ON MILNOR MOVES AND ALEXANDER POLYNOMIALS OF KNOTS

Tsuneo ISHIKAWA, Kazuaki KOBAYASHI and Tetsuo SHiBUYA

(Received April 11, 2002)

1. Introduction

Recently, several local moves of knots and links were defined and studied actively in many papers, for example [2], [5], [7], and [8].

In this paper, we define a new local move on knot diagram called a Milnor move of order n or simply an M_{n}-move. Namely, let k be an oriented knot in an oriented 3-space R^{3} and let B^{3} be a 3-ball in R^{3} such that $k \cap B^{3}$ is the tangle illustrated in Fig. 1. The transformation from Fig. 1(a) to 1 (b) is called an M_{n}^{+}-move and that from Fig. 1(b) to $1(a)$ is called an M_{n}^{-}-move. Furthermore an M_{n}-move means either an M_{n}^{+}-move or an M_{n}^{-}-move. For two knots k, k^{\prime} in R^{3}, k is said to be M_{n}-equivalent to k^{\prime} or k and k^{\prime} are said to be M_{n}-equivalent if k can be transformed into k^{\prime} by a finite sequence of M_{n}-moves, [5].

In [6], Milnor introduced the Milnor link. Namely a link L is called the Milnor link if L is transformed into a trivial link by an M_{2}-move. Now we generalize this move to an M_{n}-move for any positive integer $n(\geq 2)$.

Almost local moves known up to the present change the knot cobordism, [1]. But we will see that an M_{n}-move does not change the knot cobordism for any integer $n(\geq 2)$, see Proposition.

In Section 2, we study a relation between the Alexander polynomials of M_{n}-equivalent knots and a property of M_{n}-equivalence of knots and prove Theorems 1 and 2.

A relation of Alexander polynomials of cobordant knots was known in [1]. The result we obtain in Theorem 1 is more concrete than that of [1] for cobordant knots which are M_{n}-equivalent. Theorems 1 and 2 give a classification of cobordant knots by an M_{n}-move.

For a knot $k, \Delta_{k}(t)$ means the Alexander polynomial of k.
Theorem 1. For two knots k, k^{\prime} and an integer $n \geq 2$, if k is M_{n}-equivalent to k^{\prime}, then

$$
\prod_{i=1}^{u}\left\{(1-t)^{n}-(-t)^{p_{i}}\right\}\left\{(1-t)^{n}-(-t)^{q_{i}}\right\} \Delta_{k}(t)
$$

Fig. 1.

Fig. 2.

$$
= \pm t^{s} \prod_{j=1}^{v}\left\{(1-t)^{n}-(-t)^{r_{j}}\right\}\left\{(1-t)^{n}-(-t)^{s_{j}}\right\} \Delta_{k^{\prime}}(t)
$$

for some integers $s, u, v, p_{i}, q_{i}, r_{j}$ and $s_{j}, 0 \leq p_{i}, q_{i}, r_{j}, s_{j} \leq n, p_{i}+q_{i}=r_{j}+s_{j}=n$.
Theorem 2. For two knots k, k^{\prime} and an integer $n \geq 2$, let k be M_{n}-equivalent to k^{\prime}. Then k is not M_{m}-equivalent to k^{\prime} for any integer $m(\neq n) \geq 2$.

A knot k is a ribbon knot if k bounds a singular disk with only so-called ribbon singularities, Fig. 2. Moreover it is easily seen that k is a ribbon knot if and only if k ($\subset R^{3}[0]$) bounds a non-singular locally flat disk which does not have minimal points in the half space $R_{+}^{4}=\left\{(x, y, z, t) \in R^{4} \mid t \geq 0\right\}$ of R^{4}, where $R^{3}[a]=\{(x, y, z, t) \in$ $\left.R^{4} \mid t=a\right\}$. (If k bounds a non-singular locally flat disk in R_{+}^{4}, k is called a slice knot.)

