ON THE ADDITIVITY OF THE CLASP NUMBER OF KNOTS

Hiroshi MATSUDA

(Received February 12, 2002)

1. Introduction

It is of great interest to know whether a knot invariant is additive under connected sum. The genus $g(K)$ of a knot K is additive [13], that is, $g\left(K_{1} \# K_{2}\right)=g\left(K_{1}\right)+g\left(K_{2}\right)$, where $K_{1} \# K_{2}$ denotes a connected sum of two knots K_{1} and K_{2}. For the braid index $b(K)$ of a knot K, Birman and Menasco [1] showed that $b(K)-1$ is additive, that is, $b\left(K_{1} \# K_{2}\right)-1=\left(b\left(K_{1}\right)-1\right)+\left(b\left(K_{2}\right)-1\right)$. For the tunnel number $t(K)$ of a knot K, it is known that $t(K)$ is not additive under connected sum. See, for example, [8], [9], [5]. In this paper, we study the additivity of the clasp number of knots which is defined in the following.

Let K be a knot in S^{3}. We denote by f an immersion $f: D \rightarrow S^{3}$ of a disc D into S^{3} such that $\left.f\right|_{\partial D}: \partial D \rightarrow K$ is a homeomorphism onto K. Let $\widetilde{\Sigma}$ denote the singular set $\left\{x \in f(D)\left|\left|f^{-1}(x)\right| \geq 2\right\}\right.$ of the immersion f, and let Σ denote $f^{-1}(\widetilde{\Sigma})$ on D. The following lemma is a special case of Lemma 1 in [14]. See also Lemma 1 in [15].

Lemma 1.1. We may choose an immersion f so that each connected component of Σ is an embedded arc on D joining a point in ∂D and a point in int D.

Note that this immersion f satisfies $\left\{x \in f(D)\left|\left|f^{-1}(x)\right| \geq 3\right\}=\emptyset\right.$. An immersed disc $B=f(D)$ with these properties is called a clasp disc of K. Fig. 1.1 illustrates a clasp disc of a trefoil knot. Let $c p_{B}(K)$ denote the number of connected components of $\widetilde{\Sigma}$ in B. The minimal number of $c p_{B}(K)$ among all clasp discs B of K is called the clasp number of K, denoted by $c p(K)$. Shibuya defined also the clasp number of a link in S^{3}. See Definition 3 in [14]. We refer to Appendix for the clasp number of prime knots of eight or fewer crossings except 8_{18}. The following proposition is a special case of Theorem 1 in [14].

Proposition 1.2. Let K be a knot in S^{3}. Then we have inequalities $c p(K) \geq$ $g(K)$ and $c p(K) \geq u(K)$, where $u(K)$ denotes the unknotting number of K.

[^0]

Fig. 1.1.

Fig. 1.2.
Fig. 1.2 illustrates a sketch of an operation to show the inequality $c p(K) \geq g(K)$. In [14], Shibuya called the operation, illustrated in Fig. 1.2, an orientation preserving cut along a clasp arc. This operation has been also called a smoothing.

Using Proposition 1.2, Morimoto [7] determined the clasp number of torus knots. Note that the genus of a torus knot of type (p, q) is $(|p|-1)(|q|-1) / 2$. See, for example, Theorem 7.5.2 in [10]. Since the unknotting number of a torus knot of type (p, q) is equal to $(|p|-1)(|q|-1) / 2$ (see [3], [4]), we obtain the following theorem.

Theorem 1.3. Let K be a torus knot of type (p, q). Then the clasp number of K is $(|p|-1)(|q|-1) / 2$, that is, $c p(K)=g(K)=u(K)$.

Concerning the additivity of $c p(K)$, Morimoto made the following conjecture in [6].

Conjecture 1.4. $c p\left(K_{1} \# K_{2}\right)=c p\left(K_{1}\right)+c p\left(K_{2}\right)$.
He obtained a partial solution to this conjecture in the same paper.
Theorem 1.5 ([6]). If $c p\left(K_{1} \# K_{2}\right) \leq 2$, then $c p\left(K_{1} \# K_{2}\right)=c p\left(K_{1}\right)+c p\left(K_{2}\right)$.

Fig. 2.1.
In this paper, we prove the following theorem.
Theorem 1.6. Let K_{1}, K_{2} be non-trivial knots. If $c p\left(K_{1} \# K_{2}\right)=3$, then $c p\left(K_{1}\right)=$ 1 and $c p\left(K_{2}\right)=2$.

Together with Theorem 1.5, we obtain the following corollary.
Corollary 1.7. If $c p\left(K_{1} \# K_{2}\right) \leq 3$, then $c p\left(K_{1} \# K_{2}\right)=c p\left(K_{1}\right)+c p\left(K_{2}\right)$.

2. Preliminary lemmas

Let $B=f(D)$ be a clasp disc of K with $c p_{B}(K)=c p(K)$. Let $K=K_{1} \# K_{2}$ denote a knot which is a connected sum of two non-trivial knots K_{1} and K_{2}. Then there exists a 2 -sphere S which realizes a non-trivial decomposition of $K=K_{1} \# K_{2}$. We may isotope S so that S intersects B and $\widetilde{\Sigma}$ transversely. Let T denote the set $f^{-1}(S \cap B)$ on D. Then T consists of a properly embedded arc m in D and some simple closed curves embedded in int D. Let D_{1} and D_{2} denote discs in D such that $D_{1} \cap D_{2}=m$ and $D_{1} \cup D_{2}=D$, and let $l_{i}(i=1$ and 2$)$ denote the arc $D_{i} \cap \partial D$. See Fig. 2.1. Let Q_{i} be the 3 -ball which is bounded by S in S^{3} and which contains the arc $f\left(l_{i}\right)$. Let k be a simple arc on S which connects the two points of $f(\partial D) \cap S=K \cap S$. We may regard the knot K_{i} as the union of two arcs k and $f\left(l_{i}\right)$. In the following, Z_{i} ($Z=D, K, l, \ldots$, etc.) denotes Z_{1} or Z_{2}.

Loop components of T separate D_{i} to many regions. Let \bar{D}_{i} denote the region in D_{i} separated by loop components of T such that l_{i} is a subarc of $\partial \bar{D}_{i}$. If there is no loop component of T in D_{i}, then \bar{D}_{i} is D_{i} itself. Let g be the restriction of f to \bar{D}_{i}. Let $\bar{\Sigma}_{i}$ denote the set $\left\{x \in g\left(\bar{D}_{i}\right)\left|\left|g^{-1}(x)\right| \geq 2\right\}\right.$, and let Σ_{i} denote $g^{-1}\left(\bar{\Sigma}_{i}\right)$ on \bar{D}_{i}. By the definition of a clasp disc, a connected component of Σ_{i} on \bar{D}_{i} belongs to one of arcs of the following four types (see Fig. 2.2);

Fig. 2.2.
type \mathcal{A} : an arc which connects a point in l_{i} and a point in $c l\left(\partial \bar{D}_{i}-l_{i}\right)$, type \mathcal{A}^{\prime} : an arc which connects a point in int \bar{D}_{i} and a point in $c l\left(\partial \bar{D}_{i}-l_{i}\right)$, type \mathcal{B} : an arc which connects two distinct points in $\operatorname{cl}\left(\partial \bar{D}_{i}-l_{i}\right)$, type \mathcal{C} : an arc which connects a point in int \bar{D}_{i} and a point in l_{i}.
Note that an arc of type \mathcal{A} is identified by g with an arc of type \mathcal{A}^{\prime}, that an arc of type \mathcal{B} with another arc of type \mathcal{B}, and that an arc of type \mathcal{C} with another arc of type \mathcal{C}. Let X_{i} denote the union of endpoints of arcs of types \mathcal{A}^{\prime} and \mathcal{C} in int \bar{D}_{i}. The following lemma is essentially the same as Lemma 1 (2) in [6]. We refer to [6] for a proof.

Lemma 2.1. Let α be an arc of type \mathcal{A} on \bar{D}_{i}. Suppose that α and a subarc of m together with a subarc of l_{i} cobound a disc δ with (int $\left.\delta\right) \cap \Sigma_{i}=\emptyset$ on \bar{D}_{i}. Then there are a surface D_{i}^{*} and an immersion $g^{*}: D_{i}^{*} \rightarrow Q_{i}$ satisfying the following properties; (i) The surface D_{i}^{*} is homeomorphic to \bar{D}_{i},
(ii) Every connected component of $\left(g^{*}\right)^{-1}\left(\left\{x \in g^{*}\left(D_{i}^{*}\right)| |\left(g^{*}\right)^{-1}(x) \mid \geq 2\right\}\right)=\Sigma_{i}^{*}$ belongs to an arc of type $\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{B}$ or \mathcal{C}, where these arcs of four types are defined on D_{i}^{*} in the same way as they are on \bar{D}_{i},
(iii) The numbers of arcs of types \mathcal{B} and \mathcal{C} in Σ_{i}^{*} are equal to those of types \mathcal{B} and \mathcal{C}, respectively, in Σ_{i},
(iv) The numbers of arcs of types \mathcal{A} and \mathcal{A}^{\prime} in Σ_{i}^{*} are strictly less than those of types \mathcal{A} and \mathcal{A}^{\prime}, respectively, in Σ_{i}, and
(v) There is a subarc l_{i}^{*} of ∂D_{i}^{*} such that $g^{*}\left(l_{i}^{*}\right)=g\left(l_{i}\right)$ and that $g^{*}\left(\partial D_{i}^{*}-l_{i}^{*}\right)$ is contained in S.

Lemma 2.2. Let β_{1} and β_{2} be arcs of type \mathcal{B} on \bar{D}_{i} with $g\left(\beta_{1}\right)=g\left(\beta_{2}\right)$. Suppose that β_{1} and β_{2} together with two subarcs of $\partial \bar{D}_{i}-l_{i}$ cobound a disc δ in \bar{D}_{i}. Then there are a surface D_{i}^{*} and an immersion $g^{*}: D_{i}^{*} \rightarrow Q_{i}$ satisfying the following
properties;
(i) The surface D_{i}^{*} is homeomorphic to \bar{D}_{i},
(ii) Every connected component of $\left(g^{*}\right)^{-1}\left(\left\{x \in g^{*}\left(D_{i}^{*}\right)| |\left(g^{*}\right)^{-1}(x) \mid \geq 2\right\}\right)=\Sigma_{i}^{*}$ belongs to an arc of type $\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{B}$ or \mathcal{C}, where these arcs of four types are defined on D_{i}^{*} in the same way as they are on \bar{D}_{i},
(iii) The numbers of arcs of types $\mathcal{A}, \mathcal{A}^{\prime}$ and \mathcal{C} in Σ_{i}^{*} are equal to those of types \mathcal{A}, \mathcal{A}^{\prime} and \mathcal{C}, respectively, in Σ_{i},
(iv) The number of arcs of type \mathcal{B} in Σ_{i}^{*} is strictly less than that of type \mathcal{B} in Σ_{i}, and
(v) There is a subarc l_{i}^{*} of ∂D_{i}^{*} such that $g^{*}\left(l_{i}^{*}\right)=g\left(l_{i}\right)$ and that $g^{*}\left(\partial D_{i}^{*}-l_{i}^{*}\right)$ is contained in S.

Proof. Let V denote a regular neighborhood $N\left(g\left(\beta_{1}\right) ; Q_{i}\right)$ of the arc $g\left(\beta_{1}\right)=$ $g\left(\beta_{2}\right)$ in Q_{i}. We may choose V so that $g\left(\bar{D}_{i}\right) \cap V$ consists of two discs $g\left(N\left(\beta_{1} ; \bar{D}_{i}\right)\right)$ and $g\left(N\left(\beta_{2} ; \bar{D}_{i}\right)\right)$. The disc $g\left(N\left(\beta_{1} ; \bar{D}_{i}\right)\right)$ intersects $g\left(N\left(\beta_{2} ; \bar{D}_{i}\right)\right)$ transversely along the $\operatorname{arc} g\left(\beta_{1}\right)=g\left(\beta_{2}\right)$. We regard V as the set $\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\}$ so that two discs of $V \cap S$ correspond to $\left\{(x, y, 0) \mid x^{2}+y^{2} \leq 1\right\}$ and $\left\{(x, y, 1) \mid x^{2}+y^{2} \leq 1\right\}$. We may assume that $g\left(N\left(\beta_{1} ; \bar{D}_{i}\right)\right)$ corresponds to $\{(x, 0, z) \mid-1 \leq x \leq 1,0 \leq z \leq 1\}$, and that $g\left(N\left(\beta_{2} ; \bar{D}_{i}\right)\right)$ corresponds to $\{(0, y, z) \mid-1 \leq y \leq 1,0 \leq z \leq 1\}$. We may also assume that $g(\delta) \cap V$ corresponds to the union of $\{(x, 0, z) \mid 0 \leq x \leq 1$, $0 \leq z \leq 1\}$ and $\{(0, y, z) \mid 0 \leq y \leq 1,0 \leq z \leq 1\}$. Let \widetilde{d}_{1} be the disc $\left\{(x, y, z) \mid x^{2}+y^{2}=1, x \geq 0, y \leq 0,0 \leq z \leq 1\right\}$, and \widetilde{d}_{2} be the disc $\left\{(x, y, z) \mid x^{2}+y^{2}=1, x \leq 0, y \geq 0,0 \leq z \leq 1\right\}$.

