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1. Introduction. Basic notions, definitions and formulation of the main result

Ideal boundaries of open manifolds describe their coarsengéy at infinity and
prove to be very useful for the study of the geometry of a giwemifold itself. In this
note we construct on the Euclidean eight dimensional sfiggt@ Riemannian metric
g of nonnegative Ricci curvature such that the open Riemannianifold R, g) has
Gromov'’s ideal boundaries of different dimensions. Ourstarction is based on the
methods developed in the paper of J. Cheeger and T.H. Co[8ingvhere are given
examples of metrically non-equivalent tangent cones anityfi but keeping their di-
mensions fixed. These examples are so-called double warpedcts depending on
some functions (called warping functions). See and beldve donstruction of our
example consists of constructing these functions in suchawp that on one hand the
Ricci curvature of the obtained metric is positive (and weifyethis using formulas
for the Ricci curvature again from [3], see formulas (I) an below), and on the
other hand the claim of our main result holds.

Before presenting our main result (see Theorem A below) wallréhe notions
of an ideal boundaryM” o0) of an open manifold¥” and its tangent cone at infinity
Too M.

Ideal boundaries. Everywhere below ¥", g ) denotes an open (complete non-
compact and without boundary) connected -dimensional Rigian manifold with a
Riemannian metrig . A pointed manifold is a manifold with opeint fixed, we de-
note it by M", p, g ) and call the fixed point a base point. A metric lalthe man-
ifold (M", g) with a center at the poing and radias is denotedhy, r(g Bélow
we consider sequences of pointed manifoldi§' ( p;, g ). CorrespghdiB (p;, ri, gi)
denotes the metric ball inM!", p;, g; ) with a center gt  and radius . B1ghme
way a metric spaceX,d ), whew denotes the distance functooalled pointed if
some of its pointz is fixed. We denote a pointed metric spaceXyy:(d), or simply
(X, a), and call the fixed pointa a base point. In a Riemannian folah{M, g) the
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Riemannian metricg generates the distance function whichdemote byd ¢ ), and
we consider the Riemannian manifold also as a metric spétel (g)). (

Gromov-Hausdorff distance. Given two metric spaces (in particular, two
Riemannian manifolds M, g1) and (M>, g2) considered as metric space¥( d(g1))
and (M2, d(g2))) Gromov in [6] introduced a way to measure their closenésstwo
subsetsA B C Z of a metric space4, d ), the Hausdorff distanég betwden and
B is

du(A, B) =inf{e | T.(A) D B and T.(B) D A},

where 7.(A) denotes thes-neighborhood ofA inZ . Now, for arbitrary metric spaces
X, Y the Gromov-Hausdorff distancé;y  betwe&n  and is defined by

deu(X,Y)= ir}finf du( f(X), &(Y)),
1.8

where the infimum is taken over all possilite  and all possibtenietric immersions
f:X — Z, g: Y — Z. This distance defines a topology on the set of all metric
spaces: the sequence of metric spakgs tends to a metric Bp#icé;u(X,, X) —
0.

For pointed metric spaces the definition of a converging eeqgel is slightly dif-
ferent, see [5].

DeriniTion.  We say that a sequence of pointed metric spadgs,, a,)} con-
verges to &, a ) in the sense of Gromov-Hausdorff if for every O the sequence of
balls B @,, r)C (Xa, a,) converges to a baB a(r ¢ (X, a) in the Gromov-Hausdorff
topology*

For manifolds and pointed manifolds we say th&t’( p;, g; ) converg&iomov-
Hausdorff topology to some metric spac&,@,d ) ¥, pi,d g ( )) tends tds th
space.

The Gromov Precompactness Theorem (see [6]) claims thatrizitrasy set of
connected Riemannian -manifolds of non-negative Riccvature is pre-compact in
Gromov-Hausdorff topology if their diameters are unifoymdounded. For instance,
any sequence of unit metric balB ¢;{ , & ) from different Riemiannmanifolds
(M, g;) contains some subsequendeg;,(,gl ) converging to some meieces
(B, g) in Gromov-Hausdorff topology:K,g ) = lim, B ;, Jg; ) ag — oo if all
(M?, g;) are of non-negative Ricci curvature. Now, if in a given ppeanifold (", g)
of non-negative Ricci curvature we divide its metric tengoby an arbitrary positive
numberr? the resulting metric—2g will be also of non-negative Ricci curvature be-
cause the curvature of the metric?g equals the curvature of multiplied by?.

