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1. Introduction

Let M? be a Riemann surfaceyhich might not be simply connecte8l meromor-
phic mapF fromM? into PSL(2 C) = SL(2, C)/{+id} is a map which is represented
as

(1.2) F = (A B) = \/ﬁ(/:4 B) (AD - BC =1),

C D C D

where A, B, C, D andh are meromorphic functions avi2. Thoughv/4 is a multi-
valued function onM?, F is well-defined as a PSL(Z)-valued mapping.

A meromorphic mapF as in (1.1) is calledrall curve if the pull-back of the
Killing form by F vanishes, which is equivalent to the conaliti that the derivative
F, = OF /0z with respect to each complex coordinate is a degenerataxnmetery-
where. It is well-known that the projection of a null curve RSL(2 C) into the hy-
perbolic 3-spaced® = PSL(2 C)/ PSU(2) gives a constant mean curvature one surface
(see [2, 10Q]). For a non-constant null cure , we define twoomerphic functions

(1.2) G =—=— g =——=——.
(For a precise definition, see Definition 2.1 in Section 2). ¥d G the hyperbolic

Gauss mapof F and g thesecondary Gauss mapespectively [12]. In 1993, Small
[8] discovered the following expression

da db

G——-a G——-D
(1.3) F = G~ V4G , a:= d—G, b= —ga
da ab s
dG dG
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for null curves such that botty ang are non-constaie ghall give a simple proof
of this formula in Section 2.Sa Earp and Toubiang3] gave an alternative proof,
which is quite different from ours. On the other hand, Limal &oitman[7] explained
this formula via the method of Biancil] from the 1920’s. Recently, Sm4fl] gave
some remarks on this formula from the viewpoint of null carie C*) In this ex-
pression,F is expressed by only the derivation of two Gausggsmaccordingly, the
formula is valid even ifM? is not simply connected.

By the formula (1.3), it is shown that the set of non-constauit curves onM?
with non-constant Gauss maps corresponds bijectively éo st of pairs @G, ¢ ) of
meromorphic functions omf? such thatg # a « G (that is, g is not identically equal
to a « G) for any a € SL(2, C). Here, for a matrixa =4;; ¥ SL(2, C), we denote by
a x G the Mbbius transformation of;
(1.4) axG =G ran

a2G +az
For this correspondence, see also [11].

On the other hand, according to Galvez, Martinez and M{[@, 5]), a meromor-

phic map

(L5) E= (2 g)

from M? into PSL(2 C) is called aLegendrian curveor a contact curvg if the pull-
back of the holomorphic contact form

(1.6) DdA — BdC

on PSL(2C) by E vanishes. For a Legendrian cur#e , two meromorphic fanst
a.7) G =—, G.=—

are defined. In [4],G and5,. are called thehyperbolic Gauss mapsiNe define a
meromorphic 1-formv on M? as

dA _dC
(1.8) W= = o
(For a precise definition, see Definition 3.1 and Lemma 3.2 écti6n 3.) We shall
call w the canonical form

As an analogue of the Bryant representation formula [2, DB]donstant mean
curvature one surfaces iH3, Galvez, Martinez and Milan [4] showed that any sim-
ply connected flat surface in hyperbolic 3-space can balliftea Legendrian curve in
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PSL(2 C), where the complex structure of the surface is given so ttatsecond fun-
damental form is hermitian. It is natural to expect that ¢hex a Small-type formula
for Legendrian curves in PSL(E).

In this paper, we shall give a representation formula fordredyian curves in
terms of G andG. (Theorem 3.3). Namely, for an arbitrary pair of hon-constaero-
morphic functions G, G,) such thatG # G. (G is not identically equal taG,), the
Legendrian curveE  with hyperbolic Gauss maps  @hdis written as

(1.9) £ = (G/g £G./(G — G*)> (§ :cexp/zz dGG*> ’

16 ¢/(G-Gl) . G-
wherezo € M? is a base point and € C \ {0} is a constant. As a corollary of
this formula, we shall give a Small-type representationmiola for Legendrian curves
(Corollary 3.4):

(1.10) E :(2 jé?‘:}) , (C = i\/%, A= GC) ,

It should be remarked that the formula (1.10) has appeareticity in [4, p. 423] by
a different method.