If k can be transformed into a trivial knot by a finite sequence of M_{n}^{+}-moves, we see that k is a ribbon knot, Proposition, and so we can use Theorem 1 to classify rib-

Fig. 3.
bon knots by $M_{n^{-}}$moves. Indeed, we will classify almost all prime ribbon knots up to 10 crossing points by Theorem 1 in Section 3.

2. Properties of $\boldsymbol{M}_{\boldsymbol{n}}$-moves

In this section, we study some properties of M_{n}-moves and prove Theorems. We prepare Lemmas 1 and 2 to prove Theorem 1.

To calculate the Alexander polynomial of M_{n}-equivalent knots, let us define a local move, called $\bar{M}_{n}^{ \pm}$-moves. The tangle transformation from Fig. 3(a) to 3(b) is called an \bar{M}_{n}^{+}-move and that of Fig. 3(b) to 3(a) is called an \bar{M}_{n}^{-}-move.

Lemma 1. (1) An $M_{n}^{+}\left(\right.$or $\left.M_{n}^{-}\right)$-move can be realized by an $\bar{M}_{n}^{+}\left(\right.$resp. $\left.\bar{M}_{n}^{-}\right)$move.
(2) An $\bar{M}_{n}^{+}\left(\right.$or $\left.\bar{M}_{n}^{-}\right)$-move can be realized by an $M_{n}^{+}\left(\right.$resp. $\left.M_{n}^{-}\right)$-move.

Proof. (1) By the deformations illustrated in Fig. 4, we obtain (1).
(2) We easily see (2) by the definitions of these moves.

Lemma 2. For two knots k, k^{\prime} and an integer $n(\geq 2)$, if k can be transformed into k^{\prime} by an M_{n}^{+}-move, then

$$
\Delta_{k}(t)= \pm t^{r}\left\{(1-t)^{n}-(-t)^{p}\right\}\left\{(1-t)^{n}-(-t)^{q}\right\} \Delta_{k^{\prime}}(t)
$$

for some integers p, q and $r, 0 \leq p, q \leq n, p+q=n$.

Fig. 4.
Proof. Suppose that k can be transformed into k^{\prime} by an M_{n}^{+}-move, hence by an \bar{M}_{n}^{+}-move by Lemma 1 . Namely k can be ambient isotopic to the band sum of k^{\prime} and an n-component trivial link \mathcal{L}_{n}, by n bands, say B_{1}, \ldots, B_{n}, and let us span n disks D_{1}, \ldots, D_{n} with singularities, say $d_{1}, d_{21}, d_{22}, \ldots, d_{n 1}, d_{n 2}$ of ribbon type to \mathcal{L}_{n}, where $d_{1}=D_{1} \cap D_{2}, d_{i 1} \cup d_{i 2}=D_{i} \cap D_{i+1}$ for $2 \leq i \leq n-1$ and $d_{n 1} \cup d_{n 2}=D_{n} \cap B_{1}$, Fig. 5(a).

Performing an orientation preserving cut along d_{1} and attach a tube T_{i} along a subdisk of D_{i+1} or B_{1} for $2 \leq i \leq n$, Fig. 5(b). Hence we obtain an orientable surface $F_{1} \cup \cdots \cup F_{n}$, where F_{1} is obtained from $D_{1} \cup B_{1}$ by an orientation preserving cut along d_{1} and $F_{i}=\left(D_{i}-N\left(d_{i 1} \cup d_{i 2}: D_{i}\right)\right) \cup T_{i} \cup B_{i}$ for $2 \leq i \leq n$, where $N(x: X)$ means the regular neighborhood of x in X.

Let F^{\prime} be an orientable surface of k^{\prime}. If the singularity of $F^{\prime} \cap F_{i}$ is not empty, it consists of arcs of ribbon type of $F^{\prime} \cap B_{i}$. Performing the orientation preserving cut along these arcs for each i, we obtain an orientable surface F of k.

To calculate $\Delta_{k}(t)$ of k, we take a set of basis of the first homology $H_{1}(F)$ of F including a_{i}, b_{i} illustrated in Fig. 6. Let M be a Seifert matrix of k and hence $\Delta_{k}(t)$ is the following, where a_{i}^{+}, b_{j}^{+}mean the lift of a_{i}, b_{j} respectively over the positive
side of F_{i}.

