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1. Introduction

The surfaces of revolution with constant mean curvature in3 are classified by
Delaunay [2] in 1841. They are locally plane, catenoid, sphere, circular cylinder, undu-
loid, and nodoid up to isometries of3. On these 10 years, new and interesting exam-
ples of non-zero constant mean curvature surfaces are discovered. In the global study
of complete surfaces with constant mean curvature, unduloids and nodoids play impor-
tant role as the models of ends of such surfaces (see [5], [6]). The work by Delaunay
is now revived after 150 years of his discovery.

The purpose of this paper is to study surfaces of revolution with periodic mean
curvature in order to extend the theory of constant mean curvature surfaces. In general
such a surface is not periodic, because the catenoid gives the counter-example. First
we show the criterion for a periodic function to be the mean curvature of a periodic
surface of revolution and second describe a method how to construct these periodic
surfaces of revolution whose mean curvatures are periodic functions satisfying the cri-
terion.

I thank Professor Yusuke Sakane for his interest and plotting of the beautiful
pictures by the computer of Osaka University which I used in the seminar talk of
Granada University on March, 2001, and in the AMS meeting held in Hoboken on
April, 2001.

The figures of this paper are all programmed by the author using the symbolic
manipulation program Mathematica. I also thank my graduatestudent Shinya Hirakawa
for his help to simplify the programing.

2. Criterion of the periodicity

Let = ( ( ) ( )), ∈ , be a smooth plane curve parametrized by arc length
on the plane = 0 of 3. We assume that the domain of the definition is an open
interval including zero and ( )> 0, ∈ . A surface of revolution on is defined

Supported in part by the Grants-in-Aid for Scientific Reserch (B), Japan Society for the Promotion
of Science 2001.



688 K. KENMOTSU

by

=
{

( ( ) ( ) cosθ ( ) sinθ) ∈ 3 | ∈ 0≤ θ < 2π
}

where is called the profile curve of . Since the mean curvatureof at ( θ) is
independent of the coordinateθ, we write = ( ). The coordinate functions of the
profile curve satisfy the system of differential equations:

2 ( ) ( )− ′( )− ′′( ) ( ) ′( ) + ′( ) ( ) ′′( ) = 0
′( )2 + ′( )2 = 1 ∈(1)

In the formulas above, the mean curvature is computed for the“inward” unit normal
vector of the surface. We put

η( ) = 2
∫

0
( ) ∈(2)

( ) =
∫

0
sinη( ) ( ) =

∫

0
cosη( )(3)

Then, the profile curve is expressed as

( ) = {( ( )− 1)2 + ( ( )− 2)2}1/2(4)

( ) =
∫

0

( ( ) − 2) ′( ) − ( ( )− 1) ′( )
{( ( )− 1)2 + ( ( )− 2)2}1/2

∈(5)

where 1 and 2 are some constants [3].
Conversely given a continuous function ( ) defined on and any real numbers

1 and 2 with 2
1 + 2

2 > 0, we define ( ) on by (4), which is continuous and non-
negative on . Let 0 be the maximal subinterval of on which ( ) is positive. We
define ( ), ∈ 0 , by (5). Then ( ) and ( ) satisfy the system (1) on0. Hence
the curve ( ( ) ( )), ∈ 0, generates a surface of revolution on0 with the mean
curvature ( ). Let us consider an1 ∈ with ( 1) = 0. We claim that there exist
the derivatives of ( ) and ( ) at =1 such that ′−( 1) = −1, ′

+( 1) = 1, and
′( 1) = 0.

Proof of the claim. (1) = 0 is equivalent to (1) = 1 and ( 1) = 2. We see
that

(6) lim
→ 1

( )− 2

( )− 1
= lim
→ 1

′( )
′( )

=
cosη( 1)
sinη( 1)

Since we know that

′( ) =
( ( )− 1) ′( ) + ( ( )− 2) ′( )

{( ( )− 1)2 + ( ( )− 2)2}1/2
∈ 0
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(6) implies ′
−( 1) = −1 and ′

+( 1) = 1. The derivative of ( ) at =1 is similarly
computed as ′( 1) = 0.

