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1. Introduction

A smooth curveγ : R → parametrized by its arclength on a complete Rieman-
nian manifold is called acircle of geodesic curvatureκ if it satisfies the differen-
tial equation∇γ̇∇γ̇ γ̇( ) = −κ2γ̇( ) Hereκ is a non-negative constant and∇γ̇ denotes
the covariant differentiation alongγ with respect to the Riemannian connection on .
When κ = 0, asγ is parametrized by its arclength, this equation is equivalent to the
equation of geodesics. In this paper we study the set of congruence classes of circles
on a non-flat complex space form, which is either a complex projective spaceC or
a complex hyperbolic spaceC . We call two circlesγ1 and γ2 on arecongruent
if there exist an isometryϕ of and a constant0 satisfyingγ1( ) = ϕ ◦ γ2( + 0) for
all . We denote by Cir( ) the set of all congruence classes of circles on .

In the preceding papers [5] and [3], we studied length spectum of circles on non-
flat complex space forms. We call a circleγ closed if it satisfies γ( ) = γ( + ) for
every with some positive constant . The minimum positive with this property
is called thelength of γ and is denoted by length(γ). For an open circleγ, a cir-
cle which is not closed, we set length(γ) = ∞. The length spectrumL : Cir( ) →
R ∪ {∞} of circles is defined byL([γ]) = length(γ), where [γ] denotes the congruence
class containingγ. In these papers [5], [3], we find that the moduli spaces Cir(C )
and Cir(C ) of circles on non-flat complex space forms have a natural lamination
structure: If we restrict the length spectrumL on each leaf, it is continuous. In the
first half of this paper we study the phenomenon of circles at the boundary of each
leaf. For a sequence{σι} of closed curvesσι : 1 = [0 1]/∼ → on we shall
call limσι its limit curve if it exists. We study this lamination from the viewpoint of
limit curves of circles.

The second half of this paper is devoted to add some resluts onlength functions
of circles on non-flat complex space forms. As two circles have the same geodesic
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curvature when they are congruent, we denote by Cirκ( ) the set of all congru-
ence classes of circles of geodesic curvatureκ on and byLκ the restriction ofL
onto Cirκ( ). We also call the image on the real line LSpecκ( ) = Lκ(Cirκ( )) ∩ R

the length spectrum of circles of geodesic curvatureκ. For non-flat complex space
forms it is know that the length spectrum of circles of geodesic curvatureκ is a dis-
crete subset ofR for eachκ, and hence we can define the -th length functionλ (κ).
We investigate its asymptotic behaviour and continuity with respect to geodesic curva-
ture and clarify the relationship between such properties and the lamination structure.
Our study on length functions shows the difference between Kähler and totally real
circles and other circles. The author is grateful to the referee for his valuable advice.

2. Moduli space of circles on a non-flat complex space form

On a real space form, which is either a standard sphere ( ) of curvature ,
a Euclidean spaceR or a real hyperbolic space (− ) of curvature − , it is
clear that two circles are congruent each other if and only ifthey have the same
geodesic curvature. Therefore their moduli spaces are verysimple: Cir( ( )) =
(0 2π/

√
) Cir(R ) = Cir( (− )) = (0 ∞). The length spectrum of a circle of

geodesic curvatureκ on ( ) is {2π/
√
κ2 + }, that on R is {2π/κ}, and that on

(− ) is {2π/
√
κ2 − } if κ >

√
. Thus the length spectrumL is continuous with

respect to the canonical topology induced from the topologyon the real lineR.
For circles on a Kähler manifold we have another invariant.For a circle

γ of positive geodesic curvature on with complex structure , we set τγ =
〈γ̇ ∇γ̇ γ̇〉/‖∇γ̇ γ̇‖. It is constant alongγ and is calledcomplex torsionof γ. We call
a circle γ Kähler if τγ = ±1 and totally real if τγ = 0. Kähler circles and geodesics
are interpreted as motions of charged particles under some magnetic fields (see [1],
[2]). On a non-flat complex space form of complex dimension greater than 1, all
geodesics are congruent each other and two circles of positive geodesic curvature are
congruent if and only if they have the same geodesic curvature and the same absolute
value of complex torsion (see [8]). So set theoretically themoduli spaces Cir(C )
and Cir(C ) are bijective to the set [0∞) × [0 1]/∼, where (0τ ) and (0 µ) are
identified. From the viewpoint of the orthonormal frame{γ̇ ∇γ̇ γ̇/‖∇γ̇ γ̇‖} of a circle
γ of positive geodsesic curvature, on each moduli space we have a topology induced
from the topology onR2, and trivial foliations by complex torsion and by geodesic
curvature. In the following sections we treat another natural lamination on these mod-
uli spaces. (For the definition of a lamination see for example [7].)

3. Lamination of circles on a complex projective space

In the preceding paper [6], we studied circles on a complex projective space
C ( ) of constant holomorphic sectional curvature and of complex dimension
≥ 2, and showed the following:
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Fig. 1. Lamination on Cir
(
C ( )

)

(i) Every Kähler circle of geodesic curvatureκ is a closed curve with length
2π/

√
κ2 + .

(ii) Every totally real circle of geodesic curvatureκ is a closed curve with length
4π/

√
4κ2 + .

(iii) For κ (> 0) andτ (0< τ < 1) we denote by κ τ , κ τ , κ τ ( κ τ < κ τ < κ τ )
the solutions for the cubic equation

(3.1) θ3 − (4κ2 + )θ + 2
√

κτ = 0

A circle of geodesic curvatureκ and of complex torsionτ is closed if and only if
one of (hence all of) the ratiosκ τ/ κ τ , κ τ/ κ τ , κ τ/ κ τ is rational. When it is
closed, its length is (4π/

√
) × L C M{( κ τ − κ τ )−1 ( κ τ − κ τ )−1}.

