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1. Introduction

Let X’ and X be complex manifolds (not compact, a priori), aktl > X a
proper modification with centeZ and exceptional divigor ,osé irreducible com-
ponents are{E;}. Let ¥ be an analytic subset of  without irreducible composent
in Z: then its strict (proper) transforrii’ is a well-defined analytic subset af’. In
particular, whenD is a complex hypersurfaceof , we can defieestrict transform
D’ and also the total transform

(11) a*D=D"+ anEk, n; > 0.
k

In the first part of this paper we shall extend these notionthéocase of currents
on X, and ask for the existence and uniqueness of strict aad ttahsforms.

We can look for a strict transfornf’ of a currentT onX (of every bidegree)
when T is of order zero ang;7T = 0 (see Definition 3.1); moreover, if a strict trans-
form exists, it is unique (see Proposition 3.2).

On the other hand, to define the total transfaxit¥" of a currentT onX (Defini-
tion 3.3), T must be “closed” in some sense: in fact, the idethas if © is a smooth
form on X, cohomologous t@ , them*T should be cohomologous t@*p. The clas-
sical case is that of -closed currents, while the most gémerstext seems to be that
of 90-closed currents (i.e. pluriharmonic currents); moreoves would like to gener-
alize (1.1) as:

(1.2) O T=T +L

where L is a current supported dii . As for existence results&eswe have to es-
timate locally the mass of, := (a|x_£)-(T|x_z), we shall assum& > 0 (in the
sense of Lelong).

But notice that defining a “good” total transform, besidedelgiree (1 1), seems
hopeless: for instance, ¥ is a line through the originGA and X’ % X := C% is
the blow-up with center in the origin, what could be the “trueeaning of a*Y?

Partially supported by MIUR research funds.
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Thus, in general, we need to take into account the bidegretheofcurrent: we
shall give most results when the bidegree is (1 1), only a fesults when the bidi-
mension is (1 1) (that is, the bidegree is-{ 1, n — 1), with n := dimc X); nothing is
known in the general case, besides the uniqueness of tloe tstmsform.

Let us now explain our results when the bidegree Tof is (1B T is a
(1, 1)-current. First of all, as regardsiiqueness

Proposition 1.1 (see Theorem 3.9).Let T be a pluriharmonic(1, 1)-current of
order zero onX . Thenif the strict transform7’ and the total transformn*T exist
they are unique andl.2) holds.

This result is not obvious, sincé , the part of the total tfams which is sup-
ported onE , is not, in general, of the forbn, fi[Ei], nor a current onE  (see Ex-
amples 3.10 and 3.15).

As for the existencethe “classical” case is not difficult: i is a closed, positi
(1, 1)-current onX , therT’ and o*T exist, they are closed and positive, and moreover

T=T'+Y alEd.
k

where everyc, iS a non-negative constant. In general, we have:

Theorem 1.2 (see Theorem 3.11, but also Theorem 3 in [2]let T be a pos-
itive pluriharmonic (1, 1ycurrent on X . Then the strict transforr’ and the total
transform o*T exist and are positivemoreover o*T = T’ + ", fi[Ei], where every
fi is a non-negative weakly plurisubharmonic function Bp

Hence, whilea*T is pluriharmonic,T’ turns out to be only plurisuperharmonic,
i.e. i00T' <0 (see Example 3.12).
As for the existence of the strict transform, we get:

Proposition 1.3 (see Proposition 3.13 but also Corollary 3.6 in [3]Let T be a
positive plurisubharmoniq1, 1)-current on X (i.e. i90T > 0). Then the strict trans-
form T’ exists.

For currents of bidimensior{1, 1), the analogue of complex curves, we have the
following result (notice that a compactness hypothesisnotirbe avoided, see Re-
mark 4.2):

Theorem 1.4 (see Theorem 4.1 and Proposition 4.5)et T be a positive
plurisubharmonic current onX of bidimensiofi, 1) and such thatyz7T = 0. If E
is compact and has a Kahler neighborhood X, or if T has compact support and
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there exists a Kahler current on a neighborhoodcof'(SuppT ),then the strict trans-
form T’ exists(and is uniqug

From this theorem we get the following:

Theorem 1.5(see Theorem 4.7).Let X be a complex manifold which is an open
subset of a manifold in the clagsof Fujiki and letS be a compact analytic subset of
X. If T is a positive pluriharmonic current oX, of bidimension(1, 1) and supported
on S, then there exist suitable curren® aml & supported onS, such thatR
is closed and of bidimensiofi, 1) and T = R+ 9P + OP.

Roughly speaking, the meaning of the Theorem is the follgwih S is smooth,
the hypothesis concerning the claSsof Fujiki implies that the De Rham cohomol-
ogy of S coincides with the Aeppli cohomology of idp-closed forms modulo
(0 + 9)-exact forms); the Theorem asserts that a similar stateralso holds in the
singular case (this result is needed in the proof of Theoreth 5

The second part of the paper concernsohvex manifolds

A complex analytic spac&X is 1-convex when it is a proper meatifin of a
Stein space¥ in a finite number of points. In the present pagecaensider only the
case of a complexnanifold X, henceY has only a finite number of (isolated) singu-
larities; we shall always indicate with  the exceptional skthe modification, which
is also the maximal compact analytic subsetXof

An old question is to establish when a 1-convex spacaanibeddablethat is when
there is an embedding of @7 x CP,, for suitablep andn .

It is well-known that 1-convex surfaces are embeddable [8he More recentely
it has been shown that 1-convex manifolls  whose exceptigtdl is 1-dimensional
are certainly embeddable when dim> 3, while if dimX = 3 there could be some
exceptional cases which are listed in [11]. More precisélyX is not embeddable,
then S contains an irreducible component which is a rationabes of type 1, —1),
(0, —2) or (1, —3); as a matter of fact, examples are known only for the firgt tases
(see [30], [11] and [9)).

