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1. Introduction

A topological graph is a one-dimensional complex congjstof finitely many
O-cells (vertices) and finitely many 1-cells (edges and $opn [7], Kauffman proved
that piecewise linear ambient isotopy of a piecewise linearbedding of a topo-
logical graph in Euclidean 3-spad@®® or 3-sphereS?, referred simply snotted graph
is generated by a set of diagrammatic local moves (see Fighdt) generalize the
Reidemeister moves for diagrams of classical links. Thigia complete combinato-
rial description of the topology of graphs in three dimensiospace. Throughout this
paper, all spaces and maps are in piecewise linear categdryva speak of 3-space
in referring to eitherR® or $3 = R3 U {co}.

A method for producing invariants of knotted graphs in 3espds to associate
a collection of links to the knotted graph [7, 13] and also dypomial invariant
for knotted graphs is developed [16]. On the other hand, emtkisotopy of knotted
graphs is rather complicated by the fact that the genethlReidemeister move (V)
(see Fig. 1) creates or destroys arbitrary braiding at aexeahd so it is not easy to
define non trivial invariants of the braiding move (V). Foistheason, many authors
turned their attention to restrict the valency of verticesl ahe allowed movement in
the neighborhoods of vertices. This makes the construatfdnvariants of such graphs
rather easier [1, 5, 7, 8, 13, 14, 15, 18].

The purpose of this paper is to introduce a method for obtgiimvariants of the
braiding move (V) and consequently producing invariantskbtted 4-valent graphs,
by using the 3-move for knots and links.

This paper is organized as follows. Section 2 contains foreddal concepts for
graph embeddings in 3-space. In Section 3 we associate ecttoll of knots and links
to a knotted 4-valent graph in 3-space and show that the Radqnot class of the col-
lection is an invariant of the knotted 4-valent graphs. Irct®® 4 we construct new
3-move invariants by using Kauffman bracket polynomial atew that this 3-move
invariant gives a useful way to distinguish knotted 4-valgraphs in 3-space.
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Fig. 1. The Reidemeister moves for knotted 4-valent graphs

2. Knotted graphs in 3-space

A topological graphis a 1-dimensional cell complex consisting of finitely many
O-cells (erticeg and finitely many 1-cells gdges or loops Each edge is homeo-
morphic to a closed line segment, and its ends are verticekeirgraph. A topolog-
ical graphG is said to bé-valentif the number of arcs incident with each vertex is
equal tok . Throughout this paper, a graph means a 4-valeotamgigal graph and a
knotted graphmeans an embedding of a 4-valent topological graph Etootherwise
specified.

Two knotted graphsi and G’ are said to beequivalent (or ambient isotopig
if there exists an orientation preserving homeomorphismR3: — R3 such that
h(G) =G'. Then it is well known that two knotted graphs are equivaliérand only
if their graph diagrams can be transformed to each other byite fsequence of the
Reidemeister moves (1), (1), (1), (IV) and (V) as shown Kig. 1 [5, 7].

A rigid vertex 4-valent graph(briefly, RV 4 graph) is a 4-valent graph whose ver-
tices are replaced by rigid 2-disks or 3-balls. Each disk alt has four strands at-
tached to it. Aknotted RV4 graph means an embedding of &V 4 graph ifé. A
rigid vertex ambient isotopy of a knotteRV 4 graghis a combination of topologi-
cal ambient isotopies of the strands corresponding to tigesdfg relative to the end
points on the rigid disks, coupled with affine motions of thiskd carrying along the
strands in ambient isotopy. Two knott&®V 4 graphs &#é equivalent(or RV ambi-
ent isotopi¢ if their graph diagrams are transformed to each other byite fsequence
of Reidemeister moves (1), (II), (), (IV) of Fig. 1 and theove (V) as shown in
Fig. 2 [5, 7].
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Fig. 2. Braiding move for knotteRV 4 graphs
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Fig. 3. Rigid vertex connection replacements

3. The 3-equivalent class of links in a knotted graph

In [7], Kauffman associated a collectiati G) of links to each knottedRV 4 graph
G and showed that the ambient isotopy classCo§) i6 an invariant of theRV  equiva-
lence of the grapl. An element ofC ) is obtained by making a connection at each
vertex, replacing the vertex locally by a configuration thahnects the four edges in
pairs. There are four ways to do this as shown in Fig. 3. Intfm@cthe ambient iso-
topy class ofC @) is very useful to distinguish knotte#V 4 graphs in 3-space.

