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1. Introduction

Let ′ and be complex manifolds (not compact, a priori), and′
α→ a

proper modification with center and exceptional divisor , whose irreducible com-
ponents are{ }. Let be an analytic subset of without irreducible components
in : then its strict (proper) transform ′ is a well-defined analytic subset of′. In
particular, when is a complex hypersurface of , we can define the strict transform
′ and also the total transform

(1.1) α∗ = ′ +
∑

≥ 0

In the first part of this paper we shall extend these notions tothe case of currents
on , and ask for the existence and uniqueness of strict and total transforms.

We can look for a strict transform ′ of a current on (of every bidegree)
when is of order zero andχ = 0 (see Definition 3.1); moreover, if a strict trans-
form exists, it is unique (see Proposition 3.2).

On the other hand, to define the total transformα∗ of a current on (Defini-
tion 3.3), must be “closed” in some sense: in fact, the idea isthat if ϕ is a smooth
form on , cohomologous to , thenα∗ should be cohomologous toα∗ϕ. The clas-
sical case is that of -closed currents, while the most general context seems to be that
of ∂∂-closed currents (i.e. pluriharmonic currents); moreover, we would like to gener-
alize (1.1) as:

(1.2) α∗ = ′ +

where is a current supported on . As for existence results, since we have to es-
timate locally the mass ofα := (α| ′− )−1

∗ ( | − ), we shall assume ≥ 0 (in the
sense of Lelong).

But notice that defining a “good” total transform, besides bidegree (1 1), seems
hopeless: for instance, if is a line through the origin inC3 and ′ α→ := C3 is
the blow-up with center in the origin, what could be the “true” meaning ofα∗ ?

Partially supported by MIUR research funds.
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Thus, in general, we need to take into account the bidegree ofthe current: we
shall give most results when the bidegree is (1 1), only a few results when the bidi-
mension is (1 1) (that is, the bidegree is (− 1 − 1), with := dimC ); nothing is
known in the general case, besides the uniqueness of the strict transform.

Let us now explain our results when the bidegree of is (1 1), i.e. is a
(1 1)-current. First of all, as regardsuniqueness.

Proposition 1.1 (see Theorem 3.9).Let be a pluriharmonic(1 1)-current of
order zero on . Then, if the strict transform ′ and the total transformα∗ exist,
they are unique and(1.2) holds.

This result is not obvious, since , the part of the total transform which is sup-
ported on , is not, in general, of the form

∑
[ ], nor a current on (see Ex-

amples 3.10 and 3.15).
As for the existence, the “classical” case is not difficult: if is a closed, positive

(1 1)-current on , then ′ andα∗ exist, they are closed and positive, and moreover

α∗ = ′ +
∑

[ ]

where every is a non-negative constant. In general, we have:

Theorem 1.2 (see Theorem 3.11, but also Theorem 3 in [2]).Let be a pos-
itive pluriharmonic (1 1)-current on . Then the strict transform ′ and the total
transformα∗ exist and are positive; moreover, α∗ = ′ +

∑
[ ], where every

is a non-negative weakly plurisubharmonic function on .

Hence, whileα∗ is pluriharmonic, ′ turns out to be only plurisuperharmonic,
i.e. ∂∂ ′ ≤ 0 (see Example 3.12).

As for the existence of the strict transform, we get:

Proposition 1.3 (see Proposition 3.13 but also Corollary 3.6 in [3]).Let be a
positive plurisubharmonic(1 1)-current on (i.e. ∂∂ ≥ 0). Then the strict trans-
form ′ exists.

For currents of bidimension(1 1), the analogue of complex curves, we have the
following result (notice that a compactness hypothesis cannot be avoided, see Re-
mark 4.2):

Theorem 1.4 (see Theorem 4.1 and Proposition 4.5).Let be a positive
plurisubharmonic current on of bidimension(1 1) and such thatχ = 0. If
is compact and has a Kähler neighborhood in′, or if has compact support and
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there exists a Kähler current on a neighborhood ofα−1(Supp ),then the strict trans-
form ′ exists(and is unique).

From this theorem we get the following:

Theorem 1.5 (see Theorem 4.7).Let be a complex manifold which is an open
subset of a manifold in the classC of Fujiki and let be a compact analytic subset of

. If is a positive pluriharmonic current on , of bidimension(1 1) and supported
on , then there exist suitable currents and on, supported on , such that
is closed and of bidimension(1 1) and = + ∂ + ∂ .

Roughly speaking, the meaning of the Theorem is the following: if is smooth,
the hypothesis concerning the classC of Fujiki implies that the De Rham cohomol-
ogy of coincides with the Aeppli cohomology of (∂∂-closed forms modulo
(∂ + ∂)-exact forms); the Theorem asserts that a similar statement also holds in the
singular case (this result is needed in the proof of Theorem 5.4).

The second part of the paper concerns 1-convex manifolds.
A complex analytic space is 1-convex when it is a proper modification of a

Stein space in a finite number of points. In the present paper we consider only the
case of a complexmanifold , hence has only a finite number of (isolated) singu-
larities; we shall always indicate with the exceptional setof the modification, which
is also the maximal compact analytic subset of .

An old question is to establish when a 1-convex space isembeddable, that is when
there is an embedding of inC × CP for suitable and .

It is well-known that 1-convex surfaces are embeddable (see[7]). More recentely
it has been shown that 1-convex manifolds whose exceptionalset is 1-dimensional
are certainly embeddable when dim> 3, while if dim = 3 there could be some
exceptional cases which are listed in [11]. More precisely,if is not embeddable,
then contains an irreducible component which is a rational curve of type (−1 −1),
(0 −2) or (1 −3); as a matter of fact, examples are known only for the first two cases
(see [30], [11] and [9]).

Another problem is the tie between the Kähler property and the embeddability:
every embeddable 1-convex manifold is Kähler, but the converse is unknown. A partial
result (see [5]) says that, when is a curve, a possible counterexample should satisfy
the condition that 2( Z) is not finitely generated. When dim> 1, very few is
known.