Another problem is the tie between the Kahler property amel émbeddability:
every embeddable 1-convex manifold is Kahler, but the es® is unknown. A partial
result (see [5]) says that, whef is a curve, a possible coexample should satisfy
the condition thatH»>(X, Z) is not finitely generated. When dish> 1, very few is
known.

Both the known examples of non-embeddable 1-convex malsifbbve been built
starting from a Stein spacE  which is the affine part of a ptojechypersurface.
This kind of construction has been recently generalized Baw, who proved the
following:
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Proposition 1.6 ([27]). Let N C CP, be a hypersurface with isolated singu-
larities, M L, N be a resolution of singularitesand H c CP,, be a hyperplane
which avoids the singular locus a¥  and such that:= H N N is smooth. Set
X ;=M — f~XX). Then for m > 4, the following statements are equivalefi) X
is Kéahler. (i) X is embeddable(iii) M is projective.

The main goal of this paper is to generalize the above resufolows:

Theorem 1.7 (Theorem 5.4). Let N be a projective variety of dimension at least
three and with isolated singularities. Let 7. N be a resolution of singularitiesand
¥ a hypersurface oV which avoids the singular locushof  and ghelt N — X is
Stein. LetX := M — f~1(X), which is al-convex manifold. Therif the map

(1.3) Ho(X, R) 5 Hy(M, R)

is injective, the following properties are equivalent
(i) X is Kahler.

(i) X is embeddable.

(iii) M is projective.

In general, we don’t know when the hypothesis (1.3) is reatdgessary (if din§ =1,
see Remark 5.6); but wheB is smooth, we can replace it withesotiner hypothe-
ses, which are stronger but easier to check, precisely with af the following:
() Hi(Z,R)=0;
(i) dimS <dimX —1 andHY(M,R) =0 (or H(X, R) = 0);
(i) X is a complete intersection in someP,;
(iv) ¥ is embeddable in som&P,,, with m < 2dimX — 3;
(v) N is a complete intersection in son@P,;

In particular, from (i) it follows that this is a true gendealtion of Vajaitu's re-
sult.

We would like to thank M. Coltoiu and V. V3jaitu for some énésting discussions
and suggestions about this last argument.

2. Preliminaries

We cannot report here all the preliminaries concerning teory of currents that
are needed in what follows: so we shall only recall some teabboutC-flat currents,
currents supported on analytic subsets and Aeppli cohaygolo

Let X be ann -dimensional complex manifold?:9(X) and D?-9(X) are respec-
tively the space of ff, ¢ )-forms oX and its subspace of compasulyported ones.
The space of currents ok  withidimension(p, ¢) is denoted byD’, ,(X) and is
the dual space oD?-7(X) with respect to its natural topology. Since a curréhte
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D', 4(X) is locally given by a £ — p,n — ¢)-form with distribution coefficients, we
shall say thatl habidegree(n — p,n — ¢g) or that it is an & — p, n — g)-current. A
subscriptR, like for instance£t”(X), denotes the spaces mfal forms or currents.

The space of currents of bidimensiop,¢ ) and of order zera, ihasuch that
all coefficients are complex measures, is denoted\My ,(X).

If Y is an analytic subset ok , an@ € M, (X —Y), thenT can be extended
to a currentS € M, ,(X) if and only if T has locally finite mass acrods ; among
all these extensions, the trivial extensi@® is characterized byy7T° = 0.

When a real X, k )-current is positive in the sense of Lelong, hallswnrite T >
0. Every positive current is real and of order zero.

Derinimion 2.1, Let T be a realk k )-current oX T  is said pluriharmonic if
0T =0, plurisubharmonic 90T > 0 and plurisuperharmonic 90T < 0.

DeriniTioN 2.2. A currentT onX isC-flat if locally T = F +90G +9H for some
currentsF ,G , andd  with coefficients il (see [8, Definition 1.1]).

For C-flat currents, we shall refer to [8]; in particular, we shaften use the fol-
lowing result, which is not explicitly proved there:

Proposition 2.3. Let T be a real plurisubharmonic current iM, ,(X). If Y is
an analytic subset ok, with dimY < p, then xyT = 0 (as usual yy is the charac-
teristic function of the ser).

Proof. Alsoi0dT is of order zero, for it is positive. By Corollary 1.16 in [8],
T is C-flat, and by the Cut-Off Lemma 1.11 in the same papg!7 is also C-flat.
Therefore, since the 2 -dimensional Hausdorff measur& of niskias, we geky7T =
0 by the Federer-type Support Theorem 1.13 in [8]. O

In the present paper, we can avoid to use the full notationooh$ and currents
on an analytic subset (nevertheless, see [8, pp. 576-5iite we shall be always in
the following particular case:

Y is an analytic subset ok  of pure dimensipn , d@id is a @dlat current
in M, ,(X) such that Supg{ ¢ Y.

In this situation we say thaf is a current onY if there is f € LL (Y¥) such that
T = f[Y]. As a matter of fact, if we agree that this definition is 1@t whenY is
smooth, we can argue as follows: by the previous Propositi@Rngy)? = 0, henceT
is the trivial extension of the currel®  E|x_singy) across Sing( ). TheR , being a
current on Red( ), is of the fornR ¢ = fReg(Y)f‘P for every ¢ € DP-P(X — Sing(Y)),
where f € L} (Reg(r )). But, sinceR has locally finite mass across Sing(f ), indis
tegrable not only on compact sets in Reg( ), but also on Reg(K) for every com-



722 L. ALESSANDRINI AND G. BASSANELLI

pact K in X, so that:
r)= [ fo Ve D),
Reg()

This means thal’ ¥ ].
Let us recall that the Aeppli groups are defined by:

{p € ELP(X) 1 i00p = 0}
{0 + 0 < € EPP=L(X)}
{p e &fP(X) dp=0}
{i00 ¢ € ELHPH(X)}

VEP(X) =

ARP(X) =

The inclusion€8?(X) — D'y—p.n—p(X)r induces the following isomorphisms:

{T €Dy pnp(X)r :i00T =0}
{O0P+0P P €Dy_pupu(X)}
{TeD pop(X)r:dT =0}
{iQOP : P € D'y pirn—pr1i(X)R}

Vg’p(X) ~

Ag’p(X) ~

Remark 2.4. If ¢ is a real 90-closed p, p)-form onX andl' is a real
do-closed @, p )-current onX , we shall denote Ky) and (T) their classes in
V&P(X). In particular, whenT) = 0, we shall say thal is eomponent of a bound-
ary (for there is a current? such that &P + 0P, thus T is the component of
bidegree p, p ) ofd P +P)).