Fig. 5.

Fig. 6.

$$
\begin{aligned}
& \Delta_{k}(t)=\left|M-t M^{\prime}\right| \\
& \begin{array}{llllllll}
a_{1}^{+} & \cdots & a_{n-1}^{+} & a_{n}^{+} & b_{1}^{+} & b_{2}^{+} & \cdots & b_{n}^{+}
\end{array}
\end{aligned}
$$

where $\delta_{i}=0, \epsilon_{i}=1$ or $\delta_{i}=1, \epsilon_{i}=-1$. Let us denote $p=\delta_{1}+\cdots+\delta_{n}$ and $q=n-p$. Then $\epsilon_{1} \cdots \epsilon_{n}=(-1)^{p}$ and $(-1)^{n} \epsilon_{1} \cdots \epsilon_{n}=(-1)^{q}$. Therefore

$$
\begin{aligned}
\Delta_{k}(t) & =\left\{(-1)^{n-1}(t-1)^{n}+(-t)^{p}\right\}\left\{(-1)^{n-1}(t-1)^{n}+(-t)^{q}\right\} \Delta_{k^{\prime}}(t) \\
& =\left\{(1-t)^{n}-(-t)^{p}\right\}\left\{(1-t)^{n}-(-t)^{q}\right\} \Delta_{k^{\prime}}(t) .
\end{aligned}
$$

Let k, k^{\prime} be those of Lemma 2. Then k^{\prime} can be transformed into k by an M_{n}^{-}-move. Hence we easily obtain Theorem 1 by Lemmas 1 and 2 .

Now, we apply Lemma 2 for $n=2,3$ and 4 .
Corollary 1. Suppose that a knot K can be transformed into a trivial knot by a finite sequence of M_{n}^{+}-moves.
(1) If $n=2, \Delta_{K}(t)= \pm t^{r} \prod_{i, j}(t-2)^{m_{i}}(2 t-1)^{m_{i}}\left(t^{2}-t+1\right)^{2 n_{j}}$.
(2) If $n=3, \Delta_{K}(t)= \pm t^{r} \prod_{i, j}\left(t^{2}-3 t+3\right)^{m_{i}}\left(3 t^{2}-3 t+1\right)^{m_{i}}$

$$
\times\left(t^{3}-3 t^{2}+2 t-1\right)^{n_{j}}\left(t^{3}-2 t^{2}+3 t-1\right)^{n_{j}} .
$$

(3) If $n=4, \Delta_{K}(t)= \pm t^{r} \prod_{i, j, k}\left(t^{3}-4 t^{2}+6 t-4\right)^{m_{i}}\left(4 t^{3}-6 t^{2}+4 t-1\right)^{m_{i}}$

$$
\begin{aligned}
& \times\left(t^{4}-4 t^{3}+6 t^{2}-3 t+1\right)^{n_{j}}\left(t^{4}-3 t^{3}+6 t^{2}-4 t+1\right)^{n_{j}} \\
& \times\left(t^{4}-4 t^{3}+5 t^{2}-4 t+1\right)^{2 l_{k}} .
\end{aligned}
$$

Proof. We apply to Lemma 2 in the following cases respectively. If $n=2$, we consider the case that $p_{i}=0, q_{i}=2$ and $p_{i}=q_{i}=1$. If $n=3$, we do the cases that $p_{i}=0, q_{i}=3$ and $p_{i}=1, q_{i}=2$. If $n=4$, we do the cases that $p_{i}=0, q_{i}=4$ and $p_{i}=1, q_{i}=3$ and $p_{i}=q_{i}=2$.

Fig. 8.

Fig. 9.
$\Delta_{k_{n}}(-1)=2^{2(n-1)} \pm(-1)^{n-1} \neq \pm\left(2^{n}-1\right)^{2 m}$, which is a contradiction.
Example 2. By the projections of ribbon knots in [4], we easily see that $6_{1}, 8_{20}$, 9_{46} and 10_{140} are M_{2}-equivalent to a trivial knot \mathcal{O}. Since the knots in Fig. 9 are ambient isotopic to 9_{27} and 9_{41} respectively, 9_{27} and 9_{41} are M_{3}-equivalent to \mathcal{O}.

