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1. Introduction

The topological type of a degenerating family of finite briaed coverings of discs
can be determined by the pait(o), the permutation monodromgp  and the braid
monodromyo, which satisfy the equalityp o o = ®.

By the theorem of Hilden [9]-Montesinos [11], every 3-dirs@mal compact ori-
ented manifold can be expressed as a covering of degree % &-#pheres® branch-
ing at a knot, whose monodromy at each branch point is a tomitgm. We regard
§% as the boundary of a complex 2-dimensional polydisc. We edgard the knot as
a braid. Taking cones, we get a topological degeneratinglyfamh branched coverings
of discs. Thus every 3-dimensional compact oriented michiféan be constructed from
the pair @, ), where® is a representation of the free gragp nof generatois o
the 3rd symmetric grous such that the image by  of every generator is a trans-
position ando is a braid ofn strings with® o 0 = ®. Hence it is possible to com-
pute the fundamental group of every 3-dimensional compeented manifold in this
way, combining the theorem of Zariski-van Kampen (see Dirf& and the method
of Reidemeister-Schreier (see Rolfsen [14]).

There exist three canonincal forms of suéh , that is, threeomaal forms of
monodromy representationd  for coverings of discs of de@reeith n (n is fixed)
branch points such that the monodromy at each branch poiattiansposition. Note
that finite branched coverings of discs are compact Riemanface deleted some
discs from them. We consider branched coverings of degreso3ye have compact
Riemann surfaces deleted 1 (Case 3) or 2 (Case 2) or 3 (Casesck) fdom them.
Each one has a canonical form of the monodromy. The hraglich that® o o = ®
forms a subgroup oB, of finite index. We call it the isotropy gudup and denote it
by I(®). Birman and Wajnryb compute the generators @ I( ) f@s€ 2 and 3 in [3].

In this paper, we compute the generators ob I( ) for Case 1, famdamen-
tal groups of some examples of 3-dimensional compact @iemanifolds using our
method.
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a’ x A0, D) a'e’ x A0, b") a’ x A0, b')

(0<s <2n)

Fig. 1.

2. Connection between branched coverings of discs and 3-démsional man-
ifolds

By the theorem of Hilden-Montesinos (Hilden [9], Montesinfil1]), for every
3-dimensional compact oriented manifoll , there exists poltwgical branched cov-
ering

hiYy — 83

of the 3-spheres® of degree 3 branching along a knBt , whose monodromy around
the knot is given only by transpositions.

We regard the knoB, as a braid, for every knot (and link) isopit in $° to
a braid. We may identifys® with 9(A(0, a’) x A(0, b’)), where A (Qa’) is the disc in
the complex planeC with the center 0 and the radius. We may assume tha, is
contained in0A(0, a’) x A(0, b’) as in Fig. 1.

Let B be the cone oveB, connecting every point Bf with the originC?.
Put 0<a’ <a and 0< b’ < b. Let

f: X — A0, a) x A, b)

be the topological finite branched covering branchinggat hwlite same monodromy
as h. (Such a branched covering exists by Fox completion (Fx [n fact X is a
cone overY .) SinceX is a topological cone over

m(X — {x}, p) ~m(Y. p). (x=f"H(0, 0))).
Put

X, = £t x A0, b)),
fi = flx,: Xo — t x A0, b).
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Fig. 2.

Then everyf; { # 0) is a finite branched covering of the disc A(O, »), and f
can be regarded as a topological degenerating family offibianched coverings of
discs: f ={f;}. Its topological type is determined by the pair

(®,,0(5), (6:s+—a'e*, (0<s < 2m))

of the monodromy®, off; (for a fixed # 0) and the braid monodrom#(s) of f.
But they must satisfy the following equality (Namba [12]):

CD] 9] 9(5) = CI),,

where6d(d) is regarded as an automorphismmfz x A(0, b)— By, g) (see Section 3).
Conversely, let

@: m1(A(0, b) — {n points}, g) — S,

be a representation whose image is a transitive subgroupeaf #th symmetric group
S4. Let o be a braid which satisfies

boo =90,

We denote ther points byqgs, ..., q,} and lety, ..., v, be the lassos as in Fig. 2.
Then

(A0, b) = {q1, .- qn} q) = (Y10 - )

is a free group. Put

Aj=2(y) (G=1 2....n).
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We regard the braidr as a link which is contained i®A(0, a’) x A(0, ') as in
Fig. 1. By the conditiond o 0 = ®, we can construct a topological branched covering

h:Y — 0(A(0, a’) x A(Q, b))

branching at the links whose monodromy isb . More precisely, we can construct a
topological branched covering’ of dA(0, a’)x A(0, b’) branching at the links whose
monodromy is® . We then attach solid tori ¥ at the part corresponding to the mu-
tually prime cyclic decomposition of the permutation

A = ®(yp - - - M)_l =(A,- - Al)‘l

over 9A(0, a’) x OA(O, b’). Then we get a 3-dimensional compact oriented manifold
and a topological finite branched covering

h:Y — 0(A(0, a’) x A(Q, b))

of the 3-sphere branching at the limk whose monodromy igb
We then construct the topological code f as above and ecansdrtopolog-
ical finite branched covering

fi X — A0,a) x A0, b)
such that
CI)f = CD, 9(5) =0.

This is regarded as a topological degenerating family ofefibiranched coverings
of discs.

Thus to construct topological degenerating families oftdiriranched coverings of
discs (hence to construct 3-dimensional compact orientadifoids) is reduced to find
out the pair ¢, o) as above such thab oo = ®.

