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1.

Let 2
4( 2) be the finite Ree group of type (4), where 2 = 22 +1. One of the

original motivation of writing this paper is to get informations about the Schur indices
of the complex irreducible characters of2

4( 2).
Let be a finite reductive group. That is, is a connected, reductive linear

algebraic group over an algebraic closure of the prime field of characteristic ,
is a surjective endomorphism of such that some power of is theFrobenius

endomorphism of relative to a rational structure on over a finite subfield of ,
and is the group of -fixed points of (cf. Carter [3, p. 31]). Then we say that a
complex irreducible characterχ of is regular if it is an irreducible component of a
Gel’fand-Graev character of and thatχ is semisimple if it is the dual character of
a regular character of (up to±1) in the sense of Curtis and Kawanaka ([4, 11]).
In [15, 16], we obtained some results on the Schur indices of the regular characters
of and, under the assumption that is a good prime for , of the semisimple
characters of . The first purpose of this paper is to drop out this assumption. Thus,
in particular, we see that any semisimple character of2

4( 2) has the Schur index 1.
(It is clear that any regular character of2

4( 2) has the Schur index 1.)
Our second purpose is to give a proof of the following theoremwhen = 2.

Theorem (cf. M.J.J. Barry [1]). Any complex irreducible character of the Stein-
berg’s triality group 3

4( 3) has the Schur index1.

We note that the theorem is proved by Barry when6= 2 ([1]) and that when
= 2 R. Gow has determined the Schur indices of the regular characters and the

semisimple characters of3
4( 3). But the latter results can be also obtained from the

first results of this paper.

NOTATION. If χ is an absolutely irreducible character of a finite group overan al-
gebraically closed field of characteristic 0 and if is a field of characteristic 0, then

(χ) denotes the Schur index ofχ with respect to , where we considerχ as a char-
acter over an algebraically closed extension of . If is a prime number, then de-
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notes an algebraic closure of the -adic number field .

2.

Let be an algebraic closure of the prime field of characteristic , a
connected, reductive linear algebraic group over , a surjective endomorphism of

such that some power of is the Frobenius endomorphism of relative to
a rational structure on over a finite subfield of , and the groupof -fixed
points of Let ∗ be an -stable Borel subgroup of and∗ an -stable max-
imal torus of contained in ∗. Let ∗ be the unipotent radical of ∗. Let be
the root system of with respect to∗, and, for α ∈ , let ∗

α denote the root
subgroup of corresponding toα. Let + = {α ∈ | ∗

α ⊂ ∗} be the set of
positive roots determined by ∗, and let be the set of corresponding simple roots.
Let ρ be the permutation on given by (∗α) = ∗

ρα; we haveρ( +) = + and
ρ( ) = . Let be the set of orbits ofρ an . Let ∗

· be the subgroup of ∗ gener-
ated by the root subgroups∗

α corresponding to the non-simple positive rootsα. Then
we have ∗/ ∗

· =
∏
α∈

∗
α =

∏
∈

∗, where, for ∈ , ∗ =
∏
α∈

∗
α, and

∗ / ∗
· = ( ∗/ ∗

· ) =
∏

∈
∗ . Let be the set of all complex linear char-

actersλ of ∗ such thatλ| ∗
· = 1, and let 0 be the set of all linear characters

λ in such thatλ| ∗ 6= 1 for all ∈ . For λ ∈ 0, let λ = λ = Ind ∗ (λ),
which we call a Gel’fand-Graev character of . It is well knownthat any Gel’fand-
Graev character of is multiplicity-free (Gel’fand-Graev,Yokonuma. Steinberg; see
Deligne and Lusztig [5, Theorem 10.7] and Carter [3, Theorem8.1.3]). We say that
a complex irreducible character of is regular if it is an irreducible component of
a Gel’fand-Graev character of and that a complex irreducible character of is
semisimple if it is the dual character of a regular characterof (up to ±1) in the
sense of Curtis ([4]) and Kawanaka ([11]) (see Carter [3,§8.2]).

