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1. Introduction

A smooth curvey: R — M parametrized by its arclength on a complete Rieman-
nian manifold M is called aircle of geodesic curvatures if it satisfies the differen-
tial equationV;V;+(t) = —x?)(t). Here s is a non-negative constant and, denotes
the covariant differentiation along with respect to the Riemannian connection Mn
When x = 0, as+y is parametrized by its arclength, this equation is equitate the
equation of geodesics. In this paper we study the set of cenge classes of circles
on a non-flat complex space form, which is either a complexeptive spaceCP” or
a complex hyperbolic spac€H". We call two circlesy; and~, on M arecongruent
if there exist an isometry of M and a constanty satisfying~1(¢) = ¢ o y2(t + to) for
all . We denote by Ci¢ ) the set of all congruence classes rafes on M .

In the preceding papers [5] and [3], we studied length speati circles on non-
flat complex space forms. We call a circleclosedif it satisfies~(¢) = (¢ +¢.) for
every t+ with some positive constapt . The minimum positive hwilis property
is called thelength of ~ and is denoted by length). For an open circley, a cir-
cle which is not closed, we set lengil(= co. The length spectrumC: Cir(M) —
R U {oo} of circles is defined by ([~]) = length¢y), where f] denotes the congruence
class containingy. In these papers [5], [3], we find that the moduli spacesCT#()
and Cir(CH™) of circles on non-flat complex space forms have a naturaination
structure: If we restrict the length spectruthon each leaf, it is continuous. In the
first half of this paper we study the phenomenon of circleshat houndary of each
leaf. For a sequencéo,} of closed curvesr,: S = [0, 1]/~ — M on M we shall
call limg, its limit curve if it exists. We study this lamination fromehviewpoint of
limit curves of circles.

The second half of this paper is devoted to add some resluiergth functions
of circles on non-flat complex space forms. As two circleseh#lve same geodesic
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curvature when they are congruent, we denote by, (@) the set of all congru-
ence classes of circles of geodesic curvataren M and byL,; the restriction of(
onto Cir,(M). We also call the image on the real line LSpeW) = L. (Cir.(M))NR
the length spectrum of circles of geodesic curvatureFor non-flat complex space
forms it is know that the length spectrum of circles of geadesirvaturex is a dis-
crete subset oR for eachx, and hence we can define thie -th length functig(x).
We investigate its asymptotic behaviour and continuityhwiéspect to geodesic curva-
ture and clarify the relationship between such propertias the lamination structure.
Our study on length functions shows the difference betweéhlét and totally real
circles and other circles. The author is grateful to theresfefor his valuable advice.

2. Moduli space of circles on a non-flat complex space form

On a real space form, which is either a standard spt#¥re () ofatuec,
a Euclidean spac&®” or a real hyperbolic spacéi” —¢) of curvature —c, it is
clear that two circles are congruent each other if and onlyhdy have the same
geodesic curvature. Therefore their moduli spaces are sénple: Cir(" ¢)) =
0, 2r/+/c), Cir(R") = Cir(H"(—c)) = (0,0). The length spectrum of a circle of
geodesic curvature on S"(c) is {2r/VKk2+c }, that onR" is {2r/x}, and that on
H"(—c) is {2r/V/K? —c } if kK > \/c. Thus the length spectrurf is continuous with
respect to the canonical topology induced from the topologythe real lineR.

For circles on a Kahler manifold/ we have another invaridfdr a circle
~ of positive geodesic curvature oM with complex structute € setr, =
(7. IV47)/IIV47]. It is constant alongy and is calledcomplex torsiorof . We call
a circley Kahler if =, = £1 andtotally real if =, = 0. Kahler circles and geodesics
are interpreted as motions of charged particles under soagnetic fields (see [1],
[2]). On a non-flat complex space form of complex dimensioeatgr than 1, all
geodesics are congruent each other and two circles of ywgjgodesic curvature are
congruent if and only if they have the same geodesic curgadnd the same absolute
value of complex torsion (see [8]). So set theoretically theduli spaces Cif{P")
and CirCH") are bijective to the set [@0) x [0, 1]/~, where (Q7) and (Q ) are
identified. From the viewpoint of the orthonormal frari®, V;+/|V7|/} of a circle
~ of positive geodsesic curvature, on each moduli space we hatopology induced
from the topology onR?, and trivial foliations by complex torsion and by geodesic
curvature. In the following sections we treat another ratlamination on these mod-
uli spaces. (For the definition of a lamination see for exanifl.)

3. Lamination of circles on a complex projective space

In the preceding paper [6], we studied circles on a complexjeptive space
CP"(c) of constant holomorphic sectional curvature and of caxptlimension
n > 2, and showed the following:
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Fig. 1. Lamination on C{{CP"(c))

(i) Every Kahler circle of geodesic curvature is a closed curve with length
2 /VK2 +c.

(i) Every totally real circle of geodesic curvature is a closed curve with length
4 /VAK2 + .

(iii) For x (> 0) and7 (0 < 7 < 1) we denote by, -, byx.ry di.r (k.7 < brr < di.r)
the solutions for the cubic equation

(3.1) c0® — (4r% + )0 + 2¢/c kT = 0.

A circle of geodesic curvature and of complex torsionr is closed if and only if
one of (hence all of) the ratiog,. /by +, by r/ds.+, dsr/as - 1S rational. When it is
closed, its length is @/\/c) x L.C.M{(bs.r — ar.7) "%, (du.r — ar.~) "1}

For x > 0, we denote by, -] the congruence classes of circles @®"(c) with
geodesic curvature and complex torsion. Since the cubic equation (3.1) fok,(r)
and that for {/2c/4, 3v/3ckT(4x?+c)~%/?) are homothetic, we have a map of normal-
ization

®,.: Cire(CP"(©) \ {[ea]} — Cir /g4 (CP"() \ 1y a1]}

between the sets of congruence classes of circles of prescgeodesic curvature de-
fined by

Py ([%,T]) = [7\/5/4,3\/&,@7(452#)73/2]

This map gives a lamination on the moduli space CR((c)) of circles onCP"(c)
whose leaves are

