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1. Introduction

Let Th be the simple Thompson group. It has ordét-31°.5%.72.13.19.31,
and its Schur multiplier and the outer automorphism group kath trivial.

In this paper, we prove that Dade’s conjecture 0¥ is trueceHge mean by
saying the conjecture the ordinary form of the conjectusee([2].) According to [4],
the ordinary form is equivalent to the inductive form if theh@r multiplier and the
outer automorphism group are trivial. Moreover, if a defgatup of a block is cyclic,
then the ordinary form is proved to be true for this block if. [Ehus, it suffices to
treat the primes 2, 3, 5 and 7. The character tables of sesataroups ofT’h are
available. We use those found in ATLAS [1] and GAP library.sél maximal local
subgroups off’'h are determined in [12] and [18]. These infoionaare quite useful.
In the proof of the conjecture, we use a reduction theoreniclwis a very special
case of the one proved i§lL6 of [3].

Let G be a finite group ang a prime. Quite recently, a new type afoa-
jecture, which concerns the’-part of character degrees, is proposed by Isaacs and
Navarro [10]. Though the original version considers onlyght zero characters of;
and the normalizer of a defect group, here we prove a verdidade’s type. Namely,
we prove that the alternating sum of the numbers of relevhatacters of the normal-
izers of p -chains with any fixed defect is zero. Since we cobetriumber of charac-
ters satisfying a certain congruent relation suchyélb),r = =+« mod p, wherey(1),
is the p’-part of x(1), it suffices to consider the case pf> 5. However, forp = 13,
19 or 31, a Sylowp -subgroup dfi is cyclic of prime order. Thue tiormalizers
of chains are justr’h and the normalizer of a Sylgw -subgroum emoreover, it
is known that thosep -blocks of the normalizers have only atters of height zero.
Hence the assertion of our version of the conjecture is atgnt to that of Isaacs and
Navarro, and the latter is proved for cyclic defect groupesaim Theorem 2.1 of [10].
Thus when proving the alternating sum version of the coojectwe treat only the
cases ofp =5 and 7 in this paper. Our version of the conjectneroposed ing3
below.
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We denote byA B andi - B a split and a non-split extension of hy |, re-
spectively. We use: to denote a cyclic group of order . Morgofe a prime p ,
an elementary abelian group of ordet is denotedply . For anpouide p, we
denote bypl*?" an extra special group of ordgr”’*! and exponenp . The plus type
extra special group of order?2?! is denoted by 22, Finally, S, andA, denote the
symmetric group and the alternating group of degtee , réispd¢ and Dg denotes
the dihedral group of order 8.

Throughout the paper, a character means an irreducible legngbaracter unless
otherwise noted. For a fixed prime , we use the following nomatLet G be a finite
group andH a subgroup af . The principal block &f is denotedBpyH), and
the set of characters of H is denoted by Ird ). If thep -part ofH|/p(1) is p?,
then we say thap has defecd =l ). For an integed , we denote by IH(d ) the
set of thosep in Irr(H) with d(p) = d. Also for an integers, we denote by Iril, £])
the set of thosep in Irr(H) such that

([H[/¢(1)), = £ mod p.
We also put Irrfd, d, E]) by
Irr(H, d,[k]) =Irr(H, d) N Irr(H, [K]).

For a normal subgrouk off and a charadfeof K, we use Irrf{|0) to denote
the set of thosey in Irr(H) such thaty is lying over 6, that is, the restriction ofp

to K hasf as its irreducible constituent. We denote the intersestiohlrr(H|0) with
Irr(H, d), Irr(H,[x]), and Irr(H, d, [s]) respectively by Irrf, d|0), Irr(H,[x]|6) and
Irr(H, d,[k]|0). Moreover, for ap -blockB ofG , we use IiH{, B ) to denote the set of
characters off belonging to some -bloek HBf induciBg . The &ef{$i, B|0),
Irr(H, B, d), Irr(H, B,d|f) and so on denote the intersections of #yB ) with the
relevant sets. Sometimes is replaced by a subseéd  of IK( ). If this is the case,
for example, Irr|®) means the set of those in Irr(H) such thaty is lying over
somed in ©. The cardinalities of IrK) is in general denoted by ).

ACKNOWLEDGEMENT.  The author is very much grateful to Professor S. Yoshiara
and Dr. M. Sawabe for their many helpful suggestions, whiceh @ucial in determin-
ing radical p -chains offh . Also the author is grateful to PrefesG. Navarro who
sent him their manuscript, and to the referee for carefullirepof the manuscript.

2. Dade’s conjecture

We describe the ordinary form of the conjecture. kit be adigitoup andp a
prime. A radicalp -chain ofG is a chain

C.:Ph<Pi<Pr<---<P,
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of p-subgroupsP; ofG such that

(i) Po=0,(G) and
(i) Pr= 0,(Nj=oNe(Py)) foralli=01... n.

For thoseC, we write by Ng ) the normalizer ., N¢(P;) of C in G, and by
IC|, the lengthn ofC. Let R,(G) be the set of all radicap -chains @ . The group
G acts onR,(G) by conjugation. We denote a set of representative; of jugacy
classes ofR,(G) by R,(G)/G.

If a p-subgroupP ofG satisfie® &, Mg A )), then we say tiRat s a radical
p-subgroup ofG . (Note that in this papef), G( ) is also a radicdlgsoup of G .)
The set of radicalp -subgroups 6f is denoted By(G). Thus,

C:Ph<PL<Py<---<P,

is a radicalp -chain'if and only itPo = O,(G), P < Ng(P;) for i, j with j <i and
Pi1/P; lies in B,(;zoNo(Pj)/P;) forall i =0, 1...,n—1.
The ordinary form of Dade’s conjecture is stated as follows.

Conjecture 2.1. Let p be a prime andG a finite group wit®,(G) = 1. Con-
sider the above situation. If the defeé¢{B) of B is greater thanO, then

> (—Dk(NG(C), B,d)=0

CeER,H(G)/G

for all d.

3. Conjecture of Isaacs and Navarro

In this section, we describe the Isaacs and Navarro comgeend an alternating
sum version of it. LetG be a finite group and a prime. 1Bt be a dblof G
with defect groupD and the -block adfs D( ) which correspondsBto thoy first
main theorem of Brauer. For an integerwith 0 < k < p, let M.(B) be the num-
ber of irreducible characters iB  with height zero and gHepart of the degrees are
congruent tot+x modulo p . Then Isaacs and Navarro propose the following ctunje
in [10].

Conjecture 3.1 (Isaacs-Navarro). In the notation abovelet ¢ be the p’-part of
|G : Ng(D)|. Then

M..(B) = M. (b)

for all x with 0 < k < p.
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However, in the above, there seems to be no reason why we tdkeéheight zero
characters if we deal with also the normalizers of chains.cBgsidering resemblance
to the relationship between McKay conjecture and the orglifarm of Dade’s con-
jecture, we propose the following.

Conjecture 3.2. Let p be a prime andG a finite group with,(G) = 1. Con-
sider the above situation. If the defeétB) of B is greater than0, then

Z (_1)|C‘k(NG(C), B, d, [/{]) =0

CeER,(G)/G

for all 4 and «.

Of course the other forms such as invariant, projective $oohthe conjecture can
be set. However, detail of them and the relationship betw@enjecture 3.2 and the
original version of the conjecture by Isaacs and Navarrd lél considered elsewhere.
Here remark that Conjecture 3.2 implies Conjecture 2.1gesithe alternating sum in
the latter is the sum of those in the former taken overxalwith 0 < x < (p —1)/2.

Now we give the following easy remarks.