For κ > 0, we denote by [γκ τ ] the congruence classes of circles onC ( ) with
geodesic curvatureκ and complex torsionτ . Since the cubic equation (3.1) for (κ τ )
and that for (

√
2 /4 3

√
3 κτ (4κ2+ )−3/2) are homothetic, we have a map of normal-

ization

κ : Cirκ
(
C ( )

)
\ {[γκ 1]} −→ Cir√2 /4

(
C ( )

)
\ {[γ√2 /4 1]}

between the sets of congruence classes of circles of prescribed geodesic curvature de-
fined by

κ

(
[γκ τ ]

)
=
[
γ√2 /4 3

√
3 κτ (4κ2+ )−3/2

]

This map gives a lamination on the moduli space Cir(C ( )) of circles onC ( )
whose leaves are

Fµ =





{[γκ 0] | κ > 0} if µ = 0

{[γκ τ ] | 3
√

3 κτ (4κ2 + )−3/2 = µ 0< τ < 1} if 0 < µ < 1

{[γκ 1] | κ ≥ 0} if µ = 1

where [γ0 1] denotes the congruence class of geodesics (see Fig. 1).
In this section we study circles on each leaf of this lamination. Needless to say,

the lengthλ1(κ) = 2π/
√
κ2 + of Kähler circles of geodesic curvatureκ and the



898 T. ADACHI

length λ2(κ) = 4π/
√

4κ2 + of totally real circles satisfy

lim
κ↓0

λ1(κ) =
2π√ lim

κ↓0
λ2(κ) =

4π√ lim
κ→∞

λ1(κ) = lim
κ→∞

λ2(κ) = 0

It is well-known that the length of an arbitrary geodesic onC ( ) is 2π/
√

. This
assures that the point [(0τ )] ∈ Cir(C ( )) = [0 ∞) × [0 1]/∼ corresponding to
geodesics is not a limit point of the leafF0 with respect to the canonical topology on
Cir(C ( )). To see this phenomenon more precisely we investigate their limit curves.
Let ̟ : 2 +1( /4) → C ( ) denote the Hopf fibration of a standard sphere onto a
complex projective space. For the sake of simplicity, our discussion goes through only
with the case = 4 but the results hold for general .

First of all, we study the leafF1 of Kähler circles. Choose a unit tangent vec-
tor ∈ C ( ) at a point ∈ C ( ) and denote byγκ 1 the Kähler circle
of geodesic curvatureκ on C ( ) with initial condition γκ 1(0) = , γ̇κ 1(0) = ,
∇γ̇κ 1γ̇κ 1(0) = −κ . Since it is a closed curve with length 2π/

√
κ2 + , we can de-

fine a curveσκ 1 : 1 → C ( ) by σκ 1( ) = γκ 1(2π /
√
κ2 + ). We are interested

in the feature of the familyS1 = {σκ 1 | κ > 0} of closed curves. When = 4 and
= ̟( ), by identifying the tangent space̟ ( )C (4) with the horizontal subspace

of 2 +1 with respect to the Hopf fibration, we see a horizontal lift ˜γκ 1 on 2 +1(1)
of γκ 1 is of the form

γ̃κ 1( ) = −κ /2
{

cos
1
2

√
κ2 + 4 · + (κ2 + 4)−1/2 sin

1
2

√
κ2 + 4 · (κ + 2 )

}

(see [1] or [6]). This shows that

(3.2) σκ 1( ) = ̟
(

cosπ · + (κ2 + 4)−1/2 sinπ · (κ + 2 )
)

Hence we have

lim
κ↓0

σκ 1( ) = ̟
(
cosπ · + sinπ ·

)

which is a closed geodesic of initial vector , and limκ→∞ σκ 1( ) = . Thus it is
natural to think that geodesics are contained in the leaf of Kähler circles.

Next we study the leafF0 of totally real circles. For a given pair{ } of orth-
normal tangent vectors at ∈ C ( ) with 〈 〉 = 0, we denote byγκ 0 the totally
real circle onC ( ) with initial condition γκ 0(0) = , γ̇κ 0(0) = , ∇γ̇κ 0γ̇κ 0(0) = κ .
Since it is a closed curve with length 4π/

√
4κ2 + , we can define a curveσκ 0 : 1 →

C ( ) by σκ 0( ) = γκ 0(4π /
√

4κ2 + ). The family S0 = {σκ 0 | κ > 0} of closed
curves also has a limit curve. When = 4 and =̟( ), since a horizontal lift ˜γκ 0

on 2 +1(1) of γκ 0 is of the form

γ̃κ 0( ) =
κ

κ2 + 1
(κ + ) +

cos
√
κ2 + 1

κ2 + 1
( − κ ) +

sin
√
κ2 + 1√
κ2 + 1
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(see [6]), we find

lim
κ↓0

σκ 0( ) = ̟
(
cos 2π · + sin 2π ·

)

which is a double covering of the closed geodesic with initial vector , and trivially
find limκ→∞ σκ 0( ) = .

Proposition 1. On a complex projective spaceC ( ) ( ≥ 2) the following
properties hold.
(1) The familyS1 = {σκ 1 | κ > 0} of closed curves derived from Kähler circles has
a limit curve. The curvelimκ↓0 σκ 1 is a geodesic.
(2) The familyS0 = {σκ 0 | κ > 0} of closed curves derived from totally real circles
also has a limit curve. The curvelimκ↓0 σκ 0 is a 2-fold covering of a geodesic.

We now concern ourselves with general leaves. By the property (iii), we find a
leaf Fµ consists of congruence classes of closed circles if and onlyif µ = µ( )
= (9 2− 2)(3 2 + 2)−3/2 by use of a pair ( ) of mutually prime positive integers
with > (see [5]). In order to study limit curves we only treat such leaves. By
putting

τκ( ; ) =
(9 2 − 2)(4κ2 + )3/2

3
√

3 κ(3 2 + 2)3/2

we see the leafFµ( ) is of the form {[γκ τκ( ; )] | ζ( ; ) < κ < η( ; )},
where

ζ( ; ) =
√

9 2 − 2
η( ; ) =

3 −
2

√

2 (3 + )

We study the phenomena atζ( ; ) and η( ; ). Choose a unit tangent vector
at a point ∈ C ( ) and a continuous map

(
ζ( ; ) η( ; )

)
∋ κ 7→ κ ∈

C ( ) such that〈 κ〉 = 0 and 〈 κ〉 = τκ( ; ). We denote byγκ τκ( ; )

a circle onC ( ) with initial condition

γκ τκ( ; )(0) = γ̇κ τκ( ; )(0) = ∇γ̇κ τκ ( ; ) γ̇κ τκ( ; )(0) = κ κ

Since it is a closed curve with length

λκ( ; ) = 2δ( )π

√
3 2 + 2

3(4κ2 + )

where δ( ) = 1 when the product is odd andδ( ) = 2 when is even, we
can define a closed curveσκ τκ( ; ) : 1 → C ( ) by

σκ τκ( ; )( ) = γκ τκ( ; )
(
λκ( ; )

)
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We now show the following.