3. Monodromy of a branched covering of degree 3 of the disc ands canon-
ical forms

Let X andY be Riemann surfaces aifd X:— Y a finite branched covering,
that is, a surjective proper finite holomorphic mapping. Anpg of X is called a
ramification pointof f if f is not biholomorphic aroundg . Its image ¥ p( ) is
called abranch pointof f. The set of all ramification points (resp. branch poinss) i
denoted byR; (respB; ) and is called themification locus(resp. thebranch locus.
Then

fiX—fYBp)—Y—By
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is an unbranched covering, whose mapping degree is calledl@greeof f and is
denoted by deg .X, f ) (or simply ) is calledfmite branched coveringf Y.

Derinimion 1. Two finite branched coverings
fiX—Y, flix —vY
are said to be isomorphic if there is a biholomorphic mappinghich makes the fol-

lowing diagram commutative:

¥

X — X

fl lf/
y 4,y

DeriniTion 2. Two finite branched coverings
fiX—Y, fliXx —vY

are said to be equivalent (resp. topologically equivalehthere are biholomorphic
mappings (resp. orientation preserving homeomorphisimahd ¢ which make the fol-
lowing diagram commutative:

¥

X — X

fl lf/

y — % . vy

Let B, be the Artin braid group of strings. TheB), is expressedodlevis:

By = (01, ...,0n_1 | 0;0i+10; = 044100141

gi0j =0j0j, for |l—j|22>

Let {g1,...,9.} be a set ofn distinct points ifC. The fundamental group
m1(C —{q1, --.,qn}, q) is the free group

m(C—{q1, - qn}, @) = (V15 -+, M)

generated by the lassos, ..., v, as in Fig. 2.
The braid groupB, acts on this group as follows:

oi() = v v
oi(vi+1) = i
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oi(v) =~ (G #i, i+1)

Note that this action is faithful (Birman [2]). A similar as$ion holds if we replace
C by a discA (0b).
The following theorem is well known:

Theorem 1. Put B = {g1,...,g,} C P! = C U {oo}. For any homomorphism
®: m (P! — B, q) — S; whose imagém & is transitivg there exists a uniquéup to
isomorphismfinite branched coveringf: X — P! such that

B;CB, ®;=0.

For the proof of Theorem 1, see Forster [6]. There is a higlmedsional anal-
ogy of the theorem (Grauert-Remmert [8]). The following dtem also seems to be
well known:

Theorem 2. For two finite branched coveringg: X — P!, f/: X' — P!
such thatBy = By = {q1. ..., q.} C C, they are topologically equivalent if and only
if there is a braido in B, such thato*(®;) = ®d,o0 = & . Here the equality is that
as representation classes. Moreo@f can be replaced by or a disc inC.

For the proof of Theorem 2, see Namba [12] or Namba-Takai.[13]
Every branched covering

f: X — A(0,b)
of degreed can be extended to a branched covering
]A”: X —pt
of degreed in the following canonical manner: Put
By ={q1,....q}, A;j=@s(y;) (=1...,n),

where~; is a lasso as in Fig. 2. Lej,, be the lasso around the poist as in Fig. 3.
Then

1P —{q1, - s Gns 00}, @) = (Y1, - -+ » Yns Yoo | Yoon -1 = 1)
Put
Ay :(An"'Al)_l-

We define a homomorphism

D 7r1(IF’l —{q1, - qu, 0}, q) — Su
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71 Y2 Tn Yoo

Fig. 3.

by
(v)=4; (G=1....n), D))= Ax.
Then the branched covering
fi X —pt

corresponding tod (see Theorem 1) is an extensiorf of
Note that if A =1, then f does not branch at the poinb.
Let

f: X — A(0,b)

be a branched covering of the digc , 0 ) of degree 3.44} = 1,...,n) be the
lassos as in Fig. 2. Put; .~ (j = 1,...,n). Suppose that every; is a
transposition in the 3rd symmetric groa. As above, we extend the covering to that
of P! which is denoted by the same notatigh  for simplicity. ket be the lasso
around the pointo and put

A = (A A) 1= @ p(700)

as above. There are three cases:

Case 1. A, = 1. In this case, the extended covering does not branck.at

CASE 2. A, is a transposition. In this case, the poixt is a branch point, that is,
there is a point overc with the ramification index 2. Since we may change the mon-
odromy with an equivalent representation, we may assunmeAha= (1 2).
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CAsE 3. A, is a cyclic permutation. In this case, the poirt is a branch point. We
may assume that,, = (1 3 2).
Under these assumptions, we have the following theorem:

Theorem 3. Under the above assumptignshe covering f is topologically
equivalent to one of the following canonical formArranging A1, Az, ..., A, in this
order.

Case1:(12),(12),(23),(23),(23) (23)..,(293)

CasE 2:(12), (2 3), (23), (23) (23) ..,zfz 3)

CasE 3: (1 2), (2 3), 23) (23). ..,Z(gz 3)

28
where g is the genus of the Riemann surface

Theorem 3 can be proved along a similar line to that of Birfajaryb [3] or
Bauer-Catanese [1], so we omit it.
4. |sotropy subgroups of the braid groups

Let

D (v, ) — Su

be a representation of the free gro(fp, ..., ~,) of n generators into the -th sym-
metric groupS;, whose image Id s transitive.

By the discussion in Section 2, it is important to conside¥ bmaid o € B, such
that ® o 0 = ®, where the equality is not as representation classes Hustisas repre-
sentations. (The action of the braidon the free groug~s, ..., v.) is defined in Sec-
tion 3.) Put

(®)={c€B,| Poo =7},

the isotropy subgroup oB, fo®d

Since the number of representatiobs is finite (in fact is tess @ 1)), (@) is
a subgroup ofB, of finite index.

Note that the following equality holds:

I(®or7)=71"tI(D)T.
Put
O()=4; (=1 2....n).

Now, let ® be the representation of one of the canonical formimarheorem 3.
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The following theorem is due to Birman-Wajnryb [3].