Both the known examples of non-embeddable 1-convex manifolds have been built
starting from a Stein space which is the affine part of a projective hypersurface.
This kind of construction has been recently generalized by Vâjâitu, who proved the
following:
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Proposition 1.6 ([27]). Let ⊂ CP be a hypersurface with isolated singu-

larities, → be a resolution of singularities, and ⊂ CP be a hyperplane
which avoids the singular locus of and such that := ∩ is smooth. Set

:= − −1( ). Then, for ≥ 4, the following statements are equivalent: (i)
is Kähler. (ii) is embeddable.(iii) is projective.

The main goal of this paper is to generalize the above result as follows:

Theorem 1.7 (Theorem 5.4). Let be a projective variety of dimension at least

three and with isolated singularities. Let → be a resolution of singularities, and
a hypersurface of which avoids the singular locus of and suchthat − is

Stein. Let := − −1( ), which is a1-convex manifold. Then, if the map:

(1.3) 2( R)
∗

→ 2( R)

is injective, the following properties are equivalent:
(i) is Kähler.
(ii) is embeddable.
(iii) is projective.

In general, we don’t know when the hypothesis (1.3) is reallynecessary (if dim = 1,
see Remark 5.6); but when is smooth, we can replace it with some other hypothe-
ses, which are stronger but easier to check, precisely with one of the following:
(i) 1( R) = 0;
(ii) dim < dim − 1 and 1( R) = 0 (or 1( R) = 0);
(iii) is a complete intersection in someCP ;
(iv) is embeddable in someCP , with ≤ 2 dim − 3;
(v) is a complete intersection in someCP ;

In particular, from (i) it follows that this is a true generalization of Vâjâitu’s re-
sult.

We would like to thank M. Coltoiu and V. Vâjâitu for some interesting discussions
and suggestions about this last argument.

2. Preliminaries

We cannot report here all the preliminaries concerning the theory of currents that
are needed in what follows: so we shall only recall some results aboutC-flat currents,
currents supported on analytic subsets and Aeppli cohomology.

Let be an -dimensional complex manifold;E ( ) and D ( ) are respec-
tively the space of ( )-forms on and its subspace of compactlysupported ones.
The space of currents on withbidimension( ) is denoted byD′ ( ) and is
the dual space ofD ( ) with respect to its natural topology. Since a current∈
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D′ ( ) is locally given by a ( − − )-form with distribution coefficients, we
shall say that hasbidegree( − − ) or that it is an ( − − )-current. A
subscriptR, like for instanceER ( ), denotes the spaces ofreal forms or currents.

The space of currents of bidimension ( ) and of order zero, that is, such that
all coefficients are complex measures, is denoted byM ( ).

If is an analytic subset of , and ∈ M ( − ), then can be extended
to a current ∈ M ( ) if and only if has locally finite mass across ; among
all these extensions, the trivial extension0 is characterized byχ 0 = 0.

When a real ( )-current is positive in the sense of Lelong, we shall write ≥
0. Every positive current is real and of order zero.

DEFINITION 2.1. Let be a real ( )-current on . is said pluriharmonic if
∂∂ = 0, plurisubharmonic if ∂∂ ≥ 0 and plurisuperharmonic if∂∂ ≤ 0.

DEFINITION 2.2. A current on isC-flat if locally = +∂ +∂ for some
currents , , and with coefficients in1

loc (see [8, Definition 1.1]).

For C-flat currents, we shall refer to [8]; in particular, we shalloften use the fol-
lowing result, which is not explicitly proved there:

Proposition 2.3. Let be a real plurisubharmonic current inM ( ). If is
an analytic subset of , with dim < , then χ = 0 (as usual, χ is the charac-
teristic function of the set ).

Proof. Also ∂∂ is of order zero, for it is positive. By Corollary 1.16 in [8],
is C-flat, and by the Cut-Off Lemma 1.11 in the same paper,χ is also C-flat.

Therefore, since the 2 -dimensional Hausdorff measure of vanishes, we getχ =
0 by the Federer-type Support Theorem 1.13 in [8].

In the present paper, we can avoid to use the full notation of forms and currents
on an analytic subset (nevertheless, see [8, pp. 576–577]),since we shall be always in
the following particular case:

is an analytic subset of of pure dimension , and is a realC-flat current
in M ( ) such that Supp( )⊆ .

In this situation we say that is a current on if there is ∈ 1
loc( ) such that

= [ ]. As a matter of fact, if we agree that this definition is correct when is
smooth, we can argue as follows: by the previous Proposition, χSing( ) = 0, hence
is the trivial extension of the current :=| −Sing( ) across Sing( ). Then , being a
current on Reg( ), is of the form (ϕ) =

∫
Reg( ) ϕ for everyϕ ∈ D ( −Sing( )),

where ∈ 1
loc(Reg( )). But, since has locally finite mass across Sing( ), isin-

tegrable not only on compact sets in Reg( ), but also on Reg( )∩ , for every com-
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pact in , so that:

(ϕ) =
∫

Reg( )
ϕ ∀ϕ ∈ D ( )

This means that = [ ].
Let us recall that the Aeppli groups are defined by:

R ( ) :=
{ϕ ∈ ER ( ) : ∂∂ϕ = 0}
{∂ψ + ∂ψ : ψ ∈ E −1( )}

R ( ) :=
{ϕ ∈ ER ( ) : ϕ = 0}
{ ∂∂ψ : ψ ∈ E −1 −1

R ( )}

The inclusionER ( )→ D′ − − ( )R induces the following isomorphisms:

R ( ) ≃ { ∈ D
′
− − ( )R : ∂∂ = 0}

{∂ + ∂ : ∈ D′ − − +1( )}

R ( ) ≃ { ∈ D′ − − ( )R : = 0}
{ ∂∂ : ∈ D′ − +1 − +1( )R}

REMARK 2.4. If ϕ is a real ∂∂-closed ( )-form on and is a real
∂∂-closed ( )-current on , we shall denote by〈ϕ〉 and 〈 〉 their classes in

R ( ). In particular, when〈 〉 = 0, we shall say that is acomponent of a bound-
ary (for there is a current such that =∂ + ∂ , thus is the component of
bidegree ( ) of ( + )).

