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1. Introduction

Let us consider second order nonlinear differential equations

′′ = ± β 1+α(1 1)±
′′ = ± σ 1+α(1 2)±

where
′

= / , the double signs correspond in the same order in every equation and
α, β, σ are parameters. Using Chapter 7 of [1], we can state value of solving these.
First these can be derived from an important second order nonlinear differential equa-
tion

(1.3)

(
ρ

)
± σ = 0

ρ, σ, being parameters, which contains the Emden equation of astrophysics and the
Fermi-Thomas equation of atomic physics and so has several interesting physical ap-
plications. Second (1.3) is mathematically interesting, because (1.3) is nontrivial, non-
linear and has a large class of solutions whose behavior can be ascertained with as-
tonishing accuracy nevertheless these cannot be generallyobtained explicitly. In addi-
tion (1 1)±, (1 2)± are examples of differential equations positive radial solutions of a
nonlinear elliptic partial differential equation satisfy(cf. [17]).

Actually many authors have considered (1 1)±, (1 2)± and (1.3) in more general
form in [2], [5] through [9], [13], [20] and so on. In these papers they mainly dis-
cussed asymptotic behavior of the solution continuable to∞. On the other hand, ini-
tial value problems of (1 1)+, (1 2)+, (1 2)− and (1 1)− were considered in [10], [11],
in [14], [16], in [15], [16] and in [17] respectively in case of α > 0 and asymptotic
behavior of all the solutions was studied.

In the caseα < 0, the initial value problems of (1 1)±, (1 2)± are not considered
yet, while in [5], [8], [20] etc. this case was already considered for differential equa-
tions with more general form than (1 1)±, (1 2)± and for the solutions continuable to
∞. So in this paper, we shall consider (1 2)+ where−1< α < 0 as a first step. Since
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it is convenient to putσ = αλ, the equation to be considered has the form

′′ = αλ 1+α(E)

where−1 < α < 0, λ < 0. It is noteworthy that the caseλ > 0 can be reduced to our
case if we replace with− . A domain where (E) will be considered is given as

(1.4) −∞ < <∞ 0< <∞

Notice that if is a positive number and is a real number, then throughout this pa-
per always takes its positive branch.

The initial condition given to (E) is

( 0) = ′( 0) =(I)

where

−∞ < 0 <∞ > 0 −∞ < <∞

0 will be fixed arbitrary and suitably. For every , we shall study asympototic be-
havior of all solutions of an initial value problem (E), (I).

For this, we shall use the method which follows the argumentsoriginally done
in [10], [11] and applied in [14] through [19]. In this method, we adopt a transforma-
tion

= ψ( )−αφ( )α = ′(T)

whereψ( ) = λ2/α −λ (λ2/α = (λ2)1/α) is a particular solution of (E) andφ( ) is a
solution of (E). This transforms (E) into a first order rational differential equation

=
(α− 1) 2 + 2αλ − α2λ2( 2 − 3)

α
(R)

Using a parameter , we rewrite this as a 2-dimensional dynamical system

= α

= (α− 1) 2 + 2αλ − α2λ2( 2 − 3)
(D)

Graphs of solutions of (R) have the same shape as orbits of solutions of (D) except
on the and axes. Since from (1.4) only a positive solution of (E) is considered,
is always positive. Finally we note that

(1.5) =α

(
λ +

φ′( )
φ( )

)

got from (T) will be often used.
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2. On solutions of (E) obtained from orbits of (D) connectingits two singu-
larities

The singularities of (D) are points (0 0), (1 0). From orbits of (D) connecting
these points, we get the following through (T):

Theorem I. Let φ( ) be a solution of the initial value problem(E), (I) and sup-
pose

0< < ψ( 0)

Then there exist 1, 2( 1 < 2) such that
(i) if = 1, φ( ) is defined for−∞ < <∞ so that in the neighborhood of=∞,
φ( ) is represented as

(2.1) φ( ) = λ2/α −λ

[
1 + (µ1/α) +

∞∑

=2

{
(µ1/α)

} ]

where , are constants and

µ1 = (1 +
√

1 +α )αλ,

and as →−∞,

(2.2) φ( ) = + +
( )1+α

α2λ2
αλ (1 + (1))

where (< 0), are constants,
(ii) if = 2, φ( ) is defined for−∞ < <∞ so that in the neighborhood of=∞,
φ( ) is represented as

φ( ) = λ2/α −λ

[
1 + ( + ) (µ1/α) + (µ2/α)(2.3)

+
∑

+ ≥2

{
( + ) (µ1/α)

} {
(µ2/α)

} ]

where , , , are constants, 6= 0, =µ1/µ2,

µ2 = (1−
√

1 +α )αλ

and 6= 0 only if µ1/µ2 is a positive integer, and in the neighborhood of = −∞,
φ( ) is represented as

(2.4) φ( ) = λ2/α 1/α

{
1 +

∞∑

=1

( αλ )

}
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where , are constants,
(iii) if 1 < < 2, φ( ) is defined for−∞ < < ∞ and represented as(2.3) in the
neighborhood of =∞ and (2.2) in the neighborhood of = −∞ .