Theorem 1. Let ( ) be a pair of mutually prime positive integers with> .
(1) The familySµ( ) = {σκ τκ( ; ) | ζ( ; ) < κ < η( ; )} of closed curves on
C ( ) ( ≥ 2) derived from closed circles whose congruency classes lie onthe leaf
Fµ( ) has limit curves.
(2) The curve limκ↓ζ( ; ) σκ τκ( ; ) is a δ( ) -fold covering of a closed curve
σζ( ; ) 1 which is derived from a K̈ahler circle of geodesic curvatureζ( ; ).
(3) The curvelimκ↑η( ; ) σκ τκ( ; ) is a δ( )( + )/2-fold covering of a closed
curveση( ; ) 1 which is derived from a K̈ahler circle of geodesic curvatureη( ; ).

Proof. By direct computation, we have

(3.3)

lim
κ↓ζ( ; )

λκ( ; ) =
2δ( )π

3

√
9 2 − 2

=
2πδ( )√
ζ( ; )2 +

lim
κ↑η( ; )

λκ( ; ) =
2δ( )π

3

√
2 (3 + )

=
πδ( )( + )√
η( ; )2 +

which suggest our result. To see more precisely, we suppose =4 and = ̟( ).
A horizontal lift γ̃κ τκ( ;4) on 2 +1(1) of γκ τκ( ;4) is of the form

γ̃κ τκ( ;4)( ) = κ
κ + κ

κ + κ
κ

where κ, κ, κ ( κ < κ < κ) are the solutions of the cubic equationθ3−(κ2 + 1)×
θ + τκ( ; 4)κ = 0 and





κ =
1

( κ − κ)( κ − κ)
{−(1 + κ κ) + κ + κ κ}

κ =
1

( κ − κ)( κ − κ)
{−(1 + κ κ) + κ + κ κ}

κ =
1

( κ − κ)( κ − κ)
{−(1 + κ κ) + κ + κ κ}

Since limκ↓ζ( ;4) τ ( ; 4) = limκ↑η( ;4) τ ( ; 4) = 1, one can easily see by the
cubic equation that

lim
κ↓ζ( ;4)

κ = − 3 +√
9 2 − 2

lim
κ↓ζ( ;4)

κ = ζ( ; 4) lim
κ↓ζ( ;4)

κ =
3 −√
9 2 − 2

lim
κ↑η( ;4)

κ = −
√

3 +
2

lim
κ↑η( ;4)

κ =

√
2

3 +
lim

κ↑η( ;4)
κ = η( ; 4)

which are nothing but the solutions for the cubic equation corresponding to (κ τ ) =(
ζ( ; 4) 1

)
and (κ τ ) =

(
η( ; 4) 1

)
. As limκ↓ζ( ;4) κ = limκ↑η( ;4) κ = − ,
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these guarantee that





lim
κ↓ζ( ;4)

κ =
1

6
{(3 − ) +

√
9 2 − 2 }

lim
κ↓ζ( ;4)

κ = 0

lim
κ↓ζ( ;4)

κ =
1

6
{(3 + ) −

√
9 2 − 2 }





lim
κ↑η( ;4)

κ =
1

3( + )
{2 +

√
2 (3 + ) }

lim
κ↑η( ;4)

κ =
1

3( + )
{(3 + ) −

√
2 (3 + ) }

lim
κ↑η( ;4)

κ = 0

We therefore obtain by use of (3.3) that the familySµ( ) has limit curves:

lim
κ↓ζ( ;4)

σκ τκ( ;4)( )

= ̟

(
cosδ( ) π · +

√
9 2 − 2

6
sinδ( ) π ·

(
ζ( ; 4) + 2

))

lim
κ↑η( ;4)

σκ τκ( ;4)( )

= ̟

(
cos

1
2

( + )δ( )π ·

+

√
2 (3 + )
3( + )

sin
1
2

( + )δ( )π ·
(
η( ; 4) + 2

))

Thus in comparing these with (3.2) we get our conclusion.

Our theorem shows that the lamination{Fµ} of the moduli space Cir(C ( )) is
not a foliation. But we can easily see that{Fµ}µ∈[0 1) is a foliation of the moduli
space Cir(C ( )) \ {[γκ 1] | κ ≥ 0} of non-Kähler circles.

4. Lamination of bounded circles on a complex hyperbolic space

In this section we study corresponding results on a lamination on the moduli
space of circles on a complex hyperbolic spaceC (− ) of constant holomorphic sec-
tional curvature− whose complex dimension is greater than 1. We define a non-
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negative functionν : [0 ∞) → R by

ν(κ) =





0 if 0 ≤ κ <

√

2
(4κ2 − )3/2

3
√

3 κ
if

√

2
≤ κ ≤ √

1 if κ > 1

We studied in [4] circles on a complex hyperbolic space and showed the following:
(i) A circle of geodesic curvatureκ is bounded as a image inC (− ) if and only
if either κ >

√
or its complex torsionτ is smaller thanν(κ).

(ii) Every Kähler circle of geodesic curvatureκ >
√

is a closed curve with length
2π/

√
κ2 − .

(iii) Every totally real circle of geodesic curvatureκ >
√
/2 is a closed curve with

length 4π/
√

4κ2 − .
(iv) For κ (>

√
/2) and τ (0 < τ < ν(κ)) we denote by κ τ , κ τ , κ τ ( κ τ <

κ τ < κ τ ) the solutions for the cubic equation

(4.1) θ3 − (4κ2 − )θ + 2
√

κτ = 0

A circle of geodesic curvatureκ and of complex torsionτ is closed if and only if
one of (hence all of) the ratiosκ τ/ κ τ , κ τ/ κ τ , κ τ/ κ τ is rational. When it is
closed, its length is (4π/

√
) × L C M{( κ τ − κ τ )−1 ( κ τ − κ τ )−1}.

