losifescu, M. and Kraaikamp, C.
Osaka J. Math.
40 (2003), 235-244

ON DENJOY’S CANONICAL CONTINUED FRACTION
EXPANSION

M. IOSIFESCU and CKRAAIKAMP
(Received September 10, 2001)

1. Introduction
Let x be a real non-integer number with (regular) continuedttfon expansion
1

(1) X =ap+ — = [ao; a1, a2, ...],
a +

a2+"

whereag € Z is such thatx — ap € [0, 1), anda, € N for n > 1. As is well-known,
the regular continued fraction (RCF) expansionxof is finftand only if x € Q. In
this case there are two possible expansions, otherwisexibension is unique.

Apart from the RCF expansion there are very many other coetinfrac-
tion expansions: the continued fraction expansion to tharest integer, Nakada’s
a-expansions, Bosma’s optimal expansion in fact too many to mention (see [6]
and [3] for some background information).

One patrticular expansion, which attracted no attentiontsdever, and which is
quite different from the continued fraction expansions timred above, is Denjoy’s
canonical continued fraction expansidsee [2], or [1], p. 2756 for the original pa-
per by Denjoy). In [2], Denjoy stated that every real numleras kbontinued fraction
expansions of the form

(2) x =[do; d1, da, ..],
wheredy € Z is such thatx — do > 0, and the digitsd, are either 0 or 1. Such a

continued fraction expansion of is calledcanonical continued fractiofCCF) ex-
pansionof x. Since

3) a+ 1:a+b,

+Z
Ob
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Denjoy noted that the RCF expansion (1) can be changed int€ka épansion (2).
In this note we will prove Denjoy’s claims, and also obtaire tergodic system
underlying Denjoy’s CCF expansion.

2. Insertions

Denjoy’s remark (3) can be ‘translated’ into two ‘operasbifcalled insertions of
type i, wherei = 1, 2) on the digits of any continued fraction expamsiThey are
based on the following two equations. df b,c Z, b > 2, and{ > 0, then

a+ = =a+t 1
b+¢ 1+ 1
1
0+
b—1+¢
and
1
at——=a-1+
b+¢& 0+ 11
1+—
b+¢

In the first case we inserted/(L + 1/(0+)) into a +1/(b +&), while in the second case
1/(0 + 1/(1+)) was inserted.

Now let x € R\ Z, with RCF expansion (1), and lek € Z be such that —dp >
0. Settingk =ap — dp, in casek > 0 we can apply the second insertion to (1) just
beforea;. Doing so, we get

x=[ap—1, 0 1 a1, as, ..]
as a continued fraction expansion of . Repeating this proeed— 1 times we find
x=[ao—k; (0,1f, a1, az ...,

where (Q 1§ is an abbreviation for the string 0, 1, ..., 0, 1 sfand 1's of length
2k. For k = 0 this string is empty, i.e., we have

x =[ag—0; (O, 1)0, ai, az, ...|=[do;, a1, az, ...].

(This would be the case g = dp; note thatdp > ap is impossible since = |x].)
Next leti > 1 be the first index for whiche; > 1. Applying the first insertion before
a; yields

X = [dO) (07 1y<7 11'717 17 07 a; — 17 aj+1, - - ']7
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where f is an abbreviation for the string.1., 1 consisting ofc 1's, which is empty
if k=0. Repeating this procedure — 2 times we find

x =[do; (0, 2F, 171 (1,071 1, g+, .. ]

Note that we would have obtained the same result if the seduseltion was used
a; — 1 times ‘behind’q; .

Repeating this procedure, we find for amly € Z with dp < x the following CCF
expansion ofx :

(1) x =[do; (0, 1o, (1,0y+% 1, (4 0yt 1, (L, ofe L 1, .. ]

In this expansion, never two consecutive digits will botluaqQ. It follows from (1),
that if x is irrational, then any CCF expansion of is infinitedamnique oncedy is
given. In caser is rational, any CCF expansionxof is finite. k\av, withdy given,
two possible CCF expansions exist in this case.

Note that the firstu RCF digitsy, ..., a, of x yield a;+- - -+a, CCF digits equal
to 1 anda; +--- +a, —n CCF digits equal to 0. LeZ, be the number of 0’'s among
the firstk CCF digitsdy, ..., dy of x, i.e., Z, =#1<i <k:d; =0}, and letW, be
the number of 1's. Then due to Khintchine’s classical re¢sdte [7]), that for almost
all x (with respect to Lebesgue measuxe

n

lim = E aj = oo,
n—oo n
j=1

we deduce that

n
Z o Dljmaj—n

=1 .e.
n—oo Wy n—oo Zj’:l aj; (a € )

So in spite of the fact that the CCF expansionxofc R\ Z always has more 1's
than 0's, we see that for almost all there are asymptotiadlynmany 0's as 1's. We
conclude this section by noting that the CCF expansion ok anZ is

4) x = [do; (0, 1)~
for any dp € Z with dp < x.