Assume that the centre of is connected. Then =λ is independent of
λ ∈ 0 and any regular or semisimple character of is expressed as a -linear
combination of the Deligne-Lusztig virtual charactersθ (Deligne and Lusztig [5,
Theorem 10.7]; see also Carter [3,§8.4]). The degree of any semisimple character of

is coprime to and when is a good prime for a complex irreducible char-
acter of is semisimple if and only if its degree is coprime to (see Carter [3,
p. 280]).

Let us consider the case that is not necessarily connected. Then we still have:

Lemma 1. Assume that is defined over a finite subfield of and is the
corresponding Frobenius endomorphism of . Letχ be a complex irreducible char-
acter of . Then, if χ is semisimple, its degree is coprime to . When is a good
prime for , χ is semisimple if and only if its degree is coprime to .
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Proof. We embed in a connected, reductive group1 with connected centre
and the same derived group (cf. Deligne and Lusztig [5, 5.18]). Let χ1 . . . χ be the

1 -conjugates ofχ. Then, by Clifford theory, we see that there is a complex irre-
ducible characterθ of 1 and a positive integer such thatθ| = (χ1 + · · · + χ ).
According to a result of Lusztig ([14, Proposition 10]), we have = 1. Assume that
χ is semisimple. Then by a result of Digne, Lehrer and Michel [7, (3.15.3)], we see
that one can assume thatθ is a semisimple character of 1 . Since the centre of 1

is connected, the degree ofθ is coprime to . Hence the degree ofχ must be coprime
to . Assume that is a good prime for and that the degree ofχ is coprime to .
Then the degree ofθ is also coprime to so that it must be semisimple. Hence, by
[loc. cit.], χ must be semisimple.

Let be any subset of . Let ( ) =
〈 ∗ ∗

−α | α ∈ ∈
〉
. and ( ) =〈 ∗ ∗

α
∗
−α | α ∈ ∈

〉
. Let ( ) be the unipotent radical of ( ). For a char-

acterλ ∈ 0, let λ( ) = (λ | ( ∗ ∩ ( ) )) × 1 ( ) , a linear character in .
Let λ ∈ 0, and let λ be the dual (generalized) character ofλ. Then by [7,

(2.12.2)], we have

(2.1) λ =
∑

⊂
(−1)| |λ( )

where the sum is taken over all the subsets of . (In [7], it is assumed that is de-
fined over a finite subfield of and is the corresponding Frobenius endomorphism
of . But (2.12.2) in [7] still holds in our case.) Sinceλ is multiplicity-free, by a
result of Curtis, Alvis and Kawanaka (See Carter [3, Theorem8.2.1]), we must have

(2.2) λ = ε1χ1 + · · · + ε χ

where = ( λ λ) , ε = ±1 (1 ≦ ≦ ) and χ1 . . . χ are distinct irreducible
(semisimple) characters of .

Let be a finite group, a field of characteristic 0 and an algebraically closed
extension of . Letξ be a generalized character of over . Then we say thatξ

is virtually realizable in if it can be written as1ξ1 + · · · + ξ , where 1 . . .

are rational integers andξ1 . . . ξ , are proper characters of which are realizable
in . In this case, ifχ is an absolutely irreducible character of over , then, by
a property of the Schur index, we see that (χ) divides each multiplicity (ξ χ)
(1 ≦ ≦ ), so that (χ) divides the inner product (ξ χ) .

Suppose that is a field of characteristic 0 such that for anyλ ∈ , λ is real-
izable in . Then, by (2.1), we see that, for anyλ ∈ 0, λ is virtually realizable in
, so that, by (2.2), we have (χ) = 1 for any semisimple characterχ of .