Finally, if → is a map between complex manifolds, the mapER ( )
∗

→
ER ( ) induces a map R ( )

∗

→ R ( ). It follows that if is a ∂∂-closed
( )-current on , then the classes〈 〉 ∈ R ( ) and ∗ 〈 〉 ∈ R ( ) are well-
defined.

3. Transforms of currents of degree (1 1)

In the present chapter, and′ always denote complex manifolds,′ α→ is a
proper modification with exceptional divisor whose irreducible components (neces-
sarily of codimension 1) are denoted by{ }; := α( ) is the center of the modifi-
cation, so thatα| ′− : ′ − → − is a biholomorphic map. We are interested
in the study of the strict transform and of the total transform of a current on .
As we shall see, the bidegree of the current is important; moreover, the case when
is pluriharmonic (which is needed in Theorem 4.7, and to study 1-convex manifolds)
will be a little more difficult than the classical case (when is closed).

Let us start with an easy consideration. If is an analytic subset of , with no
irreducible component contained in the center , then the strict transform of is
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nothing but the topological closure′ := α−1( − ) in ′. In particular, in the case
of a (irreducible, for simplicity) hypersurface of , besides the strict transform ′,
we can also define the total transformα∗ ; if is locally defined by a holomorphic
function , thenα∗ is the divisor defined by ◦ α, and it holds:

(3.1) α∗ = ′ +
∑

where every is a non negative integer.
Let us extend the notion of strict transform to currents (of order zero, because we

need characteristic functions).

DEFINITION 3.1. Let be a current of order zero on . We say that a current′

of order zero on ′ is the strict transform of byα if χ ′ = 0 andα∗ ′ = .

Since α| ′− : ′ − → − is a biholomorphic map, the currentα :=
(α| ′− )−1

∗ ( | − ) is well-defined on ′ − .

Proposition 3.2. Let be a current of order zero on . There exists a strict
transform of if and only ifχ = 0 and α := (α| ′− )−1

∗ ( | − ) has locally finite
mass across . If a strict transform exists, then it coincides with the trivial extension
of α across , thus it is unique.

Proof. If ′ is a strict transform of fromα∗ ′ = it follows that α =
′| ′− ; since, by hypothesis,χ ′ = 0, ′ turns out to be the trivial extension (α)0

of α across . Moreover,χ = χ α∗
′ = α∗(χ ′) = 0. On the contrary, let us

suppose that α has locally finite mass across (hence there exists (α)0) and that
χ = 0. To show that (α)0 is the strict transform of , we have only to check that
α∗( α)0 = (notice that the fact thatχ ( α)0 = 0 follows from the definition of triv-
ial extension). The currentsα∗( α)0 and coincide on − (by definition of α);
moreover,χ α∗( α)0 = α∗(χ ( α)0) = 0 andχ = 0; henceα∗( α)0 = .

The above Proposition emphasizes the analogy between currents and analytic sub-
sets: the absence of irreducible components of contained incorresponds to the
condition χ = 0, and moreover, as ′ = α−1( − ), ′ is a sort of “closure” of

α := (α| ′− )−1
∗ ( | − )

Let us now extend the definition of total transform.

DEFINITION 3.3. Let be a pluriharmonic (1 1)-current of order zero on . We
shall say that a pluriharmonic (1 1)-current of order zero on′ is a total transform
of if α∗ = and ∈ α∗ 〈 〉 (see 2.4).
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Le us notice that the above definition generalizes the case ofa divisor:

REMARK 3.4. Let be an effective divisor of ; then [α∗ ] is a total transform
of [ ] (recall that [ ] is the current associated to the divisor).

Proof. Locally, in an open set of , is defined by the holomorphic function
andα∗ is defined by ◦α in α−1( ). By Lelong’s formula, [ ] = (/π)∂∂ log | |

in and [α∗ ] = ( /π)∂∂ log | ◦ α| in α−1( ). Let us check thatα∗[α∗ ] = [ ].
Call := Supp( )∩ , and take a sequence of open neighborhoods of in

, converging to . For everyϕ ∈ D −1 −1
R ( ), we get:

α∗[α∗ ](ϕ) = [α∗ ](α∗ϕ) =
1
π

∫

α−1( )
log | ◦ α| ∂∂(α∗ϕ)

= lim
→∞

1
π

∫

α−1( )
log | ◦ α| ∂∂(α∗ψ) = lim

→∞

1
π

∫
log | | ∂∂ϕ

=
1
π

∫
log | | ∂∂ϕ = [ ](ϕ)

Take a smooth representative of the cohomology class of [ ], that is,ψ ∈ E1 1
R ( )

such thatψ = [ ] + ( /π)∂∂ for a suitable current of degree zero on . Then
log | | + ∈ ∞( ), and log| ◦ α| ∈ 1

loc(α
−1( )) since it is plurisubharmonic,

which implies ◦ α ∈ 1
loc(

′); thus ◦ α is a current on ′. Hence:

α∗ψ =
π
∂∂(log | ◦ α| + ◦ α) = [α∗ ] +

π
∂∂( ◦ α)

that is, [α∗ ] ∈ α∗ 〈[ ]〉.

Remember the following property:

Lemma 3.5 (see e.g. Lemma 2.6 in [1]).Let ′ α→ be a proper modification.
For every ∈ there exist an open neighborhood of in, a complex manifold

and holomorphic maps → ′, → such that = α◦ ; moreover → α−1( )

is a blow-up and → is obtained as a finite sequence of blow-ups with smooth
centers.