Now we define an immersion g^{*} of a surface D_{i}^{*} into Q_{i}. Let $g^{*}\left(D_{i}^{*}\right)$ be the immersed surface which is the union of $g\left(\bar{D}_{i}-N\left(\beta_{1} \cup \beta_{2} ; \bar{D}_{i}\right)\right), \widetilde{d}_{1}$ and \widetilde{d}_{2}. By this construction, $g^{*}\left(D_{i}^{*}\right)$ satisfies the properties (ii)-(v).

The surface D_{i}^{*} is the union of $\bar{D}_{i}-N\left(\beta_{1} \cup \beta_{2} ; \bar{D}_{i}\right), d_{1}$ and d_{2}, where $d_{j}(j=1$ and 2) is a disc corresponding to \widetilde{d}_{j}. Since \widetilde{d}_{1} may be regarded as a band which connects two arcs $\{(1,0, z) \mid 0 \leq z \leq 1\}$ and $\{(0,-1, z) \mid 0 \leq z \leq 1\}$, the disc d_{1} may be regarded as a band which connects the subarc $c_{1,1}$ of $\partial N\left(\beta_{1} ; \bar{D}_{i}\right)$ and the subarc $c_{1,2}$ of $\partial N\left(\beta_{2} ; \bar{D}_{i}\right)$, where $g\left(c_{1,1}\right)=\{(1,0, z) \mid 0 \leq z \leq 1\}$ and $g\left(c_{1,2}\right)=\{(0,-1, z) \mid 0 \leq z \leq 1\}$. Similarly, the disc d_{2} may be regarded as a band which connects the subarc $c_{2,1}$ of $\partial N\left(\beta_{1} ; \bar{D}_{i}\right)$ and the subarc $c_{2,2}$ of $\partial N\left(\beta_{2} ; \bar{D}_{i}\right)$, where $g\left(c_{2,1}\right)=\{(-1,0, z) \mid 0 \leq z \leq 1\}$ and $g\left(c_{2,2}\right)=\{(0,1, z) \mid 0 \leq z \leq 1\}$. We notice that $g(\delta)$ is either an immersed annulus or an immersed Möbius band in Q_{i}, because $g\left(\beta_{1}\right)=g\left(\beta_{2}\right)$. This construction of D_{i}^{*} shows that D_{i}^{*} is homeomorphic to \bar{D}_{i}.

Fig. 2.3 (1) illustrates a sketch of the operation described in the proof of Lemma 2.2. Similar arguments as in the proof of Lemma 2.2 show the following two lemmas. See Fig. 2.3 (2) and (3) for sketches of operations to prove Lemmas 2.3 and 2.4 , respectively.

Fig. 2.3.

Lemma 2.3. Let β_{1} and β_{2} be arcs of type \mathcal{B} on \bar{D}_{i} with $g\left(\beta_{1}\right)=g\left(\beta_{2}\right)$. Suppose that $\beta_{j}(j=1$ and 2$)$ and a subarc of $\partial \bar{D}_{i}$ cobound a disc δ_{j} in \bar{D}_{i} such that $\delta_{1} \cap$ $\delta_{2}=\emptyset$. Then there are a surface D_{i}^{*} and an immersion $g^{*}: D_{i}^{*} \rightarrow Q_{i}$ satisfying the following properties;
(i) The surface D_{i}^{*} is homeomorphic to \bar{D}_{i},
(ii) Every connected component of $\left(g^{*}\right)^{-1}\left(\left\{x \in g^{*}\left(D_{i}^{*}\right)| |\left(g^{*}\right)^{-1}(x) \mid \geq 2\right\}\right)=\Sigma_{i}^{*}$ belongs to an arc of type $\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{B}$ or \mathcal{C}, where these arcs of four types are defined on D_{i}^{*} in the same way as they are on \bar{D}_{i},
(iii) The numbers of arcs of types $\mathcal{A}, \mathcal{A}^{\prime}$ and \mathcal{C} in Σ_{i}^{*} are equal to those of types \mathcal{A}, \mathcal{A}^{\prime} and \mathcal{C}, respectively, in Σ_{i},
(iv) The number of arcs of type \mathcal{B} in Σ_{i}^{*} is strictly less than that of type \mathcal{B} in Σ_{i}, and
(v) There is a subarc l_{i}^{*} of ∂D_{i}^{*} such that $g^{*}\left(l_{i}^{*}\right)=g\left(l_{i}\right)$ and that $g^{*}\left(\partial D_{i}^{*}-l_{i}^{*}\right)$ is contained in S.

Lemma 2.4. Let $\beta_{1}, \beta_{2}, \gamma_{1}$ and γ_{2} be arcs of type \mathcal{B} on \bar{D}_{i} with $g\left(\beta_{j}\right)=g\left(\gamma_{j}\right)$ for $j=1$ and 2. Suppose that β_{1}, β_{2} and two subarcs of $\partial \bar{D}_{i}$ cobound a disc d_{β} in \bar{D}_{i}, and that γ_{1}, γ_{2} and two subarcs of $\partial \bar{D}_{i}-l_{i}$ cobound a disc d_{γ} in \bar{D}_{i} such that $d_{\beta} \cap d_{\gamma}=\emptyset$. Suppose also that $g\left(d_{\beta}\right) \cup g\left(d_{\gamma}\right)$ forms an immersed annulus in Q_{i}. Then there are a surface D_{i}^{*} and an immersion $g^{*}: D_{i}^{*} \rightarrow Q_{i}$ satisfying the following properties;
(i) The surface D_{i}^{*} is homeomorphic to \bar{D}_{i},
(ii) Every connected component of $\left(g^{*}\right)^{-1}\left(\left\{x \in g^{*}\left(D_{i}^{*}\right)| |\left(g^{*}\right)^{-1}(x) \mid \geq 2\right\}\right)=\Sigma_{i}^{*}$ belongs to an arc of type $\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{B}$ or \mathcal{C}, where these arcs of four types are defined on D_{i}^{*} in the same way as they are on \bar{D}_{i},
(iii) The numbers of arcs of types $\mathcal{A}, \mathcal{A}^{\prime}$ and \mathcal{C} in Σ_{i}^{*} are equal to those of types \mathcal{A}, \mathcal{A}^{\prime} and \mathcal{C}, respectively, in Σ_{i},
(iv) The number of arcs of type \mathcal{B} in Σ_{i}^{*} is strictly less than that of type \mathcal{B} in Σ_{i}, and
(v) There is a subarc l_{i}^{*} of ∂D_{i}^{*} such that $g^{*}\left(l_{i}^{*}\right)=g\left(l_{i}\right)$ and that $g^{*}\left(\partial D_{i}^{*}-l_{i}^{*}\right)$ is contained in S.

For a positive integer p_{-}and an immersion $g^{p}: \overline{D_{i}^{p}} \rightarrow Q_{i}, l_{i}^{p}$ denotes, in the following, the subarc of $\partial \overline{D_{i}^{p}}$ with $g_{-}^{p}\left(l_{i}^{p}\right)=g\left(l_{i}\right)$, and Σ_{i}^{p} denotes the set $\left(g^{p}\right)^{-1}$ $\left(\left\{x \in g^{p}\left(\bar{D}_{i}^{p}\right)| |\left(g^{p}\right)^{-1}(x) \mid \geq 2\right\}\right)$ on $\overline{D_{i}^{p}}$.

3. Proof of Theorem 1.6

In this section, we give a proof of Theorem 1.6 assuming propositions we prove in $\S \S 4$ and 5 . Suppose $c p(K)=3$, so that Σ consists of six $\operatorname{arcs} \sigma_{1}, \ldots, \sigma_{6}$ on D. Let $x_{j}(j=1, \ldots, 6)$ be the point $\partial \sigma_{j} \cap$ int D, and X be the union of the points $\left\{x_{1}, \ldots, x_{6}\right\}$. The following proposition is the same as Lemma 1 (3) in [6]. We refer to [6] for a proof.

Proposition 3.1. Let α be a loop component of T, and δ_{α} be the disc bounded by α in D. Then there exists a 2 -sphere S such that S realizes a non-trivial decomposition of $K=K_{1} \# K_{2}$, and that $\left|\delta_{\alpha} \cap X\right| \geq 2$ for every loop component α of T.

The following four propositions are proved in $\S 4$.

Proposition 4.1. Suppose that $\bar{D}_{i}=D_{i}$ is a disc, and that the number of points of X_{i} on \bar{D}_{i} is at most one. Then K_{i} is the trivial knot.

Proposition 4.2. Suppose that $\bar{D}_{i}=D_{i}$ is a disc, and that the number of points of X_{i} on \bar{D}_{i} is two. Then the clasp number of K_{i} is at most one.

Proposition 4.5. Suppose that $\bar{D}_{i}=D_{i}$ is a disc, and that the number of points of X_{i} on \bar{D}_{i} is three. Then the clasp number of K_{i} is at most one.

Proposition 4.6. Suppose that $\bar{D}_{i}=D_{i}$ is a disc, and that the number of points of X_{i} on \bar{D}_{i} is four. Then the clasp number of K_{i} is at most two.

The following four propositions are proved in $\S 5$.

Proposition 5.1. Suppose that \bar{D}_{i} is an annulus, and that the number of points of X_{i} on \bar{D}_{i} is 0. Then K_{i} is the trivial knot.

Proposition 5.3. Suppose that \bar{D}_{i} is an annulus, and that the number of points of X_{i} on \bar{D}_{i} is one. Then the clasp number of K_{i} is at most one.

Proposition 5.6. Suppose that \bar{D}_{i} is an annulus, and that the number of points of X_{i} on \bar{D}_{i} is two. Then the clasp number of K_{i} is at most one.

Proposition 5.14. Suppose that \bar{D}_{i} is a twice-punctured disc, and that the number of points of X_{i} on \bar{D}_{i} is 0 . Then the clasp number of K_{i} is at most one.

By Propositions 3.1 and 4.1, we may suppose that $\left|D_{1} \cap X\right| \geq 2$ and $\left|D_{2} \cap X\right| \geq 2$. Without loss of generality, we may suppose that $\left(\left|D_{1} \cap X\right|,\left|D_{2} \cap X\right|\right)=(2,4)$ or $(3,3)$.

First suppose $\left|D_{1} \cap X\right|=\left|D_{2} \cap X\right|=3$. Propositions 3.1, 4.5, 5.1, and 5.3 show that the clasp numbers of K_{1} and K_{2} are at most one. By the definition of the clasp number, we see that $c p\left(K_{1} \# K_{2}\right) \leq c p\left(K_{1}\right)+c p\left(K_{2}\right)$. Hence $c p\left(K_{1} \# K_{2}\right) \leq 2$. This contradicts our supposition.

Next suppose $\left|D_{1} \cap X\right|=2$ and $\left|D_{2} \cap X\right|=4$. Propositions 3.1, 4.2 and 5.1 show that the clasp number of K_{1} is at most one. Propositions 3.1, 4.6, 5.1, 5.3, 5.6 and 5.14 show that the clasp number of K_{2} is at most two. Therefore we have
$c p\left(K_{1}\right)=1$ and $c p\left(K_{2}\right)=2$.
This completes the proof of Theorem 1.6.

4. The case where $\boldsymbol{D}_{\boldsymbol{i}}$ contains no loop component of \boldsymbol{T}

In this section, we deal with an immersed surface $g\left(\bar{D}_{i}\right)$ when there is no loop component of T in D_{i}. Therefore $\bar{D}_{i}=D_{i}$ is a disc.

Proposition 4.1. Suppose that the number of points of X_{i} on D_{i} is at most one. Then K_{i} is the trivial knot.

Proposition 4.1 is essentially the same as Claim 1 in [6].