Finally, if X 2 ¥ is a map between complex manifolds, the map’(Y) 2

ELP(X) induces a mapVy P (Y) o VEP(X). It follows that if T is a d0-closed
(p. p)-current onY , then the classé®) € V{'7(X) and ®*(T) € V&P (Y) are well-
defined.

3. Transforms of currents of degree (1 1)

In the present chapte anx always denote complex manifoldX’ % X is a
proper modification with exceptional divisdEi =~ whose irreitilee components (neces-
sarily of codimension 1) are denoted K¥,}; Z := o(E) is the center of the modifi-
cation, so thaiv|x'_g : X’ — E — X — Z is a biholomorphic map. We are interested
in the study of the strict transform and of the total transfoof a currentT onX .
As we shall see, the bidegree of the current is important;emar, the case wheh
is pluriharmonic (which is needed in Theorem 4.7, and to \stlicconvex manifolds)
will be a little more difficult than the classical case (whgéns closed).

Let us start with an easy consideration.YIf  is an analyticsetlof X , with no
irreducible component contained in the cenér , then thiet diransform ofY is
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nothing but the topological closurg’ := a~1(¥ — Z) in X’. In particular, in the case
of a (irreducible, for simplicity) hypersurface & , besidéne strict transfornD’,
we can also define the total transfowiD; if D is locally defined by a holomorphic
function f, thena* D is the divisor defined byf o «, and it holds:

(31) oD :D/+anEk
k

where everyn; is a non negative integer.
Let us extend the notion of strict transform to currents (afeo zero, because we
need characteristic functions).

Derinimion 3.1.  LetT be a current of order zero dh . We say that a curfént
of order zero onX’ is the strict transform off byv if g7’ =0 anda, T’ =T.

Since a|x'—g: X’ — E — X — Z is a biholomorphic map, the currerft, :=
(alx—£)7XT|x_z) is well-defined onX’ — E.

Proposition 3.2. Let T be a current of order zero oX . There exists a strict
transform of T if and only ify,7 =0 and T, := (a|x_£);X(T|x_z) has locally finite
mass acros¥ . If a strict transform existeen it coincides with the trivial extension
of T,, acrossE, thus it is unique.

Proof. If T’ is a strict transform of’, fromm. T’ = T it follows that 7., =
T'|x _g; since, by hypothesisyzT’ =0, T’ turns out to be the trivial extensiorT()°
of T, acrossE . MoreoveryzT = xza,T' = a.(xeT’) = 0. On the contrary, let us
suppose thafl,, has locally finite mass acrosE  (hence there exigtg°f and that
xzT =0. To show that 7,,)° is the strict transform off , we have only to check that
a.(T,)° = T (notice that the fact thatz(7,)° = 0 follows from the definition of triv-
ial extension). The currents,(7,)° and T coincide onX — Z (by definition of T,,);
moreover,y zax(T)° = a,(x£(T)%) =0 andx,T = 0; henceo, (T,)° =T. O

The above Proposition emphasizes the analogy betweenntaimad analytic sub-
sets: the absence of irreducible componentof  contained torresponds to the
condition xzT = 0, and moreover, a¥’ = a~1(Y — Z), T’ is a sort of “closure” of
To = (@x-£) M(T|x-2).

Let us now extend the definition of total transform.

Derinimion 3.3. Let T be a pluriharmonic (1 1)-current of order zero ¥n . We
shall say that a pluriharmonic (1 1)-curreRt of order zeroXdnis a total transform
of T if axR=T andR € o* (T) (see 2.4).
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Le us notice that the above definition generalizes the case di¥isor:

Remark 3.4. LetD be an effective divisor o€ ; them{D] is a total transform
of [D] (recall that [D] is the current associated to the dividDy.

Proof. Locally, in an open sdf of D is defined by the holomarghinction
f anda*D is defined byfoa in a~1(U). By Lelong’s formula, P 1= (/)00 log | f|
in U and [p*D] = (i/m)0dlog|f o a| in a~Y(U). Let us check thatv,[a* D] = [D].

Call A := SuppD N U, and take a sequendé,  of open neighborhoodd of in
U, converging toA . For every € D& "~XU), we get:

oulo” DI() = [a"D)a*) =+ [ tog| o alidla’)

a~1(4)

lim 1/ log|f o alidd(a*+p) = lim 1/ log| f|idde
a=Y(v,) ey,

n—oo T

= [ 1ogl rlioe = 1)

Take a smooth representative of the cohomology classDof hal, is, ¢ € £5(X)
such thaty = [D] + (i/m)00u for a suitable currentz of degree zero ¢h . Then
log|f| +u € C>(U), and log f o a| € L} (a"1(U)) since it is plurisubharmonic,
which impliesu o a € LE (X'); thusu o o is a current onX’. Hence:

loc
a*p = éag(log |foal+uoa)=[a*D]+ %85(»: o)
that is, * D] € o* ([D]). O

Remember the following property:

Lemma 3.5 (see e.g. Lemma 2.6 in [1]).Let X' % X be a proper modification.
For everyx € X there exist an open neighborhodd wof I a complex manifold
Z and holomorphic mapg % X', Z 2, v such thath = aog; moreoverZ % a~1(V)
is a blow-up andZ 2 v is obtained as a finite sequence of blow-ups with smooth
centers.

