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1. Introduction and statement of results

Throughout this articlep -manifolds mean compact difféiedsie (or topological)
manifolds of dimensiomm . The (co-)homology is understoodhtve Z, for coeffi-
cients.

For a manifoldV , we denote bw V( ) angd V ( )=V (1), the total Stiefel-
Whitney class and the total normal Stiefel-Whitney classVofrespectively. Further-
more, we denote by/y € HY™V(V x V) the Z,-Thom class (0iZ