Lemma 2 (cf. [15, 16]). Let λ ∈ . Then we have the following:
(i) If = 2, then λ is realizable in . Assume that 6= 2,
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(ii) Let =
(√

(−1)( −1)/2
)
. Then, if ≡ −1 (mod 4), λ is realizable in ,

and if ≡ 1 (mod 4),for any finite place of .λ is realizable in the completion
of at .

(iii) Assume that is defined over a finite subfield with elements of where is
an even power of and is the corresponding Frobenius endomorphism of . Then,
for each prime number 6= , λ is realizable in .

Assume that is connected.
(iv) For each prime number 6= , λ is realizable in .
(v) Assume that is trivial or that is defined and split over a finitesubfield of

and is the corresponding Frobenius endomorphism of . Thenλ is realizable
in .

Since ∗ / ∗
· is an elementary abelian -group,λ is realizable in (ζ ), where

ζ is a primitive -th root of unity. Thus, if = 2,λ is realizable in , henceλ is
realizable in ((i)). Assume that 6= 2. Then (iii) is proved in [16] and (iv), (v) are
proved in [15]. (ii) is proved in [16] when is defined over a finite subfield of and

is the corresponding Frobenius endomorphism of . Thereforeit remains to prove

Lemma 3 (cf. [16, Lemma 2]). Assume that 6= 2. Let ν be a generator of the
cyclic group ×. Then there is an element in∗ such that −1 = 1 (possibly
( −1)/2 = 1) and α( ) = ν2 for all simple rootsα.

Proof. We repeat the proof of Lemma 2 in [16].
Firstly, we observe that it suffices to prove the lemma for thederived group ′

of . Let π : ˜ → ′ be the simply-connected covering of′. Then, by [20, 9.16],
we see that there exists a unique isogeney˜ : ˜ → ˜ such thatπ ◦ ˜ = ◦ π. We
see that if is the Frobenius endomorphism of′ corresponding to a rational struc-
ture on ′ over a finite subfield of , theñ is the Frobenius endomorphism
of corresponding to a rational structure on˜ over (cf. Satake [18, Remark 5,
p. 63]). Then, by the argument in the proof of Lemma 2 in [16], we can be reduced
to the case that is a simply connected simple algebraic group. If is defined over
a finite subfield of and is the corresponding Frobenius endomorphism of , then
Lemma 3 is just Lemma 2 in [16]. Therefore, since6= 2, it remains to treat the case
where = 3, = 2 and is an exceptional isogeney such that2 is the Frobenius
endomorphism of corresponding to a rational structure on over a finite subfield
of with 32 +1 elements (i.e. =2 2( 2)). But, in this ease, is an adjoint group,
so the assertion is proved in [15] (this case is also implicitin Gow [10, Thearem 9]).

By Lemma 2, we get
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Theorem 1 (cf. [15, 16]). Let χ be a complex irreducible character of such
that (λ χ) = 1 for someλ ∈ (e.g.χ is regular) or thatχ is semisimple. Then
we have the following:
(i) If = 2, then we have (χ) = 1.
(ii) Let =

(√
(−1)( −1)/2

)
. Then, if ≡ −1 (mod 4),we have (χ) = 1, and

If ≡ 1 (mod 4), for any finite place of , we have (χ) = 1. Thus we have
(χ) ≦ 2.

(iii) Assume that is defined over a subfield with elements of where isan even
power of and is the corresponding Frobenius endomorphism of. Then, for each
prime number 6= , we have (χ) = 1.

Assume that is connected.
(iv) For each prime number 6= , we have (χ) = 1.
(v) Assume that is trivial or that is defined and split over a finitesubfield of
and is the corresponding Frobenius endomorphism of . Then wehave (χ) = 1.

REMARK. Let χ be a semisimple character of . Then, in [15, 16], Theorem 1
is proved by a different method under the assumption that is agood prime for .