In Section 4, we shall give new examples of flat surfaces witmmlete ends
using these representation formulas. Though these exanmpight have singularities,
they can be lifted as a Legendrian immersion into the uniamgént bundle ofH3,
and so we call thenflat (wave fronts. See [6] for a precise definition and global prop-
erties of flat fronts with complete ends.

Small's formula is an analogue of the classical represientaformula for null
curves in C3, which is closely related to the Weierstrass represematiomula for
minimal surfaces inR®. For the reader’s convenience, we give a simple proof of the
classical formula in the appendix.

2. A simple proof of Small's formula

In this section, we shall introduce a new proof of Small'snfiaia (Theorem 2.4),
which is an analogue of the classical representation farfil null curves inC? (see
the appendix). We fix a Riemann surfadé®, which is not necessarily simply con-
nected.

Let

2.1) F= (2 g)

be a null curve in PSL(ZC) defined onM?.
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DeriniTion 2.1, For a non-constant null cund  as in (2.1), we define

dA dB

. Ic (if (dA,dC) # (0, 0)), ; - (if (dA,dB) # (0, 0)),
j_g (if (aB,dD) # (0, 0)), —fl—lg (if (dC,dD) # (0, 0)).

Since F is null,

5_2 - j_g if (dA,dC) # (0, 0) and ¢B, dD ) (0, 0),
_j_ﬁ _ _2_2 if (dA,dB) # (0, 0) and C, dD ) (0, 0)

hold. We callG andg thényperbolic Gauss mapnd thesecondary Gauss magf F,
respectively.

Lemma 2.2. Let F be a meromorphic null curve as i2.1). If either dA =
dC =0 or dB =dD = 0 holds then the hyperbolic Gauss map is constant. Simi-
larly, if either dA = dB = 0 or dC = dD = 0 holds then the secondary Gauss map

g is constant.
Proof. AssumealA = dC = 0. SinceAD — BC =1, we have
0=d(AD - BC)=DdA+AdD — BdC —-CdB=AdD — CdB.

Here, since 4, C }£ (0,0),dB/dD € C U {occ} is constant. The other statements are
proved in the same way. O

Lemma 2.3 ([11], [13]). Let F be a non-constant null meromorphic curve such
that the secondary Gauss mgp is non-constant. Set

(2.2) FldF=a, a= (O‘“ 0‘12> .
Q21 (22

Then the secondary Gauss map f is represented as

_ 11 _ Qa2

21 Q22

Proof. LetF be as in (2.1). lfv1 and a1 vanish identically, so isyy», because
a is ansl(2, C)-valued 1-form. Then, sincéF £«, we havedA = dB = dD = 0,
which impliesg is constant. Henceufi, az1) # (0, 0). Similarly, (2, az2) Z (0, 0).
Here detv = 0 becauseF is null. Hence we hawg; /a1 = i/ oo
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SinceAD — BC =1, it holds thatDdA — BdC = —AdD+CdB. Then, using the
relationsd B =—gdA anddD =—gdC, we have

o DdA—BdC _—AdD+CdB _ g(—~CdA+AdC) _
azn  —CdA+AdC —CdA+AdC — CdA + AdC

This completes the proof. U

Theorem 2.4 (Small [8]). For an arbitrary pair of non-constant meromorphic
functions (G, g) on M? such thatg # a « G for anya € PSL(2 C), a meromor-
phic mapF given by1.3)is a non-constant null curve iRSL(2 C) whose hyperbolic
Gauss map and secondary Gauss map @e gand respectively.

Conversely any meromorphic null curve ifPSL(2 C) whose hyperbolic Gauss
map G and secondary Gauss mgp are both non-constant are esgest in this way.