In the case of a topological vertex graph however, the ambient isotopy class of
C(G) is not an invariant of the (topological vertex) equivaleraf the graphG because
the braiding move (V) may change the ambient isotopy type dflain C(G). This
section is devoted to show that if we take the 3-equivalerasscof C (), then it is
an invariant of the knotted grapf.

Let G be a knotted graph with the vertex s€tG)(= {vi, vz, ...,v,} (n > 0)
and let D be a diagram of. Let 7 = {To, To, T+, T-}, Where Ty, T, T+ and
T_ are 4-tangle diagrams as shown in Fig. 3, and fetV §) (& 7 be an as-
signment of a membey v{ ) 7 for each vertexv; ofG. Note that there are”4
assignments ofj. We denote all such assignments @fby fi, fo, ..., fao and let
F(G) ={f1. fa. ..., fa}. For each assignmenf; ¢ F(G), let (D, f;) denote the knot
or link diagram obtained fronD by replacing all vertices ®fas shown in Fig. 4 in
accordance with the assignmeyit

Let C(D) denote the collection of all”4 link diagram®( f; ) associatedD,
e, C(D)={(D, fj) | 1< j <4} If |[V(G) =0, then we defin&€(D) = {D}.

Let L be a link diagram. Then the +8oveand the—3-moveare local changes
in L as shown in the following Figure:

. — X . — XXX

+3-move —3-move
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Fig. 4. \ertex connection replacements

Fig. 5.

Derinimion 3.1.  Two links/ and!’ are said to be -gquivalentif their diagrams
can be transformed to each other by a finite sequence of ReideEmmoves (1), (11),
(I of Fig. 1, the +3-move, the-3-move and their inverses.

Then we have the following easy lemma.

Lemma 3.2. Let Ty, T_, T.+ and T__ be four link diagrams that are identical
except a small neighborhood where they are as showhidn 5. ThenT, and 7_ are
3-equivalent to7__ and T, respectively

Theorem 3.3. Let G be a knotted graph and leP anb’ be any two diagrams
of G. Then there exists a permutatian on the set{1, 2,...,4"} such that the link
(D, f;) is 3-equivalent to the linKD’, f,)) for eachj=1,2...,4".

Proof. LetD =Dg,Ds,...,D,_1,D, = D' be a sequence of graph diagrams
connectingD andD’, where D; is obtained fromD;_; by applying exactly one of
the moves (1), (1), (I, (IV) and (V). Letvy, vy, ..., v, be the vertices off and let
F(G)={fj|11<j < 4"} as above. For each pait, § ),<di <m, 1< j<4" we
denote byD;; the knot or linkp;, f; ). For each 1 .2.,m, define a permutation
o; on {1, 2 ...,4"} such that the linksD;_1; and D,,(;) are 3-equivalent for each
j=212...,4" as follows:

Case l. D; is obtained fromD;_; by applying the Reidemeister move (1), (Il),
(), or (IV). Then it is clear that the moves (I), (Il), andll) do not affect ver-
tex connection replacements. S3_1; and D;; are ambient isotopic for each =
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Fig. 6. Reidemeister move (V)
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Fig. 7. Reidemeister move (V)

1,2 ...,4". On the other hand, the Fig. 6 illustrates a vertex conoeatéplacement
at a vertex by a tangld € 7 and the effect of the move (IV). This shows that the

links D;_;; and D;; are ambient isotopic for eagh 5 1.2.,4". In this case, we
defineo; to be the identity permutation.
Case ll.  D; is obtained fromD;_; by applying the Reidemeister move (V). We

may assume that the move (V) is accomplished at the vartewxithout loss of gen-
erality. Fig. 7 shows all possible vertex connection rephaents in the diagrand;_;
and the corresponding replacements in the diagifam at thexver.