Let us start the proof. First we consider (1 0). Putting

= 1 +η = ζ

we get from (D)

η
= αζ + · · ·

ζ
= α2λ2η + 2αλζ + · · ·

(2.5)

where · · · denotes terms whose degrees are greater than the previous terms. The coef-
ficient matrix of the linear terms of (2.5) has eigenvaluesµ1, µ2. Since−1 < α < 0,
we get

(2.6) µ1 > µ2 > 0

A linear transformation

(
η

ζ

)
=

(
α α

µ1 µ2

)(
η̃

ζ̃

)

transforms (2.5) into

η̃
= µ1η̃ + · · · ζ̃

= µ2ζ̃ + · · ·

Owing to Theorem A of [3] and its proof, a transformation

η̃ = 1 + · · · ζ̃ = 2 + · · ·

holomorphic in the neighborhood of (1 2) = (0 0) transforms this into

(2.7) 1 = µ1 1 + 2
2 = µ2 2

where is a constant such that 6= 0 only if µ1/µ2 is a positive integer and =
µ1/µ2. That is

(2.8) 1 = ( + ) µ1
2 = µ2



ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF ′′ = αλ 1+α 599

where , are arbitrary constants. Therefore an arbitrary solution of (D) converging
to (1 0) is given as

= 1 +α 1 +α 2 +
∑

+ ≥2
1 2(2.9)

= µ1 1 + µ2 2 +
∑

+ ≥2
1 2(2.10)

in the neighborhood of (1 2) = (0 0), namely of =−∞. From (2.7), (2.9) we get

= ′ = {α(µ1 1 + 2 ) +αµ2 2 + · · · } ′

If we fix , ′ and vary , and compare this with (2.10), then since

∂( 1 2)
∂( )

= (µ1+µ2) 6= 0

and hence 1, 2 can attain arbitrary values, we conclude

=
α

+

where is an arbitrary constant. So if we replace ( + )µ1 , /α and µ2

with , and respectively, then since

µ1 = ( µ2 )

in case of 6= 0, we get

= 1 +α( + ) (µ1/α) +α (µ2/α) +
∑

+ ≥2

(( + ) (µ1/α) ) ( (µ2/α) )

Because →∞ as →−∞, this is valid in the neighborhood of =∞. Consequently
we get the following through (T):

Lemma 2.1. From (2.9), (2.10) we obtain a solutionφ( ) of (E) with the
form (2.3) valid in the neighborhood of =∞.

Note that of (2.3) is not always nonzero in Lemma 2.1. If 6= 0, then
from (2.9), (2.10) we have

(2.11) lim
→−∞ − 1

=
µ2

α

However if = 0, then we get

(2.12) lim
→−∞ − 1

=
µ1

α
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Therefore there exists uniquely a solution of (R) satisfying (2.12). Indeed from (2.9),
(2.10) and = 0 this is represented as

(2.13) =
µ1

α
( − 1) +

∞∑

=2

( − 1)

in the neighborhood of = 1. Conversely we get (2.10) from substituting (2.9)
into (2.13). In this way we get (2.9), (2.10) from (2.13). Hence if we take = ,

= 0 in Lemma 2.1, we obtain

Lemma 2.2. From (2.13) we get a solutionφ( ) of (E) with the form(2.1) in the
neighborhood of =∞.

For further discussions, we examine the sign of/ in (D). So we put / =
0. Then we get = ±( ) where

±( ) =
αλ

1− α
{

1±
√
α− (α− 1)

}

±( ) are defined for ≥ −α/(1− α) and

±

(
− α

1− α

)
= − α2λ

(1− α)2 +( ) > −( ) for > − α

1− α

+( ) is monotone increasing. Ifα ≤ −1/3, then −( ) is monotone decreasing. If
−1/3< α < 0, then −( ) has a minimal value and a maximal value and is monotone
increasing in the interval between these extremums and monotone decreasing outside
this interval. Moreover we get

lim
→∞

±( ) = ±∞

Lemma 2.3. If < −α/(1− α) or > +( ) or < −( ), then

< 0

if = ±( ), then

= 0

and if −( ) < < +( ), then

> 0
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Let us consider how the solution (2.9), (2.10) of (D) behavesasymptotically as
→∞, if = 0. For this we introduce a curve

= ( ) = αλ( − 2)

Owing to the proof of Proposition 4 of [14], we get

(2.14) ( − ( )) = (α + 1)α2λ2 3(1− ) > 0

when a solution ( ) of (D) passes the curve = ( ) where 0< < 1. Moreover
we have

µ1

α
= − αλ

1−
√

1 +α
< −αλ = ′(1)