An analogue of this formula for null curves i@® is mentioned in Appendix 4.

Proof of Theorem 2.4. Let{, g ) be a pair as in the statement ofthleerem
and set as in (1.3). Then

detF :—aﬁ +bd—a = —azi (é> = azd—g =1

dG ~dG dG \a dG
and
dA dB dka .
dF _ | dG dG | _ | dG? ~dG?
dG dC dD d’a  d%
dG dG dG2  dG2?

Hence ranlkd F <1, andF is a meromorphic null curve in PSL@). The hyperbolic
Gauss map o is obtained as

dA _dAJdG _

=2 = =G.
dC ~ dC/dG

On the other hand, the secondary Gauss map is obtained by ae&xrnas

dA dC
ou_ Pag Py . GD-B_ b _,
Q21 dA dC GC - A a ’
—C—+A—
CdG dG

Next, we prove thatF is non-constant. Assurfe is constantn Tie (1.3),
da/dG = p = constant. Thus we hawe dG/dg = pG +¢q, wherep andg are
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complex numbers. Hence

dg _ 1

dG ~ (pG +q)?"

Integrating this, we have that is obtained as a Mobius foamsation of G, a con-
tradiction. Thus the first part of the theorem is proved.
Conversely, letF  be a null curve as in (2.1). By Definition 2u have

(2.3) dA =GdC,  dB =GdD.
We set
a=GC—A, b =GD — B.
By (2.3), we haveda «dG andb HdJIG . SincE is not constant, we have

da 5o db

2.4 C =—H:, =—.
(2:4) dG dG

Then F can be expressed in termsaof dnd as follows:

da db
— = — =D
Fe Y6 " %ic
da db
dG dG
Since de =1, we have
—a —b
(2.5) det| da db | =1
dG dG
Taking the derivative of this equation,
—a —b
(2.6) det da db =0
dl—=)d|-—=
dG dG

holds. Here, sincg is non-constard,((, dD #)0 by Lemma 2.2. Then by (2.4) and
(2.6), it holds that

_dD _ d(db/dG) _ b
$%4C = dafac)” a

This vyields

(2.7) b =—ga, db=—(da)g — a(dg).
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Again by (2.5)

_ —a —b\ _ —a ag _
dG—det(da db) _det(da —(da)g—a(dg)) =a“dg.
By this and (2.7), we have 3 /dG/dg andb =—ga which implies (1.3). U

By Theorem 2.4, we can prove the uniqueness of null curvel giten hyper-
bolic Gauss map and secondary Gauss map. Hence we have

Corollary 2.5. Let A/(M?) be the set of non-constant null curves R8L(2 C)
defined on a Riemann surfadé#? with non-constant hyperbolic Gauss map and sec-
ondary Gauss map. Ther'(M?) corresponds bijectively to the set

{(G, 9

G and g are non-constant meromorphic functions &t
such thatG # a x g for anya € SL(2, C). ’

It should be remarked thatG(g ) satisfies the following impotrtaelation
(see [11]):

(2.8) S(g)—S(6) =20,

where Q is the Hopf differential oF defined b A@C—-CdA)dg andS is the
Schwarzian derivative defined by
d
d '2 =
- (=5)

G'"\' 1/G" 2
(?) 2 (?)
with respect to a local complex coordinate oW?. Though meromorphic

2-differentials S g ) andS ¢ ) depend on complex coordinates, differenceS ¢ )—
S(G) does not depend on the choice of complex coordinates.

S(G) =

3. Legendrian curves in PSL(2 C)

In this section, we shall give a representation formula fegéndrian curves in
terms of two meromorphic functions  arl., which are called théayperbolic Gauss
maps We fix a Riemann surfac#?, which might not be simply connected. L& be
a meromorphic Legendrian curve ov? as in (1.5). SinceAD — BC = 1, we can
define two meromorphic function§ ar@, as in (1.7). We callG and5. the hy-
perbolic Gauss mapsf E. (The geometric meaning of these hyperbolic Gauss maps
is described in [4].)