{[Vx.0l | k> 0O}, if =0,
Fu= S {lver] | 3V3ehr(@r?+c) 32 =p, 0< 7 <1}, if0O<pu<l,
{[veal | & > 0}, if =1,

where fyo 1] denotes the congruence class of geodesics (see Fig. 1).
In this section we study circles on each leaf of this lamoatiNeedless to say,
the length \1(k) = 27/vk2+c of Kahler circles of geodesic curvature and the
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length \x(k) = 47 /v 4k2 + ¢ of totally real circles satisfy

im () = =2, fm o) = 27

It is well-known that the length of an arbitrary geodesic @#®"(c) is 2r/\/c. This
assures that the point [(8)] € Cir(CP"(c)) = [0, 0c0) x [0, 1]/~ corresponding to
geodesics is not a limit point of the led with respect to the canonical topology on
Cir(CP"(c)). To see this phenomenon more precisely we investigade limit curves.
Let w: §?"*(c/4) — CP"(c) denote the Hopf fibration of a standard sphere onto a
complex projective space. For the sake of simplicity, owcdssion goes through only
with the casec =4 but the results hold for general

First of all, we study the leafF; of Kahler circles. Choose a unit tangent vec-
tor u € T,CP"(c) at a pointx € CP"(c) and denote byy, 1 the Kahler circle
of geodesic curvatures on CP"(c) with initial condition ~, 1(0) = x, 7..1(0) = u,
V5,171(0) = —xJu. Since it is a closed curve with lengthr2v/ k2 + ¢, we can de-
fine a curveo, 1: St — CP"(c) by 0..1(s) = vx1(27s/VK2+c). We are interested
in the feature of the familyS; = {0, 1 | x > O} of closed curves. Whea =4 and
x = w(z), by identifying the tangent spacE,;CP"(4) with the horizontal subspace
of 7.52'*1 with respect to the Hopf fibration, we see a horizontal Jift; "on $2**1(1)
of 4.1 is of the form

lim A(k) = lim Ax(x) = 0.

Fea(r) = e_“i’/z{COS%MI 2+ (K2 + 4)71/? sin%\/mt (kiz+ 2u)}
(see [1] or [6]). This shows that
(3.2) o a(s) = w(COSWS 2+ (K2 + 4 YV2sinms - (rkiz + 2u)).
Hence we have
IfiT?) orals) = w(COSﬂs -z +sin7s - u),

which is a closed geodesic of initial vectar , and Jim, o,.1(s) = x. Thus it is
natural to think that geodesics are contained in the leaf @lfil&r circles.

Next we study the leafr, of totally real circles. For a given paifu, v} of orth-
normal tangent vectors at € CP"(c) with (u, Jv) = 0, we denote byy. o the totally
real circle onCP"(c) with initial condition ~, 0(0) = x, 7.,0(0) =u, V4, ;Vx.0(0) = Kkv.
Since it is a closed curve with lengthr#v/4x2 + ¢, we can define a curve, o: S* —
CP"(c) by 0.0(s) = Vr.0(4ms/V4k2 +c). The family So = {0, | ¥ > 0} of closed
curves also has a limit curve. When =4 and oz), since a horizontal lifty; o
on $2'*1(1) of 4,0 is of the form

= o(f) = K (e + )+cos\/n2+1t( )+Sin\//~€2+lt
H = ——>»(Fkz+tv)*t ———— (7 —KV)+ ———u
IO = 21 K2+ 1
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(see [6]), we find

|iT(1) ow.0(s) = w(COS Zrs -z +sin2rs - u),
K

which is a double covering of the closed geodesic with ihiiector «, and trivially
find lim,_ o 0k.0(s) = x.

Proposition 1. On a complex projective spac€P”(c) (n > 2) the following
properties hold.
(1) The familyS; = {o..1 | k > 0} of closed curves derived fromékKler circles has
a limit curve. The curvdim,; oo, 1 iS a geodesic.
(2) The familySy = {o..0 | < > 0} of closed curves derived from totally real circles
also has a limit curve. The curdém,; oo, 0 is a 2-fold covering of a geodesic.

We now concern ourselves with general leaves. By the prpdér), we find a
leaf F,, consists of congruence classes of closed circles if and dnly = u(p, q)
= q(9p% — ¢?)(3p?+¢?)~%2 by use of a pair §,¢ ) of mutually prime positive integers
with p > ¢ (see [5]). In order to study limit curves we only treat suchvks. By
putting

q(9p? — ¢®)(4r? + c)¥/?
3\/§cn(3p2 + q2)3/2

TP, q;¢) =

we see the leafF, ) is of the form {[v. r. (g0l | C(p.gi¢) < Kk < n(p,q;0)},

where
AP 4:) =4y ez 0P q'C)‘3p_q,/ <
o 9p? —¢?’ o 2 29(3p +q)

We study the phenomena é&(p, g;c) and n(p, ¢;c). Choose a unit tangent vectar
at a pointx € CP"(c) and a continuous mag((p, g;c), n(p.q;c)) > k +— v, €
T.CP"(c) such that(u, v.,) = 0 and(u, Jv.) = 7.(p, q;c). We denote byy. +.(p.q4:0)
a circle onCP"(c) with initial condition

Veera(pgic)(0) =X, Veir(p.gic)(0) = u, v%.m(n.q:u)-%,m(P-q:c)(O) = KVgk.

Since it is a closed curve with length

. _ 3p2+q2
Aulp.4i€) = 20(p. ™\ | 35375

where d(p, ¢g) = 1 when the producpg is odd anf{p, ¢g) = 2 whenpg is even, we
can define a closed curve, ., (p.q:0: St — CP"(c) by

Umm(p,q;r)(s) = Ve, (pogic) (/\f-c(p’ q, C)S)-
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We now show the following.

Theorem 1. Let(p, g) be a pair of mutually prime positive integers with> g.
(1) The familySu(p.q) = {0k m.(p.q:0) | (P, q:¢) < k < n(p.,q;c)} of closed curves on
CP"(c) (n > 2) derived from closed circles whose congruency classes lithenleaf
Fup.q) has limit curves.
(2) The curvelimy)c(p.gic) Tr 7 (p.qic) 1S @ d(p, g)p-fold covering of a closed curve
o¢p.q:00.1 Which is derived from a &hler circle of geodesic curvaturé(p, ¢;c).
(3) The curvelim,.iyp.qic) Or.re(p.gic) 1S @ 0(p, g)(p + g)/2-fold covering of a closed
curve oy p.4:0),1 Which is derived from a &hler circle of geodesic curvaturg(p, g; c).