Next let us prove Theorem 2.
Proof of Theorem 2. Suppose that there is an integer $m(\neq n) \geq 2$ such that k is M_{m}-equivalent to k^{\prime}. Then we obtain that

$$
\begin{array}{r}
\quad \prod_{i=1}^{u}\left\{(1-t)^{n}-(-t)^{p_{i}}\right\}\left\{(1-t)^{n}-(-t)^{q_{i}}\right\} \Delta_{k}(t) \\
= \pm t^{s} \prod_{j=1}^{v}\left\{(1-t)^{n}-(-t)^{r_{j}}\right\}\left\{(1-t)^{n}-(-t)^{s_{j}}\right\} \Delta_{k^{\prime}}(t)
\end{array}
$$

and

$$
\begin{array}{r}
\prod_{i=1}^{U}\left\{(1-t)^{m}-(-t)^{P_{i}}\right\}\left\{(1-t)^{m}-(-t)^{Q_{i}}\right\} \Delta_{k}(t) \\
= \pm t^{S} \prod_{j=1}^{V}\left\{(1-t)^{m}-(-t)^{R_{j}}\right\}\left\{(1-t)^{m}-(-t)^{S_{j}}\right\} \Delta_{k^{\prime}}(t)
\end{array}
$$

for some integers $s, u, v, p_{i}, q_{i}, r_{j}$ and $s_{j}, 0 \leq p_{i}, q_{i}, r_{j}, s_{j} \leq n, p_{i}+q_{i}=r_{j}+s_{j}=n$ and $S, U, V, P_{i}, Q_{i}, R_{j}$ and $S_{j}, 0 \leq P_{i}, Q_{i}, R_{j}, S_{j} \leq m, P_{i}+Q_{i}=R_{j}+S_{j}=$ m by Theorem 1. By putting $t=-1$, we obtain that $\left(2^{n}-1\right)^{2 u} \alpha= \pm\left(2^{n}-1\right)^{2 v} \beta$, $\left(2^{m}-1\right)^{2 U} \alpha= \pm\left(2^{m}-1\right)^{2 V} \beta$, where $\alpha=\Delta_{k}(-1)$ and $\beta=\Delta_{k^{\prime}}(-1)$. Therefore we obtain that $\left(2^{n}-1\right)^{p}=\left(2^{m}-1\right)^{q}$ for some integers p, q.

But we may show that it is a contradiction in the following. We suppose that there exist m, n, p, q with $n>m \geq 2$ such that $\left(2^{n}-1\right)^{p}=\left(2^{m}-1\right)^{q}$. Let $p=a s$ and $q=b t$, where $a, b \in\left\{2^{i}\right\}_{i=0}^{\infty}$ and integers s, t are odd. After replacing (p, q) by (q, p), we can assume that $a \geq b$ and $c=a / b \in\left\{2^{i}\right\}_{i=0}^{\infty}$. Then we have $\left(2^{n}-1\right)^{c s}=\left(2^{m}-1\right)^{t}$. Since s, t are odd and $2^{n}>2^{m} \geq 4$, we have $(-1)^{c} \equiv(-1)^{c s} \equiv(-1)^{t} \equiv-1(\bmod 4)$. Thus $c=1$, so $\left(2^{n}-1\right)^{s}=\left(2^{m}-1\right)^{t}$. Let $A=2^{m}-1$. Then we have

$$
\begin{equation*}
A^{t}=\left(2^{m}-1\right)^{t}=\left(2^{n}-1\right)^{s} \equiv(-1)^{s} \equiv-1 \quad\left(\bmod 2^{n}\right) . \tag{1}
\end{equation*}
$$

Squaring the above, we have

$$
\begin{equation*}
A^{2 t} \equiv 1 \quad\left(\bmod 2^{n}\right) \tag{2}
\end{equation*}
$$