It follows from (2.12) and ′
−(1) = −αλ/2 that (2.13) lies between = ( ) and

= +( ) in the plane. Hence from Lemma 2.3 and Poincaré-Bendixon’s theorem,
(2.9), (2.10) where = 0 tend to (0 0) as→ ∞. Since (2.13) is obtained uniquely
from (2.9), (2.10), we get

Lemma 2.4. There exists the unique solution= 1( ) of (R) defined for0 ≤
≤ 1 such that(2.13) holds. Moreover we obtain

lim
→+0

1( ) = lim
→1−0

1( ) = 0

Next let us consider the singularity (0 0) of (D). As preparation of this, we show

Lemma 2.5. If there exists a solution = ( ) of a Briot-Bouquet differential
equation

(2.15) = ( )

where ( ) is a holomorphic function in the neighborhood of( ) = (0 0) with
the form

(2.16) ( ) =λ + +
∑

+ ≥2

λ < 0

and if the accumulation points of( ) contain 0 as tends to0 with boundedarg ,
then ( ) is the unique holomorphic solution.

Proof. It is known that ifλ is not a positive integer, then there exists the unique
holomorphic solution = ( ) of (2.15) such that (0) = 0. So we put= − ( ).
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Then we get

= ( )

where ( ) is a holomorphic function in the neighborhood of ( ) =(0 0) and
(0 0) = λ. Hence it suffices to show that the solution ( ) of (2.15) satisfying the

assumption of this lemma is identically zero, when we get

(2.17) ( ) =λ


1 +

∑

+ ≥1




instead of (2.16).
Suppose the contrary. Then ( ) is not identically zero. Now if( 6= 0) is an ac-

cumulation point of ( ) as tends to 0 with bounded arg , then there exists a com-
pact neighborhood of 0 such that /∈ . Since ( ) intersects the boundary of

infinitely many times and the boundary of is compact, y( ) has its accumulation
point on the boundary of as tends to 0 with bounded arg . Since can be taken
sufficiently small, we may suppose that is so small that ( )6= 0. Hence we get
from (2.15)

=
( )

which implies the contradiction ≡ 0 from Painlevé’s theorem (cf. Theorem 3.2.1
of [4]) and the uniqueness theorem. Consequently ( ) converges to 0 as tends to
0 with bounded arg .

Substituting = ( ) into (2.15), we have from (2.17)

= λ (1 + (1))

as tends to 0 with bounded arg . Therefore for some0 in the neighborhood of 0
and 0 = ( 0) we get

∫

0

= λ
∫

0

1 + (1)

where | | < | 0| and = ( ). From Cauchy’s theorem we take as a path of inte-
gration of the righthand side so that if ∈ , then | | and arg vary monotonously
along . Then we get

∫

0

1 + (1)
=
∫

0

(1 + (1))
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and thus

log
0

= λ

(
log

0

)
(1 + (1))

whose real parts deduce a contradiction as tends to 0 with bounded arg . Hence
( ) is identically zero.

Lemma 2.6. Let = ( ) be a solution of(R) such that

lim
→0

( ) = 0

Then we have

(2.18) lim
→0

−1 = αλ

Proof. Since Lemma 5 of [14] is valid also in our case, we get

lim
→0

−1 = αλ ±∞

If lim →0
−1 = ±∞, we put = −1. Then as in [14] we obtain

=
α
− 2λ 2 + αλ2(1− ) 3

Since 1/α < 0, it follows from Lemma 2.5 that this has the unique holomorphic solu-
tion ≡ 0. This is a contradiction and (2.18) is valid.

Concerning a solution = ( ) of (R) converging to 0 as→ 0 and satisfy-
ing (2.18), we shall get some lemmas.

Lemma 2.7. There exists uniquely a solution = 2( ) of (R) such that(2.18)
holds and

(2.19) lim
→0

−1 = λ

where

= −1 − λ

Furthermore in the neighborhood of = 0 we get

(2.20) 2( ) = αλ + λ 2 + · · ·

Proof. Putting = −1 − λ, we get

→ 0 as → 0
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from (2.19) and

=
−(α + 1) ( +λ)2 − α2λ

α ( + λ + αλ)

This is (27) of [14]. Hence if we follow discussion of [14] after (27), then the proof
is completed.

Using (2.20) and (T), we have

Lemma 2.8. From 2( ) we obtain a solutionφ( ) of (E) with the form(2.4) in
the neighborhood of = −∞.