Lemma 3.3. Let G be a finite group and fix a radicgh -subgroup ©f  with
P # 0,(G). Suppose that a radicap -subgroup of G with P > P satisfies
Ng(P) C Ng(P). ThenP is a radical p -subgroup ofNs(P), and putting

R1={C:0,(G)<P<P<---<PeRYG)||C|>2} and
Ro={C:0,(G)<P<-- <P, eR,(G)||C|>11},

there is a bijectionf: Ry — R» sending any0,(G) < P < P < --- in Ry into
0,(G) < P < ---. Moreover for any C in Ry, we haveNg(C) = Ng(f(C)) and
ICl=1fO)f+1

By the above, in the alternating sum appearing in the comjest we can take
radical p -chains which do not lie ifik; or R2. Moreover, concerning Clifford theory,
the following is important.

Lemma 3.4. Let G be a finite group andv a normal subgroup Gf . lebe
a character of N, and T the stabilizer of in G. Then there exists a bijection from
Irr(T, d,[]]0) to Irr(G, d, [x]]|0) sending anyy in Irr(T, d,[x]|6) to ©°.

4. A reduction theorem

In this section, we prove a theorem which reduces the proliesubsections. It
is a very special case of Theorem 16.4 of [3], though here #lightly modified and
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takesk into account. We can give a proof here, because it is not vempticated in
our case. Consider the following situation.

Hypothesis 4.1. Let p be a prime andG a finite group of the form
G=(Qx H): (o),

for a p-subgroupQ, a subgroupH and g -regular elemeatof G such thato nor-
malizesQ andH .

For anyC € R,(G), each subgroup® appearing thhas the formP =0 x P
for a p-subgroupP of H. Furthermore, there is a bijection

[ Ry(G)/G — Ry(H : (a))/(H : {0))
sending any class of
C:0,(G)=0xO0,(H)<QxPy<---
to the class of
C:0,(H:(0))= 0p(H)<P1 <,

and we haveC| =|C| and Ng C) = Q : Ny (o) (O).

Fix a characte of Q. Let (r) be the stabilizer ob in (o), wherer = o™ for
some divisorm of|{c)|. The stabilizer ofd in G is (Q x H) : (r), and the stabilizer
I(C, 0) of 0 in Ng(C) can be written as

I= I(Cv 6) =0: NH<T>(C)

Note thatd can be extended to x H) : (7), since it has an extensioh x 1y to
Q x H which is (7)-invariant. In particularp can be extended td C(6) for any C.

Let b be a p -block of Ng €) such thatb contains a some character in
Irr(Ng(C))|6). Then there exists @ -block’ of I inducingd . (see V.3.1 of [13].) Let
b1, bz, ..., b, be p-blocks of Ny.(,(C) dominated byb’. See Chapter V58 of [13].
Since# can be extended té C(6) and since|Q|/0(1) is ad @)-th power of p , it fol-
lows from Clifford theory that

t

k(1.0 d.[K]10) = > k(Np.(+)(C). b;, d — d(6), []).
j=1

Sincek (Vg C), b, d, [«]|0) is the sum ofk [, b, d,[]|f), whereb’ ranges in the set
of p-blocks of I inducingb , we have the following.
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Theorem 4.2. Under Hypothesis 4.1)et § be a character ofQ with defect(6)
and ® theG -orbit ofg, and let (r) be the stabilizer of in (o). If

S (1) (Ny.y(©). B.d. [5]) =0

CERH(H:(r))/Hi(T)
for all p-blocks B of H : (r), all d with d # 0, and all », then we have

> (-1 (Ng(C). B.d.[1]|©) =0

CER,H(G)/G

for all p-block B of G, all d with d #d(f), and all .

Proof. Use the notation given preceding the theorem. Siheestabilizer off in
G is (OQx H){(T), its G-orbit ® consists ofz characters. Singe) is abelian,I €, ) =
I1(C,08)=0Q: NH;<T>(5) for all g € G, and thus theVg ()-orbits of # and 8% consist
of the same number of characters. Since AheC)-ofbit of 6 consists of|Ng(C) : (Q :
NH;<T>(3))| characters, the number &f; C)corbits in ® is

m(C,0) =m/|NG(C) : (Q : Npz(+)(C))| = m/|Np:(5)(C) : Npz:(7) (C))|
=|(H : (oNI/I(H ()] X (Ni:(o) O/ IN oy © N (H = ()
=|(H  (oDI/I(H AT)] X (INioy @ H = )|/ |H = ()
=|(H : (o)) % |Nu:(o) C)(H = ()|

Let § =01, 0o, ..., 0nc.0) form a set of representatives of; C)¢orbits in theG -orbit
of 6.

Now, the H : (o)-orbit of the radicalp -chainC of H consists of|(H : (o)) :
Nu.(»y(C)| chains. But, it is a disjoint union off (r)-orbits, each of which consists
of |[H(7) : Ny.-y(C)| chains and we have

|H<T> : NH:(T>(€)| = |H<T> . NH:(G)(f) N H<T>| = |NH:(U>(€)(H . <T>) . NH:(U}(f)l

Thus the number off (r)-orbits in the disjoint union is in totak C{ 6).

On the other hand, leB be @ -block ¢f and consider jall -blosksf o
Ng(C) inducing B and having some character in Ng(C))6). (If such ab exists,
then B has a character lying ovér see V.3.10 of [13].) Each of those is induced from
some p -blockd’ of I(C,6). Take all suchh and’ and all p -blocksby, by, ..., b,
of Ny.-y(C) dominated by one of thes#’’s. Note that eachh; can be induced to
a p-block of H : (7). Of course, they depend of. Let Cy be the trivial chain of
G consisting only one grou®, ). ThehCq 0) = (Q x H) : (1), and we have
p-blocks By, B, ..., B, of Ny..;,(Co) = H : (1) by the above process applied .
Then, it is easy to see thai, B»,..., B, are exactly thep -blocks off {r) in-
duced from someé;. (This is proved in much more general situation in Theoren8 14
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of [3].) From the arguments above and preceding the theovemhave

> (-D)k(Ng(C). B.d.[1]|©)
CEeR,(G)/G
m(C,0)
= Y > (-Dk(Ne(C), B. d. [K]]6:)
CERY(G)/G i=1
m(C,0)
= > > k(1. 0). B.d. [4]|0:)

CER,H(G)/G i=1

= Y m(C.O(-1)k(1(C.0), B.d.[r]|0)

CeER,H(G)/G
= > m(C.O)(=1) S k(Ny.(ry(C). B;. d — d(6). [])
CER,(H:(0))/(H (o)) Jj=1

= Y mC O k(Nyry(©). Bj. d — d(0). [x])

CER,(H)/(H (o)) =1

= Y (DS k(Nuur)(©). By d — d(6). [])
5eR,,(H)/(H:<T>) Jj=1

= > (- " k(Npury ). B}, d — d(9). [])
CER,(H:{T))/(H:(T)) j=1

=3 3 (—1) €Ik (Npz:(r(©). B, d — d(9). [x])

JFLCeR(H:(T))/(H:(T))

for all d and k. Now, by the assumption, the above alternating sum is zeralfad
with d # d(#). This completes the proof. [l

Remark. One might think that the conditio@d # d(0) is not necessary in
the conclusion of the above. However, @, H( ) #1} and B is of defect zero,
then the alternating sum in the assumption of the theorem ferld = 0, since
k(Ng:((C), B,0) = 0 for all non-trivial chainC in R,(H : (r)). Thus it is reasonable
to restrict the assumption either o -blocksof positive defect or tal withd # O.
However, if we take the former, it becomes slightly diffictdt state the conclusion.

The above theorem will be applied in the following situation
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Hypothesis 4.3. Let p be a prime andG a finite group such thét has a
p-subgroupQ with

N(Q) = (Q x H) : (o) = N (Q x O,(H))
for a subgroupH ofG and @ -regular elementof G which normalizes) andi

Then Q x O,(H) is a radicalp -subgroup o , and Hypothesis 4.1 is satisfad f
Ng(Q) in place of G there. Assume further that, G ( ){%} and letR),(G) be the
set of radicalp -chains o&; starting with< Q x O,(H). Then there is a bijection

F: R,(G)/Na(Q) — Ry(N6(Q))/Na(Q)
sending any class of
C:l<QOxOp(H)<P <
to the class of
C' 0p(NG(Q) = Q x Op(H) < Py <+,

such that|C| = |F(C)| + 1 and Ng C) = Ng(F(C)). Thus Theorem 4.2 can be used to
reduce partly the problem fat to that féf («). In particular, if O is abelian, we
have the following.