1This does not imply thatlgy(X,, X) — O.
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Therefore, if B p, 1g; ) denote the unit metric ball with the fixechtsr at the pointp

in a manifold M" with a metricg; :r,.‘zg for an arbitrary sequence of positive num-
bersr; , then the sequena® p,(,gl ) is pre-compact in Gromov-Hé&tigdpology
and contains some subsequerBep, (g;1 ) converging to some raphize B,d ).
For instance, if, — 0 then the sequencB p( ,4 ) converge to the unit ball in the
tangent spac&,M" (which, of course, is isometric to the unitibathe standard flat
Euclidean space). The situation is much more interestingnwh — oo. In this case
the limit space might depend on the sequefigg and is called “the tangent cone at
infinity”. In [5] Gromov introduced this new concept whichgwides a nice tool for
the study of the asymptotic behavior at infinity of open malal.

DeriniTion.  Let (M”, p, g) be a pointed open Riemannian -manifold of nonneg-
ative Ricci curvature Rig¢” > 0. Its Tangent Cone at Infinityor Asymptotic Cone
Too(M", g) under a sequence of real numbers— oo is the Gromov-Hausdorff limit
of the sequence of unit metric balB p,( ,r]._zg) with a centerp in pointed open
manifolds (", p, r;%g) , if such a limit exists. The boundary @t (M", g) is called
an Ideal BoundaryM"(o0) of M". By d., we denote the metric of .(M", g).

By our definition
(TOO(Mn’ g)’ dOO) = l[;g; (B(p, l’ ri_zg)’ d(ri_zg))’

while the ideal boundaryM” of) is the Gromov-Hausdorff limit of unit spheres
S(p, 1,d;) in (M", p, g;) with a centerp , wherg; = 2¢ andd; =d ¢ %g).2

Non-unigueness ofT (M, g). Main result. Gromov Precompactness Theorem
implies the existence of a tangent cone at infiriity (M, g) of a manifold M" of non-
negative Ricci curvature. If the sectional curvature $&c¢ of WM" is non-negative
then, beyond the existence @f.(M, g), the uniqueness holds as well (see [2]), i.e.,
for arbitrary r; — oo our sequenceB g, ,%k; ) of unit metric balls from the definition
above converges to the same metric space. But genefalfM, ¢) depends on the
sequence; — oo. We denote this dependence By, (M, g){r;}, and the associated
ideal boundary byM" do){r;} . The first example of an open manifold of nonnegative
Ricci curvature having different cones at infinity is due to Rerelman [10]. Until now
in all such examples all cones at infinity had the same dimensi

2The reader may compare this definition with the well-knowtdirdgons of the ideal boundary
of an Hadamard manifold’” (complete simply connected mathififl non-positive curvature) usu-
ally called the sphere at infinity”(co), see [2]. According to one of themi" (o) is the set of rays
I(t),0 <t < oo issuing from a given poinp with a metri¢., (called Tits metric) defined as follows:
doo(l1, 1) = lim; .o d(l1(t), I2(2))/t. Interesting to note that in [2] are given three equivalegfirdtions
of the ideal boundary of an Hadamard manifold which in theecasopen manifolds of non-negative
sectional curvature may lead to different, non-homeomiorjgteal boundaries, see [8].
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Here we construct in Euclidean spa€ a complete metric of nonnegative Ricci
curvature having ideal boundaries and consequently targeres at infinity of differ-
ent dimensions. Our main result is the following.

Theorem A. There exists a metrig  on the Euclide@dimensional spacé®
such that(R8, g) is the manifold of nonnegative Ricci curvature having idbalind-
aries of different dimensions. For some sequence- oo it holds R8(co){r;} = S3,
while for anotherr,, — oo the ideal boundaryR8(co){r,,} is a point.

The metricg in Theorem A can be constructed of cldédor arbitrary & , or even
of the classC>°. Our construction basically follows from [3] (essentiathe Sectior§8
there). As in [3] our example is a so-called double warpeatipct depending on some
functionsu andv , called warping functions. Thus, the prowrigour main result con-
sists of findingu andv such that: first, the obtained metric hasitige Ricci curva-
ture (we verify this by using formulas |-l below from [3])nd secondly, we present
two sequences; and, such tHgf(co){r;} is a three-dimensional sphes8 while
R8(c0){r,,} is a point.

