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1. Introduction

Let G be a Lie group ank a closed subgroup(f . Consider two soifohds
in a Riemannian homogeneous spa&gk, one fixed and the other moving undegr
in G. Let the fixed one be/ and the moving one o¥ andulgtbe the invariant
measure orG . By taking the geometric invariant ¥l gN), volume of the subman-
ifold M N gN, and integrating with respect @y ;(g), we get so called the Poincaré
formula. This can be briefly stated as follows.

Let M? and N? be submanifolds of dimensions apd respectively, in a
Riemannian homogeneous spaG¢ K. Then many works in integral geometry have
been concerned with computing integrals of the followingrfo

/G VoI(M 1 gN) djig (2).

The Poincaré formula means equalities which represenalioze integral by some ge-
ometric invariants of submanifold& amd  6f/K. For example in the case that
G is the group of isometries of Euclidean spaR& and M andN are submanifolds
of R" then the result of above integral leads to formulas of Peomc&rofton and
other integral geometers (see [6]). Especially R. Howairdofitained a Poincaré for-
mula for Riemannian homogeneous spaces as follows:

Let M andN be submanifolds af /K with dimM +dimN =dim(G/K). Assume
that G is unimodular. Then

(1.1) /G HM 1 gN) djigls) = / /M TEML TN diy (5. )

where#(X) denotes the number of elements in a Xet  apdr M, T‘%N) is defined
by (2.1) in Section 2.
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The formula (1.1) holds under the general situation. Howevtes difficult to give
an explicit description through the concrete computatibm o(7-M, T},LN), and only
a little is known about it ([2], [3], [7]). In the present papave attempt to explicitly
describe this formula for submanifolds of dimension andimeshsion one in the prod-
uct of arbitrary dimensional unit spheres. More precisely,

Theorem 1.1. Let M be a submanifold a$”*! x §"*1 of dimensionl and N a
submanifold of codimensioh Assume that for almost aj € G, M and gN intersect
transversely. For any point € M (resp.y € N), sinf, and cosf, (resp. sirr,, Costy)
denote length of the first and second component of unit vegter (1, uo) (resp.v, =
(v1, v2)) of .M (resp.T},lN), respectively. Then we have

/ 8(M N gN) diisoumia)xsom+2)(8)
S0(m+2)x S0 (n+2)

= 2VOI(SO(m+1)>< SO(n+l)) //M No(x,y)d/,LMxN(x,y)

where
cxyVOI(S"'_l)F _1— n l1+m i if 500 < ot
—nVOI(Sn) 25 2v 2 ) ny ) xy —= “xy»
O—(xv y) = 1 2
s vol(S™—1) 1 m 1+n cyy -
e B Tt w b o L
mvol(S™) 2 20 252 r=

Here F(a, b, c;x) is the Gauss hypergeometric functjoand s,, = siné, sinr, and
Cxy = COSY, COST,.

2. Preliminaries

In this section we shall review the Poincaré formula on Rieman homogeneous
spaces given by R. Howard [1] and recall the Gauss hypergeionfenction.

Let E be a finite dimensional real vector space with an innedyect For vector
subspacesd/ an@  with orthonormal basegs...,v, and wy, ..., w, respectively,
we definec(V, W) by

o(V,W)=|voe A= Avp, Awi A=+ Awgl.

This definition is independent of the choice of orthonormasds. Furthermore, i +
g =dimE then

o(V, W) =o(V:, Wh.

Let G be a Lie group and a closed subgroup®f . We assume@hat has a
left invariant Riemannian metric that is also invariant endhe right actions of ele-
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ments of K . This metric induces @ -invariant Riemannian metri G/K. We de-
note byo the origin ofG/K. If x, y € G/K andV is a vector subspace &f G(K)
and W is a vector subspace &f G(K) then defines, (V, W) by

@1 7V W)= [ (@)Y dk )W) dit)

whereg, andg, are elements 6f such thab x= and y = . This definition is
independent of the choice @f, and @ suchthad x= gpd y =

We list here the basic properties of the Gauss hypergeamfiniction that are
needed in this paper only. For further details see [4].