Proof. By direct computation, we have
2 2—q2 2
im Au(p.q:c)= o(p.q)m |9p*—q® _  2m(p.q)p 7
k1C(p.gic) 3 ¢ V(P aic)+e
2 + +
im Au(p.qic)= op.a)r [24Gp *+q) _ 7P, a)p+4q)
kTn(p.q;c) 3 C \/n(p,q;c)2+c

which suggest our result. To see more precisely, we suppose4 andx = w(z).
A horizontal lift 5, -, (p.q:4) ON SZ*Y(1) Of 7y 1. (p.g:4) IS OF the form

(3.3)

~ _ it bt 1it
WH,TR(P«!]%)(I) - Aﬂea ' +B)£e "+ Dne( ! P

whereay, b., d. (a. < b, < d,;) are the solutions of the cubic equatif—(x? + 1) x
0+71.(p,q;4)k =0 and

1

AK: _l+b.‘£d.‘£ ,+ ch + K
(an_bﬁ)(dﬁ_aﬁ){ ( )Z ettt KU}
1
BH: - 1+d/1 K +bnj + KJ>
oG —b,.c){ ( ag)z u+ kvt
1

D, = —(L+awby)z+doJu+ kvt
(d,g—a,{)(b,.c—d,.c){ (1+aubi)z u+ Ko}
Since lim, ¢p.q:4 T(P, 4:4) = liMgin0.0:4 7(p, q;4) = 1, one can easily see by the
cubic equation that
3p +q

. . 3p —
lim a, = NG lim =((p.gi4). lim do= 2T
& 1(p.ai®) V9p2 — q2’ klllpa 4) rwlC(p q4) 9p2 — g2

. 3p q
im a —4 / =4 / lim d. = 14
k1n(p.aid) ﬂTn(p q; 4) 3p + q k1n(p.q;4) =n(p.4: )

which are nothing but the solutions for the cubic equatiomresponding to £, 7) =
(C(p’ q'4)’ 1) and @’ T) = (n(p’ q’4)’ l) As lim"‘iC(l’-l];Af) Vg = Iimchn(1xq;4) Vg = —Ju,
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these guarantee that

. 1

lim A,=—{@Bp—q)z++/9p2%—q2Ju},
k1C(p.q:4) 6p

lim B,=0,
k1C(p.q:4)

D, = %{(SP +q)z—/9p? —q? Ju},
= ;{Zqz +1/29(3p +q)Ju},

lim A
wtn(pad) " 3(p +q)

lim
k1C(p.q:4)

{Bp +q):—/29@3p +q)Ju},

1
Iim B.,=_-——
kTn(p.q;4) 3(p +q)

lim D,=0.
kTn(p.q;4)

We therefore obtain by use of (3.3) that the famfly, ,) has limit curves:

im0 s (poas
klC(p.gid) ~(1-qv4)( )

V9? —q

2
= w(0055(P, q)pms -z + o sind(p, q)prs - (C(p, ¢; iz + 2M)>,

lim o (s
w1n(p.g:4) wrnlpai®)(s)

1
.- (cosi(p + 0(ps g)ms -z

L V24(@p +q)

1 o
300 +9) sin5(p +9)3(p. g)ms - (n(p, 4; 4)iz +2u)>,

Thus in comparing these with (3.2) we get our conclusion. U

Our theorem shows that the laminatigtf, } of the moduli space Ci{P"(c)) is
not a foliation. But we can easily see th@f,},cp1) is a foliation of the moduli
space CirCP"(c)) \ {[vx.1] | k > 0} of non-Ka&hler circles.

4. Lamination of bounded circles on a complex hyperbolic spee

In this section we study corresponding results on a langnatin the moduli
space of circles on a complex hyperbolic sp&”(—c) of constant holomorphic sec-
tional curvature—c whose complex dimension is greater than 1. We define a non-
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negative functiorv: [0, co) — R by

. c
< ~
0, if0<k< 5>
_ 2 332
1, if k> 1

We studied in [4] circles on a complex hyperbolic space aruvsld the following:

(i) A circle of geodesic curvaturg is bounded as a image @H"(—c¢) if and only
if either x > \/c or its complex torsionr is smaller than(x).

(i) Every Kahler circle of geodesic curvature > /c is a closed curve with length
27 /vVK2 — c.

(ii) Every totally real circle of geodesic curvature > /c/2 is a closed curve with
length 4r/v/4k? — c.

(iv) For k (> /c/2) andT (0 < 7 < v(x)) we denote bya, -, by, der (Ar <
b, r < d,. ) the solutions for the cubic equation

(4.1) c0® — (4r% — )0 + 2¢/c kT = 0.

A circle of geodesic curvature and of complex torsionr is closed if and only if
one of (hence all of) the ratiog. . /bx.ry bx.r/ds.+, ds.r/as~ is rational. When it is
closed, its length is @/\/c) x L.C.M{(bx.r — ax.+)" % (drr — an.r) "1}

We denote by 4. ;] the congruence class of circles dH"(—c) with geodesic
curvaturex and complex torsiorr. We also denote by BGi(CH"(—c)) the set of all
congruence classes of bounded circles of geodesic cuevaton CH"(—c). Since the
cubic equation (4.1) for, 7) and that for (/c, 3v/3ck7(4x?—c)~%/?) are homothetic,
we have a map of normalization

@1 BCir, (CH"(=¢)) \ {[xal} — Cir 2 (CH"(=0) \ {[7,eal}

between the sets of congruence classes of bounded circleeséribed geodesic cur-
vatures defined by

qj/f([%i,r]) = [7\/;.3\/@5&7—(4,6276)73/2} .