Here in the same way as in [16] we conclude

Lemma 2.9. A solution of(R) satisfying(2.18) and not satisfying(2.19) is given
as

(2.21) =αλ +
α2λ

log | |

(
1 +

(
log | log | ||

log | |

))
as → 0

In the neighborhood of = 0, we get

(2.21)> αλ > ( ) > 2( )

since−1< α < 0. However a solution of (D) satisfies

= 0 = −α2λ2( 2 − 3) < 0

on the segment 0< < 1, = 0. Therefore from (2.14) and Poincaré-Bendixon’s
theorem we have

( 2( ))→ (1 0) as → −∞

Namely 2( ) is defined for 0≤ ≤ 1 and

lim
→1−0

2( ) = 0

Because only 1( ) satisfies (2.12) and only2( ) satisfies (2.18) and (2.19), we con-
clude

Lemma 2.10. On 0< < 1, we get

1( ) > 2( ) > 0
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and 1( ) is represented as(2.21) in the neighborhood of = 0 and 2( ) as (2.9),
(2.10) where 6= 0 in the neighborhood of = 1.

Now we continue the argument of [16] used for obtaining Lemma2.9 and have

φ( ) ∼ as → −∞

Moreover integrating both sides of (E) twice, we conclude

Lemma 2.11. From (2.21) we get a solutionφ( ) of (E) with the form (2.2) as
→ −∞.

Finally, note that from (T) and (1.5) the initial condition (I) gives an initial con-
dition

(2.22) ( 0) = 0

to (R). Here

(2.23) 0 = ψ( 0)−α α
0 = α 0

(
λ +

)

Since 1( ), 2( ) are defined for 0< < 1, we take

0< 0 < 1

This is equivalent to

(2.24) 0< < ψ( 0)

Fix 0 arbitrarily and so as to satisfy (2.24). Then varying ,0 is fixed and 0

varies. Suppose that from (R) and (2.22) we get1( ) if = 1 and 2( ) if = 2.
Then from Lemma 2.10, we obtain1 < 2 since 0 is monotone decreasing in . If

1 < < 2, then we have a solution ( ) of (R) and (2.22) such that

1( ) > ( ) > 2( )

Thus the unique existence of1( ) and 2( ) implies

Lemma 2.12. Let ( ) be a solution of(R), (2.22)with 1 < < 2. Then ( )
is defined for0 ≤ ≤ 1 and represented as(2.21) in the neighborhood of = 0 and
as (2.9), (2.10) where 6= 0 in the neighborhood of = 1.

Consequently in Theorem I, (i) follows from Lemmas 2.2, 2.4,2.10, 2.11 and (ii)
from Lemmas 2.1, 2.8, 2.10 and (iii) from Lemmas 2.1, 2.11, 2.12.
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3. Preliminaries for the further discussions

Before considering the cases not treated yet, we need the following discussions.
If we put = 1/η in (R), we get

(3.1)
η

= − (α− 1)η3 2 + 2αλη2 − α2λ2(η − 1)
αη4

If we put = 1/ζ in (R), then

(3.2)
ζ

= − (α− 1)ζ + 2αλ ζ2 − α2λ2( 2− 3)ζ3

α

Furthermore if we put = 1/η, z = 1/ζ, then we have

(3.3)
ζ

η
=

(α− 1)η3ζ + 2αλη2ζ2 − α2λ2(η − 1)ζ3

αη4

Moreover if we put

= η−3/2ζ ξ = η1/2

then we obtain a Briot-Bouquet differential equation

(3.4) ξ
ξ

= −α + 2
α

+ 4λξ 2 −−αλ2(ξ2− 1) 3

Let = ( ) be a solution of (R). Then through (T) we obtain a solution = φ( )
of (E). If (ω− ω+) denotes a domain ofφ( ) and if is a function obtained fromφ( )
through (T), then we get

Lemma 3.1. →∞ as → ω± imply thatω± are finite respectively.

Proof. If a solution of (R) is bounded, then (3.1) implies a contradictionη ≡ 0.
Hence is unbounded.

So we consider (3.4). Ifξ = 0, then the righthand side of (3.4) vanishes if and
only if = 0, ±ρ where

ρ =
1
αλ

√
α + 2

2

Here let be an accumulation point of a solution of (3.4) asξ → 0, namely
→ ∞. Suppose that 6= 0, ±ρ, ±∞. Then from (3.4) we get a contradictionξ ≡ 0.

Hence = 0,±ρ, ±∞.
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If = 0, then we get from (3.4)

= ξ−(1+2/α)


1 +

∑

+ ≥1

ξ { ξ−(1+2/α)}




where is an arbitrary constant and the power series converges in the neighborhood
of ξ = 0, since−(α + 2)/α > 0 and the righthand side of (3.4) is divisible by .
Returning the variables, we have

(3.5) 1/α



1 +

∑

+ ≥1

− /2+((α+2)/2α)



 =

− ω−
α

or
− ω+

α

where−∞ < ω− < ω+ <∞.
If = ±ρ, we putθ = − . Then we have

ξ
θ

ξ
=

2(α + 2)
α2λ

ξ +
2(α + 2)

α
θ + · · ·

Since 2(α + 2)/α < 0 andθ is real so that argθ is bounded, Lemma 2.5 implies that
θ is holomorphic and represented as

θ =
∞∑

=1

ξ

Here, return the variables. Then we get

(3.6) −2 −1/2−
∞∑

=1

2
+ 1

−( +1)/2 = − ω− or − ω+

where−∞ < ω− < ω+ <∞.
Now we suppose =±∞. Putting = 1/θ, we have

θ → 0 asξ → 0
ξ

θ
=

αξθ

(α + 2)θ2 − 4αλξθ + 2α2λ2(ξ2 − 1)

These imply a contradictionξ ≡ 0. Consequently 6= ±∞.