Lemma 3.6. If ′ α→ is a blow-up with smooth(connected) center, then the
exceptional divisor is not the component of a boundary, i.e. there is no current
on ′ such that[ ] = ∂ + ∂

Proof. Let = dim , and denote by → ′ the inclusion map; as in the proof
of Theorem 2.3 in [1], we can build a closed compactly supported ( −1 −1)-form
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on ′, such that ∗ ≥ 0 and, for some ∈ , ∗ > 0. This gives a contradiction:

0<
∫

= (∂ ) + (∂ ) = 0

More generally:

Theorem 3.7. Let ′ and be complex manifolds and′
α→ be a proper

modification with exceptional divisor = ∪ . If
∑

[ ] = ∂ + ∂ , with ∈ R
and a suitable current on ′, then = 0 for every .

Proof. Fix 0 and then ′ ∈ Reg( 0); using Lemma 3.5, we shall consider
α−1( ) α→ . Hence, with no loss of generality, we suppose that there area com-
plex manifold and a blow-up → ′ such thatα ◦ = : → is given by the
composition of a finite number of blow-ups with smooth centers.

Let us denote by ′ the strict transform of in and by{ } the irre-

ducible components of the exceptional set of the modification → ′. Notice that,
by (3.1), ∗ = ′ +

∑
. Hence, by Remark 3.4,

∑
[ ∗ ] =

∑
[ ′ ] +∑

[ ] is a total transform of
∑

[ ]. By hypothesis,
〈∑

[ ]
〉

= 0,
hence also〈∑ [ ′ ] +

∑
[ ]〉 = 0.

But { } = { ′}∪{ } are the irreducible components of the exceptional divisor

of → , so that we only need to prove that, if
〈∑

[ ]
〉

= 0 for some constants
, then the vanish. This claim can be easily proved by induction on the number of

the blow-ups with smooth center which give the map , using Lemma 3.6.

REMARK 3.8. The following result, which is similar to Theorem 3.7, is well-
known (see for example [16, p. 286]):

If
∑

[ ] represents the zero class in2 −2( ′), where = dim , then = 0
for every .

But notice that in Theorem 3.7 the current is not compactly supported, so that
we cannot use homology.

And now we can prove the following:

Theorem 3.9. Let be a pluriharmonic(1 1)-current of order zero on . If a
total transform exists, it is unique and will be denoted byα∗ . In this case, also the
strict transform ′ exists, and

α∗ = ′ + χ α∗

(Some examples will prove that, in general, the currentχ α∗ is not of the form∑
[ ], so that the present result is not a direct consequence of Theorem 3.7).
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Proof. Let be a total transform of ; since codim> 1, we getχ = 0 by
Proposition 2.3. Henceα∗(χ ) = χ α∗ = χ = 0, and so (1− χ ) satisfies the
conditions in Definition 3.1 and is the strict transform′ of . We get = ′ +χ

Now let and ˜ be total transforms of . Then− ˜ = χ −χ ˜ is supported
on . Since both ,˜ ∈ α∗ 〈 〉, there is a (1 0)-current on ′ such that −
˜ = ∂ + ∂ . But 0 = α∗ − α∗ ˜ = ∂(α∗ ) + ∂(α∗ ) so that∂α∗ ∈ 2( ) is a
holomorphic 2-form. For every ′ ∈ Reg( ) and every pseudoconvex neighborhood
of α( ′) in , there isφ ∈ 1( ) such that∂(α∗ ) = ∂φ. Therefore := − α∗φ is
a (1 0)-current onα−1( ), and it satisfies − ˜ = ∂ + ∂ and α∗∂ = 0, so that

( + ) is supported inα−1( )∩ .
Let us consider − ˜ : it is a pluriharmonic current of order zero, hence it is

C-flat (see Corollary 1.16(i) in [8]); moreover, it is real, sothat by Corollary 1.16(ii)
in [8], in a suitable neighborhood ⊂ α−1( ) of ′ in ′, − ˜ = ∂ + ∂ , where

is a (1 0)-current in with coefficients in 1
loc( ). As before,∂( − ) ∈ 2( )

and also∂( − ) = ∂ψ for a suitableψ ∈ 1( ), when is supposed to be pseu-
doconvex.

The following equality holds in :

( + ψ + + ψ) = ∂ + ∂ + − ˜ = ( + )

so that ( + ) is a flat current, supported on ∩ . With no loss of generality, we
can suppose ∩ Sing( ) = ∅, and apply the Federer flatness Theorem ([19, p. 194])
getting:

( + ) =
∑

[ ∩ ]

where ∈ 1
loc( ∩ ). Since our current is closed, every is a constant , so

that we get (for the part of bidegree (1 1)):− ˜ =
∑

[ ∩ ]. Moreover, since
′ is arbitrary, we get − ˜ =

∑
[ ] in ′ − Sing( ), and also on the whole of

′, because codim(Sing( ))> 1, so that (by Proposition 2.3)χSing( )( − ˜ ) = 0. By
Theorem 3.7, it follows that − ˜ = 0.

The following example shows that, in general,χ α∗ is not a current on
(see Chapter 2).

EXAMPLE 3.10. Take

= δ( 2) ( 1 ∧ 2 + 2 ∧ 1) = ∂ + ∂

where :=−( /π 2) 1 is a pluriharmonic current of order zero onC3; it is sup-
ported on :={ 2 = 0} but is not a current on . Consider the blow-up′

α→ C3

with center :={ 2 = 3 = 0}, and suppose thatα is defined in terms of coordinates
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, in ′ as





1 = 1

2 = 2 3

3 = 3

and





1 = 1

2 = 2

3 = 2 3

so that the equations defining are, respectively,3 = 0 and 2 = 0. Take the current

′ :=





−
π 2 3

1 w. r. to the

−
π 2

1 w. r. to the

which is obtained by extendingα across , so that ′ is the strict transform of .
We would like to check thatα∗ = ∂ ′+∂ ′: sinceα∗(∂ ′+∂

′
) = ∂ +∂ =

and also, obviously,〈∂ ′+∂
′〉 = 0 and〈 〉 = 0, we have only to check that∂ ′+∂

′

is of order zero:

∂ ′ + ∂
′

=





δ( 2)

(
1

3
1 ∧ 2 +

1

3
2 ∧ 1

)
+ δ( 3)

(
1

2
1 ∧ 3 +

1

2
3 ∧ 1

)

δ( 2) ( 1 ∧ 2 + 2 ∧ 1)

Now it is clear thatχ α∗ is not of the formδ( 3) ( 1 2)( /2) 3 ∧ 3 = [ ]
(in terms of the coordinates ).