This map gives a lamination on the moduli space

BCir(CH"(—c)) = | J BCir.(CH"(~0c))
K>+/c/2

’:{(I{,T)’§<K<\/E, 0<T<I/(I€)}U(\/E,OO)X[O,1]
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Fig. 2. Lamination on BC{CH"(—c))

of bounded circles o€ H"(—c) whose leaves are

ve T
{[%,o] |/€>7}, if u=0,
Fu= {[Vrr] | 3V3ckT(4k%2 — )32 =p, 0<7 <1}, fO<pu<i,
{[ywal [ &> Ve, if p=1

It is known that a leatF,, consists of congruence classes of closed circles if and
only if 1= u(p.q) = q(9p? — ¢A(Bp? + ¢?)~%/? by use of a pair g, g ) of mutually
prime positive integers wittp > g (see [3]). By putting

qa(9p* — ¢°)(4r* — )*?
3v3ck(3p? +¢2)3/2

(P, q,—c) =

we see the leafF,, ) is of the form {[v. r (.-l | Vc/2 < £ < n(p,q;—c)},
where n(p, ¢; —c) = (Bp +¢q)\/c/89(3p —¢g). In order to see the laminatioff on
BCir(CH"(—c)) is not a foliation, we study limit curves of a family of cled curves
corresponding taF,(,.q)-

Choose a unit tangent vectar at a pointe CH"(—c) and denote byy, 1
for k > \/c the Kahler circle of geodesic curvatureon CH"(—c) with initial con-
dition v,1(0) = x, 7.1(0) = u, V;_,7.1(0) = —xJu. Since it is a closed curve
with length 2r/v/k2 — ¢, we can define a curve, 1: S — CH"(—c) by o,.1(s) =
Ye1(27s [V K2 = ¢).

On the other hand, for given a continuous m@gc/2, n(p, g; —c)) > k +— v, €
T.CH"(—c) with (u,v.) = 0 and (u, Jv.) = 7.(p. q; —c) we denote byv, r.(p.q:—c)
a circle onCH"(—c) with initial condition

Yrra(pgi—c)(0) =X, Veru(pagi—a)(0) =1, Vs, o s Ver(pgi—e)(0) = K.

Since it is also a closed curve with length

Ny | 3p*+q?
Au(psqi—¢) = 25(p. q) 342 —c)’

where §(p, ¢g) = 1 when the producpg is odd anf{p, ¢g) = 2 whenpg is even, we
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can define a closed curve, -, (p.q;—c): S* — CH"(—c) by

Or.ru(p.gi=)(8) = Veru(pgi—e)(Ax(P: 43 —€)s).
We now show the following.

Theorem 2. Let (p, g) be a pair of mutually prime positive integers with> ¢.
(1) A family Suppg) = {0rre(pgi—c) | V€/2 < & < n(p,q;c)} of closed curves on
CH"(—c) (n > 2) derived from closed circles whose congruence classes li¢hen
leaf 7,4 has a limit curve.
(2) The curvelimipn(p.qi—c) Tr.re(p.gi—c) 1S @ 6(p,q)(p — gq)/2-fold covering of a
closed curveo,, 4.1 Which is derived from a Hhler circle of geodesic curvature

77(17’ qv _C)'

Proof. First we see

- N 2(p, ) [29(3p —q) _ 7©d(p,q)(p — q)
(42) HTJ(IE-LJC) AP qi0) = 3 ¢ - Vnlp, g0 +c¢

which suggests our result. To see more precisely, we makeofuiee standard fibra-
tion w: HZ'** — CH"(—4) of an anti de-Sitter space

HZ N = {(z0, -+, 20 € C™ | —|z0)? + |z2)2 + -+ - + |za]? = —1}.

If x = w(z), horizontal lifts v, 1 and ¥ r.(p.q:—4 ON HZ'*! of circles v,1 and
V.o (p.gi—4) ON CH"(—4) are of the forms

- ; 1 o1 .
Fralt) = e"”’/z{ cosz v K2 — Atz + (2 — 4)71/2 Slnéx/ k2 —At(kiz + 2u)},
;}‘/ﬂ,m(P,fli—4)(t) :AﬂeaNit + BnebNit + Dnedﬂnv

where a,., by, d. (a. < b. < d,) are the solutions of the cubic equatied —
(/i2 - 1) — 7.(p,q; —4)x =0 and

1

Aﬂ: 1_b){/d){/ + ,l{J + KJ>»
(an - bn)(dn - aﬁ) {( )Z U THY }

1
B, = 1-d.a)z+b.,Ju+rkv,},
b — a0 — b {( ag)z u+Kvg}

1
D, {(d — axby)z +d.Ju + kv, }.

- (dn - an)(bn - dﬁ)
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Since we have

lim 7.(p,qg;—4) = lim v, =—Ju,
kTn(p.q;—4) (p 1 ) :L wTn(p.q;—4)

. 3p — _

lim a, = — P —q ’ lim b= — 2(] ’
wTnp.a:=4) 2q K1(p.q;:—4) 3¢

I d. =n(p, q;—4),
wTn(p.q;—4) (P, q;=4)

we find
lim A 1 { 29z ++/29(3 )J }
Kk — = 4492 _ ut,
&Tn(p.q;—4) 3(p —q) P —4q
1

im  Be==———{@p— )z - V24 @ —q) Ju}.
&11(p.q;—4) 3(p —q) Bp—4q) q(3p — q)

lim D,=0.
&In(p.q;—4)

Together with (4.2) these guarantee that

lim o, e
win(p.gi—4) "~ T4

1
= @ ((cos3(p — @)0(p. )ms -z

L V24Bp —q)

S L sinS (0 =)o, s - (n(p. g 4z + 20) ).

Since we have
0r1(5) = w(cosms - z + (k2 — 4)"Y2sinzs - (kiz + 2u)),

we get our conclusion. O

Our theorem shows that the laminatidh is not a foliation on BCirCH"(—c)).
But we can easily see thdtF, },.cp.1) is a foliation on the moduli space of bounded
non-Kahler circles.