Theorem 4 (Birman-Wajnryb [3]). For Cases 2and 3 (i.e, A; = (1 2), A, =
-+ = A, =(2 3)), I(®) is generated by the following elements
0-25 0-25 ctt Un—l’
01_102_103_202_101_202_103_10403020%020%0201 (n > 5).
The following theorem for Case 1 (i.ed1 = A2 = (1 2), A3 =--- = A, = (2 3),

wheren is even) is our main result in this paper.
Theorem 5. For Case 1, Ip )is generated by the following elements

3 -1 -2 -1 2
01,02,03,...,0p-1,09 03 0y 01020302,

2 1 -1 2 2
O3 04 0504030503040302 (n > 6).

02_103_104_203_102_
Remark 1. For Case 1, the generators of the isotropy subgrodp I( B,08?) (
are described in Birman-Wajnryb ([3]) but not &,

5. Preliminary for proof of Theorem 5

In this section we recall some notations and results in thgersaof Birman-
Wajnryb [3] and [4].

Let A ¢ C be a disc,X a Riemann surface with boundary ghdX +— A a
branched covering of degree 3. We assume that is simplethie.inverse image of
every point inA contains at least two distinct points.

Let B = {q1,...,q.} be the set of the branch points gf agd a fixed base
point on the boundaryA. Let

O (A —{q1 ... qn},q) — S3

be the monodromy homomorphism ¢gf . Thetal monodromyis by definition the
monodromy of the loo@A in the clockwise direction.

Let us recall thatB, can be identified with the group of isotopgsses of the
homeomorphisms oA that leav® invariant and pointwise fixed. For an element
x in B,, we denote byx the inverse ofx inB, . We say thdt € B, is liftable if
it has a representative that can be lifted to a fiber-presgriiomeomorphism of
which fixes every point of the fibef ~1(¢). Note thatk € B, is liftable if and only if
h € 1(P).

By a curvein A we mean a simple path inn  such that (i) the initial pointgis
(i) the terminal point is some branch poigi , (iii) it doestqmass through the other
branch points tharg; and (iv) it does not pass through the yngbints of A . By
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x y
ﬁ_—‘ ------------ Y 1]
AN - _ /

(x)y
Fig. 4.

the monodromy of a curver we mean® 1) (€ S3), where is a simple closed path in
A which bounds a regio such that (i  contaimsand (i) the closurel/ = U U~y
of U does not contain the other branch points than the ternpoadt of «.

By a Hurwitz systemwe mean an ordered set of curvas, ..., a, which meet
only at g in the clockwise order. Thenonodromy sequence of a Hurwitz system
ai, ..., o, is by definition the sequence of the monodromy of the curvgd < j <

n). Thetotal monodromyof a Hurwitz system is by definition the product of the mon-
odromy sequence of a Hurwitz system.
The following lemma is fundamental (cf. Birman-Wajnryb [8] 27):

Lemma 1. A homeomorphisnk € B, is liftable if and only if it preserves the
monodromy sequence of some Hurwitz system.

By an interval in A we mean a simple path such that (i) it connects two branch
points and (ii) it meets neither other branch points nor lalauy points. Letx be an
interval. Let U be small neighborhood af which is homeomarptad a disc. By a
rotation aroundx we mean a homeomorphisin @  or the elementByf corre-
sponding tok such that () is equal to the identity mappingsioletU , (i) 2 rotates
U by 180 degrees counterclockwise (up to isotopy), @iy mapsnto itself and (iv)

h reverses the ends of . Rotations around isotopic intenepsesent the same ele-
ment of B, . Hence we do not distinguish between isotopic imtervThus the action
of an element ofB, on an interval can be defined. We denotexby ( ¢ intage of
an intervalx under a rotation around an interyal . (see Fip. 4.

The following two lemmas can be deduced from Lemma 1 immbd{af. Birman-
Wajnryb [3] p. 28).

Lemma 2. Letx be an interval andv a curve. Assume that meetsx only at
its end point. Therx is liftable if and only ®(a) = ®((a)x).

Lemma 3. Letx andy be intervals which meet only at one common end point.
Assume thatt ang are not liftable. Therr (x)y is liftable < z; = (x)y? is not
liftable <= z> = (x)y is not liftable.

We say that a sequence of intervals ..., x; makes up ahainif (i) the consec-
utive intervals have the common end points and no otherset¢ion points and (ii)
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q q1 q2 q3 9k qk+1 qdn
& ... > . ..... N.
i X1 X2 Xk
Fig. 5
da
L] L] L] 0\ L] o o o [}
q n 92 43 4/ q5  ge In
Fig. 6.

other pairs of intervals have no intersection points. A ihaisaid to bemaximalif it
contains all the branch points. For a maximal chain of irdkxvB, is generated by ro-
tations around its elements ([2]). For a Hurwitz system ..., a,, there corresponds
a maximal chain of intervalsy, ..., x,_1 such thaty; is homotopic to; U«;+1. Note
that o;4+1 is isotopic to ¢;)x; in this case. Conversely, for a maximal chain of inter-
vals xi, ..., x,—1 and a curvea; which meets the chain only at the initial point of
x1, there corresponds a Hurwitz system, ..., a, such thata;+1 = (oy)x; for i = 1,
2,...,n—1. A chain of intervalsxs, ..., x; is said to beregular if x; is not liftable
andx; (j =2...,k) are liftable.

A curve o in A is said to beseparatingif every interval in the complement of
« is liftable. A curvea in A is said to beregular if the complement ofx contains a
maximal regular chain of intervals.