Let us go to an existence result for the total transform:

Theorem 3.11. Let be a positive pluriharmonic(1 1)-current on : then there
exists the total transformα∗ of ; moreover it is positive and

(3.2) α∗ = ′ +
∑

[ ]

where ′ is the strict transform of and every is a non-negative weaklyplurisub-
harmonic function on . In particular, ′ is plurisuperharmonic(i.e. ∂∂ ′ ≤ 0).
If moreover is closed, or if is compact, then every is a constant, and ′ is
closed in the first case, pluriharmonic in the second case.

Proof. The first statement is contained in Theorem 3 in [2].
To check (3.2), by Theorem 3.9 we need only to prove thatχ α∗ =

∑
[ ].

Let χ =
∑

χ − ∑ χ for suitable analytic subsets of codimension bigger
than one: thenχ α∗ = 0 by Proposition 2.3 andχ α∗ = [ ] for suitable
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weakly plurisubharmonic functions by Theorem 4.10 in [8]. From (3.2) it follows
that ∂∂ ′ = −∑ ∂∂ ∧ [ ] ≤ 0.

If is closed, then locally =∂∂ for a suitable plurisubharmonic function ,
and α∗ = ∂∂( ◦ α) (see the proof of Remark 3.4), i.e.α∗ is closed and positive.
A classical result (see 12 3 in [24]) implies thatχ α∗ = [ ], ≥ 0; hence
by (3.2), ′ = 0. If is compact, then every is constant, and by (3.2),∂∂ ′ = 0.

Let us show an example where (3.1) and (3.2) are really different, i.e. the func-
tions are not constant.

EXAMPLE 3.12. Take :={ ∈ C3; | 2| < 1}, := { 2 = 3 = 0}, := { 2 = 0}.
Let ′ α→ be the blow-up with center and

:= −
2π

log | 2|∂∂| 1|2 +
1
2
| 1|2[ ]

is a positive pluriharmonic current. Using the same coordinates and as in Ex-
ample 3.10, it is easy to computeα and its trivial extension

( α)0 = ′ =





−
2π

log | 2|∂∂| 1|2 − 2π
log | 3|∂∂| 1|2 +

1
2
| 1|2[ ′]

−
2π

log | 2|∂∂| 1|2

where ′ is the strict transform of . Hence

∂∂ ′ = − ∂∂ ∧ [ ] =





−
2
∂∂| 1|2 ∧ [ ] ≤ 0

−
2
∂∂| 1|2 ∧ [ ] ≤ 0

As regards the strict transform of (1 1)-currents, we can relieve the hypotheses in
Theorem 3.11 as follows:

Proposition 3.13. Let be a positive plurisubharmonic(1 1)-current on .
Then there exists the strict transform′ of , and it is positive.

Proof. By Proposition 2.3,χ = 0, and moreover (α| ′− )−1
∗ ( | − ) has lo-

cally finite mass across (by Corollary 3.6 in [3], but see alsoLemma 2.10 ibidem).
We get the thesis by Proposition 3.2.

In the following example we shall show that, when is only positive, the strict
transform ′ may not exist; moreover, the example will show that the hypotheses in
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Proposition 3.13 are well-chosen to the problem.

EXAMPLE 3.14. There exists a (1 1)-current , which is positive and plurisuper-
harmonic, such thatα has not finite mass across , so that′ cannot be defined.

Let ′ α→ C2 be the blow-up at the origin, and letω := ( /2)∂∂|| ||2 be the Kähler
form of the euclidean metric ofC2; take := || ||−2ω. is a positive well-defined
(1 1)-current onC2: in fact, for every neighborhood of the origin, the mass of
in − {0} is given by

∫

−{0}
∧ ω = 2

∫

−{0}
|| ||−2 ω

2

2
<∞

hence can be extended across the origin.
Since ′ ⊂ C2×CP1, the natural Kähler form on ′ is ω+θ, whereθ is the form

of the Fubini-Study metric onCP1. Sinceα∗θ = ( /π)∂∂ log || ||, we getα∗θ ∧ ω =
(1/π)|| ||−2(ω2/2); hence the mass ofα in α−1( − {0}) is given by

∫

α−1( −{0})
α∧(ω+θ) =

∫

−{0}
∧α∗(ω+θ) =

∫

−{0}
∧ω+

1
π

∫

−{0}
|| ||−4 ω

2

2
= +∞

Notice that is plurisuperharmonic, because∂∂ = 0 in C2 − {0} and for every
∈ ∞

0 (C2),

∂∂ ( ) = lim
ε→0

∫

|| ||>ε

∧ ∂∂ = − lim
ε→0

4
ε4

∫

|| ||>ε

ω2

2
= −2π2 (0)

The last example shows that, also when is a pluriharmonic (1 1)-current of or-
der zero, which has a total transformα∗ , andχ α∗ is a current on , we cannot
deduce that∂∂(χ α∗ ) is of order zero.

EXAMPLE 3.15. Let ′ α→ C2 be the blow-up at the origin, and let

= δ( 2) ( 1 ∧ 2 + 2 ∧ 1) = ∂ + ∂

where =−( /π 2) 1 (see Example 3.10). As in Example 3.10 (notice that, there,
was a current onC3!), we get χ α∗ = 4Re(1/ 2)[ ] But ∂∂(4Re(1/ )) =

4π{(∂δ/∂ )− (∂δ/∂ )}( /2) ∧ is not of order zero.