Theorem 4.4. Under Hypothesis 4.3,use the above notation. Suppose that
0,(G) = {1} and thatQ is abelian withQ| = p*. If

S () (N (). B.d.[5]) =0

CeR,(H1)/H

for all p-blocks B of all Hy with H < Hy; < H : (o), all d with d #0 and all , then
we have

Y (~1)Ck(N6(C). B.d.[K]) =0

CER(G)/G

for all p-blocks B of G, all d with d # s and all «.

Proof. Taking allNg Q )-orbits® in IrrQ ), and applying Theoren4we have
the desired result, since all the charactersQof  have defect . ]

In the groupTh , the above situation really occurs and to useoiEme 4.2 for it,
we prove that the Conjecture 3.2 holds for certain groups.
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Proposition 4.5. For the following groupsG and primeg, we have

Z (_1)|C‘k(NG(C), B, d, [/{]) =0

CER,L(G)/G

for any p-blockB ofG with positive defect and for all and

(la)Let g = p°. The groupG isp* : GLa(q) = (F;)? : GL2(g) with the natural action
of GL2(g) on (F,)2.

(1b) Let ¢ = p¢. The groupG isp% : SLa(q) = (F,)?: SL2(g) with the natural action
of SLa(g) on (F,)?.

(1c)Let g = p¢ with p # 2. Let o be the Galois automorphism &, with o(x) = x?.
The groupG is(p® : SL2(¢?) : (o) = ((F,2)? : SL2(g?) : (o) with the natural action
of SLy(¢%) and o.

(2) Let p =3. Denote bys the graph automorphism afi»(3) of order two. The group
G is G2(3) or G2(3) : (o).

Proof. (1a), (1b). We omit the proof of (1a) and give a proof(dlb), since the
argument for (1a) is similar to and simpler than that for (19t H(g) be the sub-
group of upper triangular matrices $v.,(g).

H(q):{(gabl> ’a,bEFq, a;éO}.

Then the trivial chain §,)?> = 0,(G) and €,)*> < (F,)? : 0,(H(g)) form a set of
representatives of; -conjugacy classes of radical -chding.a'he normalizer of the
latter is €,)? : H(g). It follows from V.3.11 of [7] thatG and R,)? : H(g) have
only the principalp -blocks. We use the argumentéiof [14]. Consider the action of
SLa(gq) on Irr((F,)?). Definev: (F,)? — C* by v((a, ) = (¥/1)* for (o, B) € (Fy)?.
Thenv is a character ofF(q)z. The stabilizer ofv in SLy(q) is

Hl(q):{<éli) ‘bqu}.

Clearly, the trivial characterdy. and v form a set of representatives 6f -conjugacy
classes of Irr(IEq)Z). However, there are thred g ( )-orbits, one consisting gfy1 the
orbit of » and the one consisting of all the others. Létbe the character ofF(Y)2 de-
fined by v'((a, 8)) = (¥1)? for (o, B) € (F,)?. Thenv andv’ are notH § )-conjugate
and the stabilizer of’ in H(q) is trivial. It follows from Clifford theory that

k((Fy)?: SL2(q), d, [K]) = k(SLa(q), d — 2e, [K]) + k(Hi(q), d — 2e, [x]) and
k((Fg)?: H(q).d.[K]) = k(H(q).d — 2e, [x]) + k(Ha(q). d — 2e, [])
+k({1},d — 2e, [#]),
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for all d and k, since } andv can be extended to their stabilizers. (see also 5.20
of [11].) If p > 5, then we have

(@, r) (e,1) (,2) (1)
k(SL2(g).d.[x])) ¢—1 4 1
k(H(q).d.[k]) q—-1 4 0

For otherd 's andx's which do not appear above, the numbers of relevant ctasact
are zero. This convention is used throughout the paperpFoR ard 3, we can ignore
x and have the following.

p=3 p=2

d e 0 d e 0
k(SL2(q),d) q+3 1  k(SL2(g).d) q 1
k(H(q),d) q+3 0 k(H(q).d) q O

Thus the result holds. See also [16].

(1c). Use the argument in (1b). Our has two conjugacy clasdesadical
p-chains. However, we haveH(;z)2 : H(g?) : (o) as the normalizer of a non-trivial
radical p -chain. Defing: (qu)2 — C* by 0((a, ) = v(T (), T(B)) for (o, B) €
(F,2)% whereT :F,. — F, is the usual trace map. Defir# similarly by usings’
instead ofv. Thend and ¢’ are (o)-invariant. Moreover, & . and ¢ form a set of
representatives ofL»(g?) : (o)-orbits in Irr(a:qz)z), and %y, 6 and ¢’ form that of
H(q?) : (o)-orbits. Since t,, 0 and ¢’ can be extended to their stabilizers, we have

k((Fy2 2 SLa(g?) - (0),d. [K]) = k(SLa(q?) : (o), d — 4e, [K])
+k(Hi(q?) : (0),d — 4e, [r]) and

k((F,2: H(g?): (0),d,[K]) = k(H(¢?) : (0),d — 4e, [K])
+k(Hu(q?) : (o), d — e, [K]) +k((0),d — e, [K]).

Now look at thes action on the characters ofL»(¢?%) and H ¢2). For characters of
SLy(q?), see for example, [5]. The groupL,(g?) has ¢? — 3)/2 characters of degree
g?+1. It is easily seen that among thoge;- 2 ares-invariant and § — 1)?/2 are not.
It has also ¢2—1)/2 characters of degreg” — 1. None of them are-invariant. There
exist characters of degree ¢2, one for each, and of degreg?(—1)/2 and ¢?+1)/2,
two for each. These six characters are alinvariant. On the other handd ¢3) has
g? — 1 linear characters, and among those, exagtly 1 are o-invariant. It also has
four characters of degreg{ — 1)/2. They are allo-invariant. Thus, forp > 5, we
have

(d, k) (2, 2) (2.1) (2.4 01

k(SLa(q%) : (o). d.[k]) 2(¢—1) ql¢—1)/2 8 2
k(H(q?) : (0),d,[K]) 2(¢—1) qlg—1)/2 8 0
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and for p =3, we have

d 2e 0
k(SLa(q%) : (o). d) (q°+3q +12)/2 2
k(H(q?) : (0).d)  (¢*+3q +12)2 0

Hence the result holds.

(2). Sincep = 3, we can ignore in the argument. The groug,(3) has 3
non-conjugate non-trivial parabolic subgroups U?¢ and Uy, where U is a maxi-
mal parabolic subgroup antly is a Borel subgroup. Hence the following form a set
of representatives of radical 3-chains @G§(3). Note that two maximal parabolic sub-
groups ares-conjugate and/g is o-invariant.

radical 3-chain normalizer parity
1, G2(3), +
1 < 03(U), U, —
1< 03(U)°, Ue, -
1< 05(U) < 03(Vo), Uo, +
1< 05(U)7 < 03(Uo), Uo, +
1< 03(U0), U, —

The groupG2(3) has one block of defect zero and the principal bl&KG2(3)), and
U and Up have only the principal blocks. From [6] we have the follogirNote that
Uy is denoted byB in [6].

d 6 5 4
k(G2(3), Bo(G2(3)).d) 15 6 1
1
1

k(U, Bo(G2(3)), d) 15 15
k(Uo, Bo(G2(3)), d) 15 24

Thus the result follows foiG2(3). The groupG(3) : (o) has the following set of rep-
resentatives of conjugacy classes of radical 3-chains.