Let ¢ be a fixed point orOA. Let

}:5(—>IF’1

be an extension off . Iff branches at the pointo then by Theorem 3 (Cases 2
and 3) we can choose a Hurwitz system of curugs. .., o, with the monodromy se-
qguence (1 2), (2 3)..,(2 3). Letg; be the end point af;, andxy, ..., x,—1 a maxi-
mal chain of intervals corresponding to the Hurwitz syst&de note thatxy, ..., x,_1

is regular. By replacingf by its suitable topological eqléva branched covering, we
may assume thaf is the unit disc @ ¢ = —1, and the pathgv, x1,...,x,_1 lie

on the real axis from left to right. (see Fig. 5.) Note tit  enerated by the rota-
tions aroundxs, ..., x,_1. Let us denote by, the subgroup of the liftable elements
of B,. Let ds be the interval 4)x3x2x2x2x3x2x1 in Fig. 6.

RemArk 2. The rotationy; corresponds to the braig™.

In the notations above Theorem 4 is expressed as follows:
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83

Fig. 8.
Theorem 4 (restated). The groupL, is generated by the rotations
xf, X2,...,x,—1 and dg (n >5).

Let G be a subgroup oB, . Intervals (or curves)y, are said taGbequivalent
if there existsg € G such that £ § =y . Ifx andy are intervals, then the rotation
(x)g = y implies that the rotatiory is equal f@xg. For a curve or an intervat , we
denote byx’ the path symmetric tac  with respect to the real axis. For ,=2n
let 4x be the curve qu)xy - - - xx—2x? xx—2---x1 represented in Fig. 7.

Let s = (o))x;(j =1,....,n—1).

Proposition 1 (Birman-Wajnryb). Every curve inA isL, -equivalent to some of
the curveaq;, i, o) or 4.

6. Proof of Theorem 5

In this section we treat the case whefe does not branch at the pointo,
i.e. Case 1.

Let B := {q0.q1, - -, q.} be the set of branch points lying on the real axis, in
this order. In Case 1, the number of branch points is even.céleme may assume
that n is odd. By Theorem 3 we can find a Hurwitz system of curvgsaa, ..., o,
with the monodromy sequence (1 2), (1 2), (2 .3), (2 3). Letxo, x1,...,x,_1 be
a maximal chain of intervals corresponding to the Hurwitsteyn. The groupén ~
B,+1 of the isotopy classes of homeomorphisms/of  that leBvévariant anddA
pointwise fixed, is generated by the rotations xi, ..., x,_1. We denote byL, the
subgroup of the liftable elements @,. Let g3 be the interval £o)x1x3x; in Fig. 8.

Remark 3. The rotationx; corresponds to the braigd].
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dk

Fig. 10.

Let d; be the interval X, H_1-- - x2x2x2 - - - Xx_2X2 1Xp_2---x1 represented in
Fig. 9:
Theorem 5 can be expressed as follows:

Theorem 5 (restated). The groupin is generated by the rotations
X0, X3, X2, ..., Xp_1,83 and dy (n > 5).
Let us denote byV the group generated by the rotations
X0, xf, X2, -y Xn—1, g3 and dg.

Let v, be the curve q1)x1- - xx—2x2 jxx—2---x1 represented in Fig. 10.

A curve is said to beadmissibleif it is ﬂl-equivalent to some of the curves,
~i, o or 4/. An interval x is said to beaxdmissibleif either (i) x € N or (i) x ¢ L,
but x3 € N. Note that ifx is an admissible interval or an admissible euand if y is
N-equivalent tox , thery is admissible.

Theorem 5 is clearly a consequence of the following:

Proposition 2. N = L,. Moreover every curve il is admissible.

We prove Proposition 2 in a similar way to Birman-Wajnryb.[3]
By Theorem 4 we get

Lemma 4. If h is liftable and (ao)h = ao, thenh € N.

Remark 4. If k is even, thend, andi] are liftable. Therefored, d; € N
by Lemma 4.
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Fig. 11.

Lemma 5. If & is liftable and (a,)h = a,, thenh € N.

Proof. Sinceh is liftablef, preserves the monodromy sequehc®me Hurwitz
system. Now, we consider a Hurwitz system

(@0)gy 1. (@1)gy 1. -+ (Qn-1)gy 1.

The monodromy sequence of this system is (2 3), (1.3) (1 3), whereg/ , means
the interval {o)X1--- X, 3%, _2° Xn_3--- x1. (See Fig. 11.)

Let y; be an interval which is homotopic to the uniom; (1)g, ;U (a;)g, ;- By
Theorem 4,h belongs to the groug, which is generated by the rotations

Vi Y2 -y Yn—1, (Va)Y3y2yivay5yay1.

Note thath € N1. We proveN; C N.
We can check that

(yOd! _1X0xn—1-- X2 = x1.

Hencey; is N-equivalent tox;; moreovery? is N-equivalent tox3. It follows y3 € N.
We can check also that

(y2)x2 -+ - Xn—3dp—3Xn—3Xn—2Xp—aXp_3 - - - X2X3X0 = &3,
Ve =xp—1 fork#1, 2

and

2. 2 e
{(y4)y3y2y1y2y5y2y1}Xa - - - Xn—3Xn—2 Xn—3 - X4X3X4 " Xn_2X2X3 " Xn—3d,_3

3 J—
—_—2 — / 2 T e —_—
X2+ Xn—5Xn—4 Xn—5° X2Xn-2S, 1 h183X3X2X2X3" " Xn—aXn—5 = dp—s,

where s/ _; denotes the intervalxf)x1---X,—2 (see Fig. 12) andh; is a Dehn twist
around the loop1, which pointsgo, Gn-1 and g, are outsider; and the unionxy U
.U Xx,_3 is insideu;. Thens! , is N-equivalent tox;. Hences 3, €N, andh} is
liftable (this can be checked by using Lemma 1). Hehée N by Lemma 4.
Since all generators o, belong toN, it follows that Ny C N. O
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N
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Fig. 12.