For the type (A) of Reidemeister move (V) in Fig. 7, we obsethat 7., and
(A-3) are ambient isotopic by Reidemeister move (Ify and (A-2) are ambient
isotopic by Reidemeister move (¥~ and (A-1) are plane isotopic, and. is 3-
equivalent to (A-4) by Lemma 3.2. For the type (B}, and (B-4) are ambient iso-
topic by Reidemeister move (ll)]o and (B-2) are ambient isotopic by Reidemeis-
ter move (I), 7. and (B-1) are plane isotopic, anfl. is 3-equivalent to (B-3) by
Lemma 3.2.

Now for eachf; € F(G), let f;: V(G) — 7 be an assignment df defined by
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fj(w) = fi(w) for 2< k < n and

T, if fi(vy) = Teo,
To if fi(v1) =To,
T_ if fv) =T,
Too if fv1)=T_.

filvr) =

Then f/ € F(G) and it follows from the above observation that the mapping
g: F(G) — F(G) defined byg (f; ) =f; for all f; € F(G) is bijective and so it in-
duces the desired permutation on {1, 2, ..., 4"}. Similarly, we can obtain a permu-
tation o; for the type (B).

Finally, definec = o,0m—1---01. Then O, f;) = o, f;) is 3-equivalent to
(D, fo(j)) = (D', fo(jy) for eachj =1 2...,4". This completes the proof. ]

Two collectionsX; and X, of links are said to be -8quivalentif every member
of X, is 3-equivalent to some member & and vice versa. The following corollary
is an immediate consequence of Theorem 3.3.

Corollary 3.4. LetgG be a knotted graph and led  be a diagram @f Then the
3-equivalent clas<’3(G) of the collectionC(D) is an invariant ofG.

ExampLE 3.5. LetGi, G2, Gz and G4 be knotted graphs as shown in Fig. 8. Then
C3(G1) = {U1, Uz}, C3(G2) = {U2, Uz}, C3(Ga) = {U1, Uz}, C3(Ga) = {Us, Uz, Us},

where U, denotes the unlink with  trivial components. SiiéG;) and C3(G,) are
not 3-equivalentg; and G, are not equivalent and hen¢g is knotted. Similarly,G3
and G, are not equivalent.

4. 3-move invariants and invariants of knotted graphs

An invariantZ of links is called a 8nove invariantif Z(L) = Z(L’) for any two
3-equivalent knots or linkgd. and’. Now let I3 be a numerical or more generally
commutative ring valued 3-move invariant of links. Then iayrbe extended to an in-
variant of a knotted graply by taking a suitable summation in terms of all values of
links associated to the gragh The simplest such an example can be obtained by the
way:

Let G be a knotted graph and ldd  be a diagramfThen it follows from
Theorem 3.3 that the valug(G) defined by

4

15(G) = > (D, £7))

j=1
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is an invariant of the knotted grapl. This invariant is more useful than the
3-equivalence clas§;(G). In this section we shall discuss two examples of this type.

Let / be a link in 3. Let M, (/) denote then -fold cyclic branched cover §f
branched alond andi;(M,(); G) the first homology group ofM,(I) with coeffi-
cients in an Abelian groufs

Derinmion 4.1, Let G be a knotted graph witlk  vertices, |&  be a diagram
of G, and letF G) = { f1, fo, ..., fa} be the set of all assignments gf Let/; denote
the link in $* represented by the diagram®(f; ). Then we define two intege(&)
and p,(G) for G by

4” 411
p1(G) = DIm Hy(Ma(l)); Zs),  pa(G) =D Dim Hi(Ms(l;); Z2).
j=1 j=1

Let [ be any unoriented link ir$® of . components and ldt denote an oriented
link with underlying unoriented link . Le¥;(¢) and P;(a, z) denote the Jones polyno-
mial [4] and the skein polynomial [3] of, respectively, andD, ¢( ) th& -polynomial
invariant of the unoriented link [2].

