A CRITERION OF EXACTNESS OF THE CLEMENS-SCHMID SEQUENCES ARISING FROM SEMI-STABLE FAMILIES OF OPEN CURVES

MASANORI ASAKURA

(Received April 4, 2002)

1. Introduction

Let $\pi: X \to \Delta$ be a semistable family of projective algebraic varieties over the unit disk. In other words, π is flat and projective over Δ , smooth over $\Delta^* = \Delta - \{0\}$, and the central fiber $Y = \pi^{-1}(0)$ is a divisor with normal crossings without multiple components. We write $X_t := \pi^{-1}(t)$ for $t \in \Delta^*$ and $X^* := X - Y$. There is the Wang exact sequence

$$
(1.1) \qquad \cdots \to H^q(X^*,\mathbf{Q}) \to H^q(X_t,\mathbf{Q}) \stackrel{N}{\to} H^q(X_t,\mathbf{Q}) \to H^{q+1}(X^*,\mathbf{Q}) \to \cdots,
$$

and the localization exact sequence

$$
(1.2) \qquad \cdots \to H_Y^q(X,\mathbf{Q}) \to H^q(X,\mathbf{Q}) \to H^q(X^*,\mathbf{Q}) \to H_Y^{q+1}(X,\mathbf{Q}) \to \cdots.
$$

Here N denotes the log monodromy around $\Delta^* = \Delta - \{0\}$. Combining those sequences and the natural isomorphism $H^q(X, \mathbf{Q}) \simeq H^q(Y, \mathbf{Q})$, we obtain a sequence (1.3)

$$
\cdots \to H^{q-2}(X_t, \mathbf{Q}) \to H^q_Y(X, \mathbf{Q}) \to H^q(Y, \mathbf{Q}) \to H^q(X_t, \mathbf{Q}) \stackrel{N}{\to} H^q(X_t, \mathbf{Q}) \to \cdots
$$

This is called the *Clemens-Schmid sequence*. A theorem of Clemens and Schmid says that the sequence (1.3) is exact $([1, \S3])$. In particular, the first piece

(1.4)
$$
H^q(Y, \mathbf{Q}) \longrightarrow H^q(X_t, \mathbf{Q}) \stackrel{N}{\longrightarrow} H^q(X_t, \mathbf{Q})
$$

is called the *local invariant cycle theorem* ([3, (5.12)]).

In $[2, (12.3.1)]$, S. Usui et al. proposed a problem whether the Clemens-Schmid sequence (1.3) or (1.4) is exact when we remove the assumption that π is proper. In this paper, we give a necessary and sufficient condition for that the sequence (1.4) is exact when π is a semistable family of open curves. In particular, we see that the Clemens-Schmid sequences of non-proper families are not exact in general.

The author would like to express his sincere gratitude to Professor Sampei Usui for stimulating discussions.

2. A Criterion and an example

In this section, we assume that π is a family of curves. Let D be a divisor on X which is smooth and projective over Δ , and such that $D + Y$ is a normal crossing divisor. We write $D_t = D \cap X_t$ for $t \in \Delta^*$ and $D^* = D \cap X^*$.

We discuss when the following sequence

(2.1)
$$
H^1(Y - D \cap Y) \xrightarrow{i} H^1(X_t - D_t) \xrightarrow{N_0} H^1(X_t - D_t)
$$

is exact, where N_0 denotes the log monodromy on $H^1(X_t - D_t)$. (We omit to write the coefficient **Q**.) The sequence (2.1) fits into the commutative diagram

$$
H^{0}(D \cap Y) \xrightarrow{\cong} H^{0}(D_{t}) \qquad H^{0}(D_{t})
$$

\n
$$
H^{1}(Y - D \cap Y) \xrightarrow{i} H^{1}(X_{t} - D_{t}) \xrightarrow{N_{0}} H^{1}(X_{t} - D_{t})
$$

\n(2.2)
\n
$$
\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow
$$

\n
$$
0 \longrightarrow H^{1}(Y) \longrightarrow H^{1}(X_{t}) \xrightarrow{N} H^{1}(X_{t})
$$

\n
$$
\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow
$$

\n
$$
0 \qquad \qquad 0 \qquad \qquad 0,
$$

in which each vertical sequence is exact. The bottom sequence is exact by the local invariant cycle theorem $([3, (5.12)])$. Therefore, the map *i* is injective.

The following lemma is the key of our criterion.

