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1. Introduction

Let be a Lie group and a closed subgroup of . Consider two submanifolds
in a Riemannian homogeneous space/ , one fixed and the other moving under
in . Let the fixed one be and the moving one be and letµ be the invariant
measure on . By taking the geometric invariant vol(∩ ), volume of the subman-
ifold ∩ , and integrating with respect toµ ( ), we get so called the Poincaré
formula. This can be briefly stated as follows.

Let and be submanifolds of dimensions and respectively, in a
Riemannian homogeneous space/ . Then many works in integral geometry have
been concerned with computing integrals of the following form

∫
vol( ∩ ) µ ( )

The Poincaré formula means equalities which represent theabove integral by some ge-
ometric invariants of submanifolds and of/ . For example in the case that

is the group of isometries of Euclidean spaceR and and are submanifolds
of R then the result of above integral leads to formulas of Poincaré, Crofton and
other integral geometers (see [6]). Especially R. Howard [1] obtained a Poincaré for-
mula for Riemannian homogeneous spaces as follows:

Let and be submanifolds of / with dim +dim = dim( / ). Assume
that is unimodular. Then

(1.1)
∫

♯( ∩ ) µ ( ) =
∫ ∫

×

σ ( ⊥ ⊥ ) µ × ( )

where♯( ) denotes the number of elements in a set andσ ( ⊥ ⊥ ) is defined
by (2.1) in Section 2.
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The formula (1.1) holds under the general situation. However, it is difficult to give
an explicit description through the concrete computation of σ ( ⊥ ⊥ ), and only
a little is known about it ([2], [3], [7]). In the present paper, we attempt to explicitly
describe this formula for submanifolds of dimension and codimension one in the prod-
uct of arbitrary dimensional unit spheres. More precisely,

Theorem 1.1. Let be a submanifold of +1 × +1 of dimension1 and a
submanifold of codimension1. Assume that for almost all ∈ , and intersect
transversely. For any point ∈ (resp. ∈ ), sinθ and cosθ (resp. sinτ cosτ )
denote length of the first and second component of unit vector= ( 1 2) (resp. =
( 1 2)) of (resp. ⊥ ), respectively. Then we have

∫

( +2)× ( +2)
♯( ∩ ) µ ( +2)× ( +2)( )

= 2 vol
(

( + 1)× ( + 1)
) ∫ ∫

×

σ( ) µ × ( )

where

σ( ) =





vol( −1)

vol( )

(
−1

2
−

2
1 +

2

2

2

)
if ≤ ;

vol( −1)

vol( )

(
−1

2
−

2
1 +

2

2

2

)
if ≥

Here ( ; ) is the Gauss hypergeometric function, and = sinθ sinτ and
= cosθ cosτ .

2. Preliminaries

In this section we shall review the Poincaré formula on Riemannian homogeneous
spaces given by R. Howard [1] and recall the Gauss hypergeometric function.

Let be a finite dimensional real vector space with an inner product. For vector
subspaces and with orthonormal bases1 . . . and 1 . . . respectively,
we defineσ( ) by

σ( ) = | 1 ∧ · · · ∧ ∧ 1 ∧ · · · ∧ |

This definition is independent of the choice of orthonormal bases. Furthermore, if +
= dim then

σ( ) = σ( ⊥ ⊥)

Let be a Lie group and a closed subgroup of . We assume that has a
left invariant Riemannian metric that is also invariant under the right actions of ele-
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ments of . This metric induces a -invariant Riemannian metric on / . We de-
note by the origin of / . If , ∈ / and is a vector subspace of (/ )
and is a vector subspace of (/ ) then defineσ ( ) by

(2.1) σ ( ) =
∫

σ
(
( )−1 −1( )−1

)
µ ( )

where and are elements of such that = and = . This definition is
independent of the choice of and in such that = and = .

We list here the basic properties of the Gauss hypergeometric function that are
needed in this paper only. For further details see [4].