Lemma 3.6. If X’ % X is a blow-up with smooti{connectell center then the
exceptional divisorE is not the component of a boundas: there is no current.
on X’ such that[E] = OL + JL.

Proof. Letn =dimX , and denote b¥ L X' the inclusion map; as in the proof
of Theorem 2.3 in [1], we can build a closed compactly supgabit —1, n—1)-form ©
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on X', such that*® > 0 and, for somex € E, i*©®, > 0. This gives a contradiction:
0</®:L(5®)+Z(a®):o. O
E

More generally:

Theorem 3.7. Let X’ and X be complex manifolds ank’ = X be a proper
modification with exceptional divisoE = UE;. If >, ai[Ei] = OL + 9L, with ¢; € R
and L a suitable current orX’, then ¢, = 0 for everyk .

Proof. Fix ko and thenx’ € Reg(Ey,); using Lemma 3.5, we shall consider
a~}(V) & V. Hence, with no loss of generality, we suppose that thereaacem-
plex manifold Z and a blow-uz % X’ such thatoo g =h: Z — X is given by the
composition of a finite number of blow-ups with smooth cesiter

Let us denote byE; the strict transform ofE;, inZ and by{G;} the irre-
ducible components of the exceptional 2t  of the modifica#fio*> X’. Notice that,
by (3.1), g"Ex = E; + >, ny;G;. Hence, by Remark 3.4, ck[g"Ex] = > ck[Ef] +
> aniglG)l is a total transform of}’, ck[Ei]. By hypothesis, (>, ck[Ed]) = O,
hence also(}_, ck[E;] + >, ; cunii[G1) = 0.

But {H;} = {E;} U{G;} are the irreducible components of the exceptional divisor
of Z % X, so that we only need to prove that, (i}, r;[H;]) = 0 for some constants
ri, then ther; vanish. This claim can be easily proved by indactia the number of
the blow-ups with smooth center which give the miap , using fben8.6. O

Remark 3.8. The following result, which is similar to Theorem 3.3 well-
known (see for example [16, p. 286]):

If >, cx[Ei] represents the zero class #hp,_>(X’), wheren =dimX , thery, =0
for every k .

But notice that in Theorem 3.7 the curreht is not compactlypsuted, so that
we cannot use homology.

And now we can prove the following:

Theorem 3.9. Let T be a pluriharmonigl, 1)current of order zero onX . If a
total transform existsit is unique and will be denoted by*T. In this case also the
strict transformT"’ exists and

T =T +xpa*T.

(Some examples will prove that, in general, the currgpty*T is not of the form
> cck[Ex], so that the present result is not a direct consequencehebfem 3.7).
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Proof. LetR be a total transform df ; since codin> 1, we getyz7 =0 by
Proposition 2.3. Hencer,.(xgR) = xzaxR = xzT =0, and so (- xg)R satisfies the
conditions in Definition 3.1 and is the strict transfoff of 7. We getR =T’+ygR.

Now let R andR be total transforms of . TheR—R = yzR—xzR is supported
on E. Since bothR R € a* (T), there is a (1 O)-curren. o&’ such thatR —
R=0L+0L. But 0 = a,R — . R = d(a. L) + O(c, L) so thatda. L € Q3(X) is a
holomorphic 2-form. For every’ € Reg(E ) and every pseudoconvex neighborh@bd
of a(x’) in X, there is¢ € QYU) such thatd(a, L) = d¢. ThereforeQ =L — a*¢ is
a (1 0)-current omy~X(U), and it satisfiesR — R =9Q +9Q and o.dQ = 0, so that
d(Q + Q) is supported il Y(U)N E.

Let us considerR — R: it is a pluriharmonic current of order zero, hence it is
C-flat (see Corollary 1.16(i) in [8]); moreover, it is real, swat by Corollary 1.16(ii)
in [8], in a suitable neighborhoo® C a~1(U) of x’ in X', R — R = 8G +dG, where
G is a (1 0)-current inv with coefficients idl (V). As before,0(Q — G) € Q3(V)
and alsod(Q — G) = dv for a suitableyy € Q1(V), whenV is supposed to be pseu-
doconvex.

The following equality holds invV :

d(G+Y+G+Y)=dQ+00+R—R=d(Q + Q)

so thatd Q@ +Q) is a flat current, supported ovin E. With no loss of generality, we
can supposé&’ N Sing(E) =0, and apply the Federer flatness Theorem ([19, p. 194])
getting:

d(Q+0)=>_ AlVNE]
k

where f; € LL(V N Ey). Since our current is closed, evefy  is a constant , so
that we get (for the part of bidegree, (1 1§:— R = > cc[V N E]. Moreover, since

x' is arbitrary, we getR — R = > cclEd in X' —Sing(E), and also on the whole of
X', because codim(Sing( ) 1, so that (by Proposition 2.3)singz)(R — R) = 0. By
Theorem 3.7, it follows thaR — R = 0. O

The following example shows that, in generalzga*T is not a current onkE
(see Chapter 2).

ExavpLE 3.10. Take
T =0(z2)i(dza N dZ2 +dzo Nd7Z1) = OP +0OP
where P :=—(i/nz2)dz1. T is a pluriharmonic current of order zero @¥; it is sup-

ported onY :={z = O} but is not a current or¥ . Consider the blow-xp = C2
with centerZ :={z, = z3 = 0}, and suppose that is defined in terms of coordinates
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Xiy Vj in X’ as

1= x 1= N
72 = X2X3 and 2= Y2
73 = X3 73 = Yy2y3

so that the equations defining  are, respectivelys 0 and y, = 0. Take the current

dx1 W.r tothe x;
P/ o TX2X3

. dyr w. r. to the y;
Y2
which is obtained by extending, acrossk , so thaP’ is the strict transform o .
We would like to check that*T = 9P’ +0P’: sincea,(OP'+0P )= 0P+0P =T
and also, obviously(dP’'+dP') =0 and(T) = 0, we have only to check th@P’'+9P’
is of order zero:

aP' +9P
(1 1 _ 1 1 _
0(x2)i (— dxi Ndxz+ = dxo \ dx1> +0(x3)i (— dxi Ndxz+ —=dx3 N\ dx1>
X3 X3 X2

X2

d(y2)i(dy1 Ndyz +dy2 N dy1)

Now it is clear thatyga™T is not of the formd(xs) f(x1, x2)(i/2)dx3 N\ dx3 = f[E]
(in terms of the coordinates; ).