Proof. First suppose $\left|X_{i}\right|=0$. Then Σ_{i} consists only of arcs of type \mathcal{B}. By Lemma 2.3, we obtain an embedding g^{1} of a disc D_{i}^{1} into Q_{i}. This embedded disc $g^{1}\left(D_{i}^{1}\right)$ shows that K_{i} is the trivial knot.

Next suppose $\left|X_{i}\right|=1$. Then Σ_{i} consists of one arc of type \mathcal{A}, one arc of type \mathcal{A}^{\prime} and some arcs of type \mathcal{B}. By Lemma 2.3, we obtain an immersion g^{1} of a disc D_{i}^{1} into Q_{i} such that Σ_{i}^{1} consists of one arc of type \mathcal{A} and one arc of type \mathcal{A}^{\prime}. Then we obtain, by Lemma 2.1, an embedding g^{2} of a disc D_{i}^{2} into Q_{i}. This embedded disc $g^{2}\left(D_{i}^{2}\right)$ shows that K_{i} is the trivial knot.

Proposition 4.2. Suppose that the number of points of X_{i} on D_{i} is two. Then the clasp number of K_{i} is at most one.

Proof. Since $\left|X_{i}\right|=2, \Sigma_{i}$ consists of either (1) two arcs of type \mathcal{C} and some arcs of type \mathcal{B}, or (2) two arcs of type \mathcal{A}, two arcs of type \mathcal{A}^{\prime} and some arcs of type \mathcal{B}. In both cases, we obtain, by Lemma 2.3, an immersion g^{1} of a disc D_{i}^{1} into Q_{i} such that there is no arc of type \mathcal{B} in Σ_{i}^{1}.

First suppose that Σ_{i}^{1} consists of two arcs of type \mathcal{C}. Then the immersed disc $g^{1}\left(D_{i}^{1}\right)$ shows that the clasp number of K_{i} is at most one.

Next suppose that Σ_{i}^{1} consists of two arcs of type \mathcal{A} and two arcs of type \mathcal{A}^{\prime}. Let α_{1}, α_{2} be arcs of type \mathcal{A}, and $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ be arcs of type \mathcal{A}^{\prime} such that $g^{1}\left(\alpha_{j}\right)=g^{1}\left(\alpha_{j}^{\prime}\right)$ for $j=1$ and 2 . Let m^{1} be the arc $c l\left(\partial D_{i}^{1}-l_{i}^{1}\right)$. When we proceed on m^{1} from one endpoint of m^{1}, we may assume, by Lemma 2.1 and Proposition 4.1, that the first point of $\Sigma_{i}^{1} \cap m^{1}$ we encounter is an endpoint of an arc of type \mathcal{A}^{\prime}. Hence we may assume that the order of arcs of types \mathcal{A} and \mathcal{A}^{\prime} whose endpoints we encounter, when we proceed on m^{1} from one endpoint of m^{1}, is either $\alpha_{1}^{\prime}, \alpha_{1}, \alpha_{2}, \alpha_{2}^{\prime}$, or $\alpha_{1}^{\prime}, \alpha_{2}, \alpha_{1}, \alpha_{2}^{\prime}$ in this order. If the order is $\alpha_{1}^{\prime}, \alpha_{1}, \alpha_{2}, \alpha_{2}^{\prime}$, then a configuration of the singular arc $g^{1}\left(m^{1}\right)$ on S is that of Fig. 4.1 (1) or (2), up to symmetry and isotopy on S. If the order is $\alpha_{1}^{\prime}, \alpha_{2}, \alpha_{1}, \alpha_{2}^{\prime}$, then a configuration of the singular arc $g^{1}\left(m^{1}\right)$ on S is that of Fig. 4.1 (3), up to symmetry and isotopy on S.

Fig. 4.1.

Lemma 4.3. Suppose that a configuration of $g^{1}\left(m^{1}\right)$ on S is that of Fig. 4.1 (1) or (2). Then K_{i} is the trivial knot.

Proof. Suppose that the configuration is that of Fig. 4.1 (1). Let k be a simple arc on S such that $k \cap g^{1}\left(m^{1}\right)=\partial k=g^{1}\left(\partial m^{1}\right)$. The immersed disc $g^{1}\left(D_{i}^{1}\right)$ implies that the singular arc $g^{1}\left(m^{1}\right)$ is a projection of the arc $g^{1}\left(l_{i}^{1}\right)$ to S fixing its boundary $g^{1}\left(\partial l_{i}^{1}\right)$. Therefore the union $k \cup g^{1}\left(m^{1}\right)$ may be regarded as a projection of K_{i} to S. This shows that the crossing number of K_{i} is at most two, so K_{i} is the trivial knot.

Similar arguments as above prove the case in the configuration of Fig. 4.1 (2).

Lemma 4.4. Suppose that a configuration of $g^{1}\left(m^{1}\right)$ on S is that of Fig. 4.1 (3). Then the clasp number of K_{i} is at most one.

Proof. Let k be a simple arc on S which connects two points of $g^{1}\left(\partial m^{1}\right)$ and which intersects $g^{1}\left(\right.$ int $\left.m^{1}\right)$ transversely in one point. The immersed disc $g^{1}\left(D_{i}^{1}\right)$ implies that the union $k \cup g^{1}\left(m^{1}\right)$ may be regarded as a projection of K_{i} to S. Therefore the crossing number of K_{i} is at most three, and the clasp number of K_{i} is at most one. See Appendix for the clasp number of prime knots of eight or fewer crossings except 8_{18}.

This completes the proof of Proposition 4.2.

Proposition 4.5. Suppose that the number of points of X_{i} on D_{i} is three. Then the clasp number of K_{i} is at most one.

Proof. Since $\left|X_{i}\right|=3, \Sigma_{i}$ consists of either (1) three arcs of type \mathcal{A}, three arcs of type \mathcal{A}^{\prime} and some arcs of type \mathcal{B}, or (2) one arc of type \mathcal{A}, one arc of type \mathcal{A}^{\prime},
two arcs of type \mathcal{C} and some arcs of type \mathcal{B}. In both cases, we obtain, by Lemma 2.3, an immersion g^{1} of a disc D_{i}^{1} into Q_{i} such that there is no arc of type \mathcal{B} in Σ_{i}^{1}.

First suppose that Σ_{i}^{1} consists of three arcs of type \mathcal{A} and three arcs of type \mathcal{A}^{\prime}. Similar arguments as in the proof of Proposition 4.2 show that the crossing number of K_{i} is at most four, and the clasp number of K_{i} is at most one.

Next suppose that Σ_{i}^{1} consists of one arc of type \mathcal{A}, one arc of type \mathcal{A}^{\prime} and two arcs of type \mathcal{C}. Let α and α^{\prime} denote these arcs of types \mathcal{A} and \mathcal{A}^{\prime}, respectively. Let V denote a regular neighborhood $N\left(g^{1}(\alpha) ; Q_{i}\right)$ of the arc $g^{1}(\alpha)$ in Q_{i}. We may choose V so that $g^{1}\left(D_{i}^{1}\right) \cap V$ consists of two discs $g^{1}\left(N\left(\alpha ; D_{i}^{1}\right)\right)$ and $g^{1}\left(N\left(\alpha^{\prime} ; D_{i}^{1}\right)\right)$. The disc $g^{1}\left(N\left(\alpha ; D_{i}^{1}\right)\right)$ intersects $g^{1}\left(N\left(\alpha^{\prime} ; D_{i}^{1}\right)\right)$ transversely along the arc $g^{1}(\alpha)=g^{1}\left(\alpha^{\prime}\right)$. We regard V as the set $\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 2\right\}$ so that the disc $V \cap S$ corresponds to the set $\left\{(x, y, 0) \mid x^{2}+y^{2} \leq 1\right\}$. We suppose that $g^{1}\left(N\left(\alpha ; D_{i}^{1}\right)\right)$ corresponds to the set $\{(0, y, z) \mid-1 \leq y \leq 1,0 \leq z \leq 1\}$, and that $g^{1}\left(N\left(\alpha^{\prime} ; D_{i}^{1}\right)\right)$ corresponds to the set $\{(x, 0, z) \mid-1 \leq x \leq 1,0 \leq z \leq 2\}$. See Fig. 4.2. We may suppose that an image of the outward-normal to D_{i}^{1} in $N\left(\alpha ; D_{i}^{1}\right)$ agrees with the direction of increasing x, and that an image of the outward-normal to D_{i}^{1} in $N\left(\alpha^{\prime} ; D_{i}^{1}\right)$ agrees with the direction of increasing y. Let \widetilde{d}_{1} be the disc $\left\{(x, y, z) \mid x^{2}+y^{2}=1, x \geq 0, y \geq 0\right.$, $0 \leq z \leq 1\}$, and \widetilde{d}_{2} be the disc $\left\{(x, y, z) \mid x^{2}+y^{2}=1, x \leq 0, y \leq 0,0 \leq z \leq 1\right\}$ in V. Let \widetilde{d}_{3} denote the disc embedded in V which is the union of discs $\{(x, 0, z) \mid$ $2-z \leq x \leq 1,1 \leq z \leq 2\},\left\{(x, y, z) \mid x^{2}+y^{2}=(2-z)^{2}, x \geq 0, y \geq 0,1 \leq z \leq 2\right\}$, $\{(0, y, z) \mid z-2 \leq y \leq 2-z, 1 \leq z \leq 2\},\left\{(x, y, z) \mid x^{2}+y^{2}=(2-z)^{2}, x \leq 0, y \leq 0\right.$, $1 \leq z \leq 2\}$ and $\{(x, 0, z) \mid-1 \leq x \leq z-2,1 \leq z \leq 2\}$. We note here that the arc $g^{1}\left(l_{i}^{1}\right) \cap V$ which corresponds to the set $\{(0, y, 1) \mid-1 \leq y \leq 1\}$ is disjoint from int \widetilde{d}_{3}, that $\widetilde{d}_{3} \cap \partial V$ is an arc consisting of the three subarcs $\widetilde{d}_{1} \cap\left\{(x, y, 1) \mid x^{2}+y^{2}=1\right\}$, $\widetilde{d}_{2} \cap\left\{(x, y, 1) \mid x^{2}+y^{2}=1\right\}$ and $g^{1}\left(\partial N\left(\alpha^{\prime} ; D_{i}^{1}\right)\right) \cap\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,1 \leq z \leq 2\right\}$, and that $\partial \widetilde{d}_{3}$ consists of the two arcs $g^{1}\left(l_{i}^{1}\right) \cap V$ and $\widetilde{d}_{3} \cap \partial V$.

Now we define an immersion g^{2} of a surface D_{i}^{2} into Q_{i}. Let $g^{2}\left(D_{i}^{2}\right)$ be the immersed surface which is the union of $g^{1}\left(D_{i}^{1}-\left(N\left(\alpha ; D_{i}^{1}-l_{i}^{1}\right) \cup N\left(\alpha^{\prime} ; D_{i}^{1}\right)\right)\right), \widetilde{d}_{1}, \widetilde{d}_{2}$ and \widetilde{d}_{3}. We say that $g^{2}\left(D_{i}^{2}\right)$ is obtained from $g^{1}\left(D_{i}^{1}\right)$ by a $C P$ surgery along $g^{1}(\alpha)$. A CP surgery may be regarded as a detailed explanation of a smoothing operation, illustrated in Fig. 1.2, in a regular neighborhood of an endpoint of the clasp arc. By this construction, we see that Σ_{i}^{2} consists of two arcs of type \mathcal{C}, and that there is a subarc l_{i}^{2} of ∂D_{i}^{2} with $g^{2}\left(l_{i}^{2}\right)=g^{1}\left(l_{i}^{1}\right)=g\left(l_{i}\right)$. Now we investigate the surface D_{i}^{2} in detail. The surface D_{i}^{2} is the union of $D_{i}^{1}-\left(N\left(\alpha ; D_{i}^{1}-l_{i}^{1}\right) \cup N\left(\alpha^{\prime} ; D_{i}^{1}\right)\right), d_{1}, d_{2}$ and d_{3}, where $d_{j}(j=1,2$ and 3$)$ is a disc corresponding to \widetilde{d}_{j}. Let $\widetilde{c_{1}}$ be the arc $\{(0,1, z) \mid 0 \leq z \leq 1\}$ in V, and $\widetilde{c_{2}}$ be the arc $\{(0,-1, z) \mid 0 \leq z \leq 1\}$ in V. Note that one endpoint of $\widetilde{c_{p}}(p=1,2)$ is contained in S. Let c_{p} denote the arc on D_{i}^{1} with $g^{1}\left(c_{p}\right)=\widetilde{c_{p}}$. Let $\widetilde{\gamma_{1,1}}, \widetilde{\gamma_{1,2}}, \widetilde{\gamma_{2,1}}$ and $\widetilde{\gamma_{2,2}}$ be the $\operatorname{arcs}\{(1,0, z) \mid 0 \leq z \leq 1\}$, $\{(1,0, z) \mid 1 \leq z \leq 2\},\{(-1,0, z) \mid 0 \leq z \leq 1\}$ and $\{(-1,0, z) \mid 1 \leq z \leq 2\}$ in V, respectively. Note that one endpoint of $\widetilde{\gamma_{q, 1}}(q=1,2)$ is contained in S. Let $\gamma_{q, r}(q=1$, 2; $r=1,2$) denote the arc on D_{i}^{1} with $g^{1}\left(\gamma_{q, r}\right)=\widetilde{\gamma_{q, r}}$. We may suppose, without loss

Fig. 4.2.