We denote by [γκ τ ] the congruence class of circles onC (− ) with geodesic
curvatureκ and complex torsionτ . We also denote by BCirκ(C (− )) the set of all
congruence classes of bounded circles of geodesic curvature κ on C (− ). Since the
cubic equation (4.1) for (κ τ ) and that for (

√
3
√

3 κτ (4κ2− )−3/2) are homothetic,
we have a map of normalization

κ : BCirκ
(
C (− )

)
\ {[γκ 1]} −→ Cir√

(
C (− )

)
\ {[γ√ 1]}

between the sets of congruence classes of bounded circles ofprescribed geodesic cur-
vatures defined by

κ([γκ τ ]) =
[
γ√ 3

√
3 κτ (4κ2− )−3/2

]

This map gives a lamination on the moduli space

BCir
(
C (− )

)
=

⋃

κ>
√
/2

BCirκ
(
C (− )

)

≃
{

(κ τ )
∣∣∣
√

2
< κ ≤

√
0 ≤ τ < ν(κ)

}
∪
(√

∞
)
× [0 1]
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Fig. 2. Lamination on BCir
(
C (− )

)

of bounded circles onC (− ) whose leaves are

Fµ =





{
[γκ 0] | κ >

√

2

}
if µ = 0

{[γκ τ ] | 3
√

3 κτ (4κ2 − )−3/2 = µ 0< τ < 1} if 0 < µ < 1

{[γκ 1] | κ >
√ } if µ = 1

It is known that a leafFµ consists of congruence classes of closed circles if and
only if µ = µ( ) = (9 2 − 2)(3 2 + 2)−3/2 by use of a pair ( ) of mutually
prime positive integers with > (see [3]). By putting

τκ( ;− ) =
(9 2 − 2)(4κ2 − )3/2

3
√

3 κ(3 2 + 2)3/2

we see the leafFµ( ) is of the form {[γκ τκ( ;− )] | √
/2 < κ < η( ;− )},

where η( ;− ) = (3 + )
√

/8 (3 − ). In order to see the laminationF on
BCir(C (− )) is not a foliation, we study limit curves of a family of closed curves
corresponding toFµ( ).

Choose a unit tangent vector at a point∈ C (− ) and denote byγκ 1

for κ >
√

the Kähler circle of geodesic curvatureκ on C (− ) with initial con-
dition γκ 1(0) = , γ̇κ 1(0) = , ∇γ̇κ 1γ̇κ 1(0) = −κ . Since it is a closed curve
with length 2π/

√
κ2 − , we can define a curveσκ 1 : 1 → C (− ) by σκ 1( ) =

γκ 1(2π /
√
κ2 − ).

On the other hand, for given a continuous map
(√

/2 η( ;− )
)
∋ κ 7→ κ ∈

C (− ) with 〈 κ〉 = 0 and 〈 κ〉 = τκ( ;− ) we denote byγκ τκ( ;− )

a circle onC (− ) with initial condition

γκ τκ( ;− )(0) = γ̇κ τκ( ;− )(0) = ∇γ̇κ τκ( ;− ) γ̇κ τκ( ;− )(0) = κ κ

Since it is also a closed curve with length

λκ( ;− ) = 2δ( )π

√
3 2 + 2

3(4κ2 − )

where δ( ) = 1 when the product is odd andδ( ) = 2 when is even, we
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can define a closed curveσκ τκ( ;− ) : 1 → C (− ) by

σκ τκ( ;− )( ) = γκ τκ( ;− )(λκ( ;− ) )

We now show the following.

Theorem 2. Let ( ) be a pair of mutually prime positive integers with> .
(1) A family Sµ( ) = {σκ τκ( ;− ) | √ /2 < κ < η( ; )} of closed curves on
C (− ) ( ≥ 2) derived from closed circles whose congruence classes lie onthe
leaf Fµ( ) has a limit curve.
(2) The curve limκ↑η( ;− ) σκ τκ( ;− ) is a δ( )( − )/2-fold covering of a
closed curveση( ;− ) 1 which is derived from a K̈ahler circle of geodesic curvature
η( ;− ).

Proof. First we see

(4.2) lim
κ↑η( ; )

λκ( ; ) =
2δ( )π

3

√
2 (3 − )

=
πδ( )( − )√
η( ; )2 +

which suggests our result. To see more precisely, we make useof the standard fibra-
tion ̟ : 2 +1

1 → C (−4) of an anti de-Sitter space

2 +1
1 = {( 0 . . . ∈ C +1 | −| 0|2 + | 1|2 + · · · + | |2 = −1}

If = ̟( ), horizontal lifts γ̃κ 1 and γ̃κ τκ( ;−4) on 2 +1
1 of circles γκ 1 and

γκ τκ( ;−4) on C (−4) are of the forms

γ̃κ 1( ) = κ /2
{

cos
1
2

√
κ2 − 4 + (κ2 − 4)−1/2 sin

1
2

√
κ2 − 4 (κ + 2 )

}

γ̃κ τκ( ;−4)( ) = κ
κ + κ

κ + κ
κ

where κ, κ, κ ( κ < κ < κ) are the solutions of the cubic equationθ3 −
(κ2 − 1)θ − τκ( ;−4)κ = 0 and





κ =
1

( κ − κ)( κ − κ)
{(1− κ κ) + κ + κ κ}

κ =
1

( κ − κ)( κ − κ)
{(1− κ κ) + κ + κ κ}

κ =
1

( κ − κ)( κ − κ)
{(1− κ κ) + κ + κ κ}
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Since we have

lim
κ↑η( ;−4)

τκ( ;−4) = 1 lim
κ↑η( ;−4)

κ = −

lim
κ↑η( ;−4)

κ = −
√

3 −
2

lim
κ↑η( ;−4)

κ = −
√

2
3 −

lim
κ↑η( ;−4)

κ = η( ;−4)

we find




lim
κ↑η( ;−4)

κ =
1

3( − )

{
−2 +

√
2 (3 − )

}

lim
κ↑η( ;−4)

κ =
1

3( − )

{
(3 − ) −

√
2 (3 − )

}

lim
κ↑η( ;−4)

κ = 0

Together with (4.2) these guarantee that

lim
κ↑η( ;−4)

σκ τκ( ;− )

= ̟
(

cos
1
2

( − )δ( )π ·

+

√
2 (3 − )
3( − )

sin
1
2

( − )δ( )π ·
(
η( ; 4) + 2

))

Since we have

σκ 1( ) = ̟
(
cosπ · + (κ2 − 4)−1/2 sinπ · (κ + 2 )

)

we get our conclusion.

Our theorem shows that the laminationF is not a foliation on BCir(C (− )).
But we can easily see that{Fµ}µ∈[0 1) is a foliation on the moduli space of bounded
non-Kähler circles.