3. On quadratic irrationalities and Hurwitzian numbers

An old and classical result states that a number is a quadraditionality (that
is, an irrational root of a polynomial of degree 2 with integeefficients) if and only
if x has an RCF expansion which is eventually periodic, ixe.s ofi the form

(1) x =lao; a1,...,ap, Gp1, ..., apu], p >0, 1>1,
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where the bar indicates the period, see [4], [8] or [9] forimas classical proofs of
this result. It follows from (1) thakt has an eventually peidoRCF expansion of the
form (1) if and only if x has a CCF expansion of the form

x = [do; (0, 1Yo~ (1,0y+71 1,..., (L, 0y~ % 1,
(1, 0y~ 1 ..., (1, 0¥t 1,1 0pent 2, (L Oyt 1],
period period

=[do; (0, 1Yo~ (1, 0yt 1,..., (4,01 1, (4, 0p=-1 1, ... (L Oyr—1, 1],

wheredy € Z is such thatx — dp > 0. Again the bar indicates the period. Thus we
see thatx is a quadratic irrationality if and only if the CCFpamsion (1) ofx is
eventually periodic for everyly € Z with dp < x.

A nice generalization of the concept of eventually perioglipansions are the so-
called Hurwitzian numbersA numberx is called Hurwitzian if and only if has an
RCF expansion of the form

x =lao; ai,..., ap, Ki(k),..., Ki(K)]Zo, p>0,1>1

whereag is an integer, the;; ’'s are positive integers, akig(k), ..., K;(k) are poly-
nomials with rational coefficients which take positive gral values fork =0, 1.,
and at least one of these polynomials is non-constant, ded [@ell-known example
of a Hurwitzian number is = [2;1, 2 +2 1}, Again it is immediate from (1)
that a numbere is Hurwitzian if for everyp < x the CCF expansion of is given
by

x = [do; (0, 2y°7%, (LOy*™ 1., (L O 1,
(1, 0y®-1, 1, (L 00T, 1%,

4. Canonical continued fraction convergents

Let x € R, and letdp € Z be such thatt — dy > 0. Furthermore, let (1) (or ()
be a CCF expansion of . Finite truncation yields the sequa&ic€CF convergents
(C’Z)IIZO Of X.

:[dOI dla d27"'7 dﬂ]a nZO-

The value ofC, is computed using the ruleg0l= co and /oo = 0. Forn > 2 this
implies thatC, equal<’,_» whend, = 0. This means that, can equal (= 1/0).
In order to study the CCF convergerds xf , we define matricesM,, ,for > 0
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by

_(ldo (01 -
Ao.—(o:L), A,1.—<1dn>, M, = AgA1---A,.

Mﬂ -: <r” p” ) £
Sn qn

it follows from M, = M,_1A, that

M" — (pn—l pn) i
dn—1 Y4n

whenceg, > 0, p, andg, are relatively prime, and

Setting

p-1-= dOa pbo= 07 Pn =dnPn—1%t Pn—2,
q-1= 07 qo = 17 qn =dnqn—-1* qn—2.

These recurrence relations show again that = 0, for serpel, implies thatp, =
Pn—2 and g, =g,_». In particular, ifag — dp > 0, then

pl = p3 == pz(ao—(lo)—l = 17
p2= d0+ 17 pa= d0+ 2, <o vy DP2(ag—do) =ag,
and
q1 = q3=""" = q2ap—dp)-1=0
qz = q4:'”:q2([lo—d0):1-

Defining the Mobius-transformation®, R* — R* by

ittt
M, ()= Bl s g

Gn—1t + dn '

we see by induction that

Co = M,(0) =22,
For the RCF expansion matrices similar Aq afg can be definedxE R\ Z
with RCF expansion (1), setting

L lao . 01 —
BO'_(Ol)’ B”'_(lan)’ Mo i= Bolfur=- B
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one has that

Nn - (Pn—l P/z ) i
Qn—l Qn
where Q, > 0, P, andQ, are relatively prime, and

Py
On

(6)-GHE)E)
(DG (50

we conclude (see also (1)) that

:[ao; al""7an]7

see [6]. Since

and

Mk(n) = Ny,

wherek ¢ ) =ap—do+2(a1 —1)+1+ --+2(a, — 1)+ 1, which implies that the sequence
(P,I/Q,,,)">0 of RCF convergents ok is a subsequence of the sequeficg-( of
CCF convergents of

Now let a,+1 > 1 for somen > 1. Sincedyy2; = 0 for 1 < j < a1 — 1, we
already saw thaCy(,) = Cimy+2; = P./Q, for these values of . This also follows from
the fact that

01\ (01\\ _[Pis P\ (10
Mipy+2i = N, = j
kw2j = N ((1 1) (1 o)) (in Qn> (J 1)
_ (an+Rl—1 Py )
JOn+0n1 Q0 )’
What can we say abouf(+2j—1 for 1 < j < au+1—1? Since