4. Transforms of currents of bidimension (1 1)

Let us use the same notation as in the previous chapter: in particular, ′ α→ is a
proper modification. Let be a current of bidimension (1 1) on ,i.e. ∈ D′1 1( ).
First of all, we study the existence of the strict transform′ of .
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Theorem 4.1. Assume that the exceptional divisor of the modification′
α→

is compact and that there exists a Kähler neighborhood of in′. If ∈ D′1 1( ) is
positive and plurisubharmonic, and χ = 0, then there exists the strict transform′.

Proof. By means of Proposition 3.2, it is enough to show that the current α :=
(α| ′− )−1

∗ ( | − ) on ′− has locally finite mass across . We can choose a rela-
tively compact neighborhood of in , such thatα−1( ) has a Kähler metric with
Kähler form ; moreover, it holdsα∗ = + ∂∂ for a suitable closed (1 1)-form
∈ E1 1

R ( ) and a 0-current on . In order to apply the Regularization Theorem
of Demailly ([13]) to the currentα∗ on , remark that “. . . the method can be eas-
ily extended to non compact manifolds, but uniform estimates only hold on relatively
compact open subsets. . . ” (see [13, Introduction]); so (seealso Lemma 4.1 in [18]),
chosen a suitable hermitian metric on with Kähler form , it follows that, for every
smooth (1 1)-formγ on which satisfiesα∗ ≥ γ, there are a sequence{ µ}µ≥0 of
smooth functions on and a sequence{λµ}µ≥0 of continuous functions on such
that:

(i) + ∂∂ µ ≥ γ − λµ on
(ii) { µ}µ≥0 is decreasing to
(iii) {λµ}µ≥0 is decreasing to the Lelong number (α∗ ) for every ∈

Moreover, using Satz 1 8 and 1 9 in [23], it is not hard to see that the sequence
{ µ} can be chosen in such a way that

(iv) { µ}µ≥0 converges in ∞( − ) to

Now, let us choose a suitable family of forms on : for every open neighborhood
of , ⋐ , take a smooth (1 1)-formγ on such that

α∗ ≥ γ ≥ 0 on and α∗ = γ on −

Let ⋐ be a fixed open neighborhood of ; from above we get, for every⋐ :

∫

α−1( − )
α∧ =

∫

−

∧α∗ =
∫

−

∧γ ≤
∫

∧ +
∫

∧ ∂∂ µ+
∫

∧λµ

Choose ∈ ∞
0 ( ), 0 ≤ ≤ 1, = 1 in a neighborhood of , and recall that

∂∂ ≥ 0. Thus, since (1− ) µ converges in ∞( ) to (1− ) , and µ decreases
to , we get:

lim
µ→∞

∫
∧ ∂∂ µ = lim

µ→∞

∫
∧ ∂∂[(1− ) µ] + lim

µ→∞

∫
∂∂ ∧ µ

=
∫

∧ ∂∂[(1− ) ] +
∫

∂∂ ∧
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Moreover, (α∗ ) vanishes outside andχ = 0, therefore limµ→∞
∫

∧λµ =
0 This means that|| α||(α−1( )− ) = sup || α||(α−1( − )) <∞

REMARK 4.2. In [21, p. 1144], there is an example which shows that thecom-
pactness hypothesis on is necessary.

It would be interesting to look for a generalization of Theorem 4.1 to currents of
every bidimension, and also to avoid the hypothesis on the K¨ahler neighborhood of .
A first answer is given in Proposition 4.5.

DEFINITION 4.3 (see Definition 2.3 in [18]). Let be a complex manifold. A
Kähler current on is a closed (1 1)-current such that− ω is a positive current
(in the sense of Lelong), whereω is the (1 1)-form of a suitable hermitian metric on

.

REMARK 4.4. If ω is the (1 1)-form of a Kähler metric on , thenω is a Kähler
current. More generally, if a compact manifold belongs to the classC of Fujiki,

then (see [29, Théorème 3]) there is a proper modification′
β→ where ′ is

Kähler; for every (1 1)-formω′ of a Kähler metric on ′, β∗ω′ is a Kähler current
on .

Proposition 4.5. Theorem 4.1still holds assuming, instead of“E is compact and
has a Kähler neighborhood in ′”, that is compactly supported and there exists a
Kähler current in a neighborhood ofα−1(Supp ) in ′.

Proof. Choose a relatively compact neighborhood of Supp( ) in , such that
α−1( ) has a Kähler current , and writeα∗ = + ∂∂ for a suitable closed
(1 1)-form on . Finally letω be the (1 1)-form of a hermitian metric onα−1( )
such that − ω ≥ 0.

Apply the Regularization Theorem of Demailly to the currentα∗ on as in
the above proof (but remark that, since we do not know if is smooth in − , we
cannot say that µ converges in ∞( − ) to ).

Now let us choose a suitable family of forms; for every open neighborhood of
∩ , ⊂ , take a smooth (1 1)-formγ on such that

α∗ ≥ γ ≥ 0

on , while on − :

α∗ω = γ
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We get:

∫

α−1( − )
α ∧ ω =

∫

−

∧ α∗ω =
∫

−

∧ γ

≤
∫

∧ +
∫

∧ ∂∂ µ +
∫

∧ λµ

Since is plurisubharmonic and compactly supported in , andµ decreases to ,

lim
µ→∞

∫
∧ ∂∂ µ = lim

µ→∞

∫
∂∂ ∧ µ =

∫
∂∂ ∧

Finally, (α∗ ) is upper-semicontinuous, thus bounded from above in Supp(),
therefore

lim
µ→∞

∫
∧ λµ ≤ || ||( )

This means that sup|| α||(α−1( − )) <∞

Proposition 4.6. Let ∈ M1 1( ) be a positive pluriharmonic(resp. positive
closed) current on . If the strict transform ′ exists, then it is pluriharmonic(resp.
positive closed).