Let us go to an existence result for the total transform:

Theorem 3.11. Let T be a positive pluriharmoni€l, 1)-current onX: then there
exists the total transforna* T of T'; moreover it is positive and

(3.2) QT =T+ fil B
k

where T’ is the strict transform off and every, is a non-negative weallyisub-
harmonic function onE; . In particular7’ is plurisuperharmonic(i.e. i00T’ < 0).
If moreoverT is closedor if E is compact then everyf; is a constanand 7’ is
closed in the first casepluriharmonic in the second case.

Proof. The first statement is contained in Theorem 3 in [2].

To check (3.2), by Theorem 3.9 we need only to prove thgt*T =", fil Ei].
Let xg = >, XE — Z,- Xy, for suitable analytic subset¥;  of codimension bigger
than one: thenyy,a*T = 0 by Proposition 2.3 andig,a*T = fi[E:] for suitable
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weakly plurisubharmonic functiong, by Theorem 4.10 in [8tofa (3.2) it follows
that i00T' = — ), i00 fy N[Ei] < 0.

If T is closed, then locallyl' <00 f for a suitable plurisubharmonic functiofi
and o*T = i00(f o o) (see the proof of Remark 3.4), i.e)T is closed and positive.
A classical result (see 12 3 in [24]) implies thg o T = c[Ei], & > 0; hence
by (3.2),dT’ = 0. If E; is compact, then every; is constant, and by (3@)7’ = 0.

U

Let us show an example where (3.1) and (3.2) are really dffferi.e. the func-
tions f; are not constant.

ExavpLle 3.12. TakeX :={z € C3|zp| <1}, Z :={z22=23=0}, Y :={z, =0}.

Let X’ — X be the blow-up with centeZ and
To=— log |22|00|z1|* + }|21|2[Y]
o 2r ' ' 2" ’

T is a positive pluriharmonic current. Using the same coatdisx; andy; as in Ex-
ample 3.10, it is easy to compuf®, and its trivial extension

i — i — 1
—2— Iog |x2|88|x1|2 - 2— Iog |x3|88|x1|2 + §|X1|Z[Y/]
(rr=1=¢ 7 "
i —
—5-log |y2100]y1?
i

whereY’ is the strict transform o . Hence

L odlxi 2 A[E] <O
i00T' = —id0f N[E] = _ )
~500* A 1E] <0

As regards the strict transform of ,(1 1)-currents, we caievelthe hypotheses in
Theorem 3.11 as follows:

Proposition 3.13. Let T be a positive plurisubharmoni€l, 1)-current on X .
Then there exists the strict transforf of T, and it is positive.

Proof. By Proposition 2.3x,T = 0, and moreover|x:_£); (T |x_z) has lo-
cally finite mass acrosg (by Corollary 3.6 in [3], but see dlsonma 2.10 ibidem).
We get the thesis by Proposition 3.2. U

In the following example we shall show that, wh&h is only fiesj the strict
transform T’ may not exist; moreover, the example will show that the higpsés in
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Proposition 3.13 are well-chosen to the problem.

ExavPLe 3.14. There exists a (1 1)-currefit , which is positive andigplyper-
harmonic, such thaf,, has not finite mass acrods , so tifdtcannot be defined.

Let X’ % C? be the blow-up at the origin, and let:= (i/2)dd||z||? be the Kahler
form of the euclidean metric o€?; take T :=||z||"2w. T is a positive well-defined
(1, 1)-current onC?: in fact, for every neighborhoo@  of the origin, the mass7of
in U — {0} is given by

UJZ
/ T/\w:2/ l|z]| = < o0
U—{0} U—{0} 2

henceT can be extended across the origin.

Since X’ ¢ C?x CPy, the natural Kahler form oX’ is w+6, wheref is the form
of the Fubini-Study metric oiCP;. Sincea.f = (i/7)0dlog||z||, we geta.f A w =
(1/7)||z||72(w?/2); hence the mass df, in a~X(U — {0}) is given by

1 2
/ T = [ Thaert)= [ Taerl [ (et = e,
a~Y(U—-{0}) U—{0} U—{0} e U—{o} 2

Notice thatT is plurisuperharmonic, becaus®T = 0 in C?> — {0} and for every
u € C5°(C?,

£— e—0¢

a7 : e .4 w? 5
i00T (u) = lim / T Niddu = — lim —/ u— = —27“u(0).
[|lz||>€ ||z||>€e

The last example shows that, also wHEn is a pluriharmonic){@utrent of or-
der zero, which has a total transforat7, and xga*T is a current onE , we cannot
deduce thaidd(xza*T) is of order zero.

[e3

ExampLE 3.15. LetX’ % C? be the blow-up at the origin, and let
T =6(z2)i(dza N dZ2 +dzo Nd7Z1) = OP +0P

where P =—(i/nz2) dz1 (see Example 3.10). As in Example 3.10 (notice that, there,
T was a current onC3l), we get xzo*T = 4Re(Vy,)[E]. But i0d(4Re(Yz)) =
47{(06/0z) — (06/07)}(i/2)dz A dzZ is not of order zero.

4. Transforms of currents of bidimension (1, 1)

Let us use the same notation as in the previous chapter: ticydar, X' = X is a
proper modification. Le” be a current of bidimension (1 1)Xni.e, T € D} 4(X).
First of all, we study the existence of the strict transfafthof 7.
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Theorem 4.1. Assume that the exceptional divisBr  of the modificaién® X
is compact and that there exists a Kahler neighborhooof Xinlf T € D} 4(X) is
positive and plurisubharmoni@and xzT = 0, then there exists the strict transfori.