EXAMPLE. By Theorem 1, we see that any regular or semisimple character of the
Ree group2

4( 2) of type ( 4) has the Schur index 1. We can also determine the lo-
cal Schur indices of any unipotent character of2

4( 2). There is just one unipotent
characterχ of 2

4( 2) such that (χ) = 2(χ) = 2 and (χ) = 1 for each prime
number 6= 2. This character has the property that it occurs with even multiplicity
in each Deligne-Lusztig virtual character1 (cf. [13]). Other unipotent characters of
2

4( 2) have the Schur index 1.

By the proof of Lemma 2 in [15, 16] and by Schur’s lemma, we get

Proposition 1. Assume that 6= 2. Let χ be as inTheorem 1and assume that
χ is trivial on . Let =

(√
(−1)( −1)/2

)
. Then we have (χ) = 1. If is

connected or if is defined over a finite with elements of where is an even
power of and is the corresponding Frobenius endomorphism of, then we have

(χ) = 1.

By Lemma 4 of [16], we get

Theorem 2. Assume that 6= 2 and let χ be as inTheorem 1. Let be such
that / is a simple algebraic group of any one of the following types: with
2| or ord2( + 1) > ord2( − 1); 2 with 2| ; with 4| ( + 1); with either
(a) 4| ( − 1) or (b) ord2( − 1) = 1 and ≡ −1 (mod 4); 2 with 4| ( − 1); 3

4;

6; 2
6. Then we have (χ) = 1.
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3.

In this section we shall give a proof of the following theoremwhen = 2.

Theorem 3 (cf. Barry [1] for 6= 2). Any complex irreducible character of
3

4( 3) has the Schur index1 over .

Let be a power of any fixed prime number . Let be a connected, reduc-
tive algebraic group, defined over the subfield with elementsof (an algebraic
closure of ), with Frobenius endomorphism such that/ is a simple algebraic
group of type (3 4).

Firstly, by Theorems 1, 2, we see that any regular or semisimple character of
has the Schur index 1 over (in the case where =3

4( 3) with even, the
rationality of the semisimple characters of has been already observed by Gow; see
below).

Next, we treat the unipotent characters of . Let∗, ∗ be as in§2. Let =
( ∗)/ ∗ be the Weyl group of , where (∗) is the normalizer of ∗ in .

Let be the variety of all Borel subgroups of . Let be any fixed prime number
different from . Let we ∈ , and let ˙ be an element of (∗) such that ˙ ∗ =

in . Then, for , ′ ∈ , we write → ′ if there is an element of
such that = ∗ −1 and ′ = ˙ ∗ ˙ −1 −1. Let ( ) be the subvariety of
which consists of all ∈ such that → ( ). Then ( ) is smooth and purely
of dimension ( ), where ( ) denotes the length function on withrespect to the
simple reflections determined by∗ (see Deligne and Lusztig [5, 1.4]). acts on

( ) by conjugation, so acts on each -th -adic cohomology groupwith compact
support ( ( ) ) of ( ) (0≦ ≦ 2 ( )). For 0≦ ≦ 2 ( ), let ( ( )) =

( ( ) ) = ( ( ) )
⊗

, and let

1( ) =
2 ( )∑

=0

(−1) ( ( ))

(an element of the Grothendieck group of representations ofover ). Then the
character of 1( ) has rational integeral values, independent of ([5, (3.3)]). So we
can regard 1( ) as a generalized complex character of . We say that a complex
irreducible characterχ of is unipotent if ( 1( ) χ) 6= 0 for some ∈ ([5,
7.8]).