Fig. 4.3.
of generality, that Fig. 4.3 shows the location of the arcs c_{1} and c_{2} on $\partial N\left(\alpha ; D_{i}^{1}\right)$, and the location of the arcs $\gamma_{a, 1}, \gamma_{a, 2}, \gamma_{b, 1}$ and $\gamma_{b, 2}$ on $\partial N\left(\alpha^{\prime} ; D_{i}^{1}\right)$, where $(a, b)=(1,2)$ or $(2,1)$. Considering images of the outward-normal to D_{i}^{1} in $N\left(\alpha ; D_{i}^{1}\right)$ and $N\left(\alpha^{\prime} ; D_{i}^{1}\right)$, we see that $(a, b)=(1,2)$. Since the disc $\widetilde{d}_{j}(j=1,2)$ may be regarded as a band which connects $\widetilde{c_{j}}$ and $\widetilde{\gamma_{j, 1}}$, the disc d_{j} may be regarded as a band which connects c_{j} and $\gamma_{j, 1}$. This construction of D_{i}^{2} shows that the surface D_{i}^{2} is homeomorphic to an annulus.

Let n^{2} denote the component of ∂D_{i}^{2} such that l_{i}^{2} is not contained in n^{2}. Let m^{2} be the $\operatorname{arc} c l\left(\partial D_{i}^{2}-\left(n^{2} \cup l_{i}^{2}\right)\right)$. The simple closed curve $g^{2}\left(n^{2}\right)$ bounds a disc δ on S such that $g^{2}\left(m^{2}\right)$ is not contained in δ. Isotope $g^{2}\left(N\left(n^{2} ; D_{i}^{2}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{3} of a disc D_{i}^{3} into Q_{i} such that Σ_{i}^{3} consists of two arcs of type \mathcal{C}. This immersed disc $g^{3}\left(D_{i}^{3}\right)$ shows that the clasp number of K_{i} is at most one.

Proposition 4.6. Suppose that the number of points of X_{i} on D_{i} is four. Then the clasp number of K_{i} is at most two.

Proof. Since $\left|X_{i}\right|=4, \Sigma_{i}$ consists of either (1) four arcs of type \mathcal{A}, four arcs of type \mathcal{A}^{\prime} and some arcs of type \mathcal{B}, or (2) four arcs of type \mathcal{C} and some arcs of type \mathcal{B}, or (3) two arcs of type \mathcal{A}, two arcs of type \mathcal{A}^{\prime}, two arcs of type \mathcal{C} and some arcs of type \mathcal{B}. In these three cases, we obtain, by Lemma 2.3, an immersion g^{1} of a disc D_{i}^{1} into Q_{i} such that there is no arc of type \mathcal{B} in Σ_{i}^{1}.

First suppose that Σ_{i}^{1} consists of four arcs of type \mathcal{A} and four arcs of type \mathcal{A}^{\prime}. Similar arguments as in the proof of Proposition 4.2 show that the crossing number of K_{i} is at most six, and the clasp number of K_{i} is at most two.

Next suppose that Σ_{i}^{1} consists of four arcs of type \mathcal{C}. Then the immersed disc $g^{1}\left(D_{i}^{1}\right)$ shows that the clasp number of K_{i} is at most two.

Finally suppose that Σ_{i}^{1} consists of two arcs of type \mathcal{A}, two arcs of type \mathcal{A}^{\prime} and two arcs of type \mathcal{C}. Let α_{1}, α_{2} be arcs of type \mathcal{A}, and $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ be arcs of type \mathcal{A}^{\prime} such that $g^{1}\left(\alpha_{j}\right)=g^{1}\left(\alpha_{j}^{\prime}\right)$ for $j=1$ and 2. Let m^{1} denote the $\operatorname{arc} \operatorname{cl}\left(\partial D_{i}^{1}-l_{i}^{1}\right)$.

Now we consider configurations of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on D_{i}^{1}. When we proceed on m^{1} from one endpoint of m^{1}, we may assume, without loss of generality, that the first point of $\Sigma_{i}^{1} \cap m^{1}$ we encounter is an endpoint of either α_{1} or α_{1}^{\prime}. First suppose that the first point of $\Sigma_{i}^{1} \cap m^{1}$ is an endpoint of α_{1}. If the second point of $\Sigma_{i}^{1} \cap m^{1}$ is an endpoint of α_{1}^{\prime}, then a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on D_{i}^{1} is that of Fig. 4.4 (1) or (2). In the configurations of Fig. 4.4, we omit arcs of type \mathcal{C}. If the second point of $\Sigma_{i}^{1} \cap m^{1}$ is an endpoint of α_{2}, then the configuration is that of Fig. 4.4 (3) or (4). If the second point is an endpoint of α_{2}^{\prime}, then the configuration is that of Fig. 4.4 (5) or (6). Next suppose that the first point of $\Sigma_{i}^{1} \cap m^{1}$ is an endpoint of α_{1}^{\prime}. If the second point is an endpoint of α_{1}, then the configuration is that of Fig. 4.4 (1) or (7), up to exchange of the suffix. If the second point is an endpoint of α_{2}, then the configuration is that of Fig. 4.4 (6) or (8). If the second point is an endpoint of α_{2}^{\prime}, then the configuration is that of Fig. 4.4 (3) or (4), up to exchange of the suffix.

Lemma 4.7. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on D_{i}^{1} is that of Fig. 4.4 (1), (2), (4), (6) or (7). Then the clasp number of K_{i} is at most one.

Proof. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on D_{i}^{1} is that of Fig. 4.4 (1). Performing a CP surgery to $g^{1}\left(D_{i}^{1}\right)$ along the $\operatorname{arc} g^{1}\left(\alpha_{1}\right)=g^{1}\left(\alpha_{1}^{\prime}\right)$, we obtain an immersion g^{2} of an annulus D_{i}^{2} into Q_{i} such that Σ_{i}^{2} consists of one arc of type \mathcal{A}, one arc of type \mathcal{A}^{\prime} and two arcs of type \mathcal{C}. Let n^{2} denote the component of ∂D_{i}^{2} such that l_{i}^{2} is not contained in n^{2}. Let m^{2} be the arc $\operatorname{cl}\left(\partial D_{i}^{2}-\left(n^{2} \cup l_{i}^{2}\right)\right)$. The simple closed curve $g^{2}\left(n^{2}\right)$ bounds a disc δ on S such that $g^{2}\left(m^{2}\right)$ is not contained in δ. Isotope $g^{2}\left(N\left(n^{2} ; D_{i}^{2}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{3} of a disc into Q_{i} such that Σ_{i}^{3} consists of one arc of type \mathcal{A}, one arc of type \mathcal{A}^{\prime} and two

Fig. 4.4.
arcs of type \mathcal{C}. Proposition 4.5 shows that the clasp number of K_{i} is at most one.
Similar arguments as above prove the cases in the configurations of Fig. 4.4 (2), (4), (6) and (7).

Lemma 4.8. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on D_{i}^{1} is that of Fig. 4.4 (3) or (8). Then the clasp number of K_{i} is at most two.

Proof. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on D_{i}^{1} is that of Fig. 4.4 (3). Performing a CP surgery to $g^{1}\left(D_{i}^{1}\right)$ along the arc $g^{1}\left(\alpha_{1}\right)$, we obtain an immersion g^{2} of an annulus D_{i}^{2} into Q_{i} such that Σ_{i}^{2} consists of one arc of type \mathcal{A}, one arc of type \mathcal{A}^{\prime} and two arcs of type \mathcal{C}. Let α_{2} and α_{2}^{\prime} denote these arcs of types \mathcal{A} and \mathcal{A}^{\prime} in Σ_{i}^{2}, respectively. Let n^{2} denote the component of ∂D_{i}^{2} such that l_{i}^{2} is not contained in n^{2}, and let m^{2} denote the arc $\operatorname{cl}\left(\partial D_{i}^{2}-\left(n^{2} \cup l_{i}^{2}\right)\right)$. The simple closed curve $g^{2}\left(n^{2}\right)$ bounds a disc δ on S which contains one endpoint of the simple arc $g^{2}\left(m^{2}\right)$. Isotope $g^{2}\left(N\left(n^{2} ; D_{i}^{2}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{3}
of a disc D_{i}^{3} into Q_{i}. This isotopy changes the union of the $\operatorname{arcs} g^{2}\left(\alpha_{2}\right)=g^{2}\left(\alpha_{2}^{\prime}\right)$ and $g^{2}\left(m^{2}\right) \cap \delta$ to a singular arc γ of $g^{3}\left(D_{i}^{3}\right)$ such that $\left(g^{3}\right)^{-1}(\gamma)$ consists of two arcs of type \mathcal{C} in D_{i}^{3}. Hence Σ_{i}^{3} consists of four arcs of type \mathcal{C}. This immersed disc $g^{3}\left(D_{i}^{3}\right)$ shows that the clasp number of K_{i} is at most two.

Similar arguments as above prove the case in the configuration of Fig. 4.4 (8).

Lemma 4.9. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on D_{i}^{1} is that of Fig. 4.4 (5). Then the clasp number of K_{i} is at most two.

Proof. Let γ_{1} be the subarc of m^{1} with $\partial \gamma_{1}=\left(\alpha_{1} \cap m^{1}\right) \cup\left(\alpha_{2}^{\prime} \cap m^{1}\right)$, and γ_{2} be the subarc of m^{1} with $\partial \gamma_{2}=\left(\alpha_{2} \cap m^{1}\right) \cup\left(\alpha_{1}^{\prime} \cap m^{1}\right)$. Note that the singular arc $g^{1}\left(m^{1}\right)$ on S has the same configuration as that of Fig. 4.1 (3), up to symmetry and isotopy on S. The two arcs $g^{1}\left(\gamma_{1}\right)$ and $g^{1}\left(\gamma_{2}\right)$ cobound a disc δ on S such that $g^{1}\left(\partial m^{1}\right)$ is not contained in δ. Isotope $g^{1}\left(N\left(\gamma_{1} ; D_{i}^{1}\right)\right)$ along δ. Then we obtain an immersion g^{2} of a disc D_{i}^{2} into Q_{i} such that $g^{2}\left(m^{2}\right)$ is an embedded arc on S, where $m^{2}=c l\left(\partial D_{i}^{2}-l_{i}^{2}\right)$. This isotopy changes the union of the arcs $g^{1}\left(\alpha_{1}\right)=g^{1}\left(\alpha_{1}^{\prime}\right), g^{1}\left(\alpha_{2}\right)=g^{1}\left(\alpha_{2}^{\prime}\right)$ and $g^{1}\left(\gamma_{2}\right)$ to a singular arc γ of $g^{2}\left(D_{i}^{2}\right)$ such that $\left(g^{2}\right)^{-1}(\gamma)$ consists of two arcs of type \mathcal{C} in D_{i}^{2}. Therefore Σ_{i}^{2} consists of four arcs of type \mathcal{C}. This immersed disc $g^{2}\left(D_{i}^{2}\right)$ shows that the clasp number of K_{i} is at most two.

This completes the proof of Proposition 4.6

5. The case where D_{i} contains loop components of \boldsymbol{T}

In this section, we deal with an immersed surface $g\left(\bar{D}_{i}\right)$ when there are loop components of T in D_{i}. Recall that \bar{D}_{i} is the region separated by loop components of T in D_{i} such that l_{i} is a subarc of $\partial \bar{D}_{i}$.

Proposition 5.1. Suppose that \bar{D}_{i} is an annulus, and that the number of points of X_{i} on \bar{D}_{i} is 0 . Then K_{i} is the trivial knot.