Proof. By means of Proposition 3.2, it is enough to show that durrentT,, :=
(alx—£)7XT|x_z) on X' — E has locally finite mass acrogs . We can choose a rela-
tively compact neighborhoo¥ df X , such that(U) has a Kahler metric with
Kahler form € ; moreover, it holds..Q = ® +i00 f for a suitable closed (1 1)-form
(OIS EFlgl(U) and a O-currentf o/ . In order to apply the Regularizatioreorem
of Demailly ([13]) to the currentv.2 on U, remark that “...the method can be eas-
ily extended to non compact manifolds, but uniform estimately hold on relatively
compact open subsets...” (see [13, Introduction]); so @se Lemma 4.1 in [18]),
chosen a suitable hermitian metric 8h  with Kahler fasm ,olidws that, for every
smooth (1 1)-formy on U which satisfiesy,.Q > ~, there are a sequende,,},>o of
smooth functions orU and a sequengk,},>o of continuous functions o/  such
that:

(i) d>+i85f#2fy—)\#u on U
(i) {f.},>0 is decreasing to f
(i) {A.}u>0 Is decreasing to the Lelong numbet .2, x), for every x € U.

Moreover, using Satz.1 8 and 19 in [23], it is not hard to se¢ tha sequence
{f.} can be chosen in such a way that

(iv) {fu.}u>o converges in C*(U —2Z2) to f.

Now, let us choose a suitable family of forms éh : for every ropeighborhoodW
of Z, W € U, take a smooth (1 1)-formy on U such that

2>y >0 on U and a,Q=7y on U —W.

Let V € U be a fixed open neighborhood @f ; from above we get, for eVéng V:

/ T, A :/ T Ao Q :/ T ANyw g/ T/\CI>+/ Tm'aéflﬁ/ T AN
a—Y(V-W) V—-Ww V—Ww Vv Vv Vv

Chooseg € C§°(V), 0 < g < 1, ¢ = 1 in a neighborhood oZ , and recall that
i00T > 0. Thus, since (% g)f,, converges iNC*°(U) to (1— g)f, and gf,, decreases
to gf, we get:

lim / T Niddf,
\4

H— 00

lim /VT A9l — g) ful +Jiinm/‘/i85T Agfo

00

/Tmaé[(l—g)fh/iaéTAgf.
\4 \4
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Moreover,n (.2, x) vanishes outsid& angd;7T =0, therefore lim_.. fV TANu =
0. This means thal|T,||(a~ (V) — E) = supy ||Ta||(a"1(V — W)) < . O

RemArRk 4.2. In [21, p. 1144], there is an example which shows that cibve-
pactness hypothesis afi  is necessary.

It would be interesting to look for a generalization of Thewr4.1 to currents of
every bidimension, and also to avoid the hypothesis on thklét " neighborhood off
A first answer is given in Proposition 4.5.

Derinimion 4.3 (see Definition 2.3 in [18]). LeX be a complex manifold. A
Kahler currentQ onX is a closed,(1 1)-current such tfat w is a positive current
(in the sense of Lelong), whete is the (1 1)-form of a suitable hermitian metric on
X.

RemArRk 4.4. If wis the (1 1)-form of a Kahler metric oX , thenis a Kahler
current. More generally, if a compact manifold belongs te tlassC of Fuijiki,

then (see [29, Théoréme 3]) there is a proper modificaién > M where M’ is
Kahler; for every (1 1)-formw’ of a Kahler metric onM’, §.w’ is a Kahler current
on M.

Proposition 4.5. Theorem 4.1still holds assuminginstead of“E is compact and
has a Kahler neighborhood iX’”, that T is compactly supported and there exists a
Kahler current in a neighborhood af~*(SuppT )in X'.

Proof. Choose a relatively compact neighborhddd  of Soipp( X, such that
a~Y(U) has a Kahler currenf2 , and write,Q = & +i00f for a suitable closed
(1, 1)-form & onU . Finally letw be the (1 1)-form of a hermitian metric am*(U)
such that — w > 0.

Apply the Regularization Theorem of Demailly to the currentQ on U as in
the above proof (but remark that, since we do not knovf if is@tmon U — Z, we
cannot say thaff,, converges inC>(U — Z) to f).

Now let us choose a suitable family of forms; for every opeigligorhoodW of
UNZ, W cCU, take a smooth (1 1)-formy on U such that

on U, while onU — W:

W = Yy



732 L. ALESSANDRINI AND G. BASSANELLI

We get:

/ Ta/\w=/ T/\oz*w=/ T Nyw
a~YU-W) U—-w U—-w

S/T/\CI>+/T/\i85f#+/T/\)\#u.
U U U

Since T is plurisubharmonic and compactly supported/in , @ndlecreases tgf

H— 00

lim /Tmaéf#: lim /iagT/\f#:/iagT/\f.
U H= Ju U

Finally, n (a2, x) is upper-semicontinuous, thus bounded from above in SUpp(
therefore

lim /T/\)\#MSCHTH(U).
U

H— 00

This means that syp||T. ||(a"1(U — W)) < <. ]

Proposition 4.6. Let T € M3 1(X) be a positive pluriharmonidqresp. positive
closed current on X . If the strict transforn¥’ exists then it is pluriharmonic(resp.
positive closey

Proof. The strict transform of  isT(,)°, whereT,, is pluriharmonic. From The-
orem 2 in [12], it follows

i00(T,)° = i90(T,)° — (109T,)° < 0;
thus i90(T,)° is a measurg: < 0 on X’; since
@, (i00(T,)°) = 1000 (T,)° = i00T = 0

we getp = 0 and s0idd(T,)° = 0. If T is closed, thenT,, is closed too, thus also
(1.,)° is closed (see Théoréme 1, p. 372 in [25]). O

Let us give a first application:

Theorem 4.7. Let X be a complex manifold which is an open subset of a man-
ifold in the classC and let S be a compact analytic subset ¥f .Tife M 1(X) is
positive pluriharmonic and supported of, then there exist current® ang  aoX,
supported onS, such thatR is closed and of bidimensi¢h 1) and 7 = R+0P +0P.
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Proof. Recall that a compact manifo  in the classs regular in the sense
of Varouchas ([28]); in particular the natural morphism

ART(M) — Vi (M)

is an isomorphism; therefore, for evefy)-closed curren oM , there exist a closed
currentR and a currenP  such that R= 9P +OP. By the Federer-typ&€-flatness
Theorem 1.24 in [8],T is a current o , which also belongCfohence, ifS is
smooth, the proof is over. I§ is singular, let us recall théofeing result:

Proposition 4.8 (10, p. 43). Let X be a complex manifold anfl an analytic
subset ofX . There exist a complex manifdid and a holomorphic mapgt’ = X
given by a finite sequence of blowing-ups

X =X,3X, 15 —>X13Xo=X

with smooth centerZ;, j =0,...,r — 1, such that the images of the centers lieSn
and the strict transforms’ of S in X’ is smooth.

By our hypothesis,X and als&, ..., X, (see 3.4(ii) in [29]) are open subsets
of manifolds inC; this implies, by Remark 4.4, that the modificationg are in the
situation of Proposition 4.5.

Let Tp := T, which is a positive pluriharmonic current of bidimensi¢l, 1); since
Zo is smooth, also the current @ xz,)To is pluriharmonic (see Corollary 2.3 in [4]).
By Proposition 4.5 we get the strict transforfia of (1 — xz,)7o Vvia the modification
a1, and by Proposition 4.671 is pluriharmonic. In this manner, when we gof on
X;, it is defined the currenf;.; as the strict transform of (X xz,)7; via ajs1, j =
0,....,r —1.

For everyj , the currentz, T; is a pluriharmonic current of bidimension,(1 1) on
Z; which belongs toC; hence there are currens; a®d  #n , such that:

XZjTj = Rj +5Pj +8Fj

(notice thatR; is supposed to be closed and of bidimension (larld onX’ we get:
T, =R, + 0P, + OP,). Since

T =xz,To+ a1.(xz.Th) + a1.00.(x2,T2) + - - + 1w - - i T,

we get the thesis iR Rp+aRi+ - +ap. R and P =Py+ap P+ +
Qls "+ Qs Py O
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5. Quasi-projective 1-convex manifolds

DeriniTion 5.1. LetY be a complex space; a couplé, & ) is saicbepactifi-
cation of Y if N is a connected compact complex spade,# () is a closed nowhere
dense analytic subset &f and — X is biholomorphic toY . IfY has a projective
compactificationN , ther¥ is said a quasi-projective space.

DeriniTion 5.2, A complex manifoldX is said 1-convex (or strongly pseraie
vex) if there exist a proper surjective holomorphic mapléshthe Remmert reduction)

x L v onto a Stein spac& , and a finite $@tC Y such that, ifS :=f~1(B), the

induced mapX — S Ly_Bis biholomorphic anddy ~ f,Ox. Actually, sinceX is
a manifold,Y has only isolated singularities which are cimeta in B .

Let X be a 1-convex manifold an - v the Remmert reduction. There is a natural
correspondence between the set of the compactificatioys ofd theat of the compact-
ifications of X : for instance, if §/, ¥ ) is a compactification 8f ethgluing together
N — B and X we get a compactificatiom; = ) of M (- B)U X) and a
holomorphic mapM L N which extendsF and is the identity an

In particular, we are interested in the case whEre is quagkgive, i.e. when

Y has a projective compactificatiov(~ ). If necessary, we canvhlp the singular-
ities in N — B, so that Singly ) = Sind( ); as said before, we get a smooth cotinpa
fication (M, X) of X .

Precisely, the situation we shall study is the following:

(¥) X is a 1-convex manifold of dimensiom > 3, X L v is its Remmert re-
duction, whereY is a Stein quasi-projective space. 1}t X ) lwora-
pactification ofY such thatv is projective and Sivg( ) = Sing(i.g.(
the corresponding compactificatioM(x ) & is smooth).

Remark 5.3. In the situation«), ¥ is connected and of pure codimension 1.

Proof. Notice thatd’ M, = R) = H, ;(X,R); indeedX is an Euclidean Neigh-
borhood Retract (see f.i. [14, Propositions 1V.8.12, \AI1L2 and VIII.7.2]). Thus the
exact sequence of cohomology groups of the couple X ) is:

0— H°(X,R) — H°(M,R) — H°(Z,R) — HYX,R) — ---

The following exact diagram is related to the Remmert reédacX Ly (see [16,
Satz 4.1]):

- = Hi(X) — H(X,S) — Hi_a(S) — -~
i I~ i
- — H(Y) — H(Y,B) — Hy_1(B) — ---
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Since H, B) =0 fork > 1, we getH, ¥ )~ Hy(Y, B) ~ Hi(X, S) for k > 1, and the
diagram gives the following exact sequence:

0 — Hz,(S) — Hou(X) — H2y(Y) — Hzy—1(S) — Hop—1(X) — Hpp1(Y) — - --

But Hy,—1(S) = H2,(S) = 0, since dinS < n, and Hz,—1(Y) = H2,(Y) = O becausey
is a Stein space (see Theorem 3 in [20]). Hence, by Poincaaéty

HYX,R) ~ Hy, 1(X)=0
and
H°(X,R) ~ H,(X) = 0.

