minimal if for any positive integerL , there exist¥y
such that for anyn, m ¥ Q there existsf’, m’) € Q with |n—n’'| < N, jm—m’| <N
such thata(x +n’, y +m’) = a(x, y) holds for any ¢,y )e @ with x < L, y < L.

Derinimion 3.« is called sectionally periodicif for any (a, b), (p,q) € €, the
word 5 on n € N defined bys(n) = a(a + np, b +nq) is periodic.

In this paper, we characterize the words with bounded maxpatiern complex-
ity. We give an example of word: with p*(k) =2k (k =1 2...) which is minimal
and sectionally periodic.

2. Words with bounded maximal pattern complexity

Theorem 1. « is eventually2-periodic if and only if p}, (k) is bounded ink .

Proof. Assume thatv is eventually 2-periodic. Takep ¢ € Z.+ anda,b € N
such that for anyx,y )¢ @, a(x,y) = a(x + p,y) holds if x > a and a(x, y) =
a(x,y +q) holds if y > b.

Let 7 be ak -window. Let

Q ={i=,y)eQ i+tT7CQNla, ) x [b,x)}
Qo ={i=(x,y)eQ\Q; i+7C Q2NJa, o) x [0, )}
Q3 = {i=(x,y)eQ\Qq; i+7C Q2NJ[0,0) x [b, 0)}
Qp ={i=(,y)eQ\(UQQUQ); i+7CQ}.

For anyi =,y )e Q1, we have
ali+(np,mg)+7]=ali+7] (Vn, m=0, 1L, 2...).

Therefore, there exist at mogly  different elements amefigr 7] with i = Q;.
For anyi =, y)e Qo, we have

ali+(np,0)+7]=qafi+7] (Vn=0, 1, 2...).

Hence, there exist at mogib  different elements amepgt 7] with i = Q.

In the same way, there exist at magt different elements amdng 7] with
i = . Finally, there exist at mosib elements §by.

Therefore, we have

§Fa(7) < pq + pb+qa +ab = (p +a)lg +b).

Thus, pX(k) < (pt+a)(g +b) for k=1 2 ..., and hencep(k) is bounded ink .



Two DIMENSIONAL MAXIMAL PATTERN COMPLEXITY 259

Conversely, assume that sup , p: (k) =C < cc. There existk =1 2.. and
a k-window  such thatfF,(7) = C. Take a positive integet. such thatis contained
in a square of sizd x L. Let ¢ be the  + 13-window such that

c={(x,y)eQ; 0<x<L,0<y<L}
and ¢’ be the { + 25-window such that
o ={(x,y)eQ; 0<x<L+1 0<y<L+1}.
Since
C =1Fo(r) < fFa(0) < §Fa(0”) < C,

we havetF, (o) = tF,(c’) = C. This implies that each elemefitc F,(c) has a unique
extension inF,(c’). Therefore, there exists a functidn F.,(oc) — F,(c’) such that
h(afi + o]) = afi + o'] for any i € Q.

In particular, there exist functiong g F,(0) — F.(o) such that

flali+o]) = ali +(1,0) +0]

1) g(ali+0o]) = ali +(0,1) +o]

for anyi € Q.
Since f is a transformation on a finite set, there exist N and a periodp € Z.
such that

2 =
anyn =a, a +1 a +2.... Since

of(x, y) + o] = *(al(0, y) + o)
by (1), it follows from (2) that

of(x,y) + o] =af(x+ p,y)+o]

for any (v, y)€ Q with x > a.
In particular, we have

afx,y) =alx +p,y)
for any (x, y)€ Q with x > a. In the same way, we have
afx, y) = alx, y +q)

for any (x, y)€ @ with y > b. Thus, « is eventually 2-periodic. U
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3. A word with 2k maximal pattern complexity

A window 7’ is said to be anmmediate extensionf a window 7 if 7/ D 7 and
i’ =t +1.

The following Lemma 1 is proved in [2, Theorem 3] for words defi onN. It
remains true for words defined dn

Lemma 1. Let a € {0, 1}* be such thatp’(2) = 4 Assume that for any
2-window T and for any immediate extensiat of 7, it holds thatfF,(7') < {F.(7)+
2. Then we havep’(k) <2k (k=1 2...).

Define a 2-dimensional word € {0, 1} by

1 if ea(x) =e2(y)
0 otherwise

@) alx, y) = {

for any (x, y) € @, where forx € N, ep(x) = n if and only if 2' | x and 2*1{ x. We
also definee;(0) = oco.

Remark 1. The worda defined by (3) together witl((0, 0)) = 0 is the fixed
point of the 2-dimensional substitution

01 0
1

1
4) 0. 0—- 0 0 and 1— 0,

so thata = ¢°°(0).
Theorem 2. For « defined by(3), we havep? (k) =2k foranyk =1, 2....

Proof. First we prove thap’(k) > 2k (k =1 2...). Itis clear thatp} (1) = 2.
For anyk =2 3..., take ak -windowr := {(0,0), (1, 1)...,(k — 1,k — 1)}. Then,
since

of1,1)+7] =L 1,...,1)

®)
a[f(@—n, 2 —n)+7]=(1,...,1,0,1,...,1)
n=0,1...,k—1),

F,(7) containsk +1 elements containing the letter 0 at most once.