The Gauss hypergeometric series, convergentfprk 1, is given by the power
series

. =T(@+n) I'(b+n) T() <z
@2 F(a’b’c’z)"; L@ T() T(c+n) n’

whereT" is the gamma function. By analytic continuatibrz, i, ¢ z ; ) t& extended

to define a function analytic and single-valued in the compleplane cut along the
positive real axis from 1 tac. We remark that above series reduces to a polynomial
of degreen inz wheru ob s equal ten, (n =0, 1, 2...). The series (2.2)

is not defined wherr is equal tem, (m =0, 1, 2...), provideda orb is not a
negative integer  witlh < m. The hypergeometric equation

d’u du
1-72)—+(c—(a+b+1)z)— — =
z(1—-72) 22 (c (a+b )Z) - abu =0

has the solutiont # o, b,c 7 ).

The six functionsF ¢ +1,b,c¢;z), F(a,b+1,¢c;z) andF @,b,c+1;z) are called
contiguous toF 4, b,c 7z ). Relations betweefi a,b,c z ; ) and any two cowotigu
functions have been given by Gauss. By repeated applicatfothese relations the
function F @ +m, b +n, c H ;z) with integerm n | can be expressed as a lineanli-
nation of F @, b, ¢ ;z) and one of its contiguous functions with coeédiits which are
rational functions ofa b ¢ z . For examples,

(2.3) azF(a+lLb+Llc+1lz)=c|F@b+1ciz)- Fl(a,b,c;z),
(c—1DF(@a,b,c—1,z) =(c—a—-1)F(a,b,c;z)taF@+1b,c;z)

Among the special cases are
(2.4) (1-2)' = F(=t.b.b;2),

113
2. inc =xF (2,5, ;7).
(2.5) arcsine =x (2,2,2,z>
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Furthermore C.F. Gauss evaluated, $f — a — b) > 0,

Tl (c—a—-D)

(26) F(a,b,C;l)—m.

In this paper, we may consider only when is a real number.

3. Proof of Theorem 1.1

Let S™ be the unit sphere of dimensiom . The special orthogoralum
SO(m + 1) acts transitively ors™ . The isotropy subgroup$® m ( +1) gbant in
S™ is SO (m). ThusS™*! x §"*1 can be realized as a homogeneous spde ¢  ( x+2)
SO(m+2))/(SO(m + 1) x SO(m + 1)). We have set, to simplify notation,

G=SOm+2)xSOm+2), K=5SOm+1)x SO(m +1).

Let g = so(m + 2) x so(m + 2) be the Lie algebra oG . Define an inner product
on g by

(X,Y)= —%Trace(XY) X, Y €g).

We extend this inner product, () on g to the left invariant Riemannian metric ai
Then we obtain a bi-invariant Riemannian metric 6n . Thisnkariant Riemannian
metric onG induces & -invariant Riemannian metric GpK = S™* x §"*1,

Let M be a submanifold of™** x $"*1 of dimension one andvn  a submanifold
of codimension one. By the formula (1.1), we have

(3.1) /G §(M N gN) dpg(g) = / /M O TM. T N) dit ).

Let u, = (41, uz) andv, = {1, v2) be unit vectors ofl, M amTle respectively.
By the action ofK , we can transpost, to ((¢in0,...,0), (co%,,0,...,0)) and
v, to ((sin7y,0,...,0), (cosry, 0, ..., 0)) respectively. Lety, ..., e,wn+2 be the stan-
dard orthonormal basis d®”™*2, Thus we can take
(_ COSTyel + SinTyem+2)a €2, .o oy €m+l, €m+3, - - -y Ctn+2
as an orthonormal basis df, N . We can simply write
(0, 7y) = o (TeM, TyN),

sinceo (T:M, T,N) is dependent only od, andr,. Then we have

o(k~T. M, T,N)
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= |(sinfye1 + COSOye+2)k A (— COSTyer + SINTye+2) A €1 m+2|
= | siné, sinTck11 + COSHy, COSTykm+2m+2|s

where

€1 m+2 = €2 N Nepri N €3 N -+ N epan+2,

and
=k 0 € S0(m+1)x SO(n +1).
0 &y

For simplicity of writing we put si sinT =s and co® cosT = ¢. Then we get

a(b, T)=// |sk11 + ckmsom+2| dpig (k)
K

We now have to compute following:

(3.2) / / |thi1 + g1 d:u‘SO(n+1)(g) d:LLSO(m+1)(k)
SO(m+1) J SO (n+1)
We here give the following lemma to compute the above integra

Lemma 3.1. If |a| <1 then

1 n 1 3
|+ x1| dpgi (x) = 2vol(S" 1) {—\/ 1—a?2 +a?F (5, 1- %, 5; a2> } .
n

sn

Proof. Define a mapping: (-1, 1) x §"~1 — S" by

(t,x = (x1, x2, ...,x,l)) — (t, \/l—tzx) .