The Gauss hypergeometric series, convergent for| | < 1, is given by the power
series

(2.2) ( ; ) =
∞∑

=0

( + )
( )

· ( + )
( )

· ( )
( + )

·
!

where is the gamma function. By analytic continuation ( ; ) can be extended
to define a function analytic and single-valued in the complex plane cut along the
positive real axis from 1 to∞. We remark that above series reduces to a polynomial
of degree in when or is equal to− , ( = 0 1 2 . . .). The series (2.2)
is not defined when is equal to− , ( = 0 1 2 . . .), provided or is not a
negative integer with < . The hypergeometric equation

(1− )
2

2 +
(
− ( + + 1)

)
− = 0

has the solution = ( ; ).
The six functions (± 1 ; ), ( ± 1 ; ) and ( ± 1; ) are called

contiguous to ( ; ). Relations between ( ; ) and any two contiguous
functions have been given by Gauss. By repeated applicationof these relations the
function ( + + + ; ) with integer , , can be expressed as a linear combi-
nation of ( ; ) and one of its contiguous functions with coefficients which are
rational functions of , , , . For examples,

( + 1 + 1 + 1; ) = [ ( + 1 ; )− ( ; )](2.3)

( − 1) ( − 1; ) = ( − − 1) ( ; ) + ( + 1 ; )

Among the special cases are

(1− ) = (− ; )(2.4)

arcsin =

(
1
2

1
2

3
2

; 2

)
(2.5)
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Furthermore C.F. Gauss evaluated, forℜ( − − ) > 0,

( ; 1) =
( ) ( − − )
( − ) ( − )

(2.6)

In this paper, we may consider only when is a real number.

3. Proof of Theorem 1.1

Let be the unit sphere of dimension . The special orthogonal group
( + 1) acts transitively on . The isotropy subgroup of ( + 1) at apoint in
is ( ). Thus +1× +1 can be realized as a homogeneous space ( ( +2)×
( + 2))/( ( + 1)× ( + 1)). We have set, to simplify notation,

= ( + 2)× ( + 2) = ( + 1)× ( + 1)

Let g = so( + 2)× so( + 2) be the Lie algebra of . Define an inner product
on g by

( ) = −1
2

Trace( ) ( ∈ g)

We extend this inner product (· ·) on g to the left invariant Riemannian metric on .
Then we obtain a bi-invariant Riemannian metric on . This bi-invariant Riemannian
metric on induces a -invariant Riemannian metric on/ = +1× +1.

Let be a submanifold of +1 × +1 of dimension one and a submanifold
of codimension one. By the formula (1.1), we have

(3.1)
∫

♯( ∩ ) µ ( ) =
∫ ∫

×

σ ( ) µ × ( )

Let = ( 1 2) and = ( 1 2) be unit vectors of and ⊥ respectively.
By the action of , we can transport to ((sinθ 0 . . . 0), (cosθ 0 . . . 0)) and

to ((sinτ 0 . . . 0) (cosτ 0 . . . 0)) respectively. Let 1 . . . + +2 be the stan-
dard orthonormal basis ofR + +2. Thus we can take

(− cosτ 1 + sinτ +2) 2 . . . +1 +3 . . . + +2

as an orthonormal basis of . We can simply write

σ(θ τ ) = σ ( )

sinceσ ( ) is dependent only onθ and τ . Then we have

σ( −1 )
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= |(sinθ 1 + cosθ +2) ∧ (− cosτ 1 + sinτ +2) ∧ ˆ1 +2|
= | sinθ sinτ 11 + cosθ cosτ +2 +2|

where

ˆ1 +2 = 2 ∧ · · · ∧ +1 ∧ +3 ∧ · · · ∧ + +2

and

=

[
1 0

0 2

]
∈ ( + 1)× ( + 1)

For simplicity of writing we put sinθ sinτ = and cosθ cosτ = . Then we get

σ(θ τ ) =
∫ ∫

| 11 + +2 +2| µ ( )

We now have to compute following:

(3.2)
∫

( +1)

∫

( +1)
| 11 + 11| µ ( +1)( ) µ ( +1)( )

We here give the following lemma to compute the above integral.

Lemma 3.1. If |α| ≤ 1 then

∫
|α + 1| µ ( ) = 2vol( −1)

{
1√

1− α2 + α2

(
1
2

1−
2

3
2

;α2

)}

Proof. Define a mappingφ : (−1 1)× −1→ by

(
= ( 1 2 . . . )

)
7→
( √

1− 2
)

Using φ as a variable transformation we have

∫
|α− 1| µ ( ) =

∫ 1

−1

∫

−1

|α− |
√

1− 2
−2

µ −1( )

= vol( −1)
∫ 1

−1
|α− |

√
1− 2

−2

Here vol( ) is the surface area of the -dimensional unit sphere and its value is

vol( ) =
2π( +1)/2

(( + 1)/2)
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where denotes the gamma function. By a simple calculation, we have

∫ √
1− 2 =

(
1
2
−

2
3
2

; 2

)

Hence we obtain

∫ 1

−1
|α− |

√
1− 2

−2
=

2√
1− α2 + 2α2

(
1
2

1−
2

;
3
2

;α2

)

which implies Lemma 3.1.