Lemma 6. An interval x is admissible if it does not meet some

Proof. If x does not meety then it is admissible by Lemma 4. ¥ does not
meet o, then it is admissible by Lemma 5. The curug is N-equivalent toag and
for i #0, 1 the curven; is N-equivalent toa,, which proves the lemma. ]

Lemma 7. Let s, = (xo)xl---xk_l, Ir = (xk_l)xk_z---xl and 8k = (Sk)l‘k for
k=2,...,n. (seeFig. 12.) Theng, is liftable fork oddg, is not liftable fork even,
and g, andg; are admissible for eaclt

Proof. It is easy to see tha, angd afg-equivalent tox;. Hence they are
not liftable. g» = (xo)x? is not liftable. g,_1 = (s¢)#% for all k. Hence, by Lemma 3,
g is liftable for k odd and is not liftable fok even. K < n, then g, is admissible
by Lemma 5.

For g,, we can check that

(00)8n Bn—2Xn—2Xn—1Xn—3Xn—2 8n—4 8n—2 = Q0.

Hence, by Lemma 4, the product on the left side belong#/tcSince all factors dif-
ferent fromg, belong toV, g, belongs toN.
Finally we haveg; = (gx)xo. Henceg; is admissible for allk . ]

Let w be a Dehn twist around the bounda?h. Thenw = foxs1---x,_1)""* and
w is a generator of the center &,.

Remark 5. Note thatw € L, and ()wxXog, = ao. Hence, by Lemma 4w € N.

Forj =2...,n, we denote bynj the curve {o)xox:1---x;_1 and byd; the curve
(co)xoxy - 'Xj_zsz-_lxj_z Xy

Lemma 8. An admissible curved is N-equivalent to some of the curves, a,
or &.
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Proof. We show that every curve i, o, v, 7/, (i =0, n) is N-equivalent
to some of the curvesy, a, or &. The curvesa; and o are N -equivalent toao.
For k odd, we havey ang; € N. Since~; = (ap)gr and 7,( = (ozo)gk, Y and~; are
N- -equivalent toap. Fori =2...,n —1, the curveo; is N-equivalent toa, and the
curve o is N-equivalent toc,. Note thata, = (o),)w. Hence, o] is N-equivalent to
ay.

For k even, we havel, € N and ()dix; - x2 = d5. Hencev, is N-equivalent
to &4

Since ¢})w is N-equivalent tov, 41, 7, is also N-equivalent toa. ]

Lemma 9. If a curve § meets somey; only atg, then 5 is admissible.

Proof. If § meetsay only at g, theng is ﬂl-equivalent to a curve which meets
ap only atg . Hence, we may assume thiaitmeetsag only at g . By Proposition 13
is admissible orV- equivalent to some of the curves,”a’;, 6, or &}, j=2,...,n.

aj, j =3, .. — 1, is N-equivalent toas. We have (vz)xl = 72 Thereforeaj
is admissible for anyj . Similarly we can show that iS admissible for anyj

If kis odd, theng; andg, belong toN. Since €;)g« = ao and 00)g = a0, O
and ¢, are admissible. Ik is even, thefi  amtl belong toN. Since (;)di = o,
and ¢;)d; = au+1, & andd; are admissible.

If 3 meetsey, i #0, 1, only atg , then it isV-equivalent to a curve which meets
a, only atg . If 5 starts on the right side of,, then (B)w starts on the left side of
a,. SO we may assume that starts on the left side ofy,.

We consider the restriction of tA — a,. The total monodromy of the comple-
ment of o, is (2 3). If we take the Hurwitz system

(0)gy 1. (1)gy 1. - -+ (n-1)85 1

as in the proof of Lemma 5, then by Propositiorﬁ]js Ni- equivalent to some of the
curves ()g,_1, (a )gn 1, (yi)xog,_, orF (fy,)xogn ;- Since N1 C N (see the proof
of Lemma 5),3 is N-equivalent to some of the curves;fg. 1, (a )81, (Vi)xogh_1

or (fy[)xogn—l'
We can check that
{(ao)gr/z—l}dr;—l = Qy,
{(a1)gn_1}%0 = -1

and

{(an)gn 1} Bt X2 X3x0+ Xn_28)_,X0="m_1 fOrk#0, 1

Since the interval ¢’ _;)x1 is not liftable, @ _;)x1 is liftable by Lemma 3, and
(g/,_1)x1 belongs toN by Lemma 5.
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We can also check that

{(0n)g 1 (g _)FD) T2 Fa—3Xa—2° Ta—a - XaXiX2  Xu_28)_p = 0,
{(0)gy )T+ Ta 3 Tn 22 Tn 3+ T2 Xix2- Xu_28, , =00 fOrk#0, 1
{(v)xo0g) 1} Xk Xn—2) (=1 Xn—3) - (X2 X))y 4 Xn—ks1" " " Xn—3
Xp_oXn_3 XoXOX1 X2+ Xu_2 =—2 fOr k: odd

{(w)xogs_ 1} T )Tt Xn=3) - (%2 T ) A5 (Xn—t - Xn—2)

(xn_k_l . -xn_3) s (xz . -xk)d,ixkﬂ . -xn_zh_g,z = Oz,/l_l for k: even k ;é n—1

and

{('Yn—l)XOgr/z—l}h_Bzd,;_l = a,.
Here hy (resp.hs) is a Dehn twist around the loop, (resp.us), which pointsqo,
Gn—i+1s ---»qu—1 @nd g, (resp.g, ) are outside, (resp.us) and the unionx; U --- U
Xn_k—1 (resp.xo U x1 U -+ U x,_) is inside up (resp.us). Finally (y,)%og,_,w is
N-eqjivalent to §,_+1)xog. ;.
Hence 3 is admissible. O

Lemma 10. Letx be an interval which meetsy only at go. Suppose that every
interval in the complement of U «p is liftable. Thenx is admissible.