radical 3-chain normalizer  parity
1 G2(3) : (o), +
1 < 03(U), U, —
1 < 03(U) < 03(Uo), U, +
1< 03(U0), Up . <0>, —

The group G2(3) : (o) has two blocks of defect zero and the principal block
Bo(G2(3) : (o)), and the subgrouf/y : (o) has only the principal block. In the nota-
tion of [6], eleven character®; for i =0, 1, 2, 5, 6, 7, 10, 11415(+1) andy14(1), of
G2(3) are{c)-invariant, and so are the ten charactgig0, 0), x1((¢ — 1)/2, 0), 65(0),
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05(1), 06(0), 0s(1), 07, O, O9(£1) of Up. The charactefls of G,(3) has degree®and
thus lies in a block of defect zero. All the other charactéesih the corresponding
principal blocks. Thus we have the following.

d 6 5 4
k(G2(3) : (), Bo(G2(3) : (0)).d) 18 6 2
k(Uo : <O’>, Bo(G2(3) . <O’>), d) 18 15 2

Thus the result follows foiG,(3) : (o). O

5. The case ofp=2 for Th

In this section, we assume th& 7% apd = 2. Thus we can igrore

5.1. Radical 2-chains. By Theorem 20 of [20], there are 1% -conjugacy
classes of non-trivial radical 2-subgroups. Among thenerdhare radical 2-subgroups
E > 218 and A ~ 2° and we haveNg £ ¥ E - Ag and Ng (A) = A - Ls(2) which
are only maximal 2-local subgroups of up @ -conjugacy. @rbm 2.2 of [18].)
Moreover,C; £ ) =Ng E )= E - Ag for the central involutiony ofE . Furthermore, a
radical 2-subgroup olNg K ) isVg K )-conjugate to the inverse im@R in Ng(E)
of a radical 2-subgroug®  0Ag under the surjective mays E( ) Ag, and eachER
is a radical 2-subgroup off . Note thaty has eleven classes of radical 2-subgroups,
and thoseER give representatives of radical 2-subgroupé& of vindpas -conjugates
whose normalizers are contained iz E (). Thus, it follows frbemma 3.3 that rad-
ical 2-chains ofG starting with & ER or 1 < E < ER for each non-trivial radi-
cal 2-subgroupR ofdg can be eliminated in the alternating sum. In particularuit s
fices to consider only k E among those starting with & E. To examine the sit-
uation for A, let us introduce the following notation. Fix arBbsubgroup ofLs(2)
and let an ordered sdi &1, 1, r3 ra} be the set of fundamental positive roots of
Ls(2). Then Ls(2)-conjugacy classes of parabolic subgroupsLgf2) are parameter-
ized by subsets ofl . For a subs¢t ©Of , we denote the corresppmdirabolic
subgroup byP; , and the unipotent radical Bf By . A radical 2gsabp of
Ls(2) is Ls(2)-conjugate toU; for somg . Thus a radical 2-subgroupVgf A () is
Ng(A)-conjugate toAU,; for some/ . However, as is shown in the proofTbé&o-
rem 20 of [20], ifr1 ¢ J, then Ng AU, ) < Ng(E) up to conjugacy. ThuAU, is
G-conjugate to a radical 2-subgroup 8f; E ( ). Hence to examiukcah 2-subgroups
of G contained inNg A ), it suffices to look adU; such that € J. Those eight
AU,’s with r; € J are representatives of remaining radical 2-subgroupé& ofNotg
that AUp = A.) Thus, again by Lemma 3.3, radical 2-chains &®f stgrivith
1< AU, or 1 < A < AU, for a subset/ offl withry € J andJ # IT can be
eliminated in the alternating sum. In particular, amongséhatarting with 1< A, it
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suffices to consider only & A and
C:l<A< AU, < AU, <---<AU;, with ID /1 DD DU

such thatr; ¢ J;. Note thatNg C) = AP,,. Let us fix a subset/ ofl withy ¢ J,
and letR5(G, A, AU,) be the subset oR»(G) consisting of thos& above such that
the last subgroup i€ is AU,. (SoJ, =J in the above.) Iff # {r;, r3, ra}, then we
can define a mafy R5(G, A, AU;) — R5(G, A, AU,) by

o) = 1<A<AU, <---< AUy, if J1={rz, ra ra},
1< A<AUgy a0 < AUy < AUy, < --- < AUy, oOtherwise,

in the above notation. Thefi  gives an involutive bijection®§(G, A, AU,) and we
have Ng C) = Ng(f(C)) and |C| = | f(C)| = 1. Thus we can eliminate the chains in
RY(G, A, AUy) in the alternating sum. Now the remaining radical 2-chadne 1< A
and 1< A < AU,,, where Jo = {ra, r3, r4}. Note thatU,, = 2* and P,, = 2% : L4(2).
Thus the normalizer of kX A < AU, has the structurei - (2* : L4(2)). Moreover,
since we may assumd; AU,,) < Ng(E), we haveAU,, = E and A - (2* : L4(2)) =

E - L4(2) = E - Ag. Hence, we have the following.

Proposition 5.1. To prove that the conjecture holds f6r  and= 2, it suffices
to consider the alternating sum with respect to the follgyvmadical 2-chains.

C(): 1, NG(CO) = Gv
Ci:1<E, NG(C1) = NG(E) = E - Ay,
Coil< A, NG(C2) = Ng(A) = A - Ls(2),

C3:1<A<A-2% Ng(C3)=Ng(E)NNg(A) = A-(2*: L4(2)) =E - Ag.

5.2. 2-blocks ofG, Ng(E) and Ng(A). As is shown in ATLAS,G has 48 irre-
ducible characters. From the character tableGof |, it follokast G has four 2-blocks,

Bo = Bo(G), {x22}, {x23}, {x38},

where X22(1) = X23(1) = 215 . 53 and ng(l) = 215 . 72 -19.

Since Ng E) ¥ 21*®. Ag and N; (A) = A - Ls(2) have normal selfcentraliz-
ing 2-subgroups, they have only the principal 2-blocks, olvhof course induceBy.
(see V.3.11 of [7].) They are maximal subgroups®f and appedine GAP library.

From their character tables, we have the following.

d 15 14 13 12 11 10 9 8 7 6 5
(G, Bo, d) 16 4 2 14 2 0 302 2 0
k(NG(E),Bo,d) 16 4 2 14 1 0 3 7 3 2 0
k(NG(A),Bo,d) 16 4 2 14 2 0 2 0 0 0 1
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5.3. 2-blocks ofNg(E)NNg(A). By 5.1, Ng (E \"Ng(A) has a normal subgroup
E =~ 25.2* > 21*8 which is self-centralizing. Thus/c K r)Ng(A) has only the princi-
pal 2-block, which induces,. Moreover, we haveNg K N Ng(A))/E = La(2) = As.

The set IrrE ) consists of one characterof degree 2 and 2 characters of de-
gree 1. From the character table of; £ ( ), we can compute NgeE (bifsoin
Irr(E). Note first that in the notation of GAP libraryal a2 p2 dda elements of
Ng(E) form E. Of course, the trivial character,1 df  amdform their own or-
bits of length one. We use the same numbering of characteMg;6F) as appeared in
GARP library. First of all, by looking at the values ab2 and 4eménts ofNg £ ), we
can see thaty(>1)g and (x32)g lie over different orbits. Moreover, it is easy to see that
a character ofNg K ) lying over a non-trivial linear charactér o has a restriction
which is a multiple of eitherx21)r or (x32)e. Thus, Clifford theory implies that there
are exactly twoNgs E )-orbits of non-trivial linear characters E. Moreover, we have
[(x21) . (x21)£] = 120 and [z2)£. (x32)£] = 135. SinceE has®- 1 = 255 non-trivial
linear characters, we can conclude that the two orbits sbrdi120 and 135 charac-
ters, respectively. Lef; and 6, be representatives of these orbits of length 120 and
135, respectively. Thengl 5, 61 and , form a set of representatives of; E ( )-orbits
in Irr(E). Fori =1, 2, letT; be the stabilizer of; in Ng(E). Note also that X21)e
and (ys2)g are exactly the sum of characters in the orbitsfpfand 6,, respectively.
This implies thatd; can be extended t&; , far =1, 2.