Now, since $\left(A, 2^{n}\right)=1$, by Euler's Theorem (cf. [3, p. 33]) we have

$$
\begin{equation*}
A^{\phi\left(2^{n}\right)} \equiv 1 \quad\left(\bmod 2^{n}\right), \tag{3}
\end{equation*}
$$

where $\phi\left(2^{n}\right)$ is Euler's phi function (the number of positive integers prime to 2^{n} and \leq 2^{n}. Since $\phi\left(2^{n}\right)=2^{n-1}$ and $\left(2 t, 2^{n-1}\right)=2$, (2) and (3) imply $A^{2} \equiv 1\left(\bmod 2^{n}\right)$. Since $n \geq 3$, this equation has 4 solutions $A \equiv \pm 1,2^{n-1} \pm 1\left(\bmod 2^{n}\right)$. But, by (1) it has only $A \equiv-1\left(\bmod 2^{n}\right)$, so $2^{m} \equiv 0\left(\bmod 2^{n}\right)$. Hence $m \geq n$. This is a contradiction.

3. A classification of ribbon knots by $\boldsymbol{M}_{\boldsymbol{n}}$-moves

For two knots $k\left(\subset R^{3}[a]\right)$ and $k^{\prime}\left(\subset R^{3}[b]\right)$ for $a<b$, if there is a non-singular locally flat annulus \mathcal{A} in $R^{3}[a, b]$ with $\mathcal{A} \cap R^{3}[a]=k$ and $\mathcal{A} \cap R^{3}[b]=-k^{\prime}$, we say that k is cobordant to $k^{\prime},{ }^{[1]}$. Hence if k is cobordant to a trivial knot \mathcal{O}, k is a slice knot and moreover if \mathcal{A} does not have minimal points, k is a ribbon knot.

Proposition. For two knots k, k^{\prime} and an integer $n(\geq 2)$, if k is M_{n}-equivalent to k^{\prime}, then k is cobordant to k^{\prime}.

Proof. Since k is M_{n}-equivalent to k^{\prime}, there are knots $k_{0}(=k), k_{1}, \ldots, k_{p}\left(=k^{\prime}\right)$ such that k_{i} can be transformed into k_{i+1} by an M_{n}^{+}-move or an M_{n}^{-}-move. Suppose that k_{i} is contained in $R^{3}[2 i]$ for $i=0,1, \ldots, p$.

If we perform a hyperbolic transformation, Fig. 10 , to k_{i} (or k_{i+1}) in $R^{3}[2 i+1]$ and obtain k_{i+1} (resp. k_{i}) and a trivial knot split from k_{i+1} (resp. k_{i}).

Fig. 10.
Performing the above discussion to each i, we obtain a non-singular locally flat annulus \mathcal{A} in $R^{3}[0,2 p]$ with $\partial \mathcal{A}=k \cup\left(-k^{\prime}\right)$, namely k is cobordant to k^{\prime}.

Hence if k can be transformed into a trivial knot by a finite sequence of M_{n} (or M_{n}^{+})-moves, k is a slice (resp. a ribbon) knot. Therefore if k is not a slice knot, k is not M_{n}-equivalent to a trivial knot \mathcal{O}.

In this section, we consider the following by using Theorem 1: Are the prime ribbon knots up to 10 crossing points M_{n}-equivalent to \mathcal{O} for some integer $n(\geq 2)$?