Using ¢ as a variable transformation we have

1 n—2
// o —t|V1—12  dpg_.(x)dt
-1 Sn—l
1 n—2
voI(S""l)/ loo —t[\/1—12 dt.
-1

/ lov — x1| dpgi (x)
SVI

Here vol§") is the surface area of the -dimensional unit spleaerd its value is

27T(”+1)/2

vol(S™) = 71_((” ¥ 1)/2)’
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whereI"’ denotes the gamma function. By a simple calculati@n have

n 1
/\/l—x2 dx =xF (— —%,g;f).

2v

Hence we obtain

1 n—2 2 n 1 3
/ lo—t|V1—12 “dt=5V1-a? +2a2F (Z,1- 2 2:02),
1 n 2 2’2
which implies Lemma 3.1. U

We first consider the case where<Or < 1 in (3.2). Then we have

/ |thki1 + 11| dpso(ne1)(8)
SO(n+1)

(3.3)

V0|(S0(n))/ |th11 + x1| dppgn(x)
S”
2vol(S O (n))vol(s™ 1)
(3.4) % {:_L /1= 12(k2)?" + 2 (kan)? F (:_2L 1- % g lz(k11)2> }
n
Equality (3.3) follows from the fibering o8O0 n( + 1) oves”  with thigber SO (n),

and (3.4) follows from Lemma 3.1.
Notice

" " T m+1 m—1
(3.5) / sinx dx/ sirfx dx - / sin” x dx = vol(s™™) _ vol(S )’
0 0

0 2r m

then, using spherical coordinate transformation, thegnateof the first term in (3.4)
over SO m +1) is as follows:

[ VI digoqmen®

SO(m+1)

vol(som)) [ 1—r2(x)2 dpge(x)
Sm

/2 .
2vol(SO (m)) vol(s™ 1) / V1—12co26; -sin" 101doy
0

1 n m—2
= 2voI(SO(m))voI(S’"*l)/ V1—12x2 . \/1—x2 " dx.
0

In the last integral,

1 o
/ V31— x2 de
0
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is an Euler beta function. Hence it can be evaluated in terfrgamma function, and
we find that

1 m— m
(3.6) /Ox/l—x2 2d)c— vol(s™)

© 2vol(Sm—1)°

By (3.6) and integration by part, for any even number we obtai

/lxl\/l_—me_z dx = (—Dm—-21)1 . vol(S™)
0

m+1 -1 2vol(sm—1)’

where

il = m(m—2)---4-2, m:even;
T\ mm—2)---3-1, m:odd

And by (2.4) we have
o2 —p(_N 2.2
V1— 2 F( 2oL L )
So we obtain

1 n m—2 m +
/ \/1—t2x2 \/1_x2 dx—m F(} _n 1_m72).
0

T2vol(sm1) T \20 2 2

Hence we have

(3.7) / o VI D 0000
SO(m+

= vol(SO (m)) vol(S™) F <% —%, 1;’”;#) .

On the other hand, the integral of the second term in (3.4)S6hm + () is as
follows:

1 n 3
ku)?F (S, 1— =, =5 1%(k)? ) d k
/SO(m+1)( 1) (2’ 22! (k11) ) Hsom+1)(k)

= vol(SO(m)) /S (x1)%F (% 1- % g ; t2(x1)2) dpign (x).

Using again spherical coordinate transformation we get

1 n 3

2F - 1-—— = 2 2 "
R (315 5700 i)

m—1 ! 2 m=2 1 n 3 52
=2vol(s"%) | x*v1—-x2 F E,l——,—;tx dx.
0
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Let a,x?" be a general term of the serigs /11— n/2, 3/2;t?x?). Then we arrive
at the relation

1 n 3 1%x? t4xd 17 x2
Fl=,1— =, Z:t%x% ) =1+by - ——+by- ——+---+b, - o
(2 2'2 x) SR TR G Tl

whereb, =n b, . Since

1 m—2 m
/ x2/1—x2  dx= 1 vol(s™)
0

T m+1 2vol(Sm-1)

we have

1 m—2 1 3
/ x2/1-x2 F (5, 1- ﬁ, —;t2x2> dx
0

2’2
_ vol(Ss™) F },1—E,3+m;t2 .
2(m + 1) vol(s™—1) 2 27 2
So we obtain
1 n 3
(3.8) / (k11)’F (—,1——,—;t2(k )2) dpsom+1y(k)
SO(m+1) H 2 22 H SOn+1)

+
= vol(SO (m)) vol(s™) - ﬁ_ F <% 1- % 3 2’";#) .