Let us examine the individual orbits. From the charactefetal L,(2) =~ Ag, we
have

1)

d 15 14 13 12 11 10 9 8 7 6 5
k(NG(E)YNNg(A),d|1) 8 2 2 1 0 0 1 0 0 0 O

The charactem is Ng(E)-invariant. Recall thatNg K )E = Aq. If 1 has an
extension toNg £ ), then, sincdg has eight characters of odd degree by ATLAS,
Ng(E) has at least eight characters of defect 11. However, agés & the previ-
ous subsection, this is not the case. Hengcean not be extended s E( ). Consider
Irr(NG(E) | n). Let ¢ be the non-trivial character af (29). Sincen does not have
an extension taVg K ) and sinceV§ E(N)Ng(A))/E corresponds td.a4(2) = Ag in
NG(E)/E = Ag, the theory of character triple (Chap. 11 of [9]) tells usttkizere
is a bijectiono from Irr(Ng(E) N Ng(A) | n) to Irr(2.Ag | ¢) such thatp(1)/n(1) =
o(e)(1)/¢() for all ¢ in Irr(Ng(E) N Ng(A) | n). (see (11.28), (11.23) and (11.24)
of [9].) Thus the character table of &5 gives the following.

d 15 14 13 12 11 10 9 8 7 6 5

2) k(NG(EYNNg(A),d|n) 0 0 0 0 0 O 0 7 1 0 1

The groupTy/E has index 120 ilNg E )E = Ag. Form p. 37 of ATLAS, it must
follow that 71 /E = L,(8) : 3. To obtainNg £ N Ng(A)-orbit of 61, we considerAgnN
(L2(8) : 3). Since|Ag| = 26-3%.5.7 and|L»(8) : 3 = 23.3%.5.7, the groupAgn(Ly(8) : 3)
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is a proper subgroup of.»(8) : 3. On the other handAsg : (4g N 71)| < 120. Thus
it follows from p. 6 of ATLAS thatAg N (L2(8) : 3) is isomorphic to eithel,(8) or
2% : 7 : 3. However, if the former was true, then it would followoin p. 22 of ATLAS
that L»(8) < A7, which would contradict p. 10 of ATLAS, sincd; does not have a
subgroup isomorphic td.»(8). Thus we can conclude thats N (Lx(8):3)~ 23:7: 3.
In particular, theNg £ N Ng(A)-orbit of 8; consists of 120 characters. Sinég can
be extended taVg A () 71 and since the 2-part ofdsg : Ag N (Lx(8) : 3) is 2, the
character table of 2: 7 : 3 gives the following.

d 15 14 13 12 11 10 9 8 7 6 5

3 k(NG(EYNNg(A),d|6;) 0 O O 8 0 O 0 0 O 0 O

The groupTz/E has index 135 inAg. From p. 37 of ATLAS, we may assume
that I,/E < Ag and p. 22 of ATLAS implies thatlz/E =~ 22 : L3(2). Thus we may
assume thafl, < Ng(E) N Ng(A), and then it follows that theéVg H ) Ng(A)-orbit
of 0, consists of 15 characters. Sinég can be extended t@», the character table of
23 : L3(2) gives the following.

d 15 14 13 12 11 10 9 8 7 6 5

@ k(NG(EYNNg(A),d|6) 8 2 0 1 0 O 00 0 0 O

Finally, let 3 be a character in th&/g E( )-orbit @k such thatd, and f; are not
Ng(E) N Ng(A)-conjugate. Letls be the stabilizer o3 in Ng(E). Since we assume
that T,/ E < As, it follows that 73/E is contained in amg-conjugate ofAg which is
different from the originalAg. This means thatNg K ) Ng(A)NTs)/E is isomorphic
to a subgroup ofd;. Recall that|T3/E| = |T2/E| = 26-3-7, |A7] = 22-3%.5.
7 and |[Ng(E) N Ng(A) : (Ng(E) N Ng(A) N T3)| < 135— 15 = 120. From these,
it must follow that |[Ng(E) N Ng(A) : (NG(E) N Ng(A) N Tz)| = 120. In particular,
the Ng (E )N Ng(A)-orbit of 63 consists of 120 characters. Moreover, sin@€;(E) N
NG(A)NT3)/E| =2%-3-7, p. 10 of ATLAS implies that ¥ £ N Ng(A) N T3)/E =
L»(7). Sincefz can be extended td3, the character table af,(7) gives the following.

d 15 14 13 12 11 10 9 8 7 6 5

®) k(NG(EYNNg(A),d|6z) 0 0 0 4 1 0 1 0 0 0 O

Since k n, 6;, i =1, 2, 3 form a set of representatives 8§ E (\ Ng(A)-orbits
in Irr(E), the above tables (1)—(5) give the following.

d 15 14 13 12 11 10 9 8 7 6 5
k(NG(EYNNg(A),d) 16 4 2 14 1 0 2 7 1 0 1
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5.4. Conjecture. Summarizing the above, we have the following.

d 15 14 13 12 11 10 9 8 7 6 5 parity
k(G Bo, d) 6 4 2 14 2 0 30 2 2 0 +
k(Ng(E), Bo, d) 6 4 2 14 1 0 3 7 3 2 0 -
k(Ng(A), Bo, d) 6 4 2 14 2 0 2 00 0 1 -
k(NG(E)YNNG(A),Bo,d) 16 4 2 14 1 0 2 7 1 0 1 +

Hence, by Proposition 5.1, Conjecture 2.1 holds dor  in thgecaf p = 2.

6. The case ofp =3 for Th

In this section, we assume th& 7% apd = 3. Thus we can igrore

6.1. Radical 3-subgroups and radical 3-chains. Maximal 3-local subgroups
are classified irg4 of [18]. There are three conjugacy classes 3B, 3 afid 3 of ele-
ments of order three, and we have

L1=Ng(3A) = (3x G2(3)): 2
L= Ng(3B) = (3 x 31%?). 312 24,
L3=Ng(3C) = (3x 3*:24¢): 22> 3°: 28s.

Let T denote the normal subgroug 3 312 of Ng(3B) and letC = 03(Ng(3A)).
There is a central B2 group inT , and we have

Ls=Ng(3B?) = (32 [3']) - 254

Any 3-local subgroups ofG is contained in one bf, L,, L3 and L4. (see Theo-
rem 4.1 of [18].) Thus a radical 3-subgroup 6f is thatiof  fomsa .

Let us examine radical 3-subgroups 6f ’'s. First of allzg(L;) is a radical
3-subgroups ofL; and thus @ for each . Moreover, a radicall@igup R of L;
must containOs(L;). (Prop. 1.4 of [2]) In particularR/O3(L;) is a radical 3-subgroup
of L;/0s3(L;). Let us treatL; individually. The grougi»(3) : 2 is the finite Cheval-
ley group G,(3) with the non-trivial graph automorphism of order 2. Thug to
G2(3) : 2-conjugate, there are two non-trivial radical 3-suaps of G2(3) : 2. Namely,
U =~ 32 x 32 with normalizerU :GL»(3) and Uy = 32 - (3 x 31*2) with normalizer
Uo : Dg in G2(3) : 2, the unipotent radical of a maximal parabolic subgr@nd the
unipotent radical of a Borel subgroup, respectively. Ondheer hand, the groupsS2
and 24s : 2 have only one non-trivial radical 3-subgroup up to comjeg Namely,
their Sylow 3-subgroups. Le§ anff  be Sylow 3-subgroupd.gfand L3, respec-
tively. Note thatS is a Sylow 3-subgroup @f,, L4 and of G .