By Example 2, we already see that $6_{1}, 8_{20}, 9_{46}$ and 10_{140} are M_{2}-equivalent to \mathcal{O} and that 9_{27} and 9_{41} are M_{3}-equivalent to \mathcal{O}.

ribbon knot	Alexander polynomial	M_{2}	M_{3}	M_{n} $(n \geq 4)$
6_{1}	$2 t^{2}-5 t+2$	Y	N	N
8_{8}	$2 t^{4}-6 t^{3}+9 t^{2}-6 t+2$	N	N	N
8_{9}	$t^{6}-3 t^{5}+5 t^{4}-7 t^{3}+5 t^{2}-3 t+1$	N	N	N
8_{20}	$\left(t^{2}-t+1\right)^{2}$	Y	N	N
9_{27}	$t^{6}-5 t^{5}+11 t^{4}-15 t^{3}+11 t^{2}-5 t+1$	N	Y	N
9_{41}	$3 t^{4}-12 t^{3}+19 t^{2}-12 t+3$	N	Y	N
9_{46}	$2 t^{2}-5 t+2$	Y	N	N
10_{3}	$6 t^{2}-13 t+6$	N	N	N
10_{22}	$2 t^{6}-6 t^{5}+10 t^{4}-13 t^{3}+10 t^{2}-6 t+2$	N	N	N
10_{35}	$2 t^{4}-12 t^{3}+21 t^{2}-12 t+2$	N	N	N
10_{42}	$t^{6}-7 t^{5}+19 t^{4}-27 t^{3}+19 t^{2}-7 t+1$	N	N	N
10_{48}	$t^{8}-3 t^{7}+6 t^{6}-9 t^{5}+11 t^{4}-9 t^{3}+6 t^{2}-3 t+1$	N	N	N
10_{75}	$t^{6}-7 t^{5}+19 t^{4}-27 t^{3}+19 t^{2}-7 t+1$	N	N	N
10_{87}	$\left(t^{2}-t+1\right)^{2}\left(-2 t^{2}+5 t-2\right)$	$?$	N	N
10_{99}	$\left(t^{2}-t+1\right)^{4}$	$?$	N	N
10_{123}	$\left(t^{4}-3 t^{3}+3 t^{2}-3 t+1\right)^{2}$	N	N	N
10_{129}	$2 t^{4}-6 t^{3}+9 t^{2}-6 t+2$	N	N	N
10_{137}	$\left(t^{2}-3 t+1\right)^{2}$	N	N	N
10_{140}	$\left(t^{2}-t+1\right)^{2}$	Y	N	N
10_{153}	$t^{6}-t^{5}-t^{4}+3 t^{3}-t^{2}-t+1$	N	N	N
10_{155}	$t^{6}-3 t^{5}+5 t^{4}-7 t^{3}+5 t^{2}-3 t+1$	N	N	N

Here Y and N mean "yes" and "no" respectively.

Question. Are 10_{87} and $10_{99} M_{2}$-equivalent to \mathcal{O} ?

References

[1] R.H. Fox and J.W. Milnor: Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257-267.
[2] K. Habiro: Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1-83.
[3] K. Ireland and M. Rosen: A Classical Introduction to Modern Number Theory, GTM 84 2nd ed., Springer-Verlag, 1972.
[4] A. Kawauchi ed.: A survey of knot theory, Birkhauser Verlarg, Basel-Boston-Berlin, 1996.
[5] K. Kobayashi: Ribbon link and separate ribbon link, (In Japanese), Hakone Seminar Notes, (2000), 7-28.
[6] J.W. Milnor: Isotopy of links, Lefshetz symposium, Princeton Math. Ser. 12 (1957), 280-306, Princeton Univ. Press.
[7] Y. Ohyama and T. Tsukamoto: On Habiro's C_{n}-moves and Vassiliev invariants of order n, J. of Knot theory and its Ramif. 8 (1999), 15-26.
[8] T. Shibuya and A. Yasuhara: Classification of links up to self pass-move, J. Math. Soc. Japan 55 (2003), 939-946.

T. Ishikawa

Department of Mathematics
Facalty of Engineering
Osaka Institute of Technology
Osaka 535-8585, Japan
e-mail: ishikawa@ge.oit.ac.jp
K. Kobayashi

Department of Mathematics
College of Arts and Sciences
Tokyo Woman's Christian University
Suginami, Tokyo 167-8585, Japan
e-mail: kazuaki@twcu.ac.jp
T. Shibuya

Department of Mathematics
Facalty of Engineering
Osaka Institute of Technology
Osaka 535-8585, Japan
e-mail: shibuya@ge.oit.ac.jp