We first consider the case where 0≤ ≤ 1 in (3.2). Then we have
∫

( +1)
| 11 + 11| µ ( +1)( )

= vol( ( ))
∫
| 11 + 1| µ ( )(3.3)

= 2vol( ( ))vol( −1)

×
{

1√
1− 2( 11)2 + 2( 11)2

(
1
2

1−
2

3
2

2( 11)
2
)}

(3.4)

Equality (3.3) follows from the fibering of ( + 1) over with thefiber ( ),
and (3.4) follows from Lemma 3.1.

Notice

(3.5)
∫ π

0
sin

∫ π

0
sin2 · · ·

∫ π

0
sin =

vol( +1)
2π

=
vol( −1)

then, using spherical coordinate transformation, the integral of the first term in (3.4)
over ( + 1) is as follows:

∫

( +1)

√
1− 2( 11)2 µ ( +1)( )

= vol( ( ))
∫ √

1− 2( 1)2 µ ( )

= 2 vol( ( )) vol( −1)
∫ π/2

0

√
1− 2 cos2 θ1 · sin −1 θ1 θ1

= 2 vol( ( )) vol( −1)
∫ 1

0

√
1− 2 2 ·

√
1− 2

−2

In the last integral,

∫ 1

0

√
1− 2

−2
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is an Euler beta function. Hence it can be evaluated in terms of gamma function, and
we find that

(3.6)
∫ 1

0

√
1− 2

−2
=

vol( )
2 vol( −1)

By (3.6) and integration by part, for any even number we obtain

∫ 1

0

√
1− 2

−2
=

( − 1)!!( − 1)!!
( + − 1)!!

· vol( )
2 vol( −1)

where

!! =

{
( − 2) · · ·4 · 2 : even;
( − 2) · · ·3 · 1 : odd

And by (2.4) we have

√
1− 2 2 =

(
−

2
1 1; 2 2

)

So we obtain

∫ 1

0

√
1− 2 2

√
1− 2

−2
=

vol( )
2 vol( −1)

·
(

1
2
−

2
1 +

2
; 2

)

Hence we have
∫

( +1)

√
1− 2( 11)2 µ ( +1)( )(3.7)

= vol( ( )) vol( )

(
1
2
−

2
1 +

2
; 2

)

On the other hand, the integral of the second term in (3.4) on (+ 1) is as
follows:

∫

( +1)
( 11)2

(
1
2

1−
2

3
2

; 2( 11)2

)
µ ( +1)( )

= vol( ( ))
∫

( 1)2

(
1
2

1−
2

3
2

; 2( 1)2

)
µ ( )

Using again spherical coordinate transformation we get

∫
( 1)2

(
1
2

1−
2

3
2

; 2( 1)2

)
µ ( )

= 2 vol( −1)
∫ 1

0

2
√

1− 2
−2

(
1
2

1−
2

3
2

; 2 2

)
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Let 2 be a general term of the series (1/2 1− /2 3/2; 2 2). Then we arrive
at the relation

(
1
2

1−
2

3
2

; 2 2

)
= 1 + 1 ·

2 2

1!
+ 2 ·

4 4

2!
+ · · · + ·

2 2

!
+ · · ·

where = ! . Since

∫ 1

0

2
√

1− 2
−2

=
1
+ 1
· vol( )

2 vol( −1)

we have

∫ 1

0

2
√

1− 2
−2

(
1
2

1−
2

3
2

; 2 2

)

=
vol( )

2( + 1) vol( −1)
·
(

1
2

1−
2

3 +
2

; 2

)

So we obtain

∫

( +1)
( 11)2

(
1
2

1−
2

3
2

; 2( 11)2

)
µ ( +1)( )(3.8)

= vol( ( )) vol( ) · 1
+ 1
·
(

1
2

1−
2

3 +
2

; 2

)