Proof. Since $X_{i}=\emptyset, \Sigma_{i}$ consists only of arcs of type \mathcal{B}. Let n denote the component of $\partial \bar{D}_{i}$ such that l_{i} is not contained in n.

First suppose $\Sigma_{i}=\emptyset$. Then the simple closed curve $g(n)$ bounds a disc δ on S such that $g(m)$ is not contained in δ. Isotope $g\left(N\left(n ; \bar{D}_{i}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an embedding of a disc into Q_{i}. This embedded disc shows that K_{i} is the trivial knot.

Next suppose $\Sigma_{i} \neq \emptyset$. A properly embedded arc b on \bar{D}_{i} is said to be of type b_{1} if the two points of ∂b are contained in m, and if b and a subarc b^{\prime} of $\partial \bar{D}_{i}$ cobound a disc on \bar{D}_{i} such that l_{i} is contained in b^{\prime}. See Fig. 5.1. A properly embedded arc b on \bar{D}_{i} is of type b_{2} if b together with a subarc of m cobounds a disc on \bar{D}_{i}. A

m

Fig. 5.1.
properly embedded arc b on \bar{D}_{i} is of type b_{3} if b connects a point on m and a point on n. A properly embedded arc b on \bar{D}_{i} is of type b_{4} if b together with a subarc of n cobounds a disc on \bar{D}_{i}. We note that an arc of type \mathcal{B} on \bar{D}_{i} is of type b_{1}, b_{2}, b_{3} or b_{4}.

Now we consider configurations of a pair of arcs of type \mathcal{B} on \bar{D}_{i} which are identified by g. If one of the arcs of type \mathcal{B} in the pair is of type b_{1}, then we may assume, by Lemmas 2.2 and 2.3, that a configuration of the pair is, up to symmetry of \bar{D}_{i}, that of Fig. 5.2 (1) or (2). If one of the arcs of type \mathcal{B} is of type b_{2}, then we may assume, by Lemmas 2.2 and 2.3, that a configuration of the pair is, up to symmetry of \bar{D}_{i}, that of Fig. 5.2 (1) or (3). If one of the arcs of type \mathcal{B} is of type b_{3}, then we may assume, by Lemma 2.2, that a configuration of the pair is, up to symmetry of \bar{D}_{i}, that of Fig. 5.2 (2), (3) or (4). If one of the arcs of type \mathcal{B} is of type b_{4}, then we may assume, by Lemmas 2.2 and 2.3, that a configuration of the pair is that of Fig. 5.2 (4).

Lemma 5.2. Suppose that a configuration of the pair of arcs of type \mathcal{B} on \bar{D}_{i} which are identified by g is that of Fig. 5.2 (1), (2), (3) or (4). Then there exists an immersion g^{2} of an annulus \bar{D}_{i}^{2} into Q_{i} satisfying the following properties;
(i) Every component of Σ_{i}^{2} is an arc of type \mathcal{B},
(ii) The number of arcs of type \mathcal{B} in Σ_{i}^{2} is strictly less than that of type \mathcal{B} in Σ_{i}, and (iii) There is a subarc l_{i}^{2} of $\partial \bar{D}_{i}^{2}$ such that $g^{2}\left(l_{i}^{2}\right)=g\left(l_{i}\right)$, and that $g^{2}\left(\partial \bar{D}_{i}^{2}-l_{i}^{2}\right)$ is contained in S.

Proof. Suppose that a configuration of the pair of arcs of type \mathcal{B} on \bar{D}_{i} which are identified by g is that of Fig. 5.2 (1). Let β_{1} and β_{2} be the two arcs of type \mathcal{B}. Let V denote a regular neighborhood $N\left(g\left(\beta_{1}\right) ; Q_{i}\right)$. We may choose V so that $g\left(\bar{D}_{i}\right) \cap V$ consists of two discs $g\left(N\left(\beta_{1} ; \bar{D}_{i}\right)\right)$ and $g\left(N\left(\beta_{2} ; \bar{D}_{i}\right)\right)$. The disc $g\left(N\left(\beta_{1} ; \bar{D}_{i}\right)\right)$ intersects $g\left(N\left(\beta_{2} ; \bar{D}_{i}\right)\right)$ transversely along the arc $g\left(\beta_{1}\right)=g\left(\beta_{2}\right)$. We regard V as the set

Fig. 5.2.
$\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\}$ so that two discs of $V \cap S$ correspond to the sets $\left\{(x, y, 0) \mid x^{2}+y^{2} \leq 1\right\}$ and $\left\{(x, y, 1) \mid x^{2}+y^{2} \leq 1\right\}$. Without loss of generality, we may assume that $g\left(N\left(\beta_{1} ; \bar{D}_{i}\right)\right)$ corresponds to $\{(x, 0, z) \mid-1 \leq x \leq 1,0 \leq z \leq 1\}$, and that $g\left(N\left(\beta_{2} ; \bar{D}_{i}\right)\right)$ corresponds to $\{(0, y, z) \mid-1 \leq y \leq 1,0 \leq z \leq 1\}$. We may also assume that an image of the outward-normal to \bar{D}_{i} in $N\left(\beta_{1} ; \bar{D}_{i}\right)$ agrees with the direction of increasing y, and that an image of the outward-normal to \bar{D}_{i} in $N\left(\beta_{2} ; \bar{D}_{i}\right)$ agrees with the direction of increasing x. Let \widetilde{d}_{1} be the disc $\left\{(x, y, z) \mid x^{2}+y^{2}=1\right.$, $x \geq 0, y \geq 0,0 \leq z \leq 1\}$, and \widetilde{d}_{2} be the disc $\left\{(x, y, z) \mid x^{2}+y^{2}=1, x \leq 0, y \leq 0\right.$, $0 \leq z \leq 1\}$.

Now we define an immersion g^{1} of a surface $\overline{D_{i}^{1}}$ into Q_{i}. Let $g^{1}\left(\bar{D}_{i}^{1}\right)$ be the immersed surface which is the union of $g\left(\bar{D}_{i}-N\left(\beta_{1} \cup \beta_{2} ; \bar{D}_{i}\right)\right), \widetilde{d}_{1}$ and \widetilde{d}_{2}. We say that $g^{1}\left(\bar{D}_{i}^{1}\right)$ is obtained from $g\left(\bar{D}_{i}\right)$ by an oriented double curve surgery along the arc $g\left(\beta_{1}\right)=g\left(\beta_{2}\right)$. This operation was called an orientation preserving cut along the arc $g\left(\beta_{1}\right)=g\left(\beta_{2}\right)$. See, for example, [11, p. 4]. By this construction, $g^{1}\left(\bar{D}_{i}^{1}\right)$ satisfies the properties (i)-(iii). The surface \bar{D}_{i}^{1} is the union of $\bar{D}_{i}-N\left(\beta_{1} \cup \beta_{2} ; \bar{D}_{i}\right), d_{1}$ and d_{2}, where $d_{j}(j=1,2)$ is a disc corresponding to \widetilde{d}_{j}. Similar arguments as in the proof of Lemma 2.2 show that \bar{D}_{i}^{1} is homeomorphic to either an annulus or two annuli.

Let \bar{D}_{i}^{2} denote the connected component of \bar{D}_{i}^{1} such that l_{i}^{1} is a subarc of $\partial \bar{D}_{i}^{2}$. Let g^{2} be the restriction of g^{1} to \bar{D}_{i}^{2}. Thus we obtain an immersion g^{2} of an annulus \bar{D}_{i}^{2} into Q_{i} satisfying the properties (i)-(iii).

Similar arguments as above prove the cases in the configurations of Fig. 5.2 (2), (3) and (4).

By Lemma 5.2, we obtain an embedding g^{3} of an annulus $\overline{D_{i}^{3}}$ into Q_{i} with

Fig. 5.3.
$g^{3}\left(l_{i}^{3}\right)=g\left(l_{i}\right)$. Therefore we have $\Sigma_{i}^{3}=\emptyset$, and K_{i} is the trivial knot. This completes the proof of Proposition 5.1.

Proposition 5.3. Suppose that \bar{D}_{i} is an annulus, and that the number of points of X_{i} on \bar{D}_{i} is one. Then the clasp number of K_{i} is at most one.

Proof. Since $\left|X_{i}\right|=1, \Sigma_{i}$ consists of one arc of type \mathcal{A}, one arc of type \mathcal{A}^{\prime} and some arcs of type \mathcal{B}. By similar arguments as in the proof of Proposition 5.1, we obtain an immersion g^{1} of an annulus \bar{D}_{i}^{1} into Q_{i} such that there is no arc of type \mathcal{B} in Σ_{i}^{1}, and that there is a subarc l_{i}^{1} of $\partial \bar{D}_{i}^{1}$ with $g^{1}\left(l_{i}^{1}\right)=g\left(l_{i}\right)$. If $\Sigma_{i}^{1}=\emptyset$, then Proposition 5.1 shows that K_{i} is the trivial knot. So we may assume that Σ_{i}^{1} consists of one arc of type \mathcal{A} and one arc of type \mathcal{A}^{\prime}. Let n^{1} denote the component of $\partial \bar{D}_{i}^{1}$ such that l_{i}^{1} is not contained in n^{1}. Let m^{1} be the $\operatorname{arc} c l\left(\partial \bar{D}_{i}^{1}-\left(n^{1} \cup l_{i}^{1}\right)\right)$.

First suppose that there are no endpoints of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on n^{1}. Then the simple closed curve $g^{1}\left(n^{1}\right)$ bounds a disc δ on S such that $g^{1}\left(m^{1}\right)$ is not contained in δ. Isotope $g^{1}\left(N\left(n^{1} ; \bar{D}_{i}^{1}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{2} of a disc \bar{D}_{i}^{2} into Q_{i} such that Σ_{i}^{2} consists of one arc of type \mathcal{A} and one arc of type \mathcal{A}^{\prime}. Proposition 4.1 shows that K_{i} is the trivial knot.

Next suppose that there are endpoints of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on n^{1}. If there is an endpoint of only the arc of type \mathcal{A} on n^{1}, then a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on \bar{D}_{i}^{1} is that of Fig. 5.3 (1). If there is an endpoint of only the arc of type \mathcal{A}^{\prime} on n^{1}, then the arc of type \mathcal{A} satisfies the supposition of Lemma 2.1, and we obtain an embedding of an annulus into Q_{i}. Proposition 5.1 shows that K_{i} is the trivial knot. If there are endpoints of the arcs of types \mathcal{A} and \mathcal{A}^{\prime} on n^{1}, then a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on $\overline{D_{i}^{1}}$ is that of Fig. 5.3 (2).

Similar arguments as in the proof of Lemma 4.8 prove the following lemma.
Lemma 5.4. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on $\overline{D_{i}^{1}}$ is that of Fig. 5.3 (1). Then the clasp number of K_{i} is at most one.

Lemma 5.5. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on $\overline{D_{i}^{1}}$ is that of Fig. 5.3 (2). Then K_{i} is the trivial knot.

Proof. Performing a CP surgery to $g^{1}\left(\bar{D}_{-}^{1}\right)$ along the singular arc, we obtain an embedding g^{2} of a twice-punctured disc \bar{D}_{i}^{2} into Q_{i}. Let n_{1}^{2} and n_{2}^{2} denote the components of $\partial \bar{D}_{i}^{2}$ such that l_{i}^{2} is not a subarc of n_{1}^{2} or n_{2}^{2}. Let m^{2} be the arc $\operatorname{cl}\left(\partial \bar{D}_{i}^{2}-\left(n_{1}^{2} \cup n_{2}^{2} \cup l_{i}^{2}\right)\right)$. At least one of the simple closed curves $g^{2}\left(n_{1}^{2}\right)$ and $g^{2}\left(n_{2}^{2}\right)$, say $g^{2}\left(n_{1}^{2}\right)$, bounds a disc δ on S such that $g^{2}\left(n_{2}^{2}\right)$ and $g^{2}\left(m^{2}\right)$ are not contained in δ. Isotope $g^{2}\left(N\left(n_{1}^{2} ; \bar{D}_{i}^{2}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an embedding of an annulus into Q_{i}. Proposition 5.1 shows that K_{i} is the trivial knot.

This completes the proof of Proposition 5.3.
Proposition 5.6. Suppose that \bar{D}_{i} is an annulus, and that the number of points of X_{i} on \bar{D}_{i} is two. Then the clasp number of K_{i} is at most one.