Corollary 3.2. If = 0, we get

φ( ) =
λ2/α −λω−

α
( − ω−)(3.7)

×



1 +

∑

+ + ≥1

( − ω−) ( − ω−)−α /2( − ω−)(α+2) /2
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in the neighborhood of = ω− and

φ( ) =
λ2/α −λω+

α
(ω+ − )(3.8)

×



1 +

∑

+ + ≥1

(ω+ − ) (ω+ − )−α /2(ω+ − )(α+2) /2





in the neighborhood of = ω+ where is an arbitrary constant and are con-
stants. Moreover if = ±ρ, we get

(3.9) φ( ) =

{
2(α + 2)
α2

}1/α
−λω−( − ω−)−2/α

{
1 +

∞∑

=1

( − ω−)

}

in the neighborhood of = ω− and

(3.10) φ( ) =

{
2(α + 2)
α2

}1/α
−λω+(ω+ − )−2/α

{
1 +

∞∑

=1

(ω+ − )

}

in the neighborhood of = ω+ where are constants.
Furthermore if 6= 0, ±ρ, then the solutionφ( ) of (E) cannot be obtained.

Proof. In the proof of Lemma 3.1, we get = 0,±ρ. If = 0, then we put

=
1
η

η1/2 = ξ

and get from (3.5)

ξ−2/α



1 +

∑

+ ≥1

˜ ξ −((α+2)/α)



 =

− ω−
α

or
− ω+

α

Here if we put

θ = ξ−2/α τ =
− ω−
α

or
− ω+

α

then

θ



1 +

∑

+ ≥1

˜ θ−(α/2) θ((α+2)/2)



 = τ

Hence we have

τ−α/2 = θ−α/2



1 +

∑

+ ≥1

θ−(α/2) θ((α+2)/2)



(3.11)
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τ (α+2)/2 = θ(α+2)/2



1 +

∑

+ ≥1

θ−(α/2) θ((α+2)/2)/



(3.12)

Applying the inverse function theorem to (3.11) and (3.12),we obtain

θ−α/2 = τ−α/2



1 +

∑

+ ≥1

ˆ τ−(α/2) τ ((α+2)/2)





Therefore we get

1/α = τ



1 +

∑

+ ≥1

ˆ τ−(α/2) τ ((α+2)/2)





and so (3.7) and (3.8) through (T).
If = ±ρ, then from (3.6) and (T) we have (3.9) and (3.10).

4. On the other solutions of (E)

Let 3( ) be a solution of (R) which exists in > 1 and is represented as (2.13)
in the neighborhood of = 1. Moreover, suppose that we get3( ) as a solution of
the initial value problem (R), (2.22), if > ψ( 0) and = 3. Then if φ( ) denotes a
solution of the initial value problem (E), (I) as in Section 2, we have

Theorem II. If 0 < < ψ( 0) and > 2, then φ( ) is defined forω− < <∞
whereω− > −∞ and represented as(3.7) in the neighborhood of = ω− and (2.3)
where 6= 0 in the neighborhood of =∞.

If = ψ( 0) and = − λ, then φ( ) ≡ ψ( ) and if = ψ( 0) and > − λ, then
the conclusion of the case0< < ψ( 0), > 2 follows.

If > ψ( 0), then there exists 3 such that
(i) if = 3, φ( ) is defined forω− < < ∞ where ω− > −∞ and represented
as (3.7) in the neighborhood of = ω− and (2.1) in the neighborhood of =∞,
(ii) if > 3, the conclusion of the case0< < ψ( 0), > 2 follows.

For starting the proof, recall (2.14). Then

(4.1) ( − ( )) = (α + 1)α2λ2 3(1− ) < 0

when a solution ( ) of (D) passes the curve = ( ) where> 1. Therefore

3( ) < ( )
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since ′(1)> µ1/α. Thus there exists1 (1< 1 ≤∞) such that

lim
→ 1

3( ) = −∞

However if 1 is finite, then putting = 1/ζ we obtain (3.2) and a contradictionζ ≡ 0.
Consequently we conclude

1 =∞ lim
→∞

3( ) = −∞

Furthermore we suppose

> 2 or ≥ 3

If 0 > 0, then the solution +( ) of (R), (2.22) satisfies

(4.2) 0≤ +( ) < 2( )