Hence, in the case where we have a continuous function = ( ) on ,the
curve ( ( ) ( )) defined by (4) and (5) is continuous on , satisfies(1) on 0, and at
the point of ( ) = 0, it reaches orthogonally at the -axis. consists of 0 and some
discrete set (possibly empty) on which ( ) = 0. Therefore, theformulas (4) and (5)
define two parameters family of continuous surfaces of revolution on such that each
element of the family is smooth on the dense subset0 of and the mean curvature
at ∈ 0 is ( ).

A surface of revolution is calledperiodic if the coordinate function ( ) of the
profile curve is periodic, that is, there is a positive numbersuch that ( + ) = ( )
for all ∈ . is said to be the period of .

Any closed curve on the upper half plane of2 generates a periodic surface of
revolution, and hence it has the periodic mean curvature. Since the converse does not
hold as catenoid shows it, the following question naturallyraise: Which periodic func-
tion is the mean curvature of some periodic surface of revolution? The answer is

Theorem 1. Let ( ) be a continuous periodic function on with period .
Then, the function ( ) is the mean curvature of a periodic surface of revolution
with period if and only if it satisfies the condition:

∫
0 cosη( )

sinη( )
=

∫
0 sinη( )

1− cosη( )
(7)

Convention. A denominator in(7) vanishes if and only if the corresponding numerator
also does.

Proof. Let = ( ( ) ( )), ∈ , be the profile curve of a periodic surface of
revolution with period , where denotes arc length parameterof . Since we have

( + ) = ( ), ∈ , the system (1) implies

(8) ′( + ) = ′( ) ∈

We may assume that (0) is the minimum. From′(0) = 0 and the differentiation
of (4), we have 2 = 0. By differentiating the formula (4) with 2 = 0 at = , we
have

(9) ( ( )− 1) sinη( ) + ( ) cosη( ) = 0

By (5) and (8) we have

( + ) sinη( + )− ( ( + )− 1) cosη( + )
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= ( ) sinη( )− ( ( )− 1) cosη( ) ∈

Inserting = 0 in the formula above, we get

(10) ( ) sinη( )− ( ) cosη( ) = 1(1− cosη( ))

If sin η( ) 6= 0, then we have 1− cosη( ) 6= 0, and (9) and (10) imply

( )
sinη( )

=
( )

1− cosη( )

which is not zero and the same formula as (7). If sinη( ) = 1− cosη( ) = 0, then
we have ( ) = ( ) = 0. If sinη( ) = 1 + cosη( ) = 0, then we have ( ) = 0 and

( ) = 2 1 6= 0. These and the convention prove (7).
Conversely assume that a continuous function ( )∈ , is periodic with pe-

riod and satisfies the condition (7). The functions ( ) and ( ) are defined by (3)
using the function ( ) given above. Since we haveη( + ) = η( ) + η( ), we see
that

{
( + ) = ( ) + sinη( ) · ( ) + cosη( ) · ( )
( + ) = ( ) + cosη( ) · ( )− sinη( ) · ( )

(11)

Firstly assume that sinη( ) 6= 0. Define the functions ( ) and ( ) by (4) and (5)
with 1 = and 2 = 0, where the constant takes the common values of the ratios in
the condition (7). Then direct computation using (11) showsthat ( + ) = ( ) and

(0) = | |. We can also prove that′( + ) = ′( ) ∈ .
Secondly we study a periodic function ( ) which satisfies sinη( ) = 1 −

cosη( ) = 0 and (7). We have ( ) = ( ) = 0 by the convention. For any posi-
tive number > 0, define the functions ( ) and ( ) by (4) and (5) with1 = and

2 = 0. Then we see ( + ) = ( ) and (0) = . We also prove′( + ) = ′( ).
Finally let us study a periodic function ( ) which satisfies sinη( ) = 1 +

cosη( ) = 0 and (7). We have ( ) = 0 and ( )6= 0 by the convention. Define
the functions ( ) and ( ) by (4) and (5) with1 = ( )/2 and 2 = 0. Then, we see
that ( + ) = ( ) and (0) =| ( )|/2. We can also show ′( + ) = ′( ) proving
Theorem 1.