Proof. Since $\left|X_{i}\right|=2, \Sigma_{i}$ consists of either (1) two arcs of type \mathcal{A}, two arcs of type \mathcal{A}^{\prime} and some arcs of type \mathcal{B}, or (2) two arcs of type \mathcal{C} and some arcs of type \mathcal{B}. In both cases, we obtain, by similar arguments as in the proof of Proposition 5.1, an immersion g^{1} of an annulus \bar{D}_{i}^{1} into Q_{i} such that there is no arc of type \mathcal{B} in Σ_{i}^{1}, and that there is a subarc l_{i}^{1} of $\partial \bar{D}_{i}^{1}$ with $g^{1}\left(l_{i}^{1}\right)=g\left(l_{i}\right)$. We may assume, by Propositions 5.1 and 5.3, that Σ_{i}^{1} consists of two arcs of type \mathcal{A} and two arcs of type \mathcal{A}^{\prime} in the case of (1), and that Σ_{i}^{1} consists of two arcs of type \mathcal{C} in the case of (2). Let n^{1} denote the component of $\partial \bar{D}_{i}^{1}$ such that l_{i}^{1} is not contained in n^{1}. Let m^{1} be the arc $c l\left(\partial \bar{D}_{i}^{1}-\left(n^{1} \cup l_{i}^{1}\right)\right)$.

Lemma 5.7. Suppose that Σ_{i}^{1} consists of two arcs of type \mathcal{C}. Then the clasp number of K_{i} is at most one.

Proof. The simple closed curve $g_{1}^{1}\left(n^{1}\right)$ bounds a disc δ on S such that $g^{1}\left(m^{1}\right)$ is not contained in δ. Isotope $g^{1}\left(N\left(n^{1} ; \bar{D}_{i}^{1}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{2} of a disc \bar{D}_{i}^{2} into Q_{i} such that Σ_{i}^{2} consists of two arcs of type \mathcal{C}. This immersed disc $g^{2}\left(\bar{D}_{i}^{2}\right)$ shows that the clasp number of K_{i} is at most one.

Lemma 5.8. Suppose that Σ_{i}^{1} consists of two arcs of type \mathcal{A} and two arcs of type \mathcal{A}^{\prime}. Then the clasp number of K_{i} is at most one.

Proof. We consider configurations of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on $\overline{D_{i}^{1}}$.
Claim 5.9. If there are no endpoints of arcs of type \mathcal{A} or \mathcal{A}^{\prime} on n^{1}, then the clasp number of K_{i} is at most one.

Proof. Suppose that there are no endpoints of arcs of type \mathcal{A} or \mathcal{A}^{\prime} on n^{1}. Then the simple closed curve $g^{1}\left(n^{1}\right)$ bounds a disc δ on S such that $g^{1}\left(m^{1}\right)$ is not contained in δ. Isotope $g^{1}\left(N\left(n^{1} ; \bar{D}_{i}^{1}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{2} of a disc into Q_{i} such that Σ_{i}^{2} consists of two arcs of type \mathcal{A} and two arcs of type \mathcal{A}^{\prime}. Proposition 4.2 shows that the clasp number of K_{i} is at most one.

We may assume, by Claim 5.9, that there is at least one endpoint of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on n^{1}. If there is an endpoint of only one arc of type \mathcal{A} on n^{1}, then we may assume, by Lemma 2.1 and Proposition 5.3, that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on $\overline{D_{i}^{1}}$ is, up to symmetry of $\overline{D_{i}^{1}}$, that of Fig. 5.4 (1) or (2). If there is an endpoint of only one arc of type \mathcal{A}^{\prime} on n^{1}, then we may assume, by Lemma 2.1 and Proposition 5.3, that the configuration is, up to symmetry of $\overline{D_{i}^{1}}$, that of Fig. 5.4 (3). If there are endpoints of only one arc of type \mathcal{A} and one arc of type \mathcal{A}^{\prime} on n^{1}, then we may assume, by Lemma 2.1 and Proposition 5.3, that the configuration is, up to symmetry of $\overline{D_{i}^{1}}$, that of Fig. 5.4 (4). If there are endpoints of only two arcs of type \mathcal{A} on n^{1}, then the configuration is that of Fig. 5.4 (5). If there are endpoints of only two arcs of type \mathcal{A}^{\prime} on n^{1}, then at least one of the two arcs of type \mathcal{A} satisfies the supposition of Lemma 2.1, and we obtain an immersion g^{2} of an annulus into Q_{i} such that Σ_{i}^{2} consists of one arc of type \mathcal{A} and one arc of type \mathcal{A}^{\prime}. Proposition 5.3 shows that the clasp number of K_{i} is at most one. If there are endpoints of only one arc of type \mathcal{A} and two arcs of type \mathcal{A}^{\prime} on n^{1}, then the same arguments as above show that the clasp number of K_{i} is at most one. If there are endpoints of only two arcs of type \mathcal{A} and one arc of type \mathcal{A}^{\prime} on n^{1}, then the configuration is that of Fig. 5.4 (6) or (7). If there are endpoints of two arcs of type \mathcal{A} and two arcs of type \mathcal{A}^{\prime} on n^{1}, then the configuration is that of Fig. 5.4 (8), (9) or (10).

Claim 5.10. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on \bar{D}_{i}^{1} is that of Fig. 5.4 (1), (2), (3), (6) or (7). Then the clasp number of K_{i} is at most one.

Proof. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on $\overline{D_{i}^{1}}$ is that of Fig. 5.4 (1). Let $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ denote arcs of type \mathcal{A}^{\prime}, and $\alpha_{j}(j=1$ or 2$)$ denote the arc of type \mathcal{A} as illustrated in the figure. We assume that $g^{1}\left(\alpha_{p}\right)=g^{1}\left(\alpha_{p}^{\prime}\right)$ for $p=1$ and 2.

First suppose $j=2$. The simple closed curve $g^{1}\left(n^{1}\right)$ intersects the immersed arc $g^{1}\left(m^{1}\right)$ transversely in one point on S. Since $g^{1}\left(\alpha_{1}\right)=g^{1}\left(\alpha_{1}^{\prime}\right)$, we can construct a simple closed curve on S which intersects $g^{1}\left(n^{1}\right)$ transversely in one point. This shows that $g^{1}\left(n^{1}\right)$ is a non-separating simple closed curve on a 2 -sphere, a contradiction.

Next suppose $j=1$. Performing a CP surgery to $g^{1}\left(\bar{D}_{i}^{1}\right)$ along the arc $g^{1}\left(\alpha_{2}\right)=$ $g^{1}\left(\alpha_{2}^{\prime}\right)$, we obtain an immersion g^{2} of a twice-punctured disc \bar{D}_{i}^{2} into Q_{i} such that Σ_{i}^{2} consists of one arc of type \mathcal{A} and one arc of type \mathcal{A}^{\prime}. Let n^{2} be the connected component of $\partial \bar{D}_{i}^{2}$ such that there is no endpoint of the arc of type \mathcal{A} or \mathcal{A}^{\prime} on n^{2}. Then the simple closed curve $g^{2}\left(n^{2}\right)$ bounds a disc δ on S such that $g^{2}\left(\partial \bar{D}_{i}^{2}-n^{2}\right) \cap S$

Fig. 5.4.
is not contained in δ. Isotope $g^{2}\left(N\left(n^{2} ; \bar{D}_{i}^{2}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{3} of an annulus into Q_{i} such that Σ_{i}^{3} consists of one arc of type \mathcal{A} and one arc of type \mathcal{A}^{\prime}. Proposition 5.3 shows that the clasp number of K_{i} is at most one.

Similar arguments as above prove the cases in the configurations of Fig. 5.4 (2), (3), (6) and (7).

Claim 5.11. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on \bar{D}_{i}^{1} is that of Fig. 5.4 (4). Then the clasp number of K_{i} is at most one.

Proof. Let α_{1}, α_{2} denote arcs of type \mathcal{A}, and $\alpha_{j}^{\prime}(j=1$ or 2) denote the arc of type \mathcal{A}^{\prime} as illustrated in the figure. We assume that $g^{1}\left(\alpha_{p}\right)=g^{1}\left(\alpha_{p}^{\prime}\right)$ for $p=1$ and 2.

First suppose $j=1$. Then the simple closed curve $g^{1}\left(n^{1}\right)$ bounds a disc δ on S which contains no endpoints of the simple arc $g^{1}\left(m^{1}\right)$. Isotope $g^{1}\left(N\left(n^{1} ; \bar{D}_{i}^{1}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{2} of a disc \bar{D}_{i}^{2} into Q_{i}. This isotopy changes the union of the arcs $g^{1}\left(\alpha_{1}\right)=g^{1}\left(\alpha_{1}^{\prime}\right), g^{1}\left(\alpha_{2}\right)=g^{1}\left(\alpha_{2}^{\prime}\right)$ and $g^{1}\left(m^{1}\right) \cap \delta$ to a singular arc γ of $g^{2}\left(\bar{D}_{i}^{2}\right)$ such that $\left(g^{2}\right)^{-1}(\gamma)$ consists of two arcs of type \mathcal{C} in \bar{D}_{i}^{2}. Hence Σ_{i}^{2} consists of two arcs of type \mathcal{C}. This immersed disc $g^{2}\left(\bar{D}_{i}^{2}\right)$ shows that the clasp number of K_{i} is at most one.

Next suppose $j=2$. Perform a CP surgery to $g^{1}\left(\overline{D_{i}^{1}}\right)$ along the arc $g^{1}\left(\alpha_{2}\right)=$ $g^{1}\left(\alpha_{2}^{\prime}\right)$. Then we obtain an immersion g^{2} of a twice-punctured disc into Q_{i}. By similar arguments as in the proof of Lemma 5.5, we obtain an immersion g^{3} of a disc into Q_{i} such that Σ_{i}^{3} consists of one arc of type \mathcal{A} and one arc of type \mathcal{A}^{\prime}. Proposition 4.1 shows that K_{i} is the trivial knot.

Claim 5.12. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on \bar{D}_{i}^{1} is that of Fig. 5.4 (5). Then K_{i} is the trivial knot.

Proof. Let α_{1} and α_{2} be arcs of type \mathcal{A} on $\overline{D_{i}^{1}}$. The simple closed curve $g^{1}\left(n^{1}\right)$ bounds a disc δ on S which contains no endpoints of the simple arc $g^{1}\left(m^{1}\right)$. Isotope $g^{1}\left(N\left(n^{1} ; \bar{D}_{i}^{1}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{2} of a disc \bar{D}_{i}^{2} into Q_{i}. This isotopy changes the union of the arcs $g^{1}\left(\alpha_{1}\right), g^{1}\left(\alpha_{2}\right)$ and $g^{1}\left(m^{1}\right) \cap \delta$ to a singular arc γ of $g^{2}\left(\bar{D}_{i}^{2}\right)$ such that $\left(g^{2}\right)^{-1}(\gamma)$ consists of two arcs γ_{1} and γ_{2} embedded in \bar{D}_{i}^{2}, where $\partial \gamma_{1}$ is contained in l_{i}^{2} and γ_{2} is contained in int $\bar{D}_{i_{-}}^{2}$. Note that $\gamma_{1} \cap \gamma_{2}=\emptyset$ on \bar{D}_{i}^{2}, and that γ_{1} and a subarc of l_{i}^{2} cobound a disc d_{γ} in \bar{D}_{i}^{2} such that γ_{2} is not contained in d_{γ}. Isotope $g^{2}\left(N\left(\gamma_{2} ; \bar{D}_{i}^{2}\right)\right)$ along $g^{2}\left(d_{\gamma}\right)$. Then we obtain an embedding g^{3} of a disc \bar{D}_{i}^{3} into Q_{i}. This embedded disc $g^{3}\left(\bar{D}_{i}^{3}\right)$ shows that K_{i} is the trivial knot.

Claim 5.13. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on $\overline{D_{i}^{1}}$ is that of Fig. 5.4 (8), (9) or (10). Then K_{i} is the trivial knot.

Proof. Suppose that a configuration of arcs of types \mathcal{A} and \mathcal{A}^{\prime} on \bar{D}_{i}^{1} is that of Fig. 5.4 (8). Let α_{1} and α_{2} denote arcs of type \mathcal{A}, and $\alpha_{j}^{\prime}(j=1$ or 2$)$ denote the arc of type \mathcal{A}^{\prime} as illustrated in the figure. We assume that $g^{1}\left(\alpha_{p}\right)=g^{1}\left(\alpha_{p}^{\prime}\right)$ for $p=1$ and 2.

First suppose $j=2$. Then there is no configuration of an immersed closed curve $g^{1}\left(n^{1}\right)$ on a 2 -sphere.