Now, let us consider the elements i), (7) containing the letter O at least twice.
They are determined by € N andn € N such that 06< a < 2" anda +2 < k since
there exists a unique element iy, (7) of the form

(@) (@+2")
1,...,4,0,1,...,1, 0 ,*x%x%)
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which is realized as/[(2" — a, 2"** —a)+7]. There are exactly

Liog, k|
L= ) min{2" k—2"}
n=0

number of elements of this type. Since

[logy k] -1
L= S 2 +k- 2wt
n=0
ollog: k] q 4 g — pllogek] = 1

we haveFo(r) =k +1+k —1=2. Thus,p*(k) > 2k (k=1 2...).

To prove thatp’(k) < 2k (k =1 2...), it is sufficient by Lemma 1 to prove
that for any 2-windowr and for any immediate extensiari of 7, it holds that

) BE,(T") < #F. (1) + 2.

Take an arbitrary 2-window = {(0, 0) =79, 71} and an arbitrary immediate ex-
tensiont’ = {(0, 0) =79, 71, 72} of 7.
To prove (5), we divide into 3 cases according to the parity0f

Case 1l €exe
Case 211 €e x 0
Case 31 €0 X o,

where ‘e” stands for the set of even numbers, while “ " stands tfee set of odd
numbers. By symmetry, we can reduce the case o x ¢ to Case 2.

Lemma 2. (i) In Case 1,F,(r) ={(0,0), (0 1) (1 0) (1 1) holds.
(i) In Case 2,F,(r) ={(0,0), (0 1) (1 0} holds.
(i) In Case 3,F,(7) ={(0,0), (0 1) (1 0) (1 1) holds.

Proof. Letr = (u, v).
(i) Let (u,v) € exe. For (x,y) € e x o, we havea[(x, y)+7] = (0, 0). If u=v, then
by taking integersN = and/  witly(u) < N < M, we havea[(2",2")+7] = (0, 1). If
u # v, then assuming that < v without loss of generality, we hawe[(v —u, 0)+7] =
(0, 1). If u # v, then we havex[2Vv —u, 2Vv —u) +7] = (1, 0) for a sufficiently large
integerN . Ifu =v, then by taking integer8 and  with(u) < N < M, we have
a[(2Y —u, 21 —v)+7] = (1, 0). Finally, for (, y)€ oxo, we havea[(x, y)+7] = (1, 1).
(i) Let (u,v) € exo. Then,a[(2,4)+7]= (0, 0), a[(v,u)+7]=(0, 1), of(1,1)+7]=
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(1, 0), while of(x,y) + 7] = (1,1) is impossible since either and have different
parities orx +u andy “ have different parities.

(i) Let (u,v) € 0o x 0. For (x, y) € e x o, we haveco|[(x, y)+ 7] = (0, 0). We also have
a[(2,4) +7] = (0, 1) ando[(2Y — u,2Y — v) + 7] = (1, 0) for integersN and¥ such
thatu +v < 2V < 2¥. Moreover,a[(2, 2) +7] = (1, 1). O

We divide the above 3 cases into the following 10 subcasesrdicg to the parity
of T2

Case 1-1lmycexe, mEexe
Case 1-2m1cexe, mEexo
Case 1-3mm €exe, mEOX0
Case 2-1lmycexo, mEexe
Case 2-2mm €exo0, mEexo
Case 2-3mm€exo, mEoXe
Case 2-4m €exo0, mE0X0
Case 3-1lm €ox0, mEexe
Case 3-2mm €coxo0, m€exXo
Case 3-3m €0oxo0, mEO0Xo.

Lemma 3. (i) In Case 1-2,F,(7) c {0, 1}3\{(0,1, 1) (1 Q1) (1 1 1).

(i) In Case 1-3,F,(7) c {0,113\ {(0, 1, 0) (1 Q O}.

(iii) In Case 2-1,F,(7') C F,(7) x {0, 1} \ {(0, 1, 1)}.

(iv) In Case 2-2,F,(7') C F,(7) x {0, 1} \ {(1, O, 1)}

(v) In Case 2-3,F,(7') C F,(7) x {0, 1} \ {(1, O, 1)}

(vi) In Case 2-4,F,(7') C F,(7) x {0, 1} \ {(0, 1, 1)}.

(vii) In Case 3-1,F,(7") ¢ {0,1}3\ {(0,0, 1) (1 Q O}.

(viii) In Case 3-2,F,(7) c {0,1}3\ {(0,1, 1) (1 Q 1) (1 1 1).

(ix) In Case 3-3,F,(7") c {0, 1}*\ {(0,0, 1) (Q 1 O}.

Proof. Letr = (u,v), »=@w',v') and , y)e€ Q.

(i) Since eitherx andy have different parities or u+andy +v’ have different
parities, (1 0 1), (1 1 1) do not belong t8,('). Moreover, since eithex # and
y +v have different parities ot & and y +v’ have different parities, (0,1 1) does
not belong toF,(7').