Let be any positive number. The constant function defined by () = sat-
isfies the condition (7) with periodπ/ , in which all denominators and numerators
of (7) vanish. Hence, for any positive number , there is the profile curve ( ( ) ( ))
with (0) = 0 and (0) = such that its mean curvature of the resultant surface of
revolution is . This defines the one-parameter family of surfaces of revolution with
constant mean curvature including unduloids and nodoids. This is the case of Delaunay
[2].
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Fig. 1. A periodic surface of revolution whose mean curvature is 1 2025 cos .

Cosine function does not satisfy the condition of Theorem 1.Indeed, we have
sinη(2π) = 1− cosη(2π) = 0, but

∫ 2π

0
cosη( ) = 1 40675

∫ 2π

0
sinη( ) = 0

where the computations above are made by computer. Hence,any surface of revolution
whose mean curvature iscos can not be periodic. But, there is a real numberτ such
that the functionτ cos satisfies (7) with = 2π. See Fig. 1.

3. Construction of the periodic surfaces

The condition (7) is an integral equation for unknown function = ( ). In this
section, we will show a geometric method to find all solutionsof the integral equa-
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tion (7) by considering the curve ( ( ) ( )). We first handle the special case of (7),
that is, all terms in (7) vanish at the same time. The general solutions of such a case
are given by closed plane curves.

Theorem 2. Let be a 2 closed plane curve parametrized by arc length . For
any positive number , there is a periodic profile curve with period and through
(0 ) such that the surface of revolution generated by has the meancurvature
( )/2, where and ( ) denote the length and the curvature of, respectively.

Proof. Put = ( ( ) ( )). We may assume that (0) = (0) = 0, and′(0) =
1, ′(0) = 0 by some isometries of 3. The fundamental theorem of smooth curves
theory tells us that, on ∈ [0 ],

( ) =
∫

0
cos

(∫

0
( )

)
( ) =

∫

0
sin

(∫

0
( )

)
(12)

By the assumption, we have ( ) = ( ) = 0. Since the total curvature of the closed
curve is an integral multiple of 2π, we have ′( ) = 1 ′( ) = 0. These trivially
imply the condition (7) putting ( ) = ( )/2. Theorem 2 is proved by Theorem 1.

Conversely, it is easily observed that the solutions of the case of sinη( ) = 1−
cosη( ) = 0 in (7) are exhausted by the curvatures of these smooth closed plane
curves.

We say that a surface of revolution described in Theorem 2 is associated with the
plane curve . The relation ( ) = 2 ( ) between curvature ( ) of andmean cur-
vature ( ) of associated with is originally remarked by H. Reckziegel (see Re-
mark 1 in p. 149 of [3]). Recently, Aiyama [1] extended this idea to generalized sur-
faces of revolution in complex Euclidean 2-space.

Applying Theorem 2 to a circle with radius centered at (0 )∈ 2, we have a
surface of revolution with constant mean curvature 1/2 . This is the case of Delaunay
[2]. Next, we apply Theorem 2 to an ellipse and get interesting periodic surfaces of
revolution, which give the explicit examples of the special-surfaces studied by R.
Sa Earp and E. Toubiana [7]. See Fig. 2.

Now we are in a position to study the general case of Theorem 1.First of all,
we give many solutions of the integral equation (7). Put0 = (0 0), and let 1 =
( cosθ sinθ), 6= 0, be any point of 2 − {(0 0)}. Let us consider a 2 curve
segment 0 = ( ( ) ( )), 0 ≤ ≤ , parametrized by arc length which starts
from 0 and terminates at 1 such that the both tangent vectors at the end points are
( ′(0) ′(0)) = (1 0), and ( ′( ) ′( )) = (cos 2θ sin 2θ). Moreover, we assume that
the curvatures of the curve0 at the both end points have the same values. We extend

0 by some isometries of 2 so as the resultant curve is2 and complete. The cur-
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Fig. 2. The surfaces of revolution associated with an ellipse.

vature of , ( ), is a continuous and periodic function on with period and the
same as the curvature of0 if it is restricted to [0 ]. Put ( ) = ( )/2. Then the
coordinate functions of the curve satisfy the condition (7), hence we have a periodic
surface of revolution with the mean curvature ( )/2 by Theorem 1.