Next suppose $j=1$. Performing CP surgeries to $g^{1}\left(\bar{D}_{i}^{1}\right)$ along the $\operatorname{arcs} g^{1}\left(\alpha_{1}\right)$ and $g^{1}\left(\alpha_{2}\right)$, we obtain an embedding g^{2} of a twice-punctured annulus \bar{D}_{i}^{2} into Q_{i}. Similar arguments as in the proof of Lemma 5.5 shows that K_{i} is the trivial knot.

Fig. 5.5.
The same arguments as above prove the cases in the configurations of Fig. 5.4 (9) and (10).

This completes the proofs of Lemma 5.8 and Proposition 5.6.
Proposition 5.14. Suppose that \bar{D}_{i} is a twice-punctured disc, and that the number of points of X_{i} on \bar{D}_{i} is 0 . Then the clasp number of K_{i} is at most one.

Proof. Since $\left|X_{i}\right|=0, \Sigma_{i}$ consists only of arcs of type \mathcal{B}. Let n_{1}, n_{2} denote connected components of $\partial \bar{D}_{i}-\left(m \cup l_{i}\right)$.

A properly embedded arc b on \bar{D}_{i} is said to be of type b_{0} if b and a subarc of $\operatorname{cl}\left(\partial \bar{D}_{i}-l_{i}\right)$ cobound a disc on \bar{D}_{i}. See Fig. 5.5. A properly embedded arc b on \bar{D}_{i} is of type b_{1} if the two points of ∂b are contained in m, and if b together with a subarc b^{\prime} of $\partial \bar{D}_{i}$ cobounds a disc on \bar{D}_{i} such that l_{i} is contained in b^{\prime}. A properly embedded arc b on \bar{D}_{i} is of type b_{2} if the two points of ∂b are contained in m, and if b separates \bar{D}_{i} to two annuli d_{1} and d_{2} so that n_{j} is a component of ∂d_{j} for $j=1$ and 2. A properly embedded arc b on \bar{D}_{i} is of type b_{3} if b connects a point on m and a point on n_{j} for $j=1$ or 2 . A properly embedded arc b on \bar{D}_{i} is of type b_{4} if b connects a point on n_{1} and a point on n_{2}. A properly embedded $\operatorname{arc} b$ on \bar{D}_{i} is of type b_{5} if the two points of ∂b are contained in n_{j}, and if b and a subarc of n_{j} together with n_{k} cobound an annulus on \bar{D}_{i} for $(j, k)=(1,2)$ or $(2,1)$. We note that an arc of type \mathcal{B} on \bar{D}_{i} is of type $b_{0}, b_{1}, b_{2}, b_{3}, b_{4}$ or b_{5}.

The following lemma is essentially the same as Lemma 1 (1) in [6]. We refer to [6] for a proof.

Lemma 5.15. Let β be an arc of type \mathcal{B} which is of type b_{0} on \bar{D}_{i}. Then there are an orientable surface $\overline{D_{i}^{1}}$ and an immersion $g^{1}: \bar{D}_{i}^{1} \rightarrow Q_{i}$ satisfying the following properties;
(i) The Euler characteristics of $\overline{D_{i}^{1}}$ is equal to or greater than that of \bar{D}_{i},
(ii) Every component of Σ_{i}^{1} is an arc of type \mathcal{B},
(iii) The number of arcs of type \mathcal{B} in Σ_{i}^{1} is strictly less than that in Σ_{i}, and
(iv) There is a subarc l_{i}^{1} of $\partial \bar{D}_{i}^{1}$ such that $g^{1}\left(l_{i}^{1}\right)=g\left(l_{i}\right)$, and that $g^{1}\left(\partial \bar{D}_{i}^{1}-l_{i}^{1}\right)$ is
contained in S.
We may assume, by Lemma 5.15 and Propositions 4.1 and 5.1, that there is no arc of type \mathcal{B} which is of type b_{0} on a twice-punctured disc \bar{D}_{i}.

Let β be an arc of type \mathcal{B} which is of type b_{1} on \bar{D}_{i}, and d_{β} be the disc on \bar{D}_{i} which is cobounded by β and a subarc of $\partial \bar{D}_{i}$. We may assume, by Lemma 2.2, that the restriction of g to d_{β} is an embedding. We can isotope the string $g\left(l_{i}\right)$ of the 1 -string tangle $\left(Q_{i}, g\left(l_{i}\right)\right)$ along the embedded disc $g\left(d_{\beta}\right)$ in Q_{i} to the string $g(\beta)$ of the 1 -string tangle $\left(Q_{i}, g(\beta)\right.$). It follows that it has no effect on the knot type of K_{i} to replace \bar{D}_{i} with $\operatorname{cl}\left(\bar{D}_{i}-N\left(d_{\beta} ; \bar{D}_{i}\right)\right)$. So we suppose, in the following, that there is no arc of type \mathcal{B} which is of type b_{1} on \bar{D}_{i}.

Now we consider configurations of a pair of arcs of type \mathcal{B} on \bar{D}_{i} which are identified by g. If one of the arcs of type \mathcal{B} is of type b_{2}, then we may assume, by Lemma 2.2, that a configuration of the pair is, up to symmetry of \bar{D}_{i}, that of Fig. 5.6 (1), (2) or (3). If one of the arcs of type \mathcal{B} is of type b_{3}, then we may assume, by Lemma 2.2, that a configuration of the pair is, up to symmetry of \bar{D}_{i}, that of Fig. 5.6 (2)-(6) or (7). If one of the arcs of type \mathcal{B} is of type b_{4}, then we may assume, by Lemma 2.2, that a configuration of the pair is, up to symmetry of \bar{D}_{i}, that of Fig. 5.6 (6) or (8). If one of the arcs of type \mathcal{B} is of type b_{5}, then we may assume, by Lemma 2.2, that a configuration of the pair is, up to symmetry of \bar{D}_{i}, that of Fig. 5.6 (7) or (8).

Lemma 5.16. Suppose that a configuration of a pair of arcs of type \mathcal{B} on \bar{D}_{i} which are identified by g is that of Fig. 5.6 (1), (2), (3), (5), (7) or (8). Then there is an immersion $g^{2}: \bar{D}_{i}^{2} \rightarrow Q_{i}$ with the following properties;
(i) The surface $\overline{D_{i}^{2}}$ is homeomorphic to either an annulus or a twice-punctured disc,
(ii) Every component of Σ_{i}^{2} is an arc of type \mathcal{B},
(iii) The number of arcs of type \mathcal{B} in Σ_{i}^{2} is strictly less than that in Σ_{i}, and
(iv) There is a subarc l_{i}^{2} of $\partial \bar{D}_{i}^{2}$ such that $g^{2}\left(l_{i}^{2}\right)=g\left(l_{i}\right)$ and that $g^{2}\left(\partial \bar{D}_{i}^{2}-l_{i}^{2}\right)$ is contained in S.

Proof. Suppose that a configuration of a pair of arcs of type \mathcal{B} on \bar{D}_{i} which are identified by g is that of Fig. 5.6 (1). Performing an oriented double curve surgery to $g\left(\bar{D}_{i}\right)$ along the singular arc, we obtain an immersion $g^{1}: \bar{D}_{i}^{1} \rightarrow Q_{i}$ which satisfies the conditions (ii), (iii) and (iv). Similar arguments as in the proof of Lemma 2.2 show that the surface \bar{D}_{i}^{1} is homeomorphic to either a union of an annulus and a twicepunctured disc, or a twice-punctured disc. Let \bar{D}_{i}^{2} denote the connected component of \bar{D}_{i}^{1} such that l_{i}^{1} is a subarc of $\partial \bar{D}_{i}^{2}$. Let g^{2} be the restriction of g^{1} to \bar{D}_{i}^{2}. Then the immersion $g^{2}: \bar{D}_{i}^{2} \rightarrow Q_{i}$ satisfies the conditions (i)-(iv).

The same arguments as above prove the cases in the configurations of Fig. 5.6 (2), (3), (5), (7) and (8).

Fig. 5.6.

The same arguments as in the proof of Lemma 5.16 prove the following two lemmas.

Lemma 5.17. Suppose that a configuration of a pair of arcs of type \mathcal{B} on \bar{D}_{i} which are identified by g is that of Fig. 5.6 (4). Let 1, 2, x, y denote endpoints of arcs of type \mathcal{B} as illustrated in the figure. If $g(1)=g(x)$ and $g(2)=g(y)$, then there is an immersion g^{2} of a twice-punctured disc \bar{D}_{i}^{2} into Q_{i} such that every component of Σ_{i}^{2} is an arc of type \mathcal{B}, that the number of arcs of type \mathcal{B} in Σ_{i}^{2} is strictly less than that in Σ_{i}, and that there is a subarc l_{i}^{2} of $\partial \bar{D}_{i}^{2}$ with $g^{2}\left(l_{i}^{2}\right)=g\left(l_{i}\right)$.

Lemma 5.18. Suppose that a configuration of a pair of arcs of type \mathcal{B} on \bar{D}_{i} which are identified by g is that of Fig. 5.6 (6). Let 1, 2, x, y denote endpoints of arcs of type \mathcal{B} as illustrated in the figure. If $g(1)=g(x)$ and $g(2)=g(y)$, then there is an immersion g^{2} of a twice-punctured disc \bar{D}_{i}^{2} into Q_{i} such that every component of Σ_{i}^{2} is an arc of type \mathcal{B}, that the number of arcs of type \mathcal{B} in Σ_{i}^{2} is strictly less than that in Σ_{i}, and that there is a subarc l_{i}^{2} of $\partial \bar{D}_{i}^{2}$ with $g^{2}\left(l_{i}^{2}\right)=g\left(l_{i}\right)$.

By Lemmas 5.16, 5.17 and 5.18, we may suppose either that \bar{D}_{i}^{2} is an annulus such that Σ_{i}^{2} consists only of arcs of type \mathcal{B}, or that \bar{D}_{i}^{2} is a twice-punctured disc such that a configuration of every pair of arcs of type \mathcal{B} on \bar{D}_{i}^{2} which are identified by g^{2} is that of Fig. 5.6 (4) or (6) with $g^{2}(1)=g^{2}(y)$ and $g^{2}(2)=g^{2}(x)$. If \bar{D}_{i}^{2} is an annulus, then Proposition 5.1 shows that K_{i} is the trivial knot.

In the rest of the proof of Proposition 5.14, we suppose that \bar{D}_{i}^{2} is a twicepunctured disc, and that every pair of arcs of type \mathcal{B} on \bar{D}_{i}^{2} which are identified by g^{2} is either the pair as in the configuration of Fig. 5.6 (4) with $g^{2}(1)=g^{2}(y)$ and $g^{2}(2)=g^{2}(x)$, or the pair as in the configuration of Fig. 5.6 (6) with $g^{2}(1)=g^{2}(y)$ and $g^{2}(2)=g^{2}(x)$.

We may assume, by Lemma 2.4, that Σ_{i}^{2} contains at most one pair of arcs of type \mathcal{B} as in the configuration of Fig. 5.6 (4), and at most two pairs of arcs of type \mathcal{B} as in the configuration of Fig. 5.6 (6). Now we consider configurations of arcs of type \mathcal{B} on \bar{D}_{i}^{2}. If Σ_{i}^{2} consists of only one pair of arcs of type \mathcal{B} as in the configuration of Fig. 5.6 (4), then a configuration of arcs of type \mathcal{B} on \bar{D}_{i}^{2} is that of Fig. 5.7 (1). In the configurations of Fig. 5.7, we suppose that endpoints of arcs of type \mathcal{B} which have the same labels are identified by g^{2}. If Σ_{i}^{2} consists of only one pair of arcs of type \mathcal{B} as in the configuration of Fig. 5.6 (6), then the configuration is that of Fig. 5.7 (2). If Σ_{i}^{2} consists of only one pair of arcs of type \mathcal{B} as in the configuration of Fig. 5.6 (4) and one pair of arcs of type \mathcal{B} as in the configuration of Fig. 5.6 (6), then the configuration is that of Fig. 5.7 (3), (4) or (5), up to symmetry of $\overline{D_{i}^{2}}$. If Σ_{i}^{2} consists of only two pairs of arcs of type \mathcal{B} as in the configuration of Fig. 5.6 (6), then the configuration is that of Fig. 5.7 (6), up to symmetry of $\overline{D_{i}^{2}}$. If Σ_{i}^{2} consists of one pair of arcs of type \mathcal{B} as in the configuration of Fig. 5.6 (4) and two pairs of arcs of type \mathcal{B} as

Fig. 5.7.