704 M. KokuBu, M. UMEHARA AND K. Y AMADA

Derinimion 3.1. Let E be a meromorphic Legendrian curve as in (1.5). Then w
can write

4.._{06
(3.1) E 1dE—(w o)’

wherew and @ are meromorphic 1-forms oM?. We call w the canonical formand @
the dual canonical formof E.
For a Legendrian curv& , we define another Legendrian clney

. (0
E—E(l_O).

We call £ the dual of E. The hyperbolic Gauss mags and G, of E satisfy G = G,
and G, = G, and the canonical form and the dual canonical formEofire # and w
respectively. Roughly speaking, the duality exchangesrdfes of (G, w) and G., 6).

The following lemma holds.

Lemma 3.2. For a non-constant meromorphic Legendrian curEe  as(irb),
the following identities hold

% (if dA#0or B#£0),
(3.2) “= ‘%C (if dC #0or D #0),
‘%B (if dB #00r A #0),
(3.3) 0= ”%D (if dD#0o0r C £0).

Here dA # 0 (resp. B # 0) means al-form dA (resp. a functionB) is not identically
0. In particular, if all cases in(3.2) and (3.3) are well-defined

dA _dC dB _dD
=—=— and 0=—=—
B D A C

w

hold.

Proof. SinceE is LegendrianpdA — BdC = 0 holds, andv = AdC — CdA
by (3.1). Hence we have

Bw=ABdC —BCdA=ADdA— BCdA=(AD — BC)dA=dA
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and

Dw=ADdC — CDdA =(AD — BC)dC =dC,

which imply (3.2).
On the other hand, differentiatingD — BC = 1, we have

0=d(AD — BC)=(DdA — BdC)+(AdD — CdB)=AdD — C dB.
Sinced = DdB — BdD, we have then

A0 =ADdB — ABdD =(AD — BC)dB=dB and CO=dD,
which imply (3.3). U

Theorem 3.3. Let G and G, be non-constant meromorphic functions o
such thatG is not identically equal t&'.. Assume that
(i) all poles of thel-form dG/(G — G.) are of order1, and
(ii) f7 dG /(G — G.) € miZ holds for each loopy on M?2.
Set

(3.4) £(2) = cexp / | G”iGG ,

wherezo € M? is a base point and € C \ {0} is an arbitrary constant. Then
_(G/¢ fG*/(G—G*)>

35 E =

49 (37 “de-an

is a non-constant meromorphic Legendrian curve RSL(2 C) whose hyperbolic
Gauss maps ar€&; an@.. The canonical formv of E is written as

dG
_f_z'

Moreover a point p € M? is a pole of E if and only ifG(p) = G.(p) holds.
Conversely any meromorphic Legendrian curve IRSL(2 C) with non-constant
hyperbolic Gauss map& an@d. is obtained in this way.

(3.6) w=

Proof. By the assumptions (i) and (ii? is a meromorphic function om/?.
Hence E as in (3.5) is a meromorphic curve in PSIG2 One can easily see that
detE = 1 andDdA — BdC = 0, that is, E is a Legendrian map with hyperbolic
Gauss map%; and.. The canonical formv is obtained as (3.6) using

&dG
G-G,

d¢ =
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SinceG =A/C is non-constant, so i&

Next, we fix a pointp € M2. By a matrix multiplicationE — E = aE (a €
SL(2, C)) we have another Legendrian map with hyperbolic Gauss map§ = a *
G and G, = a = G, wherex denotes the Mobius transformation (1.4). If necessary
replacing E byE, we may assumés p( ¥ oo and G.(p) # oo. Let z be a local
complex coordinate om/? such thatz p ) =0

Assume E is holomorphic ap . Then by (3.5),D Z(G — G.) is holomor-
phic at p. Hence we hav& p( # G.(p). On the other hand, iz { ¥ G.(p), £ is
holomorphic atp and(p) # 0. Then by (3.5),F is holomorphic gi . Thus, we have
shown that{p € M? | G(p) # G.(p)} is the set of poles oF .