Proof. We may slide the engh of x along ap on the right side ofv. We then
get a curves such that (i) meetsag only atg and (i) 3 is separating in the com-
plement ofag. Hence, by Proposition 1, there exigtss N which leavesay fixed and
takes 3 onto a curvef3, isotopic to one of the curves;, ~, or ¢,. If we slide back
the initial point ofB along ap, then we get one of the intervals, g, or g,. These
intervals are admissible by Lemma 7. Hence is admissible. O

Lemma 11. Letx be an interval which meets, only atg, . Suppose that every
interval in the complement of U «, is liftable. Thenx is admissible.

Proof. We may slide the eng, of along, on the left side ofa,. We then
have a curves such that ()8 meetsa,, only atg and (ii)3 is separating in the com-
plement ofa,. Hence, by Lemma 93 is Ni-equivalent to a curve’, isotopic to one
of the curves ¢o)g, 1, (Ya—1)X0g,_; OF (v,_1)%0g, ;. If we slide back to the initial
point ofB along oy, then we get one of the intervaig_,, v1 or vy in Fig. 13.

We can check that

(V1)X0Xn—_1- - X2X3 = &n»

(vz)hé = V1.
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V1

q 0 q1 92 n-A  qGn

Fig. 13.

Fig. 14.

Hence, these intervals are admissible. Hemnce is admissible Ol
Lemma 12. If & is liftable and (&) = @, thenh € N.

Proof. Sinceh is liftablef preserves the monodromy sequehe®me Hurwitz
system. Now, if we consider a Hurwitz system of curygs. .., 8, in the complement
of a5, as in Fig. 14, then the monodromy sequence of this systenl i8),((2 3),
(23),....(23).

Let z; be an interval which is homotopic to the unighu Gix(i =1,...,n—1).
By Theorem 4,1 belongs to a grouy, which is generated by the rotations

3 2 2
21,22, - - - » Zn—1, (24)737227222532271.

Note thath € N,. We prove thatN, C N.
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We can check that

71 = g5,
(z2)Xox2x3 = g3,
Zi = Xi fOI’i;él, 2

and

—3 3
2 2 —
{(z4)z3222120252221} 85 Xax3x 28y g5 = &c.

Since all generators af, belong to N, it follows that N, c N. O

Lemma 13. Letx be an interval which mee®), only at g». Suppose that every
interval in the complement of U & is liftable. Thenx is admissible.

Proof. We can slide the engb of x along ) on the right side of}. We then
have a curves such that (i) meetsa, only atg and (i) 5 is separating in the com-
plement of.

By Proposition 1,3 is N»-equivalent to a curves, isotopic to one of the
curves 31, (B1)z1- - Zn—222 1Zn-2--71 OF (B1)Z1 " Zn2Zn-1°Zn_2- - Z1. (see the
proof of Lemma 12.) If we slide back the initital point of along d, then we get
one of the intervalas, vsq or vs in Fig. 15.

Note thatN, C N. (see the proof of Lemma 12). We prove that these intervals
are admissible. We can check that

(v3)x§ = xo,

_3_ .
(va)gh X2+ Xp—1=dp—1

and

(vs)Xox2 - Xp—1=d, ;.

These intervals are admissible. Hence is admissible. O

By the index of an interval or a curver we mean the number (minimal in the
isotopy class ofx ) of the intersection points of  with the umiey U g U -+ - U .

Lemma 14. Letx be a curve or an interval such th&) x has the minimal in-
dex in its N-equivalence class(ii) x is not admissible andiii) every interval with
index smaller than the index of is admissible. THahevery interval in the com-
plement ofx is liftable andb) every interval which meets at its end points is not
liftable.
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U3

Fig. 15.

Proof. This follows from Lemma 6, Lemma 9 and Lemma 3.10 ofniin-
Wajnryb [3]. U

Lemma 15. Assume that every interval and every curve with index sméikn
k is admissible. Then every curve and every interval withnkés admissible.

Proof. Since the total monodromy is trivial, every curve ist rseparating.
By Lemma 14, every curve of indek is either admissibleNoequivalent to a curve
with smaller index. Hence every curve is admissible.

Let x be an interval with index . By Lemma 14, we can assume thatyein-
terval in the complement of s liftable. Note that interseevery curven;. Let p
be the first point ofap which belongs tax . Lef3 be a curve isotopic to the union of
the piece ofag from ¢ to p and the piece ok fronp to an end point of . Then
£ has index smaller thah . Hengeis an admissible curve. Henggé meetsx only
at its end point. By Lemma 83 is N-equivalent to one of the curvesy, a, or ab.
Hencex isN-equivalent to an interval which meets one of the curugs o, or &,
only at its end point. Hence, by Lemma 10, Lemma 11 and Lemmax 18 admissi-
ble. O
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q q2 g

P o o o

Fig. 16.

Proof of Proposition 2. By Lemma 15, every curve and evergrirgl is admis-
sible. Leti be an arbitrary liftable homeomorphismBp. Then () is an admissi-
ble curve with monodromy (1 2). By Lemma 8 it f§-equivalent to one of the curves
ag, o, Or &. But only ag has the monodrmomy (1 2) among these. Hence there ex-
ists g in N such that o)hg = ap. By Lemma 4,4 belongs tav.

This completes the proof of Proposition 2 and Theorem 5. U

7. Riemann pictures and symplectic basis for canonical form

In this section, we introduce a picture, (we call it a Riemanicture), which rep-
resents a finite branched covering of a disc topologicalge (Slamba-Takai [13]). We
explain it by an example:

Let us consider Case 1 of genus 1.