(i) Note that o[(x, y) + 7] € {(1, 0), (O 1)} implies (x, y) € e x e. Since §, y )€
e x e implies a((x, y) + (', v")) =1, (0 1 0) and (1 0 0) do not belong t&,(7").

(iii)(iv)(v)(vi)(viii) They follow by applying the parity argument in the proof of
().

(vii) It follows by the same argument as in the proof of (ii).
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(ix) Note thata((x, y) + (u, v)) # a((x, y) + (', v')) implies (x, y) € o x o. Since
(x,y) € 0 x o implies thata((x, y)) =1, (0, Q 1), (0 1 0) does not belong &, (7).

O
Lemma 4. (i) For any subcase except f@ase 1-1we have(5).
(i) For any subcase except f@ase 1-1we have
(6) B#(Fa(™)\{(0.0,0) (1 1 1}) <4
Proof. Clear from Lemma 2 and Lemma 3. U

Now we consider Case 1-1. Assume thatc e x e, 7 € e x e. Then, we have
al(x,y)+71=(1,11) if (x,y) € o x 0 and of(x,y) + 7] = (0,0, 0) if (x,y) €
e x oUo x e. Hence we have

Fo(r) ={el(x, )+ 7], (x,y) €exe}U{(0,0,0) (11 1}.

Let 7//2 := {0, 11/2, 2/2}. Sincee(x) = ez(y) is equivalent toex(2x) = e2(2y),
we havea[(x, y)+7'] = a[(x/2, y/2)+7' /2] for any (x, y) € e x e. Therefore, we have

(7) Fo(r') = Fa(7'/2)U{(0,0,0), (1 1 1}.

If 7//2 is of Case 1-1, we can apply (7) again.
By applying (7) repeatedly, we have

Fo(T") = Fo(7'/2°)U{(0,0,0), (1 1 1}

with 7//2¢ not of Case 1-1. Then, by (ii) of Lemma 4, we hai®,(r') < 6. Thus,
we have (5) by Lemma 2, which complete the proof of Theorem 2. [l

Theorem 3. The worda defined by(3) is minimal and sectionally periodic.

Proof. Take any positive integat . L&  be a positive integechsthat L <
2V, Take any £, m )€ Q. Then, there existsn(,m’) € Q with |n —n’| < 2V and
lm—m'| <2V such thate,(n’) > N andex(m’) > N. Then, sincees(x+n’) = ex(x) and
ea(y+m’) = ex(y) for any (x, y)e Q with x < L andy < L, we havea(x+n', y+m') =
afx,y) forany (v, y)e Q with x < L andy < L. Thus, « is minimal.

Take any ¢,b ), p,q )€ Q. Let g be a word onn € N defined byg(n) =
afa +np, b +nq).

Let us consider the case whete p+ =0Ilorg+ = 0. Without loss of rgdihe
assumea 4 =0. Then, we have p= =0 ahd> 0, g > 0. Hence,s is periodic
sincef(n)=0 (=0 1, 2..)).
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Now assume that p > 0 andb 4 > 0. Let us consider the case wherg—bp =
0. Suppose thap =0. Then,> 0 andg > 0 sincea +p > 0 andp +¢g > 0. This
contradicts withag — bp = 0. Therefore,p > 0. By the same reasom, > 0. Since
g(a+np) = pb+ng) forn =0, 1 2..., we haveey(q)+ex(a+np) = ex(p)+ex(b+nq)
(n =0 1 2...). Therefore, eithes(n) =1 n =0 1 2..)orBH)=0@r =
0, L 2...) holds according asx(q) = e2(p) or not, and hence? is periodic.

Now assume thatig — bp # 0. Let N be a positive integer such that >
ex(lag — bp|). Then, sinceq  mp » pb+nq) = aqg —bp n =0, L, 2..)),
we haveey(|g(a + np) — p(b +nq)]) < N (n = 0, L, 2...). This implies that
min{ex(q(a+np)), e2(p(b+nq))} < N, and hence, mifes(a+np), e2(b+ng)} < N (n =
0, 1, 2...). Therefore, ifex(a + np) = e2(b + nq), thenes(a +np) = e2(b +ng) < N
holds, and hence, we havg(a+(n+2")p) =ex(a+np) = ea(b+nq) = ex(b+(n+2")q).

If ex(a +np) < ea(b + ng), then eitherez(a + np) < ex(b + ng) < N or ex(a +
np) < N < ey(b +ng) holds, and hence, we hawg(a + (n + 2V)p) = ex(a + np) <
min{ez(b + ng), N} < ex(b+ (n +2V)qg). In the same way, itx(a + np) > ex(b + nq),
thenex(a + (n+2V)p) > ex(b + (n + 2V )q).

Hence, we proved that(a+np) = ea(b+nq) holds if and only ifex(a+(n+2V)p) =
ex(b+ (n+2V)q) holds, so thaB(n) =3(n+2") n =0 1, 2...) andp is periodic.

Thus, « is sectionally periodic. ]
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