5. Length functions on a complex projective space

We devote the rest of this paper to study length functionscioeles on a non-
flat complex space form. For each lengthe LSpeg.(M) of circles of geodesic cur-
vature  we call the cardinalityn X) of the set£;1()\) the multiplicity of A. When
m(A) = 1 we call A simple In case the length spectrum LSpé®) is a discrete set
and each length is of finite multiplicity, we denote By(x) the j -th length of circles
of geodesic curvature. That is,

LSpeq, (M) = {A1(k) < da(k) < Ag(k) < --- < XNj(k) < Ajsa(k) < --- 1,
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where each length is repeated according to its multiplicite first length \1(x)
shows the length of shortest closed circles of geodesicatumx. Trivially for a real
space form the unique length functiofx) = A\1(x) is continuous, monotone decreas-
ing and satisfies lim_ . kA(k) = 27. Also it is trivial that

|im,.€i0 /\(I{) = 2—\/7;, for S”(C),
lim, o kA(k) = 2, for R”,

lim,., /e(k — VEY2NK) = V2me= 4, for H'(—c).

We now study length functions of circles on a complex prayecspace. In view
of Section 3 the length spectrum of circles @#"(c) (n > 2) is of the following form
(see [9)):

o 47
LSpeg, (CP"(c)) = { ViZz+e Vi2+ c}

) p andg are mutually prime positiye
U {)‘”(p’ 9:€) ’ integers which satisfy > a..cq

wherea,..(> 1) denotes the unique positive number which satisfies
(5.1) 3V3cr(dr? +c) 2= (902, — 1)(32 . +1)¥/2

Hence LSpeg(CP"(c)) is a discrete set and each length is of finite multiplickyso
one can easily see that the first length\igx) = 2r/v k2 + ¢, which is the length of
Kahler circles, and the second length)g(x) = 4m/v/4x2 + ¢, which is the length of
totally real circles. They are simple and satisfy the follogvproperties:

(1) They are smooth and monotone decreasing with respect émd satisfy

2m 47
li =1 =
iﬂ%h(") Nz iﬂ%AZ(””) Nz
lim skA1(k) = lim gA2(k) = 2,

in particular, lim,_ . A1(k) = liM,_ o A2(k) = 0.
(2) The gap between these lengths is monotone decreasihgregipect tox and sat-
isfies
lim k3(Aa(k) — M) = 3¢ lim (Aa(s) — M) = 2
K—00 47 k0 N

We here study corresponding properties fg(x) with j > 3.

Theorem 3. For j > 3 the j-th length function of circles o€ P"(c) (n > 2)
satisfies the following properties
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(1) This function is not continuous. The points where this foncts not right contin-
uous are contained in the set

{¢(p,q;¢) | (p,q) are mutually prime positive integers with > ¢},
and the points where this function is not left continuous eoatained in the set
{n(p,q;c) | (p,q) are mutually prime positive integers with > ¢}.

(2) On each interval where\; is continuousit is monotone decreasing and satisfies
lim,—o0 Aj(k) = lim, 0 Aj(k) = co. More precisely it satisfies

lim () _ &

KR—00 K 3C

. _2m
, I'irl‘r(l)n)\j(/f) =3

(3) The gapAi;.1(x) — Aj(x) is monotone decreasing on each interval where this gap
function is continuoysand is uniformly bounded

47 47
A )\ 7
j+1(K) i(k) < o < NG

for everyk (> 0). It satisfies

! i An
Jm_w(Ajra(k) = Aj(w) = 2, lliT(])(Aj+l(l‘<ﬂ) — (k) = NG

In order to understand the structure of LSp@tP"(c)), the properties oty,,. are
important.

Lemma 1. (1) a g, =1 anday > 1 for & #v2c/4

(2) The functions — a,. is monotone decreasing on the intery@l v/2c/4] and is
monotone increasing on the interval/2c/4, cc).
(3) iMoo k2%, = 8/(3c) and lim o,k = /c/3.

Proof. (2) Differentiating both sides of (5.1) by, we have

dan;c _ \/§C(8’€2 - C)(3(¥i;p + 1)5/2
d 9 (42 +c)5/2(a2, — 1)’

Sincea,,. > 1 whenr #/2c/4, we get the assertion.
(3) By the assertion of (2) and (5.1) we see Jimg o = lim, o ay.c = co. The last
assertion follows the following computation:
. Qe . Qe (4/4’2 + C)g/z(go%;r - 1)
lim —= = lim —= x
R0 RS Koo K 3vV3ck(3aZ,, +1)3/2
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. (4 +c1<a_2)3/2(9—0¢;;} _ 8

= | =,
K—00 3\/§c(3 .,.a;;g)s/z 3¢
@2+ 29— _ Ve

lima,..x =1lim =,
510 70T 33 c(3+ D)2 3 =

In order to understand Theorem 3, the following result on ttiied length A3(x)
will be a good guide to the readers.

Proposition 2. (1) The third length is simple for arbitrary: (> 0).
(2) Denoting byp.(> 3) the smallest odd integer which is greater thap,. we have

_ N 3pi+1
A3(k) = Ae(pr. Lic) =2n 37T )
It satisfies
8r 27
. _l _ . -
ﬂllTlm k" A3(k) = 3 l/lT(]) KkA3(k) 3

(38) The functionAs: (0, c0) — R is right continuous except at(2m +1 1;c),m =1,
2, 3 ..., and is left continuous except g{2m +1 1;c),m =1, 2, 3....

(4) The gapAs(k) — A2(k) is monotone decreasing on each interval whageis con-
tinuous but is not uniformly bounded and satisfies

i1 () = Aalr)) = o lim () — Aelr) = -

Proof. First we note a property of.(p, g; ¢). Let (p1, q1), (p2, ¢2) be two pairs
of mutually prime positive integers witly; > ¢;. If either both of the product®iq1
and p,q, are odd or both of them are even, and if they satigfy< p, andq1 < ¢>,
then \.(p1, g1; ¢) < Ax(p2, g2; ¢). Under this hypothesis the equality holds if and only
if (p1,91) = (p2,q2). On the other hand, ipiq1 is odd, p2g2 is even,p; < p, and
q1 < q2, then A\ (p1, q1; ¢) < Ae(p2, g2;€).