5. Length functions on a complex projective space

We devote the rest of this paper to study length functions forcircles on a non-
flat complex space form. For each lengthλ ∈ LSpecκ( ) of circles of geodesic cur-
vature κ we call the cardinality (λ) of the setL−1

κ (λ) the multiplicity of λ. When
(λ) = 1 we call λ simple. In case the length spectrum LSpecκ( ) is a discrete set

and each length is of finite multiplicity, we denote byλ (κ) the -th length of circles
of geodesic curvatureκ. That is,

LSpecκ( ) = {λ1(κ) ≤ λ2(κ) ≤ λ3(κ) ≤ · · · ≤ λ (κ) ≤ λ +1(κ) ≤ · · · }
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where each length is repeated according to its multiplicity. The first lengthλ1(κ)
shows the length of shortest closed circles of geodesic curvatureκ. Trivially for a real
space form the unique length functionλ(κ) = λ1(κ) is continuous, monotone decreas-
ing and satisfies limκ→∞ κλ(κ) = 2π. Also it is trivial that





limκ↓0 λ(κ) =
2π√ for ( )

limκ↓0 κλ(κ) = 2π for R

limκ↓√ (κ−√
)1/2λ(κ) =

√
2π −1/4 for (− )

We now study length functions of circles on a complex projective space. In view
of Section 3 the length spectrum of circles onC ( ) ( ≥ 2) is of the following form
(see [5]):

LSpecκ
(
C ( )

)
=

{
2π√
κ2 +

4π√
4κ2 +

}

⋃{
λκ( ; )

∣∣∣ and are mutually prime positive
integers which satisfy > ακ;

}

whereακ; (≥ 1) denotes the unique positive number which satisfies

(5.1) 3
√

3 κ(4κ2 + )−3/2 = (9α2
κ; − 1)(3α2

κ ; + 1)−3/2

Hence LSpecκ(C ( )) is a discrete set and each length is of finite multiplicity. Also
one can easily see that the first length isλ1(κ) = 2π/

√
κ2 + , which is the length of

Kähler circles, and the second length isλ2(κ) = 4π/
√

4κ2 + , which is the length of
totally real circles. They are simple and satisfy the following properties:
(1) They are smooth and monotone decreasing with respect toκ, and satisfy

lim
κ↓0

λ1(κ) =
2π√ lim

κ↓0
λ2(κ) =

4π√

lim
κ→∞

κλ1(κ) = lim
κ→∞

κλ2(κ) = 2π

in particular, limκ→∞ λ1(κ) = limκ→∞ λ2(κ) = 0
(2) The gap between these lengths is monotone decreasing with respect toκ and sat-
isfies

lim
κ→∞

κ3
(
λ2(κ) − λ1(κ)

)
=

3π
4

lim
κ↓0

(
λ2(κ) − λ1(κ)

)
=

2π√

We here study corresponding properties forλ (κ) with ≥ 3.

Theorem 3. For ≥ 3 the -th length function of circles onC ( ) ( ≥ 2)
satisfies the following properties:
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(1) This function is not continuous. The points where this function is not right contin-
uous are contained in the set

{ζ( ; ) | ( ) are mutually prime positive integers with> }

and the points where this function is not left continuous arecontained in the set

{η( ; ) | ( ) are mutually prime positive integers with> }

(2) On each interval whereλ is continuous, it is monotone decreasing and satisfies
limκ→∞ λ (κ) = limκ↓0 λ (κ) = ∞. More precisely, it satisfies

lim
κ→∞

λ (κ)
κ

=
8π
3

lim
κ↓0

κλ (κ) =
2π
3

(3) The gapλ +1(κ) − λ (κ) is monotone decreasing on each interval where this gap
function is continuous, and is uniformly bounded;

λ +1(κ) − λ (κ) <
4π√

4κ2 +
<

4π√

for everyκ (> 0). It satisfies

lim
κ→∞

κ
(
λ +1(κ) − λ (κ)

)
= 2π lim

κ↓0

(
λ +1(κ) − λ (κ)

)
=

4π√

In order to understand the structure of LSpecκ(C ( )), the properties ofακ; are
important.

Lemma 1. (1) α√
2 /4; = 1 and ακ; > 1 for κ 6=

√
2 /4.

(2) The functionκ 7→ ακ; is monotone decreasing on the interval(0
√

2 /4] and is
monotone increasing on the interval[

√
2 /4 ∞).

(3) limκ→∞ κ−2ακ = 8/(3 ) and limκ↓0ακκ =
√
/3

Proof. (2) Differentiating both sides of (5.1) byκ, we have

ακ;

κ
=

√
3 (8κ2 − )(3α2

κ; + 1)5/2

9ακ; (4κ2 + )5/2(α2
κ; − 1)

Sinceακ; > 1 whenκ 6=
√

2 /4, we get the assertion.
(3) By the assertion of (2) and (5.1) we see limκ→∞ ακ; = limκ↓0ακ; = ∞. The last
assertion follows the following computation:

lim
κ→∞

ακ;

κ2
= lim
κ→∞

ακ;

κ2
× (4κ2 + )3/2(9ακ; − 1)

3
√

3 κ(3α2
κ; + 1)3/2
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= lim
κ→∞

(4 + κ−2)3/2(9− α−1
κ; )

3
√

3 (3 +α−2
κ; )3/2

=
8
3

lim
κ↓0

ακ; κ = lim
κ↓0

(4κ2 + )3/2(9− α−1
κ; )

3
√

3 (3 +α−2
κ; )3/2

=

√

3

In order to understand Theorem 3, the following result on thethird lengthλ3(κ)
will be a good guide to the readers.

Proposition 2. (1) The third length is simple for arbitraryκ (> 0).
(2) Denoting by κ(≥ 3) the smallest odd integer which is greater thanακ; we have

λ3(κ) = λκ( κ 1; ) = 2π

√
3 2

κ + 1
3(4κ2 + )

It satisfies

lim
κ→∞

κ−1λ3(κ) =
8π
3

lim
κ↓0

κλ3(κ) =
2π
3

(3) The functionλ3 : (0 ∞) → R is right continuous except atζ(2 + 1 1; ), = 1,
2, 3 . . . , and is left continuous except atη(2 + 1 1; ), = 1, 2, 3. . . .
(4) The gapλ3(κ) − λ2(κ) is monotone decreasing on each interval whereλ3 is con-
tinuous but is not uniformly bounded and satisfies

lim
κ→∞

κ−1
(
λ3(κ) − λ2(κ)

)
=

8π
3

lim
κ↓0

κ
(
λ3(κ) − λ2(κ)

)
=

2π
3

Proof. First we note a property ofλκ( ; ). Let ( 1 1), ( 2 2) be two pairs
of mutually prime positive integers with > . If either both of the products 1 1

and 2 2 are odd or both of them are even, and if they satisfy1 ≤ 2 and 1 ≤ 2,
thenλκ( 1 1; ) ≤ λκ( 2 2; ). Under this hypothesis the equality holds if and only
if ( 1 1) = ( 2 2). On the other hand, if 1 1 is odd, 2 2 is even, 1 ≤ 2 and