Lemma 2.1. *The image of* N *coincides with the image of* N_0 *.*

Proof. Image N ⊂ Image N_0 is trivial. We show the converse. The cohomology groups $H^1(X_t, \mathbf{Q})$ and $H^1(X_t - D_t, \mathbf{Q})$ carry the limit mixed Hodge structures due to Steenbrink and Zucker ([3], [4]). The weight filtration W_{\bullet} on $H^1(X_t, \mathbf{Q})$ is the weight monodromy filtration, which is explicitly given as follows:

$$
W_2H^1(X_t) = H^1(X_t), \quad W_1H^1(X_t) = \ker N,
$$

$$
W_0H^1(X_t) = \text{Image } N, \quad W_{-1}H^1(X_t) = 0.
$$

We put the weight filtration on $H^0(D_t)$ by $\text{Gr}_2^W H^0(D_t) = H^0(D_t)$. Then the weight filtration W_{\bullet} on $H^1(X_t - D_t)$ (called the relative monodromy filtration) is explicitly given by

$$
W_2H^1(X_t - D_t) = H^1(X_t - D_t), \quad W_1H^1(X_t - D_t) = W_1H^1(X_t),
$$

\n
$$
W_0H^1(X_t - D_t) = W_0H^1(X_t), \quad W_{-1}H^1(X_t - D_t) = 0.
$$

The map N_0 is a morphism of the mixed Hodge structure of type $(-1, -1)$ ([4, (3.13).iii)]). Therefore Image N_0 is contained in $W_0 H^1(X_t - D_t, \mathbf{Q}(0)) = W_0 H^1(X_t)$. However, this is the image of N. Thus we have Image $N_0 \subset \text{Image } N$. □

Since the map i is injective, the sequence (2.1) is exact if and only if

(2.3)
$$
h^{1}(Y - D \cap Y) = \dim H^{1}(Y - D \cap Y) = \dim \ker N_{0}
$$

By Lemma 2.1, we have

dim ker
$$
N_0 = h^1(X_t - D_t)
$$
 – dim Image N
= $h^1(X_t - D_t) - h^1(X_t) + h^1(Y)$
= dim Image $r_t + h^1(Y)$.

On the other hand,

$$
h^1(Y - D \cap Y) = \dim \operatorname{Image} r_0 + h^1(Y).
$$

Therefore, (2.3) holds if and only if

(2.4)
$$
\dim \text{Image } r_0 = \dim \text{Image } r_t.
$$

Let n be the number of the irreducible components of Y , and e the number of the components Y_i of Y such that $D \cap Y_i \neq \emptyset$. Then we have

dim Image
$$
r_t
$$
 = dim ker $(H^0(D_t) \rightarrow H^2(X_t))$
= deg $D_t - 1$,

and

dim Image
$$
r_0
$$
 = dim ker $(H^0(D \cap Y) \rightarrow H^2(Y))$
= $h^0(D \cap Y) - h^2(Y) + h^2(Y - D \cap Y)$
= deg $D_t - n + (n - e)$
= deg $D_t - e$.

Thus we have the following criterion:

Theorem 2.2. *The Clemens-Schmid sequence* (2.1) *is exact if and only if* $e = 1$, *that is, the support of* $D \cap Y$ *is contained in one irreducible component of* Y *.*

EXAMPLE 2.3. We denote by (x, y, z) homogeneous coordinates of the projective plane P_{C}^2 . Let X be a complex submanifold of $P^2(\text{C}) \times \Delta$ defined by a equation

$$
zy^2 = zx^2 + t(x^3 - z^3),
$$

and $\pi: X \to \Delta$ the projection. The morphism π is smooth and proper over Δ^* , and the central fiber $Y = \pi^{-1}(0)$ is a reduced divisor with normal crossing. Let Y_1 , Y_2 and Y_3 be the irreducible components of Y given by

$$
Y_1: z = 0, t = 0,
$$

\n
$$
Y_2: y + x = 0, t = 0,
$$

\n
$$
Y_3: y - x = 0, t = 0
$$

respectively. Let $D = D_1 + D_2 + D_3$ be flat sections of π given by

$$
D_1 = \{(0, 1, 0)\} \times \Delta, D_2 = \{(1, -1, \omega)\} \times \Delta, D_3 = \{(1, 1, \omega')\} \times \Delta,
$$

where ω and ω' are 3rd roots of unity. The divisor $D + Y$ is normal crossing.

The divisor D_1 (resp. D_2 , D_3) meets only with Y_1 (resp. Y_2 , Y_3). Thus, the Clemens-Schmid sequence (2.1) is not exact by Theorem 2.2.

A family $\pi: X \times X' \to \Delta$ with $X' \to \Delta$ a constant family of a projective nonsingular variety gives a non-exact Clemens-Schmid sequence (1.4) for all $q \ge 1$.

References

- [1] D. Morrison: *The Clemens-Schmid exact sequence and applications*, Topics in transcendental algebraic geometry, Ann. of Math. Stud., **106**, 101–119.
- [2] M.H. Saito, Y. Shimizu and S. Usui: *Variation of mixed Hodge structure and the Torelli problem*, Algebraic geometry, Sendai, Adv. Stud. Pure Math., **10**, North-Holland, Amsterdam, (1985), 649–693.
- [3] J. Steenbrink: *Limits of Hodge structures*, Invent. Math. **31** (1975/76), 229–257.
- [4] J. Steenbrink and S. Zucker: *Variation of mixed Hodge structure*. I, Invent. Math. **80** (1985), 489–542.

Graduate School of Mathematics Kyushu University Hakozaki Higashi-ku, Hukuoka 812-8581 JAPAN e-mail: asakura@math.kyushu-u.ac.jp