Moreover in the plane, +( ) connects at some point ( ˜ 0) with a solution−( )
of (R) satisfying

(4.3) −( ) ≤ 0 if ˜ < ≤ 1 −( ) < 3( ) ≤ 0 if > 1

On the other hand, if 0 < 0, then the solution −( ) of (R), (2.22) satisfies (4.3)
and connects with a solution+( ) of (R) satisfying (4.2) at ( ˜ 0). If 0 = 0, then the
solution of (R), (2.22) is given as+( ) and −( ) which satisfy (4.2) and (4.3) re-
spectively and connect mutually at (0 0). So let ( ) be a many-valued function such
that

(4.4) ( ) = +( ) if ( ) ≥ 0 ( ) = −( ) if ( ) ≤ 0

Then the same discussion as was done for3( ) shows

(4.5) lim
→∞

( ) = −∞

Here we state Lemma 4 of [15] as follows:

Lemma 4.1. Let ±( ) be solutions of(R) such that

+( ˜) = −( ˜ ) = 0

for some ˜ and

+( ) > 0 −( ) < 0 for 6= ˜
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(i) If 0 > 0 and +( ) satisfies(R), (2.22)and ( ) is a solution of

= +( ) ( 0) = 0

then there exists1 such that

lim
→ 1+0

( ) = ˜

and ( ) can be continued in the interval< 1 uniquely by

= −( ) ( 1) = ˜

(ii) If 0 < 0, we get the similar conclusion.
(iii) If 0 = 0 and ±( ) satisfy (R), (2.22), then ( ) can be defined uniquely by

= +( ) if > 0 = 0 if = 0

= −( ) if < 0 ( 0) = 0

Proof. If ( ) = ( ( ) ( )) is a solution of

=

=
(α− 1) 2 + 2αλ − α2λ2( 2 − 3)

α

( 0) = 0 ( 0) = 0

(4.6)

then it suffices to put ( ) = ( ).
Return to our discussion. Then for ( ) defined as (4.4) we get ( )and a solution

φ( ) of (E) through Lemma 4.1 and (T). Recall that (ω− ω+) denotes a domain ofφ(t).
Since ( ( ) ( ( ))) is a solution of (4.6), we have

lim
→ω−

( ) =∞

from (4.2), (4.3), (4.4), (4.5) and Poincaré-Bendixon’s theorem. Hence Lemma 3.1 im-
plies ω− > −∞. Because 3( ) < ( ), we obtain

lim
→∞

−3/2 ( ) = −∞

Hence if we put

=
1
η

=
1
ζ

= η−3/2ζ
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then we get

lim
η→0

= 0

and a solutionφ( ) of (E) represented as (3.7) from Corollary 3.2.
Let us now consider the case→ ω+. Then if = 3, we haveφ( ) represented

as (2.1) from Lemma 2.2, since3( ) is represented as (2.13). In this case, we get
ω+ =∞. Moreover if > 2 or > 3, then since ( ( ) ( ( ))) is a solution of (4.6),
Poincaré-Bendixon’s theorem implies

→ 1 +( )→ 0 as → ω+

Hence , ( ) are given as (2.9), (2.10) and from Lemma 2.1 we getφ( ) represented
as (2.3) where 6= 0 andω+ =∞. Now the proof of Theorem II is completed.

Next, suppose

< 1 if 0 < < ψ( 0) < − λ if = ψ( 0) < 3 if > ψ( 0)

Then the solution ( ) of (R), (2.22) satisfies

(4.7) ( )> 1( ) ( ) > 3( )

In this case, we get

Theorem III. If > ψ( 0), then there exist 4, 5( 5 < 4 < 3) such that
(i) if 4 < < 3, then φ( ) is defined forω− < < ∞ where ω− > −∞ and
represented as(3.7) in the neighborhood of = ω− and (2.3) where 6= 0 in the
neighborhood of =∞,
(ii) if = 4, then φ( ) is defined forω− < < ∞ whereω− > −∞ and represented
as (3.9) in the neighborhood of = ω− and (2.3) where 6= 0 in the neighborhood of

=∞,
(iii) if 5 < < 4, then φ( ) is defined for−∞ < <∞ and represented as(2.2) as
→ −∞ and (2.3) where 6= 0 in the neighborhood of =∞,

(iv) if = 5, then φ( ) is defined for−∞ < < ω+ whereω+ < ∞ and represented
as (2.2) as →−∞ and (3.10) in the neighborhood of = ω+,
(v) if < 5, then φ( ) is defined for−∞ < < ω+ whereω+ < ∞ and represented
as (2.2) as →−∞ and (3.8) in the neighborhood of = ω+.