1 ≤ 2, thenλκ( 1 1; ) < λκ( 2 2; ).
What we have to do is to find out the smallestλκ( ; ). When κ − 1 ≤ ακ; ,

as every pair ( ) of mutually prime positive integers with> ακ; , ≥ 2 satisfies
− κ > ( − 1)ακ; − 1 > 0, it is clear thatλκ( ; ) > λκ( κ 1; ) if ( ) 6=

( κ 1). Whenακ; < κ − 1, as every pair ( ) of mutually prime positive integers
with > ακ; , ≥ 2 satisfies − κ ≥ ( −1)ακ; −2 ≥ 0, we have only to compare
λκ( κ 1; ) andλκ( κ − 1 1; ). Since

4{3( κ − 1)2 + 1} − {3 2
κ + 1} = 3(3 κ − 5)( κ − 1)> 0

we find also in this case thatλκ( ; ) > λκ( κ 1; ) if ( ) 6= ( κ 1). Thus we
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seeλ3(κ) = λκ( κ 1; ) and is simple for arbitraryκ. By this form we findλ3(κ) is
not continuous at points whereακ; is a odd integer which is greater than 1. For given
α (≥ 1) we can easily check that positive solutions of the equation

(9α2 − 1)2(4κ2 + )3 − 27 2(3α2 + 1)3κ2 = 0

are κ =
√

/(9α2 − 1) and κ = (3α − 1)
√

/{8(3α + 1)}. Hence these points are
ζ(2 + 1 1; ) andη(2 + 1 1; ) with = 1, 2 . . . . As ακ; < κ ≤ ακ; + 2, our
assertion follows from Lemma 1.

The congruence classes corresponding to the third length ofcircles onC ( ) lie
on the leafFµ(2 +1 1) when ζ(2 + 1 1; )< κ ≤ ζ(2 − 1 1; ) or η(2 − 1 1; ) ≤
κ < η(2 + 1 1; ). By our study in Section 3 each family{σκ τκ(2 +1 1; ) | ζ(2 + 1
1; ) < κ ≤ ζ(2 − 1 1; )} of closed curves derived from circles corresponding to
the third length has a limit curve limκ↓ζ(2 +1 1; )σκ τκ(2 +1 1; ), which is a (2 +1)-fold
covering of a closed curve derived from a Kähler circle. When κ goes to 0, we find
by Lemma 1 that goes to infinity. One can easily guess that limκ↓0 λ3(κ) = ∞.

REMARK 1. We should note that among the gap functions{λ +1 − λ | =
1 2 . . .} only the gap functionλ3 − λ2 is not bounded. One should compare the rates
of convergence ofλ +1−λ for ≥ 3 and for = 1 whenκ goes to infinity and when
it goes to 0. Also one should note the rates of convergence ofλ , = 1, 2 and the
rates of divergence ofλ , > 3.

The following lemma gives us information on asymptotic behaviours of length
functions.

Lemma 2. Let (≥ 4) be a positive integer.
(1) If ακ; ≥ 2( − 3) then λ (κ) = λκ( κ + 2( − 3) 1; ).
(2) If 2 − 7 ≤ ακ; < 2( − 3), then λ (κ) = λκ( κ − 1 1; ) =λκ(2( − 3) 1; ).
(3) If 2( − 4) ≤ ακ; < 2 − 7 and ≥ 5, then

λ (κ) = λκ( κ + 2( − 3) 1; )

= λκ(4 − 13 1; )

(4) The -th length is simple on the intervals whereακ; ≥ 2 − 8, which is
(0 ζ(2 − 8 1; )] and [η(2 − 8 1; ) ∞).

Proof. We studyλκ( ; ) along the same lines as in the proof of Proposi-
tion 2.

In the first place we consider the caseκ − 1 ≤ ακ; . Sinceακ; ≥ 2( − 4),
we see κ ≥ 2 − 7. We shall show that for a pair ( ) of mutually prime positive
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integers with > ακ; and ( ) 6= ( κ + 2 1) = 0 1 . . . − 3 the length
λκ( ; ) is greater thanλκ( κ + 2( −3) 1; ). We first compareλκ( κ + 1 1; ) and
λκ( κ + 2( − 3) 1; ). Since

4{3( κ + 1)2 + 1} − 3{ κ + 2( − 3)}2 − 1

= 3{3 2
κ − 4( − 5) κ + 5− 4( − 3)2} ≥ 24( − 3)> 0

we find λκ( κ + 1 1; ) > λκ( κ + 2( − 3) 1; ). Next we considerλκ( ; ) with
≥ 2. Note that > ακ ≥ ( κ − 1).

(i) When is even, as we have

− ( κ + 1) ≥ ( − 1)( κ − 1)− 1 ≥ κ − 2> 0

we obtainλκ( ; ) > λκ( κ + 1 1; )> λκ( κ + 2( − 3) 1; ).
(ii) When is odd and ≥ 5, as we have

− { κ + 2( − 3)} ≥ ( − 1)( κ − 1)− 2( − 3) ≥ 2( − 5) ≥ 0

we obtainλκ( ; ) > λκ( κ + 2( − 3) 1; ).
(iii) When is odd and = 4, as we have

− ( κ + 2) ≥ ( − 1) κ − 2 ≥ 2 · 3− 2> 0

we obtainλκ( ; ) > λκ( κ + 2 1; ).
Thus we get the assertion of this case.

In the second place we consider the caseακ; < κ−1. Sinceακ; ≥ 2( −4), we
see κ ≥ 2 − 5. First we compareλκ( κ − 1 1; ) andλκ( κ + 2( − 3) 1; ). Since
the quantity

4{3( κ − 1)2 + 1} − 3{ κ + 2( − 3)}2 − 1

= 3{3 2
κ − 4( − 1) κ + 5− 4( − 3)2}

is equal to 24(3− ) < 0 when κ = 2 − 5, and is not smaller than 24(− 2) > 0
when κ ≥ 2 − 3, we have

{
λκ( κ − 1 1; )< λκ

(
κ + 2( − 3) 1;

)
if κ = 2 − 5,

λκ( κ − 1 1; )> λκ
(

κ + 2( − 3) 1;
)

if κ ≥ 2 − 3.