Fig. 5.7. (continued)
in the configuration of Fig. 5.6 (6), then the configuration is that of Fig. 5.7 (7)-(13) or (14), up to symmetry of \bar{D}_{i}^{2}.

Lemma 5.19. A configuration of arcs of type \mathcal{B} on \bar{D}_{i}^{2} is not that of Fig. 5.7 (2)-(5), (7)-(11) or (14).

Proof. First we deal with the configuration of Fig. 5.7 (2). Let n_{1}^{2}, n_{2}^{2} denote the components of $\partial \bar{D}_{i}^{2}$ as illustrated in the figure. Note that both $g^{2}\left(n_{1}^{2}\right)$ and $g^{2}\left(n_{2}^{2}\right)$ are simple closed curves on S. The simple closed curve $g^{2}\left(n_{2}^{2}\right)$ intersects $g^{2}\left(n_{1}^{2}\right)$ transversely in one point at the image of the point labeled 1 . This implies that each of $g^{2}\left(n_{1}^{2}\right)$ and $g^{2}\left(n_{2}^{2}\right)$ is a non-separating simple closed curve on a 2 -sphere, a contradiction.

Similar arguments as above prove that a configuration of arcs of type \mathcal{B} on $\overline{D_{i}^{2}}$ is not that of Fig. 5.7 (3), (4) or (5).

Next we deal with the configuration of Fig. 5.7 (7). Let n_{1}^{2} and n_{2}^{2} denote the components of $\partial \bar{D}_{i}^{2}$, and let m^{2} denote the $\operatorname{arc} \operatorname{cl}\left(\partial \bar{D}_{i}^{2}-\left(n_{1}^{2} \cup n_{2}^{2} \cup l_{i}^{2}\right)\right)$ as illustrated in the figure. We denote by γ_{m} the subarc of m^{2} such that $\partial \gamma_{m}$ consists of the two points labeled 2 and 6 , and we denote by γ_{n} the subarc of n_{2}^{2} such that $\partial \gamma_{n}$ consists of the two points labeled 2 and 6 , and that int γ_{n} is disjoint from the points labeled 3 and 5. Then the union $g^{2}\left(\gamma_{m}\right) \cup g^{2}\left(\gamma_{n}\right)$ forms a simple closed curve on S. The simple closed curve $g^{2}\left(n_{1}^{2}\right)$ intersects $g^{2}\left(\gamma_{m}\right) \cup g^{2}\left(\gamma_{n}\right)$ on S transversely in one point at the image of the point labeled 4. This implies that both $g^{2}\left(n_{1}^{2}\right)$ and $g^{2}\left(\gamma_{m}\right) \cup g^{2}\left(\gamma_{n}\right)$ are non-separating simple closed curves on a 2 -sphere, a contradiction.

Similar arguments as above prove that a configuration of arcs of type \mathcal{B} on $\overline{D_{i}^{2}}$ is not that of Fig. 5.7 (8)-(11) or (14).

Lemma 5.20. Suppose that a configuration of arcs of type \mathcal{B} on $\overline{D_{i}^{2}}$ is that of Fig. 5.7 (1). Then the clasp number of K_{i} is at most one.

Proof. Let n_{1}^{2}, n_{2}^{2} denote the components of $\partial \bar{D}_{i}^{2}$, and β_{1}, β_{2} denote arcs of type \mathcal{B} as illustrated in the figure. Let m^{2} be the $\operatorname{arc} c l\left(\partial \bar{D}_{i}^{2}-\left(n_{1}^{2} \cup n_{2}^{2} \cup l_{i}^{2}\right)\right)$. The image $g^{2}\left(n_{1}^{2} \cup n_{2}^{2} \cup m^{2}\right)$, which is unique up to isotopy and symmetry on S, is illustrated in Fig. 5.8 (1). The simple closed curve $g^{2}\left(n_{1}^{2}\right)$ bounds a disc δ on S such that $g^{2}\left(n_{2}^{2}\right)$ is not contained in δ. Isotope $g^{2}\left(N\left(n_{1}^{2} ; \bar{D}_{i}^{2}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{3} of an annulus \bar{D}_{i}^{3} into Q_{i}. This isotopy changes the union of the arcs $g^{2}\left(\beta_{1}\right)=g^{2}\left(\beta_{2}\right)$ and $g^{2}\left(m^{2}\right) \cap \delta$ to a singular arc γ of $g^{3}\left(\bar{D}_{i}^{3}\right)$ such that $\left(g^{3}\right)^{-1}(\gamma)$ consists of one arc of type \mathcal{A} and one arc of type \mathcal{A}^{\prime} on $\overline{D_{i}^{3}}$. Hence Σ_{i}^{3} consists of one arc of type \mathcal{A} and one arc of type \mathcal{A}^{\prime}. Proposition 5.3 shows that the clasp number of K_{i} is at most one.

Lemma 5.21. Suppose that a configuraton of arcs of type \mathcal{B} on $\overline{D_{i}^{2}}$ is that of Fig. 5.7 (6). Then the clasp number of K_{i} is at most one.

Fig. 5.8.
Proof. Let n_{1}^{2}, n_{2}^{2} denote the components of $\partial \bar{D}_{i}^{2}$ as illustrated in the figure. Let m^{2} be the arc $c l\left(\partial \bar{D}_{i}^{2}-\left(n_{1}^{2} \cup n_{2}^{2} \cup l_{i}^{2}\right)\right)$. The image $g^{2}\left(n_{1}^{2} \cup n_{2}^{2} \cup m^{2}\right)$, which is unique up to isotopy and symmetry on S, is illustrated in Fig. 5.8 (2). The simple closed curve $g^{2}\left(n_{2}^{2}\right)$ bounds a disc δ on S such that the image of the point labeled 2 is not contained in δ. Isotope $g^{2}\left(N\left(n_{2}^{2} ; \bar{D}_{i}^{2}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{3} of an annulus into Q_{i}. Similar arguments as in the proof of Lemma 5.20 show that Σ_{i}^{3} consists of one arc of type \mathcal{A} and one arc of type \mathcal{A}^{\prime}. Proposition 5.3 shows that the clasp number of K_{i} is at most one.

Lemma 5.22. Suppose that a configuration of arcs of type \mathcal{B} on \bar{D}_{i}^{2} is that of Fig. 5.7 (12). Then K_{i} is the trivial knot.

Proof. Let n_{1}^{2}, n_{2}^{2} denote the components of $\partial \bar{D}_{i}^{2}$ as illustrated in the figure. Let m^{2} denote the $\operatorname{arc} \operatorname{cl}\left(\partial \bar{D}_{i}^{2}-\left(n_{1}^{2} \cup n_{2}^{2} \cup l_{i}^{2}\right)\right)$. The image $g^{2}\left(n_{1}^{2} \cup n_{2}^{2} \cup m^{2}\right)$, which is unique up to isotopy and symmetry on S, is illustrated in Fig. 5.8 (3). The simple closed curve $g^{2}\left(n_{1}^{2}\right)$ bounds a disc δ on S which contains no endpoints of the simple $\operatorname{arc} g^{2}\left(m^{2}\right)$. Isotope $g^{2}\left(N\left(n_{1}^{2} ; \bar{D}_{i}^{2}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{3} of an annulus into Q_{i}. Similar arguments as in the proof of Lemma 5.20 show that Σ_{i}^{3} consists of two arcs of type \mathcal{B}. Proposition 5.1 shows that K_{i} is the trivial knot.

Lemma 5.23. Suppose that a configuration of arcs of type \mathcal{B} on $\overline{D_{i}^{2}}$ is that of Fig. 5.7 (13). Then K_{i} is the trivial knot.

Proof. Let n_{1}^{2}, n_{2}^{2} denote the components of $\partial \bar{D}_{i}^{2}$ as illustrated in the figure. Let m^{2} denote the arc $\operatorname{cl}\left(\partial \bar{D}_{i}^{2}-\left(n_{1}^{2} \cup n_{2}^{2} \cup l_{i}^{2}\right)\right)$. The image $g^{2}\left(n_{1}^{2} \cup n_{2}^{2} \cup m^{2}\right)$, which is unique up to isotopy and symmetry on S, is illustrated in Fig. 5.8 (4). The simple closed curve $g^{2}\left(n_{1}^{2}\right)$ bounds a disc δ on S which contains no endpoints of the simple $\operatorname{arc} g^{2}\left(m^{2}\right)$. Isotope $g^{2}\left(N\left(n_{1}^{2} ; \bar{D}_{i}^{2}\right)\right) \cup \delta$ slightly into int Q_{i}. Then we obtain an immersion g^{3} of an annulus into Q_{i}. Similar arguments as in the proof of Lemma 5.20 show that Σ_{i}^{3} consists of two arcs of type \mathcal{B}. Proposition 5.1 shows that K_{i} is the trivial knot.

By Lemmas 5.19-5.23, we may suppose that \bar{D}_{i}^{2} is a twice-punctured disc and $\Sigma_{i}^{2}=\emptyset$. The same arguments as in the proof of Lemma 5.5 show that K_{i} is the trivial knot.

This completes the proof of Proposition 5.14.

Appendix

Kadokami obtained the following table in his Doctoral Dissertation [2]. This table gives us the clasp number of prime knots of eight or fewer crossings except 8_{18}. We refer to Rolfsen's table [12] for the nomenclature of knots. The clasp number of 8_{18} is not known yet.

knot	$c p(K)$
3_{1}	1
4_{1}	1
5_{1}	2
5_{2}	1
6_{1}	1
6_{2}	2
6_{3}	2
7_{1}	3
7_{2}	1
7_{3}	2
7_{4}	2
7_{5}	2
7_{6}	2
7_{7}	2
8_{1}	1
8_{2}	3
8_{3}	2

knot	$c p(K)$
8_{4}	2
8_{5}	3
8_{6}	2
8_{7}	3
8_{8}	2
8_{9}	3
8_{10}	3
8_{11}	2
8_{12}	2
8_{13}	2
8_{14}	2
8_{15}	2
8_{16}	3
8_{17}	3
8_{19}	3
8_{20}	2
8_{21}	2

Acknowledgements. The author would like to express his sincere gratitude to Professor Kanji Morimoto, Professor Chuichiro Hayashi and Dr. Teruhisa Kadokami for thier helpful comments.

References

[1] J. Birman and W. Menasco: Studying links via closed braids, IV: Split and composite links, Invent. Math. 102 (1990), 115-139.
[2] T. Kadokami: Doctoral Dissertation, Osaka City University (1998).
[3] P. Kronheimer and T. Mrowka: Gauge theory for embedded surfaces, I, Topology 32 (1993), 773-826.
[4] P. Kronheimer and T. Mrowka: Gauge theory for embedded surfaces, II, Topology 34 (1995), 37-97.
[5] Y. Moriah and H. Rubinstein: Heegaard structures of negatively curved 3-manifolds, Comm. Anal. Geom. 5 (1997), 375-412.
[6] K. Morimoto: On the additivity of the clasp singularities, Kobe J. Math. 3 (1986), 179-185.
[7] K. Morimoto: On the clasp number of torus knots; original title: "To-rasu musubime no kurasupu suu ni tsuite" (in Japanese), The review of the Takushoku University 177 (1989), 319-323.
[8] K. Morimoto: Characterization of tunnel number two knots which have the property " $2+1=2$ ", Topology Appl. 64 (1995), 165-176.
[9] K. Morimoto, M. Sakuma and Y. Yokota: Examples of tunnel number one knots which have the property " $1+1=3$ ", Math. Proc. Cambridge Philos. Soc. 119 (1996), 113-118.
[10] K. Murasugi: Knot theory and its applications, Birkhäuser Boston, Inc., Boston, MA (1996).
[11] C.D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.
[12] D. Rolfsen: Knots and Links, (Corrected reprint of the 1976 original.) Mathematics Lecture

Series, 7, Publish or Perish Inc., Houston, TX, (1990).
[13] H. Schubert: Knoten und Vollringe, Acta Math. 90 (1953), 131-286.
[14] T. Shibuya: Some relations among various numerical invariants for links, Osaka J. Math. 11 (1974), 313-322.
[15] S. Suzuki: Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad. 45 (1969), 34-38.

Graduate School of Mathematical Sciences
University of Tokyo
Tokyo 153-8914
Japan
e-mail: matsuda@ms.u-tokyo.ac.jp
Current address:
Department of Mathematics
Graduate School of Science
Hiroshima University
Hiroshima 739-8526
Japan
e-mail: matsuda@math.sci.hiroshima-u.ac.jp

[^0]: The author is partially supported by JSPS Research Fellowships for Young Scientists.