What we have to do is to find out the smallési(p, g;c). When p,, — 1 < «.,
as every pair g, g ) of mutually prime positive integers wph> «a...q, ¢ > 2 satisfies
p—pr > (@ —Dase—1> 0, itis clear that\.(p, g;c) > A(px, Lic) if (p,q) #
(px,1). Whena,.. < p. — 1, as every pair g, g ) of mutually prime positive integers
with p > ay...q, g > 2 satisfiesp — p,, > (¢ —1)a.c. —2 > 0, we have only to compare
Ae(pr, L;¢) and A\ (px — 1, 1;c). Since

43(px — 17 + 1} — {3pZ + 1} = 3(3p. — 5)(px — 1) > 0,

we find also in this case that.(p, q;c) > A\(px,1;¢) if (p,q) # (px,1). Thus we
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see A3(k) = M\c(px, 1;c) and is simple for arbitrary.. By this form we find \3(x) is
not continuous at points where,.. is a odd integer which is greater than 1. For given
«a (> 1) we can easily check that positive solutions of the equoatio

(9a% — 1)2(4k2 + ¢)® — 27c3(3a? + 1)°k%2 = 0

are s = /c/(9a?2—1) andx = (Ba — 1)v/c/{8(3x +1)}. Hence these points are
((@2m+1 Lic) andn(2m +1, 1;c) withm =1, 2.... AS e < pr < aue +2, OUr
assertion follows from Lemma 1. O

The congruence classes corresponding to the third lengtiirdés onCP"(c) lie
on the leafF,ou+11y When{(2m +1 1;c)< k < ((2m — 1, 1;¢) orn(2m — 1, 1;¢) <
Kk < n(2m +1 1;c). By our study in Section 3 each fami{y. -, @m+11¢) | ¢(2m + 1,
lic) < k < {(2m — 1, 1;c)} of closed curves derived from circles corresponding to
the third length has a limit curve liM¢@n+11¢)0k. ro@n+1 1) Which is a (2n +1)-fold
covering of a closed curve derived from a Kahler circle. Whegoes to 0, we find
by Lemma 1 thatn goes to infinity. One can easily guess that, (k) = co.

Remark 1. We should note that among the gap functiong+s — \; | j =
1,2 ...} only the gap functiom\s — A2 is not bounded. One should compare the rates
of convergence of\;.1—A; for j > 3 and forj =1 whens goes to infinity and when
it goes to 0. Also one should note the rates of convergencg;pofi = 1, 2 and the
rates of divergence ok;, j > 3.

The following lemma gives us information on asymptotic hebars of length
functions.

Lemma 2. Let j(> 4) be a positive integer.
(1) If awe >2(j —3) then Aj(k) = Au(ps +2( — 3), 1;¢).
(2) If 2j —7 < e < 2(j — 3), then Aj(k) = Au(pr — 1, 1;¢) = Aa(2( — 3). L;¢).
(3 If2(j —4) < ane<2j—7andj>5,then

)\j(/i) = )\n(pn + 2(.] - 3)’ l,C)
= \.(4j — 13, 1;c)

(4) The j-th length is simple on the intervals whesg.. > 2; — 8, which is
(0,¢(2j — 8, L;c) and [n(2j — 8, 1;¢), 00).

Proof. We study)\.(p, ¢;c) along the same lines as in the proof of Proposi-
tion 2.

In the first place we consider the cagg — 1 < .. Sinceay, > 2(j — 4),
we seep,, > 2j — 7. We shall show that for a paip(g ) of mutually prime positive
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integers withp > ay..q and p,q) # (px +2i,1), i = Q1...,j — 3 the length
Xx(p, g;c) is greater tham\.(p, +2(j —3), 1;c). We first compare\,(p. +1, 1;c) and
Ae(pe +2(j — 3), 1;¢). Since
43(ps + 1P+ 1} = 3{p. +2( -3}~ 1
=3{3pZ —4( —5)px+5-4( — 37} > 24( - 3) > 0,
we find A\;(p. + 1, Lic) > Ao(ps + 2(j — 3), 1;c). Next we considei.(p, g; c) with

g > 2. Note thatp > a.q > g(p, — 1).
(i) When ¢ is even, as we have

p—pe*t) 2@ -Dpe—1)—-1>p.—2>0,

we obtain\.(p, g;¢) > Ae(pe + 1, 15¢)> Me(pr + 2( — 3), L;¢).
(i) When ¢ is odd andj > 5, as we have

p—A{px+2( -3} =2 (¢ -V —1)—-2(j -3)=>2(j -5 >0,

we obtainA.(p, g;c) > Au(ps +2(j — 3), 1;c).
(i) When ¢ is odd andj =4, as we have

p—(p+2)>(q—1p.—2>2-3-2>0,

we obtainA.(p, g;c) > A(ps + 2, 1;¢).
Thus we get the assertion of this case.

In the second place we consider the cagse < p, —1. Sincea,.. > 2(j —4), we
seep, > 2j — 5. First we compare\,(p, — 1, 1;¢) and;(p. +2(j — 3), 1;c). Since
the quantity

43(p. — 1P+ 1} —3{p. +2( —3)}* -1
=3{3p2 —4(j — 1)p. +5—4( — 3%}

is equal to 24(3- j) < 0 whenp, = 2j — 5, and is not smaller than 24 2) > 0
when p,, > 2j — 3, we have

Ae(ps — 1, 15¢) < /\,{(p,{ +2(j — 3), 1;0), if p.=2j—05,
AP — 1, L5c) > /\H(Pn +2(j —3), 1;0)’ if pw>2j—3.

Next we consider\,(p, g; c) with ¢ > 2. Note thatp > a.q > q(p. — 2).
(i) Whengq is even, or wheg is odd angd is even, as we have

p—(pe—1)2>(q—-Dp.—2)>0,

we obtain\.(p, g;c) > A\:(px — 1, Lic).
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(i) When p andg are odd, as we have
p—Apr*t2( -3} 2@ -V —2)-2(-3)=2( —2)>0,

we obtain\.(p, ¢g;c) > Au(px +2(j — 3), 1;¢).