Finally, we shall prove the converse statement. Eet  as iB) (ke a meromor-
phic Legendrian curve. Then by (3.2), we have

(3.7) 2 =z 2D

A A—A
dG:d(E>:u—_i__dc

On the other hand, we have

(3.8) G-G,=—— —=——— = —,
C D CcD CcD
By (3.7) and (3.8),
dG
(3.9 d logC "G-0C.

holds. SinceE is a meromorphic map into PSLE2, C is written as in the form
Vi C, whereh andC are meromorphic functions. Then if we sgtas in (3.4),¢2

is a meromorphic function oM?. Hence we have (i) and (ii) in the statement of the
theorem. Integrating (3.9), we ha@ #flandA =GC =G/£. Moreover, since

—ap—_Bc=(%\p_ DN_Ds_
1=AD — BC (§>D G*D(§> 5(G G.),

we haveD =/(G-G,)andB =G.D = G.£/(G—G.). Thus we obtain (3.5). U

As a corollary of Theorem 3.3, we give a Small-type formula feegendrian
curves, which has appeared implicitly in [4] by a differenetirod.

Corollary 3.4. For an arbitrary pair (G,w) of a non-constant meromorphic
function and a non-zero meromorphieform on M2, a meromorphic map

(3.10) E = (2 jé?i) (c = i\/%, A= GC)
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is a meromorphic Legendrian curve IRSL(2 C) whose hyperbolic Gauss map and
canonical form areG andv, respectively.

Conversely let E be a meromorphic Legendrian curve PSL(2 C) defined on
M? with the non-constant hyperbolic Gauss m@p  and the non-zanmnical form
w. ThenE is written as in3.10)

RemaArk. There is a correponding simple formula (without integraji for
Legendrian curves irC® as follows: A meromorphic magf M2 — C2 is called
Legendrianif the pull-back of the holomorphic contact foraw! — x*dx? vanishes,
where 1, x2, x9) is the canonical coordinate system GA. For a pair (f, g ) of mero-
morphic functions on a Riemann surfadé?, E := (f, g, df/dg) trivially gives a
meromorphic Legendrian curve, which is an analogue of {3.10

Proof of Corollary 3.4. If we sett by (3.10), we haweD — BC = 1 and
DdA — BdC =0. HenceE is a meromorphic Legendrian map.

Conversely, letE be a meromorphic Legendrian curve MA with the non-
constant hyperbolic Gauss ma&p  and the non-zero canoninal o Then by (3.7),
we have

On the other hand, by Lemma 3.2, we haBe d#/w and D =dC/w. Hence we
have (3.10). O

We have the following corollary:

Corollary 3.5. Let £(M?) be the set of meromorphic Legendrian curves in
PSL(2 C) defined on a Riemann surfadé® with non-constant hyperbolic Gauss maps
and non-zero canonical forms. Thep(M?) corresponds bijectively to the following
set

G is a non-constant meromorphic function of?,
(G, w) ] . ! )
and w is a non-zero meromorphit-form on M=,

The symmetric product of the canonical founand the dual forny
(3.12) 0 =wl

is called theHopf differential of the Legendrian curve. By (3.7), we have
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Similarly, it holds that

Thus, by (3.8) we have

dGdG.

= -C?’D%?dGdG, = ———=_.
¢ GGy

As pointed out in [4], the following identities hold:

S(g) —8(G)=20.  S(g.) —S(G+) =20,

where g (resp.g.) is a meromorphic function defined on the universal coverMst
such thatdg =v (resp.dg. = 0).

4. Examples of flat surfaces inH?®

As an application of Corollary 3.4, we shall give new exarspté flat surfaces in
hyperbolic 3-spaceHd®. Though these examples might have singularities, all ofmthe
are obtained as projections of Legendrian immersions ih& unit cotangent bundle
T H®. Usually, a projection of a Legendrian immersion is callegnave) front. So
we call themflat fronts For details, see [6].