-1
— 01 — Plz ]Pn + Pn—l
Mtz = M ( 1 0) i ( Q1 jOu+ in> ’

we see thaCy)+2;—1 is a mediant convergent of , i.e.,

P, + P,_1
Crn)+2j—-1 = jj L

Qn + anl‘
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Thus we see that the collectiofC,, : n > —1} consists of the integergy, . .., ao, of
1/0, and of all RCF and mediant convergentsxof . Note that eveZ{§ Ronvergent
P,/Q, of x appears,+1 times as a CCF convergent of

5. The Denjoy map T4
One way of finding the RCF expansion (1) of is by using the dmdasauss-
map 7: [0, 1) — [0, 1), defined by
T(x):= 1 FJ ,x€(0,1); T(0):=0Q
X X

For x € R given by (1) or (4), let dp € Z be such thak —dp > 0. Settingé = x — dp,
it is clear that

f = [O;dl, dz, .. ]

Similarly to the RCF case, this CCF expansion &ftan easily be obtained from a
suitable map7,; , which we call thBenjoy-map Let 7, : [0, o) — [0, co) be defined
by

1
- -1, xe€(0,1],
X

=¢ 1

Tu(x) - - =0, x € (1, ),
X
0, x =0
Furthermore, setting

w=a©={g Cir

and
dy = dy(€) = dy (T)749)) . n>1

we find in caseTf {) #0 fork =0, 1...,n — 1, that

¢ = 1 _ 1 _
dl + Td(g) dl + 1
dp + T7(€)
_ 1
- 1
dy + 1
dr +

I S —
dn + T7(8)
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There are several algorithms yielding the RCF convergents mediants, see for in-
stance [3] or [5], where such algorithms together with theeutying ergodic systems
are described. In [5], for any € [0, 1), the RCF convergents and mediantsxof are
‘generated’ in the same order — but without the duplicatidrthe RCF convergents
— as in the case of the CCF expansionxof . The underlying hap , 1][6- [0, 1]

in [5] is given by
X 1
1_x’x6[qz)’

—X 1
=1
x 7x€[27 }7

and v is a o-finite, infinite S-invariant measure with densigy , given by

S(x) =

glx) = }, for x € (O, 1).
X

Moreover, Ito showed in [5] that the dynamical system, ([0 S1)y) is ergodic.
It is easy to find by direct calculation that

sz(x), x € {O, %) )
S(x) = 1
T,(x), x € [E, 1} ,

i.e., S can be seen asjamp transformationof 7,. Due to this, the ergodic properties
of § can easily be carried over t§; . Note thBf is used to avoid duplication of
RCF convergents. Of course, since

1 1
— p2(k—1)+1 <
T(x)=T1, (x), forx e {—k T k) , keN,

which follows from (1) or by direct calculation, the ergodicoperties of7, can also
be obtained from the ergodic properties of the RCF expansion
We have the following result.

Theorem 1. The Denjoy-magf,; has a-finite, infinite invariant measurg; with
density f, given by

1 1
flx)= ;1(0,1]()6) + ml(l.oo)(x)a x € [0, 00),

and the dynamical systef0, o), 7,, 1) is ergodic.
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Proof. By Theorem 1.1 from [10], to prove thd, jsmeasure preserving, it
is enough to show that

1 (T, (A)) = p(A),

for every intervalA C [1, c0). Let us first assume that C [0, 1]. In this caseu(A) =
log(b/a) if A=[a,H, and

1/(a+1) dx /l/a dx
— +
1/b 1+x

p(T,(A)) = /

1/(p+1) X
b
= log— = u(A).
9 p(A)

Next assume thatt C (1, o). In this case

bdx b+1
j(A) = / = log

. l+x a+1’
and
1/(a+1) d.x b+1
1 _ _ _
p(ri) = [ S =107 = ua)
(T ) 1p+1) X a+l

Let A be aTy, -invariant Borel set, i.eT,d‘l(A) = A. In order to show thaf;, is
ergodic with respect to Lebesgue measiréand therefore also ergodic with respect to
1, since A and p are equivalent), we should show that eith€r) = 0 or A(A°) = 0,
where A =[Q0) \ A.

Setting A1 = ANJO0, 1], A2 = AN (1, c0), we have

A1 = (T, Y(A1) N[0, 1]) U T, Y(A),
and
Ar =T, (A1) N (L, ).
Then
S7Y(A1) = Ay,

i.e., A7 is an S -invariant set. Since ([0 ,13, v) is an ergodic dynamical system we
see that either(A1) = 0 or v([0, 1) \ A1) = 0, which implies that eitheA(A1) = 0 or
A([0, 1)\ A1) = 0. In case\(A1) = 0 we clearly have\(A2) = 0, henceA(A) = 0. In
caseA([0, 1)\ A1) = 0, it follows from (7,7 %([0, 1)\ A1)) N (1, 00) = (1, 0) \ A, that
A((1, 00) \ A2) =0, hence)([0, c0) \ A) = 0. O
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