Thus Ho(Z, R) ~ Ho(M, R) ~ R, since M is connected.
Finally, if A is an irreducible component &  with codilm> 2, we can extend
the holomorphic functions oY  acros& , but this is impossgifee ¥ is Stein.
O

Now we can establish the

Theorem 5.4 (Main Theorem). Assume the situatiof).
If the map Hx(X, R) Ly Hy(M, R), induced by the inclusioX LM, is injective,
then the following properties are equivalent
(i) X is Kahler
(i) X is embeddable
(iii) M is projective(in particular X is quasi-projective

Proof. If X has a smooth projective compactification, th€n rieara posi-
tive line bundle, so that, by Theorem Il in [15X  becomes enddble and hence
Kahler. So we need only to prove that, ¥ is Kahler, thgh ighler too, be-
cause this implies tha4 is projective (notice that, By, M is Moishezon). We shall
use the characterization of compact Kahler manifolds byarmeof positive currents
(see [17, Theorem 14]); Ief  be a positive currentn  of bidisien (1 1) which
is the (1 1)-component of a boundary: it is enough to show thatO.

Since N is projective, there is an embeddiNgi CP,,, for a suitablem . Let
M L N be the extension of the Remmert reduction andéldbe the Fubini-Study
form on CP,,. The formQ :=F*h*0 is a closed positive form oM , which is strictly
positive outside ofS . Sinc& is the,(1 1)-component of a bonnda

O:T(sz):/MQx(fx)dllTll
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hence Sup@ & S. From Theorem 4.7 it follows that oW
T=R+0P+0P

where R andP are supported ¢h a®d is closed. Sifice s the compoha
boundary inM , there is a curredt oW  such tiat 0E+ dL. Thus

ivxR=0(L —i,P)+d(L —i,P).

Thereforei.R is closed and is the component of a boundary; Mut is Moishezon
thus regular (see [28]), thereforgR is d0-exact. In particularj,.R represents the zero
class of Ho(M, R). Since Hx(X, R) Ly H>(M, R) is injective, R =dQ for a suitable
current Q compactly supported ¥ . Thus, &n T, d@ OR+0P.ButX has a
Kahler form, say«, and P, Q have compact support, so tHat = 0, becduse =(
(dQ + 0P +0P)(a) = 0. O

Remark 5.5. We do not know if the hypothesis abol}(X, R) Ly Hy(M,R) is
really necessary.

RemArRk 5.6. Assume ). If dim S =1, thenX is Kahler if and only if it is em-
beddable.

Proof. From the exact homology sequence of the couple X ) we ge
Hy(M, X;Z) — Hx(X,Z) > Hy(M, 2)
Thus, sinceH?'~3(X, Z) ~ H3(M, X;Z) and Hy(M, Z) are finitely generated, it fol-
lows that H»(X, Z) is finitely generated too. This is enough thanks to Theorém |

in [5]. O

In the last part of the paper, we shall suppose that is smauoitl,investigate
some simple conditions which imply that:

(5.1) Hy(X,R) > Hy(M,R) is injective.
(this hypothesis is used in the Main Theorem 5.4)

Proposition 5.7. Assume(x). If ¥ is smooth then
(5.2) Hi(£,R)=0

implies (5.1).
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Proof. Since dimX = 2n — 2 (see Remark 5.3), then, by means of Poincaré
duality:

Hi(Z,R) ~ H*3(%,R) ~ Hy(M, X;R).
The thesis follows from the exact homology sequence of thepleo(M, X ):
Hs(M, X;R) — Hy(X,R) 5 Hy(M,R). O
The exact sequence of the coupl,(X ) also gives:
Hi(X,R) — Hi(M,R) — Hy(M, X;R).
As before,H; M, X R) ~ H*~(X, R). For dimensional reasons,
H*(Z,R)=H" }Z,R) =0,

therefore, if H1(X, R) =0, then H(M,R) = 0.

Proposition 5.8. Assume(x). If £ is smooth then
(5.3) codimS§ >1 and Hi(M,R)=0 (or Hi(X,R)=0)
implies (5.2) and thus(5.1).

Proof. Arguing as in the proof of Remark 5.3 we get

Hoy1(8) — Hay—1(X) — Hzy—1(Y) — Hazy2(S) — Hoy—2(X) — Hzy—2(Y)
and, sincen > 3, Hy,_1(Y) = Hz,_2(Y) = H2,_1(S) = Ha,_2(S) = 0. Therefore
0 = Hy,_1(X) = HY(X,R)
and
0 = Ha—2(X) = H(X, R)
Using these facts and the exact sequence of cohomology $@fuipe couple #, ¥ ):
0=HYX,R) — H'(M,R) — HY(Z,R) — H*(X,R)=0

we get H'(M, R) ~ HY(Z, R), so that

0=Hy(M,R)~ HY(M,R) ~ HY(Z,R) ~ Hi(Z, R). O
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Proposition 5.9. Assume(x) and let ¥ be smooth. If

(5.4) ¥ is a complete intersection in SoME&PR,,
or
(5.5) N is a complete intersection in sSoOmMeCP,,
or
(5.6) ¥ is embeddable inCP,, with m <2n—3

then (5.1) holds.

Proof. If (5.4) holds, then Proposition 8 in [6] says ti@&®, — X is g-complete,
where g is the number of equations which defiRe ; tus m=— (n — 1). And
when (5.5) holds, therl€P,, — N is g-complete, fory =m —n. ButY =N — X is
a Stein space, hence by a classical result of Siu it has a Spen neighborhood/
in CP,, — . So we can conside€CP,, — £ as given by the union of two open sets,
CP,, — N, which is (n —n)-complete, and/ , which is 1-complete. Theref@e,, — X
is (m —n +1)-complete. If (5.6) holds, theBP,, — ¥ is g-complete (see [22]), with

g =2(codingp, ) —1=2n—2n+ 1

In all cases, sinceq' -complete” implies “cohomologicaljycomplete”, we can use a
result of Sorani (see [26, Teorema 4.4]) which asserts tloatsuch a manifoldZ |,
H(Z,C)=0 fork > g +dimc Z. Thus Hzy—2(CPy, — £,R) =0 if 2m — 2 > q +m,
and by the exact sequence

0=HYCP,, R) — HY(Z,R) — H*(CP,, ;R) ~ Hy,_»(CP, — £, R)
condition (5.1) follows.

But in the first case, @ — 2 > g + m precisely whem > 3, and in the last case
when 21 — 3> m. ]
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