Hyperbolic 3-spaced® has an expression

H®=PSL(2C)/PSU(2) ={aa* |a e PSL2C)}  (a*='a)
As shown in [4], the projection
f:=EE*: M? — H?®

of a holomorphic Legendrian curvé M? — PSL(2 C) is a flat immersion iff in-
duces positive definite metric oM?. For a Legendrian curv& , we can write

_ _ (090
(4.1) E 1dE—(w o)‘

Then the first fundamental fornis® and the second fundamental fordw? of f is
written as

(4.2) ds? = wh + w0 + [w|? + |02 = (w +60)(w +6),
(4.3) do? = |6 — |w|?.

Common zeros ofv and 6 correspond to branch points of the surface where the
first fundamental form vanishes. At the point whéxe = ||, ds? in (4.2) is written
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Fig. 1. Surfaces equidistant from a geodesic (Example 4.1).
The figures are shown in the Poincaré modelrbf.

as
ds* = 2 (@ +0)?

which implies the metric degenerates at these points..Lbe the unit normal vector
field of f. For eachp € M?, the asymptotic class of the geodesic with initial velocity
v(p) (resp.—v(p)) determines a poinG K ) (resii.(p)) of the ideal boundary of3
which is identified withCU {co} = CP. ThenG andG. coincide with the hyperbolic
Gauss maps of the lifE

ExavpLe 4.1 (Surfaces equidistant from a geodesic). Mt =C\ {0} and

G =1z, wzidz (k > 0).
2z

Then by Corollary 3.4, the corresponding Legendrian cutves wiitten as

E=—

N !

7z Vkz

Then the corresponding flat surfage EE* is a surface equidistant from a geodesic
in H® . The hyperbolic Gauss maps ¢gf are given Iy, G.) = (z, —z) (see Fig. 1,
and see also [4, p. 426)).

ExavpLe 4.2 (Flat fronts of revolution). LeM? =C\ {0} and set

1 /2 —1
G= ’L:“_lz and w= NTZ“_le (1 € R\ {1}).

If 4 ¢ Z, wis not well-defined onM?2, but defined on the universal covaf? of M2
If we considerG as a function oM?, the corresponding Legendrian cure M? —
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Fig. 2. Flat fronts of revolution (Example 4.2).

PSL(2 C) is given by

; <\/mz(u+1)/2 \/mz—(u—l)ﬂ)

E=—
V2 \p+ 1 m-0/2 =T~ wD)/2

Let 7 be the deck transformation @2 corresponding to the loop oM? surrounding

0. Then
B _erri,u O
EOT—E( 0 —e"”“)

holds. Hence the corresponding surfage EE* is well-defined onM?. The dual
canonical formd as in (4.1) is given by

2
- e = 1 —p—1
0 5 z dz.

Then the metric induced by’ degenerates on the {3gt = 1} whenu # O
(see Fig. 2). The hyperbolic Gauss mapsfof are given by

w—1 put+l
G, Gy)= , .
( ) < ,u+lz\/,u—lz>

ExavpLE 4.3 (Flat fronts with dihedral symmetry). Let> 2 be an integer. We
set

i
M2:=CU{cc}\ {1, ¢, ....c" 1) (g:expﬂ) .
n
and letr: M2 — M? be the universal cover aff2. Let

(4.4) Go(z) =z and w=k(E" —1)"?"dz (k> 0),
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wherez is the canonical coordinate @1 ThenG :=Goow andw are considered as a
meromorphic function and a holomorphic 1-form #f2. Then by Corollary 3.4, there
exists a holomorphic Legendrian curé& M2 — PSL(2 C). Let 7; be a deck trans-
formation of 7: M2 — M2 corresponding a loop om2 around¢’ (j =0,...,n — 1).
Then we have

- -2
GorT; =G, woT; =( “w.