Let ∈ , and, for 0≦ ≦ 2 ( ), let ξ ( ) be the character of the -module
( ( )). Then ξ ( ) is clearly realizable in so that the generalized character

1( ) is virtually realizable in . Therefore, for any unipotentcharacterχ of ,
(χ) divides ( 1( ) χ) .
By [5, Proposition 7.10], we see that in order to investigatethe rationality prop-

erties of the unipotent characters of we may assume that is a simple adjoint
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group.
Assume therefore that is a simple adjoint group. Then is isomorphic to

3
4( 3). Following the notation of Spaltenstein [19], the unipotent characters of

are [1] = 1 , [ε1], [ε2], [ε] = , [ρ1], [ρ2], 3
4[−1] and 3

4[1]. The first six char-
acters are the irreducible components of 1∗ , so that, by a result of Benson and
Curtis [2], we see that they are realizable in . By a result of Lusztig ([12, (7.6)],
we see that the character3

4[−1] is also realizable in . And, by an argument simi-
lar to that in the proof of the theorem in [17], we can prove that the character3 4[1]
is realizable in .

In the case where = 2, we can also argue as follows. Assume that= 2 and
= 3

4( 3). Then contains exactly16 + 12 − 4 − 1 involutions and this num-
ber is equal to the sum of the degrees of the irreducible characters of minus 1
(Gow’s observation). Thus all irreducible characters of are real-valued and have
the Schur index 1 over (a theorem of Frobenius and Schur [8]).Let χ be any unipo-
tent character of . Then we see from [19] thatχ is of rational-valued and that there
is some ∈ such that ( 1( ) χ) = ±1. Therefore we have (χ) = 1 for any
prime number 6= 2 and (χ) = 1. Therefore, by Hasse’s sum formula, we must have

2(χ) = 1. Hence (χ) = 1. We also note that, since all irreducible characters of
are real, by the Baruer-Speiser theorem, we see that they have the Schur indices

at most two over , so that, since any semisimple character of has add degree,
we see that it has the Schur index 1 over .

Assume that = 2 and =3 4( 3). Then, in view of the table an page 53 of
Deriziotis and Michler [6], we find that the remaining characters areχ4 andχ9 ′ .

We use the notation of [19] freely. Let ={ 8( ) 9( ) 10(
2
) | ∈ 3},

an elementary abelian 2-subgroup of , of order3. For 6= 0, the element

8( ) 9( ) 10(
2
) belongs to the class 31. Let µ be any non-principal complex linear

character of . Thenµ is clearly realizable in . We have

(
µ χ4

)
= (µ χ4 | )

=
1
3
{χ4 (1)− χ4 (3 1)}

= 8 − 6 + 2 5 + 4 − 2 3 + 2 + − 1

6≡ 0 (mod 2)

and

(
µ χ9 ′

)
= 8 − 6 − 2 5 + 4 + 2 3 + 2 − − 1 6≡ 0 (mod 2)

Therefore, by the property of the Schur index, we find that (χ4 ) and (χ9 ′)
are relatively prime to 2. On the other hand, since these two series of characters are
real valued, they have the Schur indices at most two over . Therefore we conclude
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that (χ4 ) = (χ9 ′) = 1.
This completes the proof of Theorem 3 when is even.

REMARK. There is an alternative proof of Theorem 3 when is odd. Assume that
6= 2 and that is an adjoint simple algebraic group, defined over, of type (3 4)

and is the corresponding Frobenius endomorphism of . Then wesee from results
of Geck [9], that, for any complex irreducible characterχ of , the greatest common
divisor of the multiplicities ofχ in the generalized Gel’fand-Graev characters of is
equal to one. On the other hand, we can prove that each generalized Gel’fand-Graev
character of is realizable in . Therefore, by the property ofthe Schur index, we
can conclude that (χ) = 1 for any complex irreducible characterχ of .

By the same argument, we can prove that any complex irreducible character of
( ) ( is a power of any prime number ) has the Schur index 1 over (this

is a well known result of Zelevinsky [21]).

Added in the proof (26 Aug. 2003): After this paper had been accepted for pub-
lication, I knew the existence of the following paper:

M. Geck: Character values, Schur indicates and character sheaves, Represen-
tation Theory7 (2003), 19–55, An Electronic Journal of the American Math-
ematical Society (Print form in 2001).

In it, it is established the existence of the unipotent representation of2 4( 2) of the
Schur index 2.
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