If = ψ( 0), then there exists 5(< − λ) such that replacing 4 with − λ we get
(iii), (iv), (v) and if 0 < < ψ( 0), then replacing− λ with 1 the conclusion of the
case = ψ( 0) follows.
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Proof. Now in (R) we put

(4.8) −1/2 = η −1 = η3(−ρ + )

Then from (21) of [14] we have

(4.9) η
η

=
2(α + 2)
α2λ

η +

(
2 +

4
α

)
+ · · ·

In the proof of Lemma 3.1, we put

(4.10) =
1
η

=
1
ζ

ξ = η1/2 = η−3/2ζ θ = −

where =±ρ and obtained the differential equation similar to (4.9). Since 2 + 4/α <
−2, Lemma 2.5 implies that there exists the unique solution (η) of (4.9) such that

(0) = 0. Moreover (η) is holomorphic in the neighborhood ofη = 0. Hence we get
a solution of (R) such as

(4.11) = 3/2

(
−ρ−1 +

∞∑

=1

˜ − /2

)

Since → ∞ as η → 0, this is valid in the neighborhood of =∞. Moreover from
the uniqueness of (η), (4.11) is uniquely determined. So we denote (4.11) as4( ).
Owing to

lim
→∞

4( )
( )

= 0

and (4.1), we have

(4.12) 3( ) < ( ) < 4( )

Furthermore through (4.11) and (T) we get a solutionφ( ) of (E) and ω− > −∞
from Lemma 3.1. Using the notation of (4.10), we obtain

→ #( =−ρ) as η → 0

Hence from Corollary 3.2,φ( ) is represented as (3.8) in the neighborhood of =ω−.
Moreover since

lim
→∞

4( ) = −∞

we get

lim
→1+0

4( ) = 0
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from Lemma 2.3 and (4.12). Hence we may suppose that4( ) is obtained from (R),
(2.22) if > ψ( 0) and = 4. Furthermore from (4.12) we have3 > 4.

If 4 < < 3, then the solution ( ) of (R), (2.22) satisfies

(4.13) 3( ) < ( ) < 4( )

Hence we obtain

lim
→∞

( ) = −∞

Therefore defining andφ( ) through (T) and noting that ( ( )) is a solution
of (4.6), we get an alternative as→ ω− from Lemma 3.1 as follows:

ω− > −∞ lim
→ω−

φ( ) = 0(4.14)

ω− > −∞ lim
→ω−

φ( ) =∞(4.15)

In case of (4.15) we get a contradiction

lim
→ω−

= lim
→ω−

λ−2 αλ φ( )α = 0

Next we consider the case (4.14). For this we use

(4.16) lim
→ω−

−3/2 = lim
→ω−

αφ′( )
1/2φ( )

Sinceφ′′( ) > 0, φ(ω−) = 0, we obtain

0≤ φ′(ω−) <∞

In the case 0< φ′(ω−) <∞, we get

lim
→ω−

φ′( )2

φ( )2 = lim
→ω−

φ′( )2

λ−2 αλ φ( )α+2 =∞

Therefore from (4.16) we have

lim
→ω−

= lim
→ω−

3/2 −1 = 0

This implies thatφ( ) is represented as (3.7) from Corollary 3.2. On the other hand,
in the caseφ′(ω−) = 0 l’Hospital’s theorem implies

lim
→ω−

φ′( )2

φ( )2
=

2λ2

α + 2
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and from (4.16) we obtain

lim
→ω−

−3/2 = −ρ−1

Hence if we put =θ whereθ is defined as (4.10), then is a solution of (4.9) with
(0) = 0. Since exists uniquely, we get a contradiction ( )≡ 4( ).

Suppose 4 ≤ < 3. Then we have

3( ) < ( ) ≤ 4( )

→ 1 ( )→ 0
( )
− 1
→ µ2

α
as → ω+

since only 3( ) satisfies

( )
− 1
→ µ1

α
as → 1

Therefore , ( ) are represented as (2.9), (2.10) and from Lemma 2.1 we obtain a
solution φ( ) of (E) expressed as (2.3) where 6= 0. Moreoverω+ = ∞. Now we
conclude (i), (ii) of Theorem III.

Next, suppose < 4. Then we get

(4.17) ( )> 4( )

Here we consider the case→ ω−. If → ∞, ( ) → −∞ as → ω−, then in
the neighborhood of =∞

−3/2 ( ) < 0

So if we put

(4.18) η =
1

ζ =
1

= η−3/2ζ ξ = η1/2

then we have (3.4). Supposing that is an accumulation point of as ξ → 0, we
obtain

≤ −ρ

from (4.17). However if =−ρ, then we conclude a contradiction ( )≡ 4( ). Hence
we get

< −ρ

From Corollary 3.2, this implies that there exists no solution of (3.4) whose accumu-
lation points contain as →∞ and that

→∞ ( )→ −∞
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does not occur.
Therefore from Lemma 2.3, we have ( )> 0 or ( ) becomes a many-valued

function such that

( ) = +( ) if ( ) ≥ 0 ( ) = −( ) if ( ) ≤ 0

where for some ˜ , −( ) is defined on 1≤ ≤ ˜ and +( ) on 0≤ ≤ ˜ so that

+(0) = +( ˜ ) = −(1) = −( ˜ ) = 0 +( ) ≥ 0 −( ) ≤ 0

Indeed if → γ (γ 6= ±∞) as → ∞, then from (3.1) we get a contradictionη =
1/ ≡ 0.