A simple calculation shows that

(
1
2
−

2
1 +

2
; 2

)
+

2

+ 1

(
1
2

1−
2

3 +
2

; 2

)

=

(
−1

2
−

2
1 +

2
; 2

)

As the result, from (3.7), (3.8) and the last equality, we have

∫

( +1)

∫

( +1)
| 11 + 11| µ ( +1)( ) µ ( +1)( )

=
2 vol( )vol( −1)

vol( )

(
−1

2
−

2
1 +

2
; 2

)

It remains to compute the case where≥ 1 of (3.2). In this case we may compute
the following:

∫

( +1)

∫

( +1)

∣∣∣∣ 11 +
1

11

∣∣∣∣ µ ( +1)( ) µ ( +1)( )
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This integration is nothing but (3.2) which replace with . Hence we immediately
obtain

· 2 vol( )vol( −1)
vol( )

(
−1

2
−

2
1 +

2
;

1
2

)

Therefore we have

σ(θ τ ) =





2 vol( ) · vol( −1)
vol( )

(
−1

2
−

2
1 +

2

2

2

)
if ≤ ;

2 vol( ) · vol( −1)
vol( )

(
−1

2
−

2
1 +

2

2

2

)
if ≥

which implies Theorem 1.1.
Up to this point, we unrestrainedly used the notation vol( ( +1)) the volume

of the special orthogonal group ( + 1). This value is given by

vol
(

( + 1)
)

= vol
(

( )
)
· vol( )

EXAMPLE. The case where = = 1 in (3.2).
It is well known that

( ) =
π

2

(
1
2

1
2

1; 2

)
( ) =

π

2

(
−1

2
1
2

1; 2

)

where ( ) and ( ) are the complete elliptic integrals of the first and second kind
respectively. By a simple calculation we have

( )− ( ) =
π

4
2

(
1
2

3
2

2; 2

)

Hence, for 0< < 1, we have

σ(θ τ ) = 2 vol
(

(2)
)2 · vol( 0)

vol( 1)
·
(
−1

2
−1

2
1; 2

)

= 16
(
2 ( )− (1− 2) ( )

)

REMARK. Let = 1 and = × +1 in Theorem 1.1. Then, for almost all
∈ = ( + 2)× ( + 2), we have♯( ∩ ) = 2. Thus we have

∫
♯( ∩ ) µ ( ) = 2 vol( )

Finally we can give the following inequalities as an application of the integral for-
mula in Theorem 1.1.
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Corollary 3.2. Put = ( + 2)× ( + 2). Under the hypothesis ofTheo-
rem 1.1:
(1) If = × +1 then we have

1
vol( )

∫
♯( ∩ ) µ ( ) ≤ 2 · vol( )

vol( 1)

The inequality becomes an equality if and only if is a curve in+1.
(2) If = 1(⊂ +1) then we have

1
vol( )

∫
♯( ∩ ) µ ( ) ≤ 2 · vol( )

vol( × +1)

The equality holds if and only if is a submanifold of× +1. Here is a sub-
manifold in +1.

Proof. (1) In this case we can take sinθ 1 +cosθ +2 and 2 . . . + +2 as an
orthonormal basis of and respectively. Here1 . . . + +2 is the standard
orthonormal basis ofR + +2. Hence we obtain

σ( ) =
vol( −1)

vol( )
sinθ

We therefore have

∫
♯( ∩ ) µ ( ) = 2 vol( )

vol( −1)
vol( )

vol( )
∫

sinθ µ ( )

= vol( ) · 1
π

∫
sinθ µ ( )

(2) In this case we can obtain

σ( ) =
vol( −1)

vol( )
sinτ

This, by a computation similar to that in (1), completes the proof.

References

[1] R. Howard: The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math.
Soc.106 (1993), vi+69.

[2] H.J. Kang and H. Tasaki:Integral geometry of real surfaces in complex projective spaces,
Tsukuba J. Math.25 (2001), 155–164.



INTEGRAL GEOMETRY 117

[3] H.J. Kang and H. Tasaki:Integral geometry of real surfaces in the complex projective plane,
Geom. Dedicata90 (2002), 99–106.

[4] W. Miller, Jr.: Lie Theory and Special Functions, Academic Press, New York, 1968.
[5] L.A. Santaló: Integral geometry in Hermitian spaces, Amer. J. Math.74 (1952), 423–434.
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