Summarizing up these two cases under the conditipn > 2(j — 4), we get the
following. If either a,, > p. — 1, Of a,x < px — 1 and p, > 2j — 3 holds, which is
equivalent to the condition that,.. > 2(j — 3) or 2(j — 4) < a... < 2j — 7, then

An(pm 1;6) < )\n(pn + 2’ 1;0) << >\n (pn + 2(.] - 3)7 1;0)
are smaller than other lengths,(p, g; ¢). This leads us to the assertion (1) and (3). If
age < ps— 1 andp, = 2j — 5, which is equivalent to the condition thafj 2 7 <
a, < 2(j — 3), then
Ae(Prs 156) < Xa(pr +2, Lie) < -+ < Me(pre +2( — 4), 1i¢) < Ae(pr — 1, Lic)

are smaller than other lengths;(p, ¢;c¢). Thus we get the rest of our conclusion.
O

We are now in the position to prove Theorem 3. By Lemma 2, weshav

3(ps+2j — 6y +1
3(4x2 +c) ’

Aj(k) = )\N(pN +2(j — 3), 1;(7) = 27T\/

if .. > 2(j —3). Hence the second assertion is a direct consequence ahaein

The first assertion follows from the property that functic(lq‘$p, q:c),n(p, q; c)) B
k — A(p,q;c) € R are continuous and the first paragraph of the proof of Propo-
sition 2, which guarantees that the propebtipi, g1;c) < A(p2, g2; c) depends only
on (pi,q;) and does not depend on The function); is continuous at point if
and only if (x, 1) is not a boundary point of leaves containing congruenessels of
circles corresponding this length. By the form &f(x), if we restrict ourselves on
the intervals (0¢(2j — 8, 1;c)] andn(2j — 8, 1;c), c0), it is right continuous except
at ((2j — 6,1;c) and¢(2mn +1, 1;c),m =j —4, j—3,..., and is left continuous
except atn(2j — 6, 1;c¢) andn2m +1, 1;c),m =j —4, j—3,....

The assertion on asymptotic behaviours of gaps between éngths follows di-
rectly from Lemma 2. We only need to give a unifom estimate apgg We first esti-
mate \.(p, ¢g; ¢) with g > 2 by \.(r, 1;¢). Whenpg is odd, we choose r=p(q ) so
that it is the maximum positive odd integer which satisfie$-81 < 3p?+¢42. Clearly
we haver > p > aeeq > Qpe, and 32+ 1< 3p?+¢? < 3(r +2F +1 because +2 is
odd. We hence obtain,(r, 1;¢) < M\c(p, ¢;¢) < Au(r +2, 1;¢). Whenpg is even and
q > 2, we chooser 7 f,q ) so that it is the maximum positive odd integkich
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satisfies 82+ 1 < 4(3p? + ¢?). Then we have

3r2+1<4(Bp?+q?) <3(r+2P+1,

r>2p—1>20,.q — 1> 4, — 1> .
Thus we get also in this case that(r, 1;¢) < M\c(p, ¢;¢) < A\s(r +2, 1;¢). Since the
function A;(x) is of the formA.(ps.;, gx.j; c) with some pair p,. ;, g, ;) of mutually

prime positive integers, by choosing the correspondifg in the above argument we
have

NHW—A00<Aﬁm+ZId—AUMJr)

3(44.;2+ (\/S(r,”+2)2+1 \/Srz +1) \/%,

as the functionf {) = \/3(9 + 22 +1— /362 +1 is monotone increasing and satisfies
f(6) < 2v/3. This completes the proof of Theorem 3.

Remark 2. The fourth length function is of the following form:

13
3(4x2+c)’

(k) =
* | (et 2P+1
AP +2,1c)=2r W, if a, > 2.

It is right continuous except af(2, 1;c) and{(2m +1, 1;c),m =1, 2..., and is left
continuous except aj(2, 1;c) andn(2m +1, 1;c),m =1, 2....

(2, 1ic) = 4r if 1<a,<2,

Checking each length functions carefully we can concludefthlowing:

Proposition 3. (1) The lengths\;(x) (j < 15) are simple everywhere.
(2) The lengthAie(x) is simple except on the intervals whe®¢7 < «,.. < 5/4. On
these two intervals its multiplicity i8; A1g(x) = A\17(k).
(3) The lengthAi7(x) is simple except on the interval whete< a,.. < 5/4. On this
interval its multiplicity is2; \7(x) = A1s(k) whenl < a,... < 9/7, and \i7(k) = A1s(k)
when9/7 < ;.. < 5/4.

6. Length functions on a complex hyperbolic space

In this final section we mention briefly corresponding resuh length functions
for circles on a complex hyperbolic space. In view of Sectothe length spectrum of
circles of geodesic curvature on CH"(—c) (n > 2) is of the following form (see [3]):
When x < 4/c/2, every circle is an unbounded curve and LSg€dH"(—c)) = 0,
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when /c/2 < k < 4/c,

p andg are mutually
prime positive integers ,

LSpeg, (CH"(—c¢)) = {L} U (P, 43 —c)
which satisfyp > ¢

VAak2 — ¢

and whenk > /e,

LSpe%(CH”(—c)):{ ar 21 }

Va2 —¢ k2 —¢

U M. g —0) ‘ p andg are mutually prime positije
AP integers which satisfy > ay._cq [~

Here, forx > \/c, the constanty.._. denotes the unique positive number which satis-
fies

(6.1) 3V3Bek(dr? — ¢) 2= (902 _, — 1)(32 _, +1)¥/2

The structures of the length spectrum LSpétH”"(—c)) of circles of prescribed
geodesic curvatures are essentially same each othge /2 < x < \/c. We are hence
interested in the behaviour when goes to infinity. From now on we consider only
for k > \/c/2. The first length is\;(x) = 47 /v/4x? — ¢, which is the length of totally
real circles. Hence it is continuous and monotone decrgasind satisfies

lim kAi(k) =27,  lim (n Ve )1/2/\1(n) = 2re— /4,

K00 KlVe/2 2
in particular, lim, . A1(k) = 0.

The structure of length spectrum of circles @#"(—c) is a bit more complicated

than that of circles on a complex projective space becausde( circles of geodesic
curvature,/c are unbounded. It follows from [3] that the second length is

7 N 5¢
M@ Li—e) = dmy | o if LD << E
Nalk) = 3(4k? —¢) 2 4

_2 it 5> 2VC
K2 —c¢ 4

which is the length of Kahler circles when> 5,/c/4, and is simple everywhere.