Let R be a 3-radical subgroup off . Suppose ti& R (<) L;. Then R N
(3 x G2(3)) is a radical subgroup of 8G2(3) and thusk is conjugate 6 &3(L1),
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C x U or C x Uy. From the information in ATLAS [1] (pp. 60-61), it follows &
[U, U] is of order 3 generated byAB orB3 element G%(3) and the second com-
mutator subgroup ol/y is also of order 3 generated byA3 o0B3 element@i(3).
Hence, if R is conjugate t&@ x U or C x Up, then by p. 20 of [18],Ng R ) is con-
tained in L, = Ng(3B), and thus,R is a radical 3-subgroup bf. But, by com-
paring order ofR and radical subgroups b, we can see that it is not the case.
Hence we can conclude th&  @3(L1). Now suppose thatvg { X L3. Then R
is conjugate toO3(L3) or P. Letz be a & element o . The@; z () =33*:
246 > 3 x 3*: SLy(9), in which the groupSL,(9) acts naturally on 8% (Fg)? (p. 21
of [18]). Thus P is a Sylow 3-subgroup daf; z (), and[P ] is a one-dirsienal
subgroup of Fg)?, in which all the nonzero vectors are transitive under thigoacof
an element of order 8 o§L»(9). Consider conjugacy classes of non-trivial elements
of [P, P] in G. Since there is no elementary abelian subgroup oeo@ whose non-
trivial elements are all @ -elements (the 5th paragraph o2lp.of [18]), every non-
trivial element of [P, P ] is either & or B -element. Moreover, &nO3(L3) = 3°
has type &1B4Cso (2nd paragraph of p. 21 of [18]), we can conclude that all the
non-trivial elements of P, P ] are B -elements. On the other hamndthe argument
in the 2nd paragraph of p. 22 of [18])s(L3) = 3° is conjugate to a subgroup of
T = 3 x 31"2 < N;(3B). Hence P, P ] is a B2-group inT . As is stated in the 3rd
paragraph of p. 23 of [18]Ng {, P ]) is eitheL, or is contained inL,. Thus we
have N¢ P )< Ng([P,P]) < L; fori =2 ori =4, andP is a radical 3-subgroup
of L, or L4. But, by comparing orders oP and radical subgroupd.efand L4, we
can see that it is not the case. Hence we can concluderthaO;(Es). Now, suppose
that Ng (R)< L or Ng(R) < L4. ThenR is conjugate t@sz(L2), O3(L4) OF S.

The above arguments imply that a non-trivial radical 3-sabg of G is conjugate
to one of the following.

O3(L1), O3(L2), O3(L3), O3(L4), S

Now look at radical 3-chains of; . By the argument above, m@d:chains start-
ing with 1 < C are conjugate to

1<,

l1<C<CxU,
l1<C<CxUy or
1<C<CxU&x<C xU,.

Radical 3-chains starting with & O3(L») or 1 < O3(L3) are conjugate to & O3(L>),
1< 03(Ly) < S, 1< 03(L3) or 1 < O3(L3) < P. Finally, radical 3-chains starting
with 1 < O3(L4) are conjugate to kX O3(Ls) or 1 < O3(L4) < S, and 1< S is the
unique radical 3-chain starting with & S. Since 1< 03(Ls4) < S and 1< S have
the same normalizers and their length have opposite paréywill not take them into
account in the alternating sum. Summarizing the above, we Hze following.
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Proposition 6.1. To prove that the conjecture holds féx  anpd= 3, it suffices
to consider the alternating sum with respect to the follgyvradical 3-chains.

radical 3-chain normalizer

Co: 1, G,

C1: 1< C =03(Ng(34)), (Bx G2(3): 2
Cl<C<CxU, 3x U :GL2(3)(< 3 x G2(3)),
C3:1<C<C xUy (8% Uyp) : Dg
C4:1<C<CxU<CxUy 3xUy:2%<3x Go3)
Cs: 1< 03(Ng(3B)), (33 X 3},+2) : 3},+2 284,

Cs: 1< 03(Ng(3B)) < S, (3% x 312 . 3142: (3: 22,
C7: 1< 03(Ng(3C)), (3x 3*:24¢) : 2> 3 : 2S5,
Cg: 1< 03(Ng(3C)) < P, (B3x(3*:(32:8)):2

Co: 1 < 03(Ng(3B?)), (3%-[37]) - 2S4.

The notation used in this subsection will be used throughoist section, though
sometimes other letters have different meanings when apgea different subsec-
tions.

6.2. 3-blocks of G and a reduction. The character table tells us that has
the following 3-blocks. (see also [8].)

Bo = Bo(G), B’ ={xz5, xa3 Xas}, {x12}. {x1s}, {xaz}, {xas}.

Here x5(1) = 2 37 31, xa3(1) = - 5% 31, xas(1) = F - 7-19- 31, x12(1) = x13(1) =
3%0. 13, x42(1) =31°.5.13- 19, x4g(1) = 2-3'9. 13- 31. The blockB, and B’ are of
defect 10 and 1, respectively. Indeelf, hasC as a defect group. Thus, it suffices to
considerBy. The character table off  tells us that we have the following.

d 10 9 8 7 6 5
k(G,Bo,d) 15 6 1 18 0 1
Note thatCy, C2, C3 and C4 are representatives of radical 3-chains®f  starting with

1 < 03(Ns(3A)) and C; and Cg are representatives of radical 3-chains®f  starting
with 1 < O3(Ng(3C)). Furthermore, we have

Cc(3A) = 3 x G2(3), NG(BA)=Ng([C)= (3% G2(3)): 2
Co(3C) > 3 x3%:246 > 3 x 3*: SLy(9), Ng(3C) = (3°: SLy(9)) : (0),

where inCg (I) the groupSL,(9) acts naturally on 8% (Fg)?, and in N (¥ ) the
elemento inverts the central @ -element and acts as the Galois aufdmson of or-
der two on Fg)?: SL(9). (For the structure oNg (8 ), see the previous subsegtion.
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Hence Theorem 4.4 and Proposition 4.5 imply that

4 8
> (=D (NG (Ci), Bo,d) = (~1)/“k(NG(Ci), Bo.d) =0

i=1 i=7

for all d with d # 1. (Here a cyclic group generated by & 3 - or@ 3 -element is
the groupQ in Theorem 4.4.) Consider the case/of = 1. Note tlefactor groups
Ng(Ci)/03(Ng(34)), fori = 2, 3, 4, andNs (; )O3(Ng(3C)) for i = 7, 8 do not
have characters of defect zero. ThusVg(C; (B9, 1) = 0 fori = 2, 3, 4, 7 and 8.
(see also the proof of Theorems 4.2 and 4.4.) The gridygp A (3 gaappas the 5th
maximal subgroup ofG in the GAP library. It has the princip&dk and one non-
principal 3-block consisting of two characters of degréeaBd one character of degree
3%.2. (In the notation given in GAP library they angs, x24 and yao. This block is

of defect 1 and induces’.) The principal block ofN; (3 ) does not have a character
of defect 1. Thusk §¢ (1), Bo, 1) = 0. Hence we have the following.

Proposition 6.2. To prove that the conjecture holds f6f  and= 3, it suffices
to consider the alternating sum with respect to the radi8athains Coy, Cs, Cg and
Co.