Let X be a Riemann surface of genus 1. et X :— A be a branched cov-
ering of degree 3 with the monodromy  of canonical form of CasePut By =
{q1. 92, .. .. qs}. Let g be a reference point. We take the lassgsaroundgq; as
in Fig. 2. We extend the covering to the branched coverin@®®fn a canonical way
as in Section 3. In this case, we have

1Pt — B, @) = (V1,72 -+ » V65 Yoo | YooY6 -+ Y271 = 1),
A1 =A2=(12), Ax=---A=(23) Ac=id (A;=d(y))).

Consider the picture (Fig. 16) in which the circle part of gvéasso~; in Fig. 2 is
degenerated to the poigt

We then pull the picture in Fig. 16 back over the coverifig aetitge follow-
ing picture in Fig. 17 which we call the Riemann picture of

In Fig. 17, the points®, @, @ are the inverse images of the reference point
g while the points 1...,6 and oo are the inverse images afi, ..., gs and co re-
spectively. Note that around every poif}, @, @), the paths connecting to the points
1,...,6 and oo in this order are arranged clockwise. On the other hand,naray-
ery point 1 ...,6 andoo, the paths connecting to the poin®, @, @ are arranged
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O are deleted.

Fig. 17.

counterclockwise in order to be compatible with the monodro(We omit unramified
points and paths connecting to them in the picture.)

The covering X, f ) can be topologically expressed by this péctu

Put

& = [1, 21][co, 11][1, 12],
§2 = [0, 22],
&1 = [6, 23][o0, 33][6, 32],
a = [3, 23][4, 32],
8 =[5, 23][4, 32]
Here the notation [6 23] for example means the path in Fig. 1ibse& initial

point is @ and the terminal point i€ passing through the branch point 6. Then these
are loops with the initial point2). We can observe the following relations:

Bafta b = 1,
(o, B) =1,

where the notatior{, ) means the intersection number. We pull back the relation
over f and get the following three relations:

[o0, 11][2, 12][1, 21] = 1
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[oc, 22][6, 23][5, 32][4 23][3 32][2 21][1 12]=1
[oc, 33][6, 32][5, 23][4 32][3 23] =1

The above relation

Baf ra 66 =1

can be induced from these three relations.

The Riemann picture of a generat,(f ) is defined as in the aboampbe, that
is, a pull-back overf of the graph dit of Fig. 2 degenerated the circle part of every
lasso to the branch point.

Remark 6. 1. The Riemann picture is determined by, (f ) up to orientatio
preserving homeomorphisms &f
2. As noted above, we can draw the Riemann pictureXof f{ ) eveenvamly the
monodromy® =&, is given andX| f ) is not explicitly given.
3. In Namba-Takai [13], we have introduced another pictureoider to express
(X, f) topologically, which we called a Klein picture. Klein pices and Riemann
pictures are dual in a sense. Klein pictures are useful t@rgbsthe degeneration of
branched coverings, while Riemann picutres are useful topete fundamental groups
as will be seen in Section 8.

We draw the Riemann pictures of the canonical forms in ThaoBe(see Figs. 18,
19 and 20 forg = 3), from which we easily find canonical genesafoy;, 5, &} of
the fundamental group oX  such that
CASE 1: ﬁgagﬁg_lag_lﬁg_lag_lﬁg__lla;_ll s ﬁlalﬁflaflﬁgﬁzﬁl =1,
CASE 2: By00 35 tag *Bg 10518, 10 by -+ ron By fog Haéa = 1,
CASE 3: B0 B¢ tog Mg -10g 18, 1y by -+ Bron By tag 1 = 1
Here {«y, 5;(i = 1,...,¢)} is a symplectic basis in homology level of the extension
X of X:

(ai, Bj) = bij,  {ai, o) =0, (B, 8;)=0

(i, j=1...,g), where{, ) means the intersection number.
In fact we may take them as follows:
CASE 1:

& = [1, 21][co, 11][1, 12]

& = [o0, 22]

&1 = [2g + 4, 23][0, 33][2¢ +4, 32]
aq = [3, 23][4, 32]

f£1 =[5, 23][4, 32]
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O are deleted.

Fig. 18. Case 1

O are deleted.

Fig. 19. Case 2

aj = [2j +1, 23][2j, 32]---[3, 23][2j + 2 32]
B; =[2j+3,23][2/ +2 32]

a, = [2g +1, 23][2g, 32] - [3, 23][2g + 2, 32]
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O are deleted.

Fig. 20. Case 3

Be = [28+3,23][2¢ +2 32]

CASE 2:
& = [0, 21][00, 12]
&1 = [2g + 3, 23][0, 33][2¢ + 3, 32]
a1 = [2, 23][3, 32]
61 = [4, 23][3, 32]
a; = [2j,23][2j — 1, 32]---[2, 23][2j + 1, 32]
Bj = [2j+2 23][2j +1 32]
a, = [2g, 23][2g — 1, 32]---[2, 23][2g + 1, 32]
Be = [28 +2, 23][2¢ +1, 32]
CASE 3:

& = [0, 21][00, 13][0, 32]
a1 = [2, 23][3, 32]
51 = [4, 23][3, 32]
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a; = [2j,23][2j — 1, 32]---[2, 23][2j + 1, 32]
5 = [2j+2 23]2j +1 32]
ag = [2g.23][2g — 1, 32]-- - [2, 23][2g + 1, 32]
B, = [2¢+2 23][2g +1 32]

8. Calculations of fundamental groups

In this section, we compute fundamental groups of some 2déional compact
oriented manifolds using the local version of the theorenZafiski-van Kampen (see
Dimca [5], Matsuno [10]) and the method of Reidemeisterr8ieln (see Rolfsen [14]).
One can compute the fundamental group rigorously if one tisesRiemann picture.
We explain this using a concrete example:

ExampLe 1. Let us consider Case 1 of genus 1 for simplicity. If we take t
braid o as

- -1 _-2 -1 2 3
g —0'2 0'3 0'2 010203020504030,
(o induces a knot), then we have the equality
Dooc =0

where @ is the monodromy of the canonical form. Hence we maystcoct a topo-
logical degenerating family

f: X — A0, a) x A, b)

of branched coverings of discs constructed from the piro) (see Section 2). Let

By be the branch locus of . Let;(j = 1,...,6) be the lassos as in Fig. 2. The
local version of the theorem of Zariski-van Kampen assérés the fundamental group
of A(0,a)x A(0,b)— By is generated byy;(j =1, ..., 6) whose generating relations
areo(y;)=~v;(j=1...,6). That is to say

7T]_(A(O,Cl) X A(O’ b)_ Bf’ q) = <fyl’ -5 V6 | U(fyj) = fyj(] =1..., 6)>

= (11, -+, %6 | (05 703 %05 10102030205040303)7; = 7;(j = 1, ..., 6))

= (196 |9 ez M ot = Lo e M s e s e s
-1 -1 -1 -1 -1 -1 -1 _ 1 -1 -1 -1 -1 -1 -1

Y1 V5 V6V5V1Vs V6V5VAV3V2V4V3V2 V3 Va4 Y1V = L1 VAV3V2Y3 Va4 V2 V3 V4

Y5 s s s ers a1 Yers s trs e s T = 1 vy Mavaes g s ey

Yoyt = L arsres s s e s t = L s T = 1),
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Now, for fixed ¢ # O, the restriction off is
fii X, — t x A0, b).

This is a covering of degree 3 and the genusXopf is 1. We exteadctlvering to
the branched covering df' in the caconincal way as in Section 3 which is denoted
by the same notation for simplicity.

Now the method of Reidemeister-Schreier says that the foadtal group
m(X —{x}, p), (x = f7(0, 0))) is generated by these loogs, &, &, o and 3
(see Section 7) and their generating relations are pull-loaer f; of these of the fun-
damental groupri(A(0, @) x A(Q, b) — By, q), expressed by the generatafs &, &3,

« and 8. We can carry this out observing the Riemann picture in Fg. 1

For example, we consider pull-back over of the reIat'r@,n/gl = 1. A loop
[5, 23][6, 32] in Riemann picture is pull-back ovef  of the pamygl in A0, b) —

Bj, and expressed ¢3¢, by the generators. Then we get a relation of the fundamen-
tal group:a—1&¢ = 1.
The result is as follows:

X —{xhp)= (B 6. & G| Gla=1 G aba G608 =1 M a? = 1,
Glap =1 aGEL =1 faf a8 = 1) = {1).

Therefore
m1(Y, p) =~ m(X — {x}, p) = {1},

where Y is the 3-dimensional compact oriented manifold onctvhX is a cone
(see Section 2).

ExampLE 2. We consider Case 1 of genus 1 again. If we take the hbraéd
o= 02_103_104_203_102_203_104_l050403050302030201030405
(o induces a knot), then we have the equality
oo =9,

Hence we can calculate the fundamental group of the 3-dimealscompact ori-
ented manifoldY constructed from the pab,(c) as Example 1. The result is as fol-
lows:

(Y, p) = (a| o= 1).
ExampLE 3. Let us consider Case 1 of genus 2. If we take the bsaib

- -1 -2 -1 2 3
0 =0y 03 0y 01020302070605040307
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(o induces a knot), then we have the equality
oo =090,

Hence we can calculate the fundamental group of the 3-diimesiscompact ori-
ented manifoldY constructed from the paib,(o). The result is as follows:

7T]_(Y, p) = {l}

References

[1] I. Bauer and F. Catanese: Generic lemniscates of algehractions, Math. Ann307 (1997),
417-444.

[2] J.S. Birman:Braids, Links, and Mapping Class Groug\nn. Math. Studies,82, Princeton,
(1974).

[3] J.S. Birman and B. Wajnryb3-Fold branched coverings and the mapping class group of a
surface, Lect. Notes in MattL.167 Springer, (1985), 24—46.

[4] J.S. Birman and B. Wajnryb: Errata: Presentations ofrttepping class group, Israel J. Math.
88 (1994), 425-427.

[5] A. Dimca: Singurarities and Topology of Hypersurfac&gringer-Verlag, 1992.

[6] O. Forster: Riemannsche Flachen, Springer-Verlagd,719

[71 R.H. Fox: Covering spaces with singularities, Lefseh&ymposium, Princeton Univ. Press,
(1957), 243-262.

[8] H. Grauert and R. Remmert: Komplexe Raume, Math. A6 (1958), 245-318.

[9] H.M. Hilden: Every closed orientabl@-manifold is a3-fold branched covering space of,
Bull. Amer. Math. Soc80 (1974), 1243-1244.

[10] T. Matsuno:On a theorem of Zariski-Van Kampen type and its applicatiddsaka J. Math.
32 (1995), 645-658.

[11] J.M. MontesinosA representation of closedrientable 3-manifolds as3-fold branched cover-
ings of $3, Bull. Amer. Math. Soc80, (1974), 845-846.

[12] M. Namba:Degenerationg families of meromorphic functipfoc. Internat. Conf. “Geome-
try and Analysis in Several Complex Variables”, Kyoto Uni%997), RIMS Kokyuroku,1058
(1998), 77-94.

[13] M. Namba and M. TakaiDegenerating families of branched coveringdsaka J. Math40
(2003), 139-170.

[14] D. Rolfsen: Knots and Links, Publish or Perisch Inc.7&9

Department of Mathematics

Osaka University

Toyonaka City, 560-0043, Japan

e-mail: takai@gaia.math.wani.osaka-u.ac.jp