Proposition 4. (1) The second length function;: (v/¢/2,00) — R on
CH"(—c) (n > 2) is also continuous and monotone decreasing. It also satisfie

_ _ _ Ve 12 o 14 \ﬁ
lim () = 2, HJ%Z(K 2) Ao() = 2rc 5
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in particular, lim,_ . A2(x) = 0.
(2) The gap functiom\, — A\; is monotone decreasing and satisfies

im K3 (Na(k) — M(k)) = 3%0, "?/Z(AZ(“) — Mi(r)) = o0.

K

When /c/2 < k < 5y/c/4 the congruence classes corresponding to the second
length of circles lie on the leafr, 1). By the study in Section 4, the limit curve
lim, 15z/4 0, 7e(2.1—¢) is the closed curve derived from a Kahler circle of geodesic
curvature §/c/4. This suggests the second length function is continuoss at the
point k = 5/c/4.

Let p,. denote the smallest odd integer which is greater than.. By a similar
argument as in the proof of Proposition 2, we find the thirdgthris of the following

form:
13 . \c 7V10c
(2, L, —c)=4r\| 5775, if = )
M@ - =amfaae—y T3 <r<—%

or  7V10c 5./
A3(k) = pra— if 0 <k< 2
3p2+1 5,/c

Ae(pr,1;—c)=2r if x> 5

3wz "7

This length is also simple everywhere. Since we have

() ayp_.=1anda, . >1for x>/,

(i) the function k — a.._. is monotone increasing for > ./c and satisfies
iMoo K20t = 8/(3¢),

(iii) for an arbitrary o (> 1) the unique positive solution for the cubic equation

3V3ck(3a? + 1)¥? = (9a? — 1)(4x? — ¢)%/?

is & = (3a +1)\/c/{8(3x — 1)},

we obtain the following.

Proposition 5. (1) The third length functiom\s: (y/c/2, ) — R of circles on
CH"(—c) (n > 2) is right continuous at each poinand is left continuous except at
n@2m+1 1,—c),m=1,2,3....

(2) On each interval where\; is continuousit is monotone decreasing.
(3) The gap functioms — \, satisfies

lim_ K (Na(k) — Aa(k)) = 8%, ﬂﬂ%z(“(“) — A2(r)) = o0.

Along the same lines as in Section 5, we obtain
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Lemma 3. Let j (> 4) be a positive integer.
(1) If aw—e > 2(j —3), then Aj(k) = Au(pr +2(j — 3), 1;—0).
2) If 2j =7 < ay.— <2(j —3), then

Aj(8) = AP — L, 15—¢) = Me(2( — 3), 1;—¢).
(3) If 2(j —4) < ay;—c < 2j — 7, then
Aj(8) = Ma(pr + 20 — 3), 1;—¢) = A\ (4) — 13, 1;—c).

(4) The j -th length is simple on the interval whetg,._. > 2j — 8, which is
[n(2j — 8, 1;—c), 0).

For a pair p, g ) of positive integers we put

. v- 1P, 9)*(Bp2 +4?) — 3}c
<2, gi~) _\/ 5(p. q)*(3p2 +q?) —12

When k = &(p, q; —c), the lengths of a Kahler circle of geodesic curvatureand
a circle of complex torsiorr,(p, g; —c) and of geodesic curvature are the same.
By Lemma 3 we get the following result.

Theorem 4. For j > 3 the j-th length function of circles o€H"(—c) (> 2)
satisfies the following properties
(1) This function is right continuous.
(2) This function is not left continuous. Such points are cordiin the set

p and g are mutually prim
positive integers withp > ¢ |

{n(p, q;—c), &(p, g5 —c¢)

(3) On each interval where\; is continuousit is monotone decreasing and satisfies
lim, o Aj(k) = co. More precisely it satisfies

. Ai(k) 8
I SrAMCAE S
Hmo K 3c

(4) The gap);+1(k) — Aj(k) is smaller thandr //4r2 — ¢ for everyk (> /c/2). This
gap function is monotone decreasing on each interval whieig ¢ontinuous andc >
5\/c/4. It satisfies

Hl@w /{(/\jﬂ(/f) — /\j(n)) = 2m, Hlli\r/‘r_c]/z(Aj+1(:‘i) — )\j(/{)) = co.

Remark 3. For everyj > 1 the gap satisfies

0< lim (2x — 2\ —\; < 4me~ YA,
s ﬁ/z(” VeY 2 (Njsa(r) — Nj(k)) < 4me
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where the limit exists and the equality holds if and onlyAif; = A; on the interval

Ve/2 <k < /e

RemARk 4. When we restrict ourselves on the interval> /c, among the gap

functions{\;j+1—A; | j =1, 2 ...} only the gap functiom\z — A is not bounded. One
should compare the rate of convergencexgf; — A; for j > 3 and forj =1 wherk
goes to infinity.

(1]
(2]
(3]
(4]
(3]
(6]
(7]
(8]
(9]
(10]

References

T. Adachi: Kahler magnetic fields on a complex projective spaeeoc. Japan Acad. Scr0
(1994), 12-13.

T. Adachi: Kahler magnetic flows for a manifold of constant holomocpbéctional curvature
Tokyo J. Math.18 (1995), 473-483.

T. Adachi: Distribution of length spectrum of circles on a complex hpoéic space Nagoya
Math. J.153 (1999), 119-140.

T. Adachi and S. MaedaGlobal behaviours of circles in a complex hyperbolic spatsukuba
J. Math.21 (1997), 29-42.

T. Adachi and S. Maeda.ength spectrum of circles in a complex projective spa@saka J.
Math. 35 (1998), 553-565.

T. Adachi, S. Maeda and S. Udagaw@ircles in a complex projective spac®saka J. Math.
32 (1995), 709-719.

D. Calegari:Leafwise smoothing lamination#lgebr. Geom. Topoll (2001), 579-585 (elec-
tronic).

S. Maeda and Y. OhnitaHelical geodesic immersions into complex space for@sometriae
Dedicata30 (1989), 93-114.

K. Mashimo and K. Tojo:Circles in Riemannian symmetric spac&®dai Math. J.20 (1999),
1-14.

K. Nomizu and K. Yano:On circles and spheres in Riemannian geomeMath. Ann. 210
(1974), 163-170.

Department of Mathematics

Nagoya Institute of Technology
Nagoya 466-8555, Japan

e-mail: adachi@math.kyy.nitech.ac.jp