6.3. 3-blocks of Ng(3B) and Ng(3B) N Ng(S). The groupNg (B )= (3% x
31*2) . 31*2 . 25, appears as the 6th maximal subgroup®f in the GAP library. It
has 62 characters and only the principal block. Since thal Ipdncipal block induces
Bo, we have the following.

d 10 9 8 7 6 5
k(NG(3B), Bo,d) 15 15 7 18 6 1

Let us turn toNg (B NNg(S). Let N be 03(Ng(3B)) = (3°x31*?)-31*2, From the
character table oivg (B ), we can compute the character degfeas Our strategy
is as follows. Lety be a character oiNg @ ). By Clifford theory, the restrictigiy
of x to N has a form

m
XN =€ Z 0;,
i=1

wheree is an integer an@’'s are N (3B )-conjugate characters d . The inner prod-
uct [xn, xn] is then e?m. Moreover,01(1) = x(1)/em is a power of 3 and (f)xy

is a (not necessarily irreducible) character ¥f . Using theva, we can determine
Ng(3B)-orbits of IrrV) only by computing ¥, xn~]. The result is as follows. We use
the same numbering of characters ¢ B(3 ) as appeared in GA&hlibNotice also
that, if e = 1 for somey, then characters appearing i can be extended to its sta-
bilizer, and that the order of the stabilizer |i§;(3B)|/m = 48 N|/m.
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First of all, x1, x2,..., xg have N in their kernels, and thus they lie ovey 1 .
Charactersyo, x10, - .., x18 have T = 3 x 31*2 in their kernels, and thus they can be
considered as characters lying over thoseOg{Ns(3B))/T = 3*2. In fact, we have
the following.

i=910Q Xi0)=8  (v=250 N, N@)=1
i=11 x11(1) =16 (v = 22?:1 N,

i=1213 14 x(1)=6  (Iv=D gt Hi(1)=3
i=1516 17 x(1)=12 )y =220, 4

i=18 x18(1) =18 (ag)v = 3Dy 41

For the other characters, we have the following. Here foradtars of N , differ-
ent letters signify different characters.

x € Irr(Ng(3B)) Character degree xfv, xn] XN Character degree

X19, X20 Xx19(1) = 8 8 Z?:l i A(l)=1

X21 x21(1) = 16 32 2N A1) =1

X22, X23, X24 X22(1) = 16 16 Yo r(1)=1
X25, X28 x25(1) =24 24 Z,-zflﬂ' n(l) =1
X265 X27 x26(1) = 24 24 Z,-Zfl 7! (1) =1
X29, X30, X31 X29(1) = 48 16 Y6 &4(1)=3
X32> X33, X34> X35 x32(1) = 27 3 3.6 01(1) =9
X36, X37> X38, X39 x36(1) = 27 3 Z?:l 0; 01(1) =9
X40, X41, X44 X40(1) = 54 12 0.0 61(1) =9
X42, X43, X45 x42(1) = 54 12 22?:1 A 91(1)=9
X46, X47 x46(1) =72 8 Z?:l oi #$1(1) =9

X9 xa9(1) = 144 32 D4 $1(1) =9

X48, X50, X51 x4s(1) = 144 16 Yo m(1) =9
X52, X53 xs2(1) = 216 24 Y2 (1) =9
X54, X55 xs4(1) = 216 24 YR G=9
X56, X57 X58 xss(1) = 162 2 S (1) = 81
X569, X60, X61 xso(1) = 324 8 22, a(1)=81
X62 Xe2(1) = 486 18 30,4 da(1)=81

Notice that all characters o have extensions to their kitabs. Let/ and/’
be the stabilizers ilNg B ) and iNg B3NN (S), respectively, of representatives of
N¢(3B)-orbits in IrrV ). The structure of /N can easily be obtained from the length
of orbits. There are two isomorphism classes of subgroup®&fBB)/N = 25, of
order 6. However, from the degrees of charactersvgf B (3 ) Iyimgr the character
of N, we can see//N ¥ S3 when the orbit length is 8. The structures bfN are
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as follows. Alsol’ for typical characters ofv are given. Heig  and are Sylow
2-subgroups ofNg (B ) andig B ) Ng(S), respectively.

1y /\g_ /,Lg_ AT 7']/_ fl 01 93_ d)l n Cl Ci 7/11
I/N 2.8, S3 SLo3) S3 3 2 2 3 D D S3 3 2 2 SLy(3
[//N 283 S3 6 S3 3 2 2 3D D S 3 2 2 6

If |[I :1I'| =4, then theNs (B )-orbit is also aWs B3 ) Ng(S)-orbit. There
are two conjugacy classes of involutions My B(3 ). let aridbe representatives
of them, and we assume that corresponds to the central tivwolof 25, (indi-
cated as @ in GAP library) and’ does to a non-central one. Note that lies in
Ng(3B) N Ng(S) and we may suppose that lies in N (3B)N Ng(S). If I/N = S3,
thenz does not lie i . We may suppose thaties in the stabilizer of\]. Then the
Ng(3B) N Ng(S)-orbit of A7 consists ofA] and (\})?, sincel =I'. Say Q) = ..
Note that the stabilizers of] and A, in Ng(3B) are the same. Since the image of
Z/ in 284 is contained in exactly twaVg @ )-conjugates DfN = S3, we may as-
sume thatz’ lies in the stabilizer ofA] in Ng(3B) N Ng(S), which is (z/)N, since
I/N(= S3) is a uniqueNg (B )-conjugate of it contained Ny B3 N (S)/N. Then
the Ng (3B NN (S)-orbit of A; is {5, A, ..., Ag}. This argument applies also for’s
and ¢;’s. On the other hand, if stabilizes some charactetvof , thestabilizes all
the characters in it3vg @ )-orbit. Thus, it is easy to show,tlfat(z) = 0, thenz
does not stabilize any constituents pf. Hencez is not in the stabilizer of;, 7/,
¢ and¢/. The Ng (3 Y N-conjugacy class of’ N consists of 12 elements and among
them 6 elements lie ilNg B ) Ng(S)/N, while the Ng (3B )N Ng(S)/N-conjugacy
class ofz’ N consists of 3 elements. Thus, we may assume that each ofabiizers
of 71 in Ng(3B)NNg(S) for 1 <i < 3 consists of som&/g BB NNs(S)-conjugate
of z/ and each of the stabilizers af;_1 in Ng(3B) N Ng(S) for 4 < i < 6 con-
sists of someNs (B )-conjugate but not aly  B(3) Ng(S)-conjugate of;’. Then we
can conclude thaNgs @ r) Ng(S)-orbits of {r;} are{r, 7, ..., 76}, {77, 78, ..., T12}
and {713, 714, . . ., T24}, Wherery = (m-1)* for 1 < i < 6. In particular, the stabi-
lizer of T3 in Ng(3B) N Ng(S) is N. This argument applies also fot’s, ¢;’s and
¢!’s. Finally, suppose that the stabilizer of in Ng(3B) N Ng(S) has order 3 and its
Ng(3B)N Ng(S)-orbit is {v1, 1o, 13, v4}. Then the stabilizer ofs in Ng(3B)N Ng(S)
must beN and itsNg (B )M Ng(S)-orbit is {vs, vs, ..., v16}. This argument applies
also for¢;'s and »;'s.

From the above observation we can comput®&; ( B (3 Ng(S), d|v) for a char-
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actery of N andd, 5<d < 10.

~\d 10 9 8 7 6 5

1y 6 0 0 0 0O

YV 3 00 0 OO

Az, Ag 0 2 00 0O

Wy 0 6 00 0O

n 3 00 0 OO

vs 0 100 0O

™, 17,7, 7 0 2 0 0 0 O

713, 7'13 0 1 0 0 0O

& 0 300 0O

s 0O 01 00O

61, 01 0O 00 4 00

01 0 03 00O

o3 0 00 2 00

m 0 03 00O

75 0 00100

¢.¢rn¢.¢; 0 00 2 00

C13, (13 0O 00100

U1 0O 000 6 0

Consequently, we obtain the following.

d 10 9 8 7 6 5
k(N¢(3B)N Ng(P), Bo,d) 15 24 7 21 6 O

6.4. 3-blocks ofNg(3B?). The groupNg (B2) = (3% - [37]) - 254 appears as
the 7th maximal subgroup af in the GAP library. It has 52 chtew and only the
principal block. Since the local principal block inducgg, we have the following.

d 10 9 8 7 6
k(Ng(3B?), Bop,d) 15 15 1 21 O

5
0

6.5. Conjecture. From the results in 6.2, 6.3 and 6.4, we have the following.

d 10 9 8 7 6 5 parity
k(G, By, d) 15 6 1 18 0 1 +
k(Ng(3B), Bo, d) 15 15 7 18 6 1 -
k(NG(BB)N NG(S),Bo,d) 15 24 7 21 6 O +
k(NG (3B?), Bo, d) 15 15 1 21 0 0 -

Hence, by Proposition 6.2, Conjecture 2.1 holds dor  in thgecaf p = 3.
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7. The case ofp=5 for Th

In this section, we assume that 7= apd =5.