The author would like to express his sincere gratitude to shipervisor Profes-
sor Valery Marenich for introducing me to this subject, faimding out this problem,
cooperation and patience in reading the numerous versibtisisopaper He is also
deeply indebted to Professor D. Alekseevsky for his carefatling and valuable sug-
gestions on this paper.

2. On relations between geometries of an open manifold andsittangent cone
at infinity

Before proceeding with the construction of our example welldidike to present
some results showing that the knowledge of the geometnictsire of tangent cones at
infinity and ideal boundaries of a given open manifold allavesto inquire topological
and geometric information about the manifold itself andtdretinderstanding of the
structure of the class of manifolds of nonnegative Riccivature. For instance, in [9]
the following was proved.

Theorem B (Marenich-Bessa). Let (M”, p, g) be a pointed open Riemannian
n-manifold of non-negative Ricci curvature and quadraticvaiure decay

Sequ.g)(q) > —k dist 4(p, gq),

wherek > 0 and Seqy,,)(¢) denotes the sectional curvature @#", g) at the pointg .
If Too(M, g){ri} = (R", gcan) for some sequencér;} then (M, g) = (R", gcan), Where
gcan IS the flat metric onR”.

Swhich is a part of author’s Ph.D. thesis
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In [4] the same result was obtained without the assumptioa gladratic decay
of the sectional curvature.

Denote by diany g, r ) the supremum over all the diameters of thandbary com-
ponents ofM\ B(p, r).

Theorem C (Marenich-Bessa). Let (M"g) be an open Riemannian -manifold
with non-negative Ricci curvature. I, (M, g) = (R¥, gcan), k < n, then either
1. M =M x R where M is compact or
2. the no-line factorM of (M, g) has dimensiodim(M) > 3 and is of the maximum
diameter growthi.e.,

lim diamy(p, ) =2

r—o0 r

If the diameter growth is maximal and..(M, gz;) is a metric cone then
T-(M, g37) = C(N) x R, where C(N) is a cone over compact length spade

If we ask: is there any open manifold”  having ideal boundaoiedifferent di-
mensions, the first interesting fact to note is that in suclimgde no ideal boundary
could have the maximal possible dimension—-{ 1). If, for instance, in our case we
haven = 8, and soma/® has ideal boundaries of different dimensions, then neither
of these dimensions equal 7. This is due to the following.fact

Theorem D (Marenich). Let (M", g) be an open manifold of nonnegative Ricci
curvature. If for some sequengg — oo it holds dim7..(M", g) = n, then for any
other sequence; — oc it holds alsodim T..(M", g) = n.

In order to prove this, we use the following result from [3,eblhem 5.9] (adapted
to our aim).

Lemma (Cheeger-Colding). Let (Y, y) be the pointed Gromov-Hausdorff limit of
a pointed sequence of Riemannian -manifdl8g', p;, g;) of non-negative Ricci cur-
vature. Denote byB(p;, r) the ball with radiusr and centep;, id4; . If for all
vol(B(pi, 1)) = v > 0,
thendimY =n, and for anyr > 0

iingovol(B(q,-, r)) = H"(B(y, r)),

where B(y,r) is a ball in ¥ with a centery and radiug, and H" denotes the: -
dimensional Hausdorff measure.
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Proof of Theorem D. By definitionT, (M, g){r;} is the Gromov-Hausdorff
limit of unit metric balls B p, 1g; ) with fixed centerp in open mariiflo M"
with rescaled metricg; :ri_zg. Hence, for the volume ofB i, ,k; ) we have
vol(B(p. 1, g;)) = vol(B(p. r;, g))/r!". If the dimension ofl..(M, g){r;} equalsn then
H' (T (M, g){ri}) = a > 0, and according to the Lemma above we conclude

vol(B(p. ri. 8))

; =vol(B(p, 1, g)) — H"(T(M, g){ri})=a >0

asi — oo. By the Bishop-Gromov Volume Comparison Theorem [6] thecfiom
vol(B(p, r, g))/r" is monotonically decreasing in . Therefore, for any othejuseice
{r;} it also holds that

vol(B(p. 77, 8)) _

n
T

a> 0.

Due to volB (p, 1g;)) = volB {. rj,g)Yr}" and Lemma above, it follows that
H"(Too(M, g){r;}) = a > 0 (i.e., all cones at infinity have the same -volume), or
that the dimension of (M, g){r;} equalsn .