Proof. The strict transform of is (α)0, where α is pluriharmonic. From The-
orem 2 in [12], it follows

∂∂( α)0 = ∂∂( α)0 − ( ∂∂ α)0 ≤ 0;

thus ∂∂( α)0 is a measureµ ≤ 0 on ′; since

α∗( ∂∂( α)0) = ∂∂α∗( α)0 = ∂∂ = 0

we get µ = 0 and so ∂∂( α)0 = 0. If is closed, then α is closed too, thus also
( α)0 is closed (see Théorème 1, p. 372 in [25]).

Let us give a first application:

Theorem 4.7. Let be a complex manifold which is an open subset of a man-
ifold in the classC and let be a compact analytic subset of . If∈ M1 1( ) is
positive, pluriharmonic and supported on, then there exist currents and on,
supported on , such that is closed and of bidimension(1 1) and = +∂ +∂
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Proof. Recall that a compact manifold in the classC is regular in the sense
of Varouchas ([28]); in particular the natural morphism

R ( )→ R ( )

is an isomorphism; therefore, for every∂∂-closed current on , there exist a closed
current and a current such that = +∂ + ∂ . By the Federer-typeC-flatness
Theorem 1.24 in [8], is a current on , which also belongs toC; hence, if is
smooth, the proof is over. If is singular, let us recall the following result:

Proposition 4.8 ([10, p. 43]). Let be a complex manifold and an analytic
subset of . There exist a complex manifold′ and a holomorphic map ′

α→
given by a finite sequence of blowing-ups

′ =
α→ −1 → · · · → 1

α1→ 0 =

with smooth centers , = 0 . . . − 1, such that the images of the centers lie in
and the strict transform ′ of in ′ is smooth.

By our hypothesis, and also 1 . . . (see 3.4(ii) in [29]) are open subsets
of manifolds in C; this implies, by Remark 4.4, that the modificationsα are in the
situation of Proposition 4.5.

Let 0 := , which is a positive pluriharmonic current of bidimension (1 1); since

0 is smooth, also the current (1− χ 0) 0 is pluriharmonic (see Corollary 2.3 in [4]).
By Proposition 4.5 we get the strict transform1 of (1− χ 0) 0 via the modification
α1, and by Proposition 4.6,1 is pluriharmonic. In this manner, when we got on

, it is defined the current +1 as the strict transform of (1− χ ) via α +1, =
0 . . . − 1.

For every , the currentχ is a pluriharmonic current of bidimension (1 1) on
which belongs toC; hence there are currents and on , such that:

χ = + ∂ + ∂

(notice that is supposed to be closed and of bidimension (1 1), and on ′ we get:
= + ∂ + ∂ ). Since

= χ 0 0 + α1∗(χ 1 1) + α1∗α2∗(χ 2 2) + · · · +α1∗ · · ·α ∗

we get the thesis if := 0 + α1∗ 1 + · · · + α1∗ · · ·α ∗ and := 0 + α1∗ 1 + · · · +
α1∗ · · ·α ∗ .
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5. Quasi-projective 1-convex manifolds

DEFINITION 5.1. Let be a complex space; a couple ( ) is said acompactifi-
cation of if is a connected compact complex space,6= ∅ is a closed nowhere
dense analytic subset of and − is biholomorphic to . If has a projective
compactification , then is said a quasi-projective space.

DEFINITION 5.2. A complex manifold is said 1-convex (or strongly pseudocon-
vex) if there exist a proper surjective holomorphic map (called the Remmert reduction)

→ onto a Stein space , and a finite set⊂ such that, if := −1( ), the

induced map − → − is biholomorphic andO ≃ ∗O . Actually, since is
a manifold, has only isolated singularities which are contained in .

Let be a 1-convex manifold and → the Remmert reduction. There is a natural
correspondence between the set of the compactifications of and that of the compact-
ifications of : for instance, if ( ) is a compactification of , then gluing together
− and we get a compactification ( ) of ( := (− ) ∪ ) and a

holomorphic map → which extends and is the identity on .
In particular, we are interested in the case where is quasi-projective, i.e. when

has a projective compactification ( ). If necessary, we can blow-up the singular-
ities in − , so that Sing( ) = Sing( ); as said before, we get a smooth compacti-
fication ( ) of .

Precisely, the situation we shall study is the following:

(∗) is a 1-convex manifold of dimension≥ 3, → is its Remmert re-
duction, where is a Stein quasi-projective space. Let ( ) be acom-
pactification of such that is projective and Sing( ) = Sing( ) (i.e.
the corresponding compactification ( ) of is smooth).

REMARK 5.3. In the situation (∗), is connected and of pure codimension 1.

Proof. Notice that ( ;R) = 2 − ( R); indeed is an Euclidean Neigh-
borhood Retract (see f.i. [14, Propositions IV.8.12, VIII.6.12 and VIII.7.2]). Thus the
exact sequence of cohomology groups of the couple ( ) is:

0→ 0( R)→ 0( R)→ 0( R)→ 1( R)→ · · ·

The following exact diagram is related to the Remmert reduction → (see [16,
Satz 4.1]):

· · · → ( ) → ( ) → −1( ) → · · ·
↓ ↓≃ ↓

· · · → ( ) → ( ) → −1( ) → · · ·
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Since ( ) = 0 for ≥ 1, we get ( )≃ ( ) ≃ ( ) for > 1, and the
diagram gives the following exact sequence:

0→ 2 ( )→ 2 ( )→ 2 ( )→ 2 −1( )→ 2 −1( )→ 2 −1( )→ · · ·

But 2 −1( ) = 2 ( ) = 0, since dim < , and 2 −1( ) = 2 ( ) = 0 because
is a Stein space (see Theorem 3 in [20]). Hence, by Poincaré duality,

1( R) ≃ 2 −1( ) = 0

and

0( R) ≃ 2 ( ) = 0

Thus 0( R) ≃ 0( R) ≃ R, since is connected.
Finally, if is an irreducible component of with codim≥ 2, we can extend

the holomorphic functions on across , but this is impossiblesince is Stein.