7.1. Radical 5-chains. ATLAS shows that there is the unique conjugacy class

of elements of order 5, and a cyclic subgrofip  of order 5 sasighi;(C)| = 2°-3.5%.

On the other hand, a Sylow 5-subgroup @f is an extra spec@lpgf = 512 and

we have|Ng(S)| = 2°-3- 5% (see p. 299 of [19].) Sinc&Vg S( X Ng(Z(S)), we
must haveNg § ) =Ng £ § )). Thus, a subgroup of order 5 is not a radseslibgroup

of G. There exists a subgroup = 5% of G with Ng(E) = E : GL»(5). (see [1].)
This E is a radical 5-subgroup aff and any subgroup of ordeiis5conjugate to
E. Hence the trivial subgroupy angl form a set of represemmtof G -conjugacy
classes of radical 5-subgroups 6f . Thus representative§-obnjugacy classes of
radical 5-chains ofG are as follows. Here  is a Borel subgrol 6,(5).

Co: 1, N¢ (Co) = G,

C::1<E, Ng(C1) = NG(E) 2 E : GLy(5),
C: 1< E<S, Ng(Co))=E:P,

C3:1<8S, Ng(C3) = Ng(S) = 512 : 48,

Now Proposition 4.5 implies thatvg E( ) and P  have only the prpati
5-blocks andk ¥¢ £ )Bo(G),d,[k]) = k(E : P, Bo(G), d, [r]) for all d and k. (see
also Proposition 2.3 of [17] or Theorem 6.2 of [14].) Hence have the following.

Proposition 7.1. To prove that the conjecture holds fof  anpd= 5, it suffices
to consider the alternating sum with respect to the follgviadical 5-chains.

Co: 1, Ng(Co) =G,
C3:1< S, Ng(C3)=Ng(S) = 5L2:48,.

7.2. 5-blocks of G and Ng(S). The groupG has no block of defect one ([8]),
and by V.3.11 of [7],Ng £ ) has only the principal block. Thas  dosot have a
block of defect two by Brauer’s first main theorem. The chematable shows that the
characters whose degrees are not divisible byobm Bo(G) which has 27 characters.
Each of the other 21 forms of course a block of defect zerosThuhas the following
twenty two 5-blocks. We write characters By(G) by their degrees and the multiplic-
ity is written exponentially.

Bo = Bo(G)
= {1, 248 4123 30628 61256 (3.7199%, 767637, 779247, 1707264,
5.490048 2572752 3376737 4881384 1157738837824 (5 42653525,
30507008 44330496 514585103 81153009 91171899 190373976
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{xa}, {xs}, {x7} {xa}, {xae}, {xe2}, {xzs}.
{xea}, {xze}, {xer}, {xes}, {x29}, {xs0}, {xa1},
{x3a}, {xa7}, {xse}. {xa1}, {xa3}, {xas}, {xa7}.

The groupNg § )= 51*2: 4S, appears as the 9th maximal subgroup®f  in the
GAP library. Since it has only the principal 5-block, we hawe following.

Bo(Ng(S)) = {14, 2°,3% 4%, (5- 4)%, 24%, (5- 8)*,5- 12}.

Since |Gls = |Ng(S)]ls = 1 mod 5, we obtain the following, and Conjecture 3.2
holds forG in the case op =5 by Proposition 7.1.

(. ) B B2 (21 22

k(G, Bo, d, [K]) 10 10 3 4

k(NG(S), Bo,d,[s]) 10 10 3 4

8. The case ofp=7 for Th

In this section, we assume th& T apd =7.

8.1. Radical 7-chains. ATLAS shows that there is the unique conjugacy class
of elements of order 7, and a cyclic subgroap of order 7 has nivenalizer
Ng(C) = (7 : 3x Lo(7)) : 2 (p. 20 of [18]). ThusC is a radical 7-subgroup Gf
Hence, the trivial subgroup; and a Sylow 7-subgraup 72 of G form a set of
representatives of; -conjugacy classes of 7-radical suipgr@f G . Hence, represen-
tatives of G -conjugacy classes of radical 7-chainsGof  areodews.

C(): 1, NG(CO) = Gv
C1:1<C, NG(C1) = (7 :3x Lp(7)) : 2
C: 1< E, Ng(C2) = 7% : (3 x 2S4)

C3:1<C<E, Ng(C3)=(7T:3xP):2

8.2. 7-blocks of G and a reduction. The character table tells us tha&  has
the principal 7-blockBg = Bo(G), one 7-blockB’ of defect 1, and fourteen 7-blocks
of defect 0. We have Irt{, By) = Irr(G, By, 2) and IrrG, B’) = Irr(G, B’, 1), and since
|G| =4 mod 7, the characters are distributed as follows.

Irr(G, Bo, 2, [1]) = {248 30628 7676374881384 6696000 16539120 76271625
Irr(G, Bo, 2, [2]) = {30875 147250 2450240 66696061684750 72925515
77376000 190373976
Irr(G, Bo, 2, [3]) = {1, 27006, 61256 957125 1707284409600},
Irr(G, B', 1) = Irr(G, B, 1, [3]) = {x3, X20, X24> X32, X39, X45, X47},
{xo}s {xao}: {xaal, {xast. {xai}, {xes}, {xa1},
{x3a}, {xss5}, {xs6}. {x37}. {x38}, {xao}, {xse}.
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(see also 3.5.2 of [15] or [19] foBy and [8] for B’.) We have

(d, k) (2,1 22) (23
k(G, Bo,d,[r]) 9 9 9

Note thatC; and C3 are representatives of radical 7-chains(f  starting with 1
C, and

Co(C) 2 7 x Lo(7), N(C)= (7:3x La(7)): 2= (7x La(7)) : 6.

Since Conjecture 3.2 holds for the principal blocks ok 3.5(7) and 3x Lx(7) : 2,
Theorem 4.4 implies that

k(Ng(C1), Bo, d, []) = k(Ng(Cs), Bo, d, [K])

for all 4 with d # 1 and all k. Moreover, it is easy to see thatNg Cf),1) = 7

and k (Ng C3),1) = 0. However, by Brauer’s first main theorem, the sevenraitia
ters of Ng C) with defect 1 must form a unique 7-block induciBg, and this im-
plies thatk (¢ €C1), Bo,1) = 0. Moreover, sincdNg(C)|l» = 4 mod 7, we have
Irr(Ng(C), B’, 1) = Irr(Ng(C), B, 1, [3]). Consequently, we have the following.

Proposition 8.1. To prove that the conjecture holds f6t  and= 7, it suffices
to consider By and the alternating sum with respect to the radidathains Cy and
Cy.

8.3. 7-blocks ofNg(E). By V.3.11 of [7], N (E)= 7% : (3 x 2S,4) has only the
principal 7-block Bo(Ng(E)). It appears as the 11th maximal subgroup®f in the
GAP library. Its character table gives (see also p. 298 of.]J19

Bo(Ng(E)) = {1°,29,3°, 43, 48},

which implies the following, sincéNg(E)|» =4 mod 7.

(d, k) 21) 22 @3
k(NG(E), Bo,d,[x]) 9 9 9

From the results in 8.2, 8.3 and Proposition 8.1 imply thahj€cture 3.2 holds
for G in the case ofp =7.

Note that Rouquier [15] proved that there exists a perfeoinitry betweenBg
and its Brauer correspondent, the principal 7-block of ao®yhormalizerNg £ ).
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