Theorem D is proved. ]

Other interesting results on ideal boundaries, tangenesai infinity and its re-
lationship with the geometry of the manifold can be found iarke of A. Kasue [7],
W. Ballmann, M. Gromov and V. Schroeder [2], T. Shioya [11}.e

3. Warp-products and their Ricci curvature

All manifolds which we are considering below are so-callenillle warp-products.
We recall here their description taken from [3] as well as fitrenulas (1)—(11) for their
Ricci curvature below.

Let {} be a local orthonormal basis in a Riemannian manifold, ¢ ), and
gM(r) the family of Riemannian metrics o  such thgt} are orthogonal for alk
from some intervak € I C R. Then for some functions; r( ) the badis; = ; /u:(r)}
is a local orthonormal basis inM, g™ r ( )). Let further the tangbondle of M ad-
mits a decompositoM F£; @ --- & E,, while the metricg” £ ) can be written
as g™ ¢ ) =u3(r)ky + - - + u3(r)ka whereg" ¢ )g, = u?(r)k; andk; annihilatest; for
i # j. Assume in addition that if a geodesicin (M, g) is tangent to a distribution
E; at some pointy(0) then it stays tangent to it in all other poin{$). In [3] it was
proved that under these conditions for the Ricci tensor efrietric g =dr? + g (r)

4Double warp-products are manifolds whose tangent bunditegeesented as a sum of orthogonal
distributions E; . We vary their metric by multiplying it along; by some functions;; . The well-
known warp-productg§M, g1) x. (M>, go) are the particular case when these distributions are inte-
grable, tangent to the factond; and M,.
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on the product/ x M the following is true.

Ric(, )= Y ~1C.
() .

/

. _ & i u; J
RiC| () a1, g = RiCurgme) = D _ul,- + _u:. > "
i i7j

<

i @y,

where ¢ = 9/0r is tangent to/ in the product x M, {y’} denote the dual basis
to {y;} and Ric is the Ricci tensor of M, g™ r()). Particularly, consider a lRannian
submersionx! — M"* = w»~! with totally geodesic fibrest! ; leg™ and"V
be the Riemannian metrics far ard |, respectively, and wgife ki +k», where
ko = m*(g") andk; is the metric component responsible by the fibres (that i%,Mi =
E1® E, with E; the vertical subbundle an#, the horizontal subbundle, thes? |z, =
kilg,, kilg, = 0, andgM|g, = 7*(g")|k, = k2|£,» k2|£, = 0). A family of Riemannian
metricsg™ ¢ ) onM is given by

8"(r) = uf(r)ks + ud(r)ke.
Then, the above equations (1) for the Ricci tensor take thmfo

0)
RiC(, €) = —I-L — (n — )2
ui u

. ~ uy’ u
RiC|((ryxm.gm(ry) = RiCur gm(y) — (u—ll +(—-1) (i) +(n — ) Z yi @y

uy' wb,\? ol ul
_ t—]—1 2) Mk ’
(u (n )( ) it E Yi ®y;

uz i=l+1

where{y;, i = .1} are vertical local fields orthonormal with respectg » ( ), and
{yj.j=1+1 ...,n} are orthonormal horizontal fields.

4. Construction of the Example

Now we proceed with the construction of our example in foepst
1. Considering the spac® as the union of a dis® centered at the origin and its
complementN we first provide a smooth metricdéh  of nonnegaRieri curvature.
2. We extend — of clasg* — the metric obtained in the first step from to the
disc D minus the origin (where the metric would stay singuléitus getting a metric
of nonnegative Ricci curvature iR8\{0}.
3. We show that it is possible to “desingularize” the obtainedtrio at the origin.
This gives us a*-metric onR® of nonnegative Ricci curvature.



462 N. L. SanTOS

As the result of these three steps we will construct a familgmooth metrics depend-
ing on some paramete®® ¢, € (0, 1), R,, R, (k) and cg, c1. We show that for allR
sufficiently big (depending on all other parameters) and-@llc; sufficiently small our
metric ¢ onR® has non-negative Ricci curvature.
4. Finally, we show that this metric has ideal boundaries ofed#nt dimensions.
STEP 1.
1.1. We considerR® as the quotient space,[6o) x S7/{0} x S or as the product
(0, o) x S with one point (origin) attached. For son® > 0 decompos&?® as the
union of the discD =[0R ¥ S7/{0} xS’ of radiusR and the spack R[oc)x S’.
We denote their common bounda®NN = {R} x S7, by S7(R). We will endow these
sets with doubly warped product metrics affttglue them afterwards.
Our metric in the spaceV g = dr? + g5 (r), where g5'(r) is of doubly
warped product type, obtained from the Hopf fibratios?,g5") — (57,¢5) -
(54, (l/4)g54). Here 7 is a Riemannian submersion with totally geodesic fibres, and
g% denotes the canonical metric of constant curvature 1. Adéngrevious section,
we write gS7 = g1+ g whereg, = 7T*((1/4)g54) and g; is the metric component re-
sponsible by the fibres3. Define a new metrigS’(r) = 7(r)%g1+h(r)2g2 on S7. Then,
according to formulas |-1l abov&/  will have positive Riccireature if and only if
the functionsf, i satisfy the following inequalities:
—/! -/
Rice, ) = -3 —a"_ - o
f h
— —/\ 2 —/ =/
re(L V)22 T (1) Il o
) AR
h