Next we considerλκ( ; ) with ≥ 2. Note that > ακ ≥ ( κ − 2).
(i) When is even, or when is odd and is even, as we have

− ( κ − 1) ≥ ( − 1)( κ − 2)> 0

we obtainλκ( ; ) > λκ( κ − 1 1; ).
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(ii) When and are odd, as we have

− { κ + 2( − 3)} ≥ ( − 1)( κ − 2)− 2( − 3) ≥ 2( − 2)> 0

we obtainλκ( ; ) > λκ( κ + 2( − 3) 1; ).
Summarizing up these two cases under the conditionακ; ≥ 2( − 4), we get the

following. If either ακ ≥ κ − 1, or ακ < κ − 1 and κ ≥ 2 − 3 holds, which is
equivalent to the condition thatακ; ≥ 2( − 3) or 2( − 4) ≤ ακ; < 2 − 7, then

λκ( κ 1; )< λκ( κ + 2 1; )< · · · < λκ
(

κ + 2( − 3) 1;
)

are smaller than other lengthsλκ( ; ). This leads us to the assertion (1) and (3). If
ακ; < κ − 1 and κ = 2 − 5, which is equivalent to the condition that 2− 7 ≤
ακ < 2( − 3), then

λκ( κ 1; )< λκ( κ + 2 1; )< · · · < λκ
(

κ + 2( − 4) 1;
)
< λκ( κ − 1 1; )

are smaller than other lengthsλκ( ; ). Thus we get the rest of our conclusion.

We are now in the position to prove Theorem 3. By Lemma 2, we have

λ (κ) = λκ
(

κ + 2( − 3) 1;
)

= 2π

√
3( κ + 2 − 6)2 + 1

3(4κ2 + )

if ακ; ≥ 2( − 3). Hence the second assertion is a direct consequence of Lemma 1.
The first assertion follows from the property that functions

(
ζ( ; ) η( ; )

)
∋

κ 7→ λκ( ; ) ∈ R are continuous and the first paragraph of the proof of Propo-
sition 2, which guarantees that the propertyλ( 1 1; ) < λ( 2 2; ) depends only
on ( ) and does not depend onκ. The functionλ is continuous at pointκ if
and only if (κ 1) is not a boundary point of leaves containing congruence classes of
circles corresponding this length. By the form ofλ (κ), if we restrict ourselves on
the intervals (0ζ(2 − 8 1; )] and η(2 − 8 1; ) ∞), it is right continuous except
at ζ(2 − 6 1; ) andζ(2 + 1 1; ), = − 4, − 3 . . . , and is left continuous
except atη(2 − 6 1; ) andη(2 + 1 1; ), = − 4, − 3 . . . .

The assertion on asymptotic behaviours of gaps between two lengths follows di-
rectly from Lemma 2. We only need to give a unifom estimate of gaps. We first esti-
mateλκ( ; ) with ≥ 2 by λκ( 1; ). When is odd, we choose = ( ) so
that it is the maximum positive odd integer which satisfies 32 + 1 ≤ 3 2 + 2. Clearly
we have ≥ > ακ; > ακ; , and 3 2 + 1 ≤ 3 2 + 2 < 3( + 2)2 + 1 because + 2 is
odd. We hence obtainλκ( 1; ) ≤ λκ( ; ) < λκ( + 2 1; ). When is even and
≥ 2, we choose = ( ) so that it is the maximum positive odd integerwhich
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satisfies 32 + 1 ≤ 4(3 2 + 2). Then we have

{
3 2 + 1 ≤ 4(3 2 + 2) < 3( + 2)2 + 1

≥ 2 − 1> 2ακ; − 1 ≥ 4ακ; − 1> ακ;

Thus we get also in this case thatλκ( 1; ) ≤ λκ( ; ) < λκ( + 2 1; ). Since the
function λ (κ) is of the formλκ( κ κ ; ) with some pair ( κ κ ) of mutually
prime positive integers, by choosing the correspondingκ in the above argument we
have

λ +1(κ) − λ (κ) ≤ λκ( κ + 2 1; )− λκ( κ 1; )

=
2π√

3(4κ2 + )
×
(√

3( κ + 2)2 + 1−
√

3 2
κ + 1

)
<

4π√
4κ2 +

as the function (θ) =
√

3(θ + 2)2 + 1−
√

3θ2 + 1 is monotone increasing and satisfies
(θ) < 2

√
3. This completes the proof of Theorem 3.

REMARK 2. The fourth length function is of the following form:

λ4(κ) =





λκ(2 1; ) = 4π

√
13

3(4κ2 + )
if 1 ≤ ακ < 2

λκ( κ + 2 1; ) = 2π

√
3( κ + 2)2 + 1

3(4κ2 + )
if ακ ≥ 2

It is right continuous except atζ(2 1; ) andζ(2 + 1 1; ), = 1, 2 . . . , and is left
continuous except atη(2 1; ) andη(2 + 1 1; ), = 1, 2 . . . .

Checking each length functions carefully we can conclude the following:

Proposition 3. (1) The lengthsλ (κ) ( ≤ 15) are simple everywhere.
(2) The lengthλ16(κ) is simple except on the intervals where9/7 ≤ ακ; < 5/4. On
these two intervals its multiplicity is2; λ16(κ) = λ17(κ).
(3) The lengthλ17(κ) is simple except on the interval where1 ≤ ακ; < 5/4. On this
interval its multiplicity is2; λ17(κ) = λ18(κ) when1 ≤ ακ; < 9/7, and λ17(κ) = λ16(κ)
when9/7 ≤ ακ; < 5/4.

6. Length functions on a complex hyperbolic space

In this final section we mention briefly corresponding results on length functions
for circles on a complex hyperbolic space. In view of Section4 the length spectrum of
circles of geodesic curvatureκ on C (− ) ( ≥ 2) is of the following form (see [3]):
When κ ≤ √

/2, every circle is an unbounded curve and LSpecκ(C (− )) = ∅,
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when
√

/2< κ ≤ √
,

LSpecκ
(
C (− )

)
=
{ 4π√

4κ2 −
}⋃



λκ( ;− )

∣∣∣∣
and are mutually

prime positive integers
which satisfy >





and whenκ >
√

,

LSpecκ
(
C (− )

)
=

{
4π√

4κ2 −
2π√
κ2 −

}

⋃{
λκ( ;− )

∣∣∣ and are mutually prime positive
integers which satisfy > ακ;−

}

Here, forκ ≥ √
, the constantακ;− denotes the unique positive number which satis-

fies

(6.1) 3
√

3 κ(4κ2 − )−3/2 = (9α2
κ − − 1)(3α2

κ − + 1)−3/2

The structures of the length spectrum LSpecκ(C (− )) of circles of prescribed
geodesic curvatures are essentially same each other if