Theorem 4.2. Let G be a knotted graph and leD be a diagram @f Then
p1(G) and p»(G) are invariants ofG and

4" 4"
41)  pu(G)=2log, (H P, 1)‘) = 2log, (H \v,—j(em'/3)\>
j:l j=1
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.
4.2) = log, (H \Q,,.(—l)\) ,

J=1

.
(43)  p(0)=2log, (H P, 1)\) ,
j=1

Wherel_j denotes an oriented link with underlying unoriented link presented by the
diagram (D, f;) andi = v/ —1.

Proof. It is well known that the 3-moves preserve the groudpgM2(1); Zs3)
and Hi(Ms3(l); Zp) [10, 11, 12]. Therefore the dimensions Dhia(M2(l);Z3) and
Dim H1(Ma3(l); Z2) are 3-move invariants. It follows immediately from Theore3.3
that p1(G) and p2(G) are invariants ofG.

To prove (4.1), let’ be an oriented link ins® of 1 components. By [10],

Pﬂeﬂ'i/ﬁ’ 1) - Vﬂe”i/s) - iiufl(i@)Dim Hl(./\/lz(l);Z3)‘

So DImH1(Ma(1); Zs) = 2logg | Pi(e™/®, 1)| = 2l0g; | Vi{e™/3)|. Hence

4" 4
p1(9) = Z Dim Hi(Ma(l;); Z3) = Z 2log, ’Pl_j (e™/8, 1)’
Jj=1 j=1

4

4’1
= 2log, [ | ]p,—j (™8, 1)] = 2log, [ | \v,—j (e”i/‘o’)‘ .
j=1 Jj=1

For (4.2), let! be an unoriented link ir§3. It is known that Q; (1) =
(—3)Pim H(M2():Z3) [2]. So Dim Hy(Mo(l); Z3) = logz | Q;(—1)|. Hence

4" 4" 4
p1(G) =Y DimHi(Ma(l)); Zs) = > _logz |0y, (~1)| = logs [ ] 101, (—1)I-
j=1 Jj=1 Jj=1

To prove (4.3) let be an oriented link ins® of 1 components. By [10]P7(1, 1) =
(—2)1/APmm(Ms():22) - So DimHy(Ms(l); Z2) = 2log, | PH(1, 1). Hence

q" q" 4
p2(G) =S Dim Hy(M3(l); Z2) = 3 2log, ‘P,—j(l, 1)’ =2log, [ ‘P,—j(l, 1)’ . O
j=1 j=1

J=1

Now we will construct new 3-move invariants of links by usikKguffman bracket
polynomial and consequently give another numerical iards of knotted graphs.

Let / be a link and letL. be a diagram of . The Kauffman bracket maigial
of L [6] is the Laurent polynomialL) = (L)(A) € Z[A, A~1] defined by the follow-
ing rules:
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i (O =1,
(i) (K O)= — AT)(K),
@ (S val) (oo =)
N

ote that the Kauffman bracket polynomial is a regular ipgtinvariant and

(00 )==2(0 ) (20 )=-47(D )

So it is not an ambient isotopy invariant. Also, it is not inaat under the 3-moves
since

o (D000)=w( = pra-aean() ()
69 (J00C)=a( = yrur-ata5() ()

Let zx = coskn/12) +i singwx/12), wherek = 1, 5, 7, 11, 13, 17, 19, 23 and
i = +/—1. Then eachy; is a nonzero common root of the two equatibrs A3 +
A" =0andA” — A%+ A~1 =0 or equivalently,A® — A*+ 1 = 0. Substitutingz; in
the Kauffman bracket polynomidlL), we get a regular isotopy invariafL), of L:

(L)k = (L)]a=z-

DerinimioN 4.3, LetL be a link diagram. For eagh =1, 5, 7, 11, 13, 17, 19,
and 23, we define a real numbet [ § R by

(4.6) [LY = (L) (L),

where (L) = (L)|4=4-1 is a polynomial obtained from{L)(A) by interchangingA
and A~1

Theorem 4.4. Let L be a link diagramThen for eachk = 1, 5, 7, 11, 13, 17,
19, and 23, the real numbelf L], is a 3-move invariant of knots and links

Proof. It is obvious thatf ;] is a regular isotopy invarianteWbserve that

20 L=-#(D ), ca(D ),
=D D)
BER

Similarly,

1O =D L,
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So [L]r is an ambient isotopy invariant.

Sincez; —z; 2 +z;, ' =0 andz] — z8+z, 1 = 0, it follows from (4 4) and (4 5) that

(2OCC), =8 =), and ( JOOC), =% <),
[DOCC =@ ), (),
{20

OO =X

Therefore L ] is invariant under the 3-moves. This complétes proof. U

From Theorem 3.3 and Theorem 4.4, we obtain immediately aHewiing numer-
ical invariant of knotted graphs:

Theorem 4.5. Let G be a knotted graph witlk  vertices and 1Bt  be a diagram
of G. For eachk =1, 5, 7, 11, 13, 17, 19%nd 23, define a real numbefg]; by

e
[Gle =D (D, f)lk

Jj=1

Then[G]« is an invariant ofG for eachk.

ExavmpLE 4.6. Let Gi, Go, Gz and G4 be knotted graphs of Example 3.5. For
k=1, i.e.,z1=cos/12) +i singr/12), we obtain that

p1(G1) =1, p2(G1) =2, [Gi]1 =6,
p1(92) =5, p2(G2) = 10, [G2]1 =27,
p1(G3) =4, p2(Gs) =8, [Gs]1 =24,
p1(Ga) =8, p2(Ga) = 16, [Ga]1 = 36.

This shows that the invarianfs, p, and [ } distinguish all graphsji, G», Gs and Gj.

Final remarks.

respectively. TherDU D’ denotes the disjoint union ab

(1) Let D andD’ be knotted graph diagrams with n,

vertices,
ant’ and DD’ denotes a
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connected sum oD an@’ obtained by removing a small arc, not including vertices,
from each diagram and then connecting the four endpointswoy ntew arcs without
further crossing as a connected sum of two link diagramsn€ated sum of two knot-
ted graphs is not well defined in general. By the propertieshef Jones polynomial
and the Kauffman bracket polynomial fdriLi L’ and L#L’ of two links L andL’, we
have the following formulas:

pi(D U D') = &' py(D) + 4" py(D") + 4™,
p1(DED") = &4 py(D) + 4" p1(D’),

p2(D U D') = 4" pp(D) + 4" pp(D') + 4™,
p2(DED") = & pa(D) + 4" po(D’),

[D U DN = 3[DI D]

[D4D"]i = [ D] D]k

(2) A knotted surface is a closed and locally flat surface etdbd in the
Euclidean 4-spac®* or the 4-spheres*. In 1994, Yoshikawa [17] represents a knot-
ted surface in 4-space by a knotted graph diagram with 4avdkbelled vertices,
called a surface diagram, and introduces equivalence dhcaudiagrams. In [9], Lee
defined three variable state-sum polynomial invariants gqpfivalent surface diagrams
by using the invariants of Definition 4.3 for = eXp(v/—1/6) for k = 1, 2, 4,
5, 7, 8, 10, 11 as state evaluation, which are modificationshef graph invariants
[Gl« of Theorem 4.5. This shows that the complex numbef4ft 9)[G], evaluated
at A = expkry/—1/6) is an ambient isotopy invariant of a knotted surface irpdee
R* or §* represented by, where|V(G)| denotes the number of the vertices ®f9].
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