— E/ 2 —/E/
h' h 7> h h fh

Ric (g, i) - Ric (g, Z) - Ric (i, 1) =0,
f h f h

where¢ is the unitary field tangent toR], o), V vertical unitary field with respect to
g1, and W horizontal unitary field with respect to corresponding the decomposition
of the tangent bundl& N R @ E1 @ Eo.

Introduce new functions r( ) and » () such that= coru(r) andz = c1rv(r) for
some constantsg, ¢c1 which we will chose below. The system (lll) in terms of these
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new functionsu v is equivalent to:

Ric(¢, )= — E (21 +u”> = (2_” . v)} -0,

2 " 100’ N 2 4’ 1
S R
CO u ru u v u r

(V)

f f rlu r
" 110’ I\ 2 / o
Ric ww ZL—E—U———U—S vy 3 YiZ)>o
hOh) T EWe 2w rv v u \v r

Take somen € (0, 1). We defineu = 1Inr + (sin(In(Inr))¥ andv =r—%. Then

/
o 1 (—i +Sln2x>

u  rulnr In
" 1 . 1 2 .
) u o _ —sin2x +— 1+ — —sin2 +2cos?2 ||,
u réulnr Inr Inr
/ 12 +1
v-_@ and v—:a(az ),
r v r

wherex = In(Inr).

1.2. Substituting equalities (V) into (IV) above we concludettha

Ric(¢, &) = = {uli [Sln2x+z(r)}+4a(l—0z)},

wherez ¢) = 1-1/Inr +sin2x —2cosZ . Ifr > e thenz ) e (-3, 4). Therefore,
there exists some,, sufficiently large such that for > R, we have

’SIHZx _ sin 2x a(l 0) — 3

~ I Tinr@inx gl = Inr’

ulnr
which implies Ricg, &) > 0.

1.3. Again, from (IV) and (V) we deduce for Ri¢{/ f, V/f):

RIC(V V) i[ 22 6+4a+¢(r)}
Colt

7T

where

o(r) = —i[(g 4a) sin 2x +% (_9+4a+%—sin2x +200$2>
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2
+i —i+sin2x .
ulnr Inr

We see thaf¢(r)] < 21 for anya € (0, 1) andr > ¢, and Yu € (1/2, co) for any
co € (0, 1/8]. This in turn implies Ricy /f, V/f) > 0.

1.4. Finally,

Ric 11 :i 3L—6—4042+100z—3(1_00 —i+sin2x
h' h r2 | ¢2 ulnr Inr

As direct computations show foR > max{e, R,} and r > R for arbitrary ¢? €
(0, R%/3) it holds that RicW /h, W /h) > 0.

Summarizing our construction above we see that for arlpiteae (0, 1) there ex-
ists R, such that for allR > R, and all ¢y, c; sufficiently small our metricg™ otV
has positive Ricci curvature.

Note also thatR o can be chosen so that on a small open neighborhood, say
Vv, of the boundary spher§’(R) we have Ridy > ¢R~? for somee > 0 sufficiently
small.

STEP 2.

2.1 Next we endowD = [QR [x §7/{0} x S” with some metricg” =dr? +
fo(r)?g1 + ho(r)?g2, and then attach it toN, g) along their common boundar§’(R)
so that the resulting manifold will be of clagé outside the origin{0}.