Since ±( ) just defined satisfy the assumption of Lemma 4.1, we define () as
in Lemma 4.1. If (ω− ω+) denotes a domain of ( ), then we have

lim
→ω−

( ( ) ( ( ))) = (0 0)

since ( ( ) ( ( ))) satisfies (4.6). Hence it follows from Lemma 2.9 that (2.21) is ob-
tained for ( ( ) ( ( ))). Therefore from Lemma 2.11 we getω− = −∞ and φ( ) is
represented as (2.2) as→ −∞. Similarly in the case ( )> 0 we have

lim
→0

( ) = 0

from Lemma 2.3 and hence (2.2) as→ −∞.
Next we consider the case→ ω+. Then there exist the following possibilities:

ω+ <∞ lim
→ω+

φ( ) = 0(4.19)

ω+ <∞ lim
→ω+

φ( ) =∞(4.20)

ω+ =∞ lim
→ω+

φ( ) = 0(4.21)

ω+ =∞ 0< lim
→ω+

φ( ) <∞(4.22)

ω+ =∞ lim
→ω+

φ( ) =∞(4.23)

Here we define and through (T).
In the case (4.19) we get

lim
→ω+

=∞

Suppose that

→ γ (γ 6= ±∞) as → ω+
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Then from (3.1) we have a contradiction. Therefore

→∞ as → ω+

since if < 0, then / < 0 and → ∞ as → ω+ is impossible. Now we
use (4.18) and transform (R) into (3.4). If denotes an accumulation point of a solu-
tion of (3.4), then it follows from Corollary 3.2 that in the neighborhood of =ω+

we get a solutionφ( ) of (E) represented as (3.8) for = 0 and (3.10) for =ρ. More-
over since we get > 0 and ≥ 0, we do not obtain a solution of (E) for 6= 0, ρ.
As is shown in the proof of Lemma 3.1 and Corollary 3.2, (3.10)is obtained from the
unique holomorphic solution

= ρ +
∞∑

=1

ξ

of (3.4), namely from a solution

= ρ−1 3/2

(
1 +

∞∑

=1

˜ − /2

)

of (R). Existence of this is unique and so we denote this as5( ). Furthermore from
the unique existence of5( ), existence of (3.10) is also unique. So for (3.10) we put

φ′( 0) = 5

If (3.8) is got from a solution ( ) of (R), then from 0< ρ, we get

5( ) < ( )

Therefore if we put

φ′( 0) =

for (3.8), then from (2.23) we have

5 >

If the case (4.20), we obtain

lim
→ω+

= 0

which is impossible. Moreover if the cases (4.21) and (4.22)occur, we get

lim
→ω+

=∞
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This contradicts Lemma 3.1.
Finally we suppose (4.23). Then ifφ′( ) is bounded as → ω+, we have

lim
→ω+

φ( )
−λ

= lim
→ω+

φ′( )
−λ −λ = 0

and

lim
→ω+

= lim
→ω+

λ−2

(
φ( )
−λ

)α
=∞

This implies a contradiction

ω+ <∞

If φ′( ) is unbounded as→ ω+, then from l’Hospital’s theorem we get

lim
→ω+

φ( )
−λ

= lim
→ω+

φ′′( )
λ2 −λ = lim

→ω+

1
λ2

(
φ( )
−λ

)1+α

On the other hand, since the orbit of the solution ( ) of (D) cannot cross the axis
twice and (= / ) does not vanish twice,

lim
→ω+

exists and hence

lim
→ω+

φ( )
−λ

does. Therefore this is equal to 0,λ2/α, ∞ and we get

lim
→ω+

=∞ 1 0

respectively. However

lim
→ω+

=∞ 0

cannot occur as above. Thus we have

lim
→ω+

= 1

This occurs only if the orbit = ( ) of (D) gets into the region where / > 0 in
the plane (cf. Lemma 2.3). Hence we obtain

( ) < 5( ) 5 < (= φ′( 0))
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and (2.3) where 6= 0 from ( ) as above.
Now the case

0< < ψ( 0) < 1 or =ψ( 0) < − λ

is left. However from (3.2) the solution ( ) of (R), (2.22) cannot diverge to∞ as
tends to a finite value. Moreover if ( ) converges to 0 as→ 1−0, then we get the
alternative of (2.11) and (2.12) and therefore a contradiction

( ) ≤ 1( )

Thus the present case is reduced to the case

> ψ( 0) < 4

and the proof of Theorem III is completed.
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