A simple calculation shows that

F<} _n _1+m_t2>+ ni? F(} 1_" 3+m_t2>

20 20 2 m+1 \2’ 2 2
- F 1l on 1+m.t2
B 22 20 2 )

As the result, from (3.7), (3.8) and the last equality, weehav

/ / |thkir + g11| ditsou+1)(8) ditso(m+1)(k)
SO(m+1) J SO(n+1)

_ 2voI(K)voI(S”*1)F 1 _nltm ,
T avol(s) (__ 2 )

27 20 2"

It remains to compute the case wherg 1 of (3.2). In this case we may compute
the following:

s
SO(m+1) J SO(n+1)

1
ki1 + ?gll d:U‘SO(n+1)(g) d:U‘SO(nHl)(k)'
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This integration is nothing but (3.2) which replage  with .nde we immediately
obtain

2vol(K )vol(s"—1) 1 m 1+n 1
2 2 2 'i2)°

m vol(S™) 2

Therefore we have

vol($"—1) 1 n 1+m s :
2vol(K)e- —— 2 F (-2, -2 = fs<c
o vol(K ) voI(S™) 535 2) ssa
o0, 7)=
2vol(k)s . YOE" D (L m L4n if s> c
m vol(S™) 27 27 2 's2)° -

which implies Theorem 1.1.
Up to this point, we unrestrainedly used the notation ¥6l(n (1)}+the volume
of the special orthogonal groupO n ( + 1). This value is given by

voI(SO(n + 1)) = voI(SO(n)) -vol(S").
ExavpLE. The case wherer & =1 in (3.2).
It is well known that

_m 11, 5 _m 1 .
K(k)—zF(Z,Z,l,k>, E(k)—zF( > ,1,k>,

where K ¢ ) andE K ) are the complete elliptic integrals of thet fasd second kind
respectively. By a simple calculation we have

K(k) — E(k) = %kzF (% g 2;k2) .

Hence, for O< r < 1, we have

2 wi(s0@)* 53 (-5 5 57)

16c(2E(t) — (1 — 12K (1)).

o, 1)

Remark. Let M =S and N =85" x §"*1 in Theorem 1.1. Then, for almost all
gEG=80m+2)x SO(n+2), we haveff(M N gN) = 2. Thus we have

/G H(M N gN) djig(s) = 2v0I(G).

Finally we can give the following inequalities as an appiima of the integral for-
mula in Theorem 1.1.
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Corollary 3.2. PutG =850(m +2) x SO(n + 2). Under the hypothesis dfheo-
rem 1.1:
(1) If N =5" x §"* then we have

1
vol(G)

vol(M)
MNgN)d <2 —————.
| o 0 e o) < 2- o
The inequality becomes an equality if and onlyMf is a curves'iit,
(2) If M =SYc ") then we have

1 vol(N)
— M <2 ——7___
vol(G) /Gﬂ( NeN)dn(8) = 2- Soran gy
The equality holds if and only iV is a submanifold bfx $"*1. Here L is a sub-
manifold in §"*1,

Proof. (1) In this case we can take 8if1+c0s,¢,,+2 andeo, ..., epm+2 @S an
orthonormal basis oM and,N respectively. Hetg . .., en+,+2 is the standard
orthonormal basis oR”™*"*2. Hence we obtain

_vol(sm™1y
O'()C, y) = W(S’") S|n0x.
We therefore have
vol(s™—1) .
/Gn(MmgN) dug(g) = 2V0|(K)W(Sm) voI(N)/Msma)r diig(x)

vol(G) - l/ Sind, d iy, (x).
T Jm

(2) In this case we can obtain

_ Vol(S/n—l) sin
= — Ty.
m vol(S™) Y

a(x,y)

This, by a computation similar to that in (1), completes theof U
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