Let the warping functionsfy, ho of the metricg” onD are given byf(r) =
coruo(r), ho(r) = cirvo(r), where

ko) . Koo |
uo(r) = Z u lsR) (r _ R)l and Uo(r) - Z v (R) (r _ R)’

! i!
i=0 i=0

Without loss of generality we may assume that our suffigjefig R is such that
In(InR) = mm for some sufficiently big integem . Under this assumption Hadues
of our functionu ¢ ) and its derivatives'(r), ..., u*(r) whenr =R are:

1 1 (1) az a
R)=— w/(R)=————, . u® =2 g+ 2+ v ),
“BR) = R = ez " T RmBE\“ T hR (In Ry-—1
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Taking functions fo and i as follows

Jolr) = cor ﬁ+ﬁ(13—r)+..,
L ) . §
(V|) -+W(al+ﬁ+...+m>(]€_r)k:|’
hO(r):C]_r R_];+%(R—r)+-..
+W()&(a+l)...(a+k_]_)(R_r)k:|’

we see that thé -jets @ and ¢ coincide along their common bounda¥(R). From
this, it follows in particular that Ric= Ricz in all points of the sphere’(R).

Notice that if we consider a suitabl&™ convex combination (see for instance the
step 3 below) of the metricg and ¢ in a neighborhood of the sphefé(R), it is
possible to show that the new metric obtained is of cldssin R®\ {0}, and also
has positive Ricci curvature.

2.2 As in the first step above, direct computations (substiguifi’l) into (1V))
show that the metrig © has positive Ricci curvaturelin  owtdige origin. In addition
Ricz(x) — oo asx — 0. Indeed, for arbitrary- € (0, R] it holds that

. 171 1 b by
Ric(&, &) > - EC(a,k)—m (bl*’ﬁ*’""*'m)},

where C ¢, k) is a constant depending only am and &k, while b; are constants de-
pending only onk . Hence, Rig(£) > O if only R is bigger than someR,, (k).

For other components of the Ricci tensor Ri¢(fo, V/ fo) and RicW /ho, W /ho)
similar computations show that faR  big enough asfd ¢; small enough it holds
that Ric(V/ fo, V/ fo) and RicW /ho, W /ho) > 0, and that they are of orde&d(1/r?)
asr — 0.

Again, summarizing our construction of the metgc ~ &n  we Hest arbitrary
a € (0, 1) there existsk, (k) such that for allR > R, (k) and all ¢co, ¢; sufficiently
small our metricg™ onD has positive Ricci curvature.

Step 3. To smooth the conical singularity at the origin we defognnthe fol-
lowing way. Let¢: R — R be the function

0, if r <0,

1 .
o(r) = T+ exp@r —1/A=r) if 0<r<l,

1, if r>1
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For 0< r < R define
g =dr?+ f(r)’g1 +h(r)°ga,

where f(r) = r [(1 — ¢(r))la + ¢(r)couo(r)], h(r) =r [(1 — ¢(r))lz + ¢(r)crvo(r)] and fa,

I, are some positive constants. Taking them sufficiently sifialk 1/v/3, I < 1/1/2
would be enough) and controlling the value of the constapts: after some lengthy,
but straightforward calculations one sees ti&f, ) with the metric given in the disc
D by g and in the exterior domaiv by is smooth at the origin. Its has positive
Ricci curvature inR®\ {0} which goes to zero exponentially as— 0.

STEP 4. Finally, we verify that our manifoldK®, g) has ideal boundaries of dif-
ferent dimensions. By construction its double warp-produetric has the forng =
dr?+ f(r)?g1+h(r)%g2 where f ¢) =f(r), h(r) =h(r) for 0<r <R, and f () =f(r),
h(r) = h(r) if r > R. If we consider the sequeneg = exp(exp) we notice that

f(rm) Y .0 and h(rm) _ —a

=cir, ¢ — 0 asm — oo,
rmo Ty Im

which means that the ideal boundary®f under this sequendg®(co){r,} is a point:
when r,, becomes arbitrarily large the warped sphere r(;zgf”j) becomes arbitrarily
small, and in the limit it collapses to a point. On the othendh#or the other sequence
r; = exp(expf/2 +Ix)) it holds

1 h
f(r]):C()( +1>—>C0 andﬂ:clr]_aﬁoaSlHOO-
Ty |nr1 r

That is, under this sequence the sphefé, (,‘2g§7) with our warped product met-
ric collapses along the directions normal to the fibres of Wepf fibration, i.e., the
sphereS’ collapses onto the fibré3. In other words, in the Gromov-Hausdorff dis-
tance §7, r1‘2g§7) tends as — oo to the sphereS3(co) of radiuscy or equivalently,
the ideal boundarR8(c0){r;} equalsS3(co).

Theorem A is proved.
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