Hence by (3.10), we have

1
EoTj:E(go 2) (j=0,...,n=1).

This implies f =EE* is well-defined onM? itself. Thus, we have a one parameter
family of flat surfaces inH3, parametrized byt in (4.4). The parameter corresponds
to a parallel family of flat surfaces (see [4, page 426]). Moez, by (4.2), one can
see that each en¢/ is complete. On the other hand, at the points wHete= ||, the
immersion f has singularities. The automorphisms\ot as

1

z+—(z, Z— —

do not change the first and second fundamental forms as ). (Bt2s implies such
surfaces have dihedral symmetry (see Fig. 3). The hyperl®tiuss maps off are
given by

(G.G.) = (z.2"7").

ExavPLe 4.4 (A flat front with tetrahedral symmetry). Let

M?=CuU{oo}\ {1,¢, 2 o0} ((:exp%)
Set
G(z)=z and w=k(®—-1)"Y24z (k> 0).

Then, in the same way as in Example 4.3, we have a one parafaewdy of flat
surfacesf;, :M? — H?® with four complete ends at = 1, (2, oo. Such surfaces
have the tetrahedral symmetry. The hyperbolic Gauss map% afe given by

473
(G, G*) = (Z, 3—22> .

In Figs. 2 and 3, it seems that the surfaces admit singuaritit might be inter-
esting problem to study singularities of flat fronts (seé).[6]
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Fig. 3. Parallel family of flat fronts in Example 4.3 far= 3.

Appendix A. Null curves in C3

Let M? be a Riemann surface, which is not necessarily simply cdadecA
meromorphic mapF =K', F2 F%: M?> — C3 is said to benull if the C3-valued
1-form dF is null, that is,

3
(A.1) > dF/-dF’ =0.
j=1

It is well-known that a minimal surface iR® is locally given by the projection of a
null curve inC3 to R®.

For a null meromorphic maF =, F?, F3), we put

dF3
(A.2) w:=d(F*—iF?, 8= .
Then we have

(A.3) dF = ((1 — g%w, i(1+g%w, Zgw)

NI =

by (A.1). Conversely, by integrating (A.3) for a given pay, (), we obtain a null
meromorphic mapF . The integration of (A.3) is known as Wheierstrass formula
and the pair ¢, w) is called theWeierstrass dataf F.
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On the other hand, leF M? — C® be a meromorphic map defined by

1 ¢ (1-g9/2\ (h
dh dh
(A.4) F=|iig i(l+g?/2| [ m (hl:d_’ hz:d_l>
0 -1 g ho 8 8

for a pair @, 2) of two meromorphic functions, thefi  is null. Cersely, any null
meromorphic mapF M? — C3 is represented by this formula (A.4). The Weierstrass
formula (A.3) and the formula (A.4) are related by, ) = (g, dh2).

The remarkable feature of the formula (A.4) is that arbjtraull meromorphic
maps can be represented in the integral-free form.

We introduce here a way to derive the formula (A.4).

Let F: M2 — C3 be a null curve andg w) its Weierstrass data. We let
(A.5) hy:= F'—iF?, 4:=—F'—iF% ¢:=F%

then their differentials satisfy

(A.6) dhy = w,
(A.7) do = gw,
(A.8) dip = g°w.

Now, we define a functiork, by
(Ag) ©® = hzg — h]_.
Using (A.6) and (A.7), we compute that

gw=dyp =d(hag —h1) = gw+hodg — dhy,

hence

(A.10) hy = %.
Moreover, we define a functioh by

(A.11) ¥ = hog? — 2h1g + 2h,

then

g°w = d(hog® — 2h1g + 2h)
=g%dhy+ 2hogdg — 2g dhy — 2h1dg + 2dh
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= g%w+2hogdg — 2hogdg — 2h1dg + 2dh
= g%w — 2h1dg + 2dh,

by (A.6)—(A.8), hence

(A.12) ha

_dn
=0

Substituting (A.9)—-(A.12) into (A.5), we obtain the formau(A.4).
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