Conversely, we prove that the non-trivial solutions of (7) are exhausted by the cur-
vatures of these curves constructed above. Putting the set of such curves 0 defined
above, we have

Theorem 3. Let be a complete profile curve parametrized by arc length
such that the resultant surface of revolution has periodic mean curvature ( ) with
period . Assume that the condition(7) is non-trivially satisfied by the ( ). Then,
for the curve = ( ( ) ( )), there is a fundamental curve segment0 ∈ such
that is decomposed as =

⋃
−∞< <∞ 0, where is an isometry of 3, and

runs through integers.
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Fig. 3. A Bézier curve with 5 control points and the associated surface of revolution.

Proof. = ( ( ) ( )) is defined on by (3). Put0 = {( ( ) ( )) | 0≤ ≤
}. The condition (7) implies 0 ∈ . By (11), we have

( + ) + ( + ) = (1 + ( ) + · · · + ( −1) ( )( ( ) + ( ))

+ ( )( ( ) + ( ))

Hence, the curve segment ( ( + ) ( + )), 0≤ ≤ , is transformed from 0

by the isometry which is defined by the formula above. This proves Theorem 3.

The problem is now reduced how to find a curve0 from the given data of ter-
minal points. Bézier curves supply such0’s: Let B( ), 0 ≤ ≤ 1, be a Bézier curve
with the control pointsb0, b1 . . . b such thatb0 = (0 0), b1 = (cotθ 0) . . . b −1 =
(sin 2θ − cos 2θ), b = (cotθ 1), (π/4 < θ < π/2), and b −1 and b − +1, = 2,
3 . . ., are symmetric with respect to the bisector of the linesb0b1 and b −1b , and
b /2 is on the bisector if is even. TheB( ) has the same curvature at the both end
points and satisfies the condition (7). Hence we get a periodic surface of revolution
from the Bézier curveB( ). We say such a surface is associated with the Bézier curve.
See Fig. 3.

4. Remarks

We conclude this paper by giving some remarks and open problems. The periodic
surfaces made by Theorems 2 and 3 have different properties.In fact, the surface asso-
ciated with a plane closed curve has a one parameter family ofthese periodic surfaces
with the same mean curvature function by changing the starting point (0 ) of the
curve. This resembles the -deformation from unduloid to nodoid of constant mean
curvature surfaces.
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Fig. 4. A torus associated with the figure-eight curve.

On the other hand, the periodic surfaces associated with thecurve segments
in Theorem 3 are isolated, that is, we have the special value such that the resultant
surface of revolution starting at (0 ) is periodic, where theconstant is given by the
common ratio in (7) and for any other′( 6= ), the profile curve starting at (0′) is
not periodic.

By (5), the periodic profile curve is closed if and only if the functions ( ) and
( ), moreover, satisfy

(13)
∫

0

( ) ′( )− ( ( )− ) ′( )
{( ( )− )2 + ( )2}1/2

= 0

Constant functions do not satisfy (13) when> 0. Hence, any complete surface
of revolution with constant mean curvature can not be compact except round sphere.

The function defined by

(14) ( ) =
1
2

(
−1 +

cos
2− cos

)
−∞ < <∞

non-trivially satisfies (7) with the common ratio = 1 and (13), because this is the
mean curvature of a round torus in3. Any surface of revolution whose mean curva-
ture is (14) is not periodic if the starting point of the curveis not (0 1).

There is a closed surface of revolution associated with the figure-eight curve.
See Fig. 4.

We remark that Theorem 1 answers to the question in p. 49 of thebook [4].
Finally let us put some open problems in order to develop the theory of surfaces

with periodic mean curvature in near future.
1. Find a method to solve the integral equation (13).
2. Extend these results of this paper to higher dimensional case.
3. Study isometric immersions from 2 into 3 with doubly periodic mean curva-
tures.
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