Now we can establish the

Theorem 5.4 (Main Theorem). Assume the situation(∗).
If the map 2( R) ∗→ 2( R), induced by the inclusion → , is injective,

then the following properties are equivalent:
(i) is Kähler
(ii) is embeddable
(iii) is projective(in particular is quasi-projective).

Proof. If has a smooth projective compactification, then carries a posi-
tive line bundle, so that, by Theorem III in [15], becomes embeddable and hence
Kähler. So we need only to prove that, if is Kähler, then is Kähler too, be-
cause this implies that is projective (notice that, by (∗), is Moishezon). We shall
use the characterization of compact Kähler manifolds by means of positive currents
(see [17, Theorem 14]); let be a positive current on of bidimension (1 1) which
is the (1 1)-component of a boundary: it is enough to show that= 0.

Since is projective, there is an embedding→ CP , for a suitable . Let

→ be the extension of the Remmert reduction and letθ be the Fubini-Study
form on CP . The form := ∗ ∗θ is a closed positive form on , which is strictly
positive outside of . Since is the (1 1)-component of a boundary:

0 = ( ) =
∫

(~ ) || ||
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hence Supp( )⊂ . From Theorem 4.7 it follows that on :

= + ∂ + ∂

where and are supported on and is closed. Since is the component of a
boundary in , there is a current on such that =∂ + ∂ . Thus

∗ = ∂( − ∗ ) + ∂( − ∗ )

Therefore ∗ is closed and is the component of a boundary; but is Moishezon,
thus regular (see [28]), therefore∗ is ∂∂-exact. In particular,∗ represents the zero

class of 2( R). Since 2( R) ∗→ 2( R) is injective, = for a suitable
current compactly supported on . Thus, on , = +∂ + ∂ . But has a
Kähler form, sayα, and , have compact support, so that = 0, because (α) =
( + ∂ + ∂ )(α) = 0.

REMARK 5.5. We do not know if the hypothesis about2( R) ∗→ 2( R) is
really necessary.

REMARK 5.6. Assume (∗). If dim = 1, then is Kähler if and only if it is em-
beddable.

Proof. From the exact homology sequence of the couple ( ) we get:

3( ; Z)→ 2( Z) ∗→ 2( Z)

Thus, since 2 −3( Z) ≃ 3( ; Z) and 2( Z) are finitely generated, it fol-
lows that 2( Z) is finitely generated too. This is enough thanks to Theorem II
in [5].

In the last part of the paper, we shall suppose that is smooth,and investigate
some simple conditions which imply that:

(5.1) 2( R) ∗→ 2( R) is injective.

(this hypothesis is used in the Main Theorem 5.4)

Proposition 5.7. Assume(∗). If is smooth, then

(5.2) 1( R) = 0

implies (5.1).
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Proof. Since dimR = 2 − 2 (see Remark 5.3), then, by means of Poincaré
duality:

1( R) ≃ 2 −3( R) ≃ 3( ; R)

The thesis follows from the exact homology sequence of the couple ( ):

3( ; R)→ 2( R) ∗→ 2( R)

The exact sequence of the couple ( ) also gives:

1( R)→ 1( R)→ 1( ; R)

As before, ( ;R) ≃ 2 − ( R). For dimensional reasons,

2 ( R) = 2 −1( R) = 0

therefore, if 1( R) = 0, then 1( R) = 0

Proposition 5.8. Assume(∗). If is smooth, then

(5.3) codim > 1 and 1( R) = 0 (or 1( R) = 0)

implies (5.2) and thus(5.1).

Proof. Arguing as in the proof of Remark 5.3 we get

2 −1( )→ 2 −1( )→ 2 −1( )→ 2 −2( )→ 2 −2( )→ 2 −2( )

and, since ≥ 3, 2 −1( ) = 2 −2( ) = 2 −1( ) = 2 −2( ) = 0. Therefore

0 = 2 −1( ) = 1( R)

and

0 = 2 −2( ) = 2( R)

Using these facts and the exact sequence of cohomology groups of the couple ( ):

0 = 1( R)→ 1( R)→ 1( R)→ 2( R) = 0

we get 1( R) ≃ 1( R), so that

0 = 1( R) ≃ 1( R) ≃ 1( R) ≃ 1( R)
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Proposition 5.9. Assume(∗) and let be smooth. If

(5.4) is a complete intersection in someCP

or

(5.5) is a complete intersection in someCP

or

(5.6) is embeddable in CP with ≤ 2 − 3

then (5.1) holds.

Proof. If (5.4) holds, then Proposition 8 in [6] says thatCP − is -complete,
where is the number of equations which define ; thus =− ( − 1). And
when (5.5) holds, thenCP − is -complete, for = − . But = − is
a Stein space, hence by a classical result of Siu it has a Steinopen neighborhood
in CP − . So we can considerCP − as given by the union of two open sets,
CP − , which is ( − )-complete, and , which is 1-complete. ThereforeCP −
is ( − + 1)-complete. If (5.6) holds, thenCP − is -complete (see [22]), with

= 2(codimCP )− 1 = 2 − 2 + 1

In all cases, since “ -complete” implies “cohomologically -complete”, we can use a
result of Sorani (see [26, Teorema 4.4]) which asserts that,for such a manifold ,

( C) = 0 for ≥ + dimC . Thus 2 −2(CP − R) = 0 if 2 − 2 ≥ + ,
and by the exact sequence

0 = 1(CP R)→ 1( R)→ 2(CP ; R) ≃ 2 −2(CP − R)

condition (5.1) follows.
But in the first case, 2 − 2 ≥ + precisely when ≥ 3, and in the last case

when 2 − 3≥ .
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