√
/2 < κ ≤ √

. We are hence
interested in the behaviour whenκ goes to infinity. From now on we consider only
for κ >

√
/2. The first length isλ1(κ) = 4π/

√
4κ2 − , which is the length of totally

real circles. Hence it is continuous and monotone decreasing, and satisfies

lim
κ→∞

κλ1(κ) = 2π lim
κ↓√ /2

(
κ−

√

2

)1/2
λ1(κ) = 2π −1/4

in particular, limκ→∞ λ1(κ) = 0.
The structure of length spectrum of circles onC (− ) is a bit more complicated

than that of circles on a complex projective space because K¨ahler circles of geodesic
curvature

√
are unbounded. It follows from [3] that the second length is

λ2(κ) =





λκ(3 1;− ) = 4π

√
7

3(4κ2 − )
if

√

2
< κ <

5
√

4
2π√
κ2 −

if κ ≥ 5
√

4

which is the length of Kähler circles whenκ ≥ 5
√

/4, and is simple everywhere.

Proposition 4. (1) The second length functionλ2 : (
√
/2 ∞) → R on

C (− ) ( ≥ 2) is also continuous and monotone decreasing. It also satisfies

lim
κ→∞

κλ2(κ) = 2π lim
κ↓√ /2

(
κ−

√

2

)1/2
λ2(κ) = 2π −1/4

√
7
3
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in particular, limκ→∞ λ2(κ) = 0.
(2) The gap functionλ2 − λ1 is monotone decreasing and satisfies

lim
κ→∞

κ3
(
λ2(κ) − λ1(κ)

)
=

3π
4

lim
κ↓√ /2

(
λ2(κ) − λ1(κ)

)
= ∞

When
√
/2 < κ < 5

√
/4 the congruence classes corresponding to the second

length of circles lie on the leafFµ(2 1). By the study in Section 4, the limit curve
limκ↑5

√
/4 σκ τκ(2 1;− ) is the closed curve derived from a Kähler circle of geodesic

curvature 5
√
/4. This suggests the second length function is continuous also at the

point κ = 5
√

/4.
Let κ denote the smallest odd integer which is greater thanακ;− . By a similar

argument as in the proof of Proposition 2, we find the third length is of the following
form:

λ3(κ) =





λκ(2 1;− ) = 4π

√
13

3(4κ2 − )
if

√

2
< κ <

7
√

10
20

2π√
κ2 −

if
7
√

10
20

≤ κ <
5
√

4

λκ( κ 1;− ) = 2π

√
3 2

κ + 1
3(4κ2 − )

if κ ≥ 5
√

4

This length is also simple everywhere. Since we have
(i) α√

;− = 1 andακ;− > 1 for κ >
√

,
(ii) the function κ 7→ ακ;− is monotone increasing forκ ≥ √

and satisfies
limκ→∞ κ−2ακ;− = 8/(3 ),
(iii) for an arbitraryα (≥ 1) the unique positive solution for the cubic equation

3
√

3 κ(3α2 + 1)3/2 = (9α2 − 1)(4κ2 − )3/2

is κ = (3α + 1)
√

/{8(3α− 1)},
we obtain the following.

Proposition 5. (1) The third length functionλ3 : (
√
/2 ∞) → R of circles on

C (− ) ( ≥ 2) is right continuous at each point, and is left continuous except at
η(2 + 1 1;− ), = 1, 2, 3 . . . .
(2) On each interval whereλ3 is continuous, it is monotone decreasing.
(3) The gap functionλ3 − λ2 satisfies

lim
κ→∞

κ−1
(
λ3(κ) − λ2(κ)

)
=

8π
3

lim
κ↓√ /2

(
λ3(κ) − λ2(κ)

)
= ∞

Along the same lines as in Section 5, we obtain
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Lemma 3. Let (≥ 4) be a positive integer.
(1) If ακ;− ≥ 2( − 3), thenλ (κ) = λκ( κ + 2( − 3) 1;− ).
(2) If 2 − 7 ≤ ακ;− < 2( − 3), then

λ (κ) = λκ( κ − 1 1;− ) = λκ(2( − 3) 1;− )

(3) If 2( − 4) ≤ ακ;− < 2 − 7, then

λ (κ) = λκ( κ + 2( − 3) 1;− ) = λκ(4 − 13 1;− )

(4) The -th length is simple on the interval whereακ;− ≥ 2 − 8, which is
[η(2 − 8 1;− ) ∞).

For a pair ( ) of positive integers we put

ξ( ;− ) =

√
{δ( )2(3 2 + 2) − 3}
δ( )2(3 2 + 2) − 12

When κ = ξ( ;− ), the lengths of a Kähler circle of geodesic curvatureκ and
a circle of complex torsionτκ( ;− ) and of geodesic curvatureκ are the same.
By Lemma 3 we get the following result.

Theorem 4. For ≥ 3 the -th length function of circles onC (− ) (≥ 2)
satisfies the following properties:
(1) This function is right continuous.
(2) This function is not left continuous. Such points are contained in the set

{
η( ;− ) ξ( ;− )

∣∣∣∣
and are mutually prime

positive integers with >

}

(3) On each interval whereλ is continuous, it is monotone decreasing and satisfies
limκ→∞ λ (κ) = ∞. More precisely it satisfies

lim
κ→∞

λ (κ)
κ

=
8π
3

(4) The gapλ +1(κ)−λ (κ) is smaller than4π/
√

4κ2 − for everyκ (>
√
/2). This

gap function is monotone decreasing on each interval where it is continuous andκ ≥
5
√

/4. It satisfies

lim
κ→∞

κ
(
λ +1(κ) − λ (κ)

)
= 2π lim

κ↓√ /2

(
λ +1(κ) − λ (κ)

)
= ∞

REMARK 3. For every ≥ 1 the gap satisfies

0 ≤ lim
κ↓√ /2

(2κ−
√

)1/2
(
λ +1(κ) − λ (κ)

)
< 4π −1/4
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where the limit exists and the equality holds if and only ifλ +1 = λ on the interval√
/2< κ ≤ √

.

REMARK 4. When we restrict ourselves on the intervalκ ≥ √
, among the gap

functions{λ +1−λ | = 1 2 . . .} only the gap functionλ3−λ2 is not bounded. One
should compare the rate of convergence ofλ +1 − λ for ≥ 3 and for = 1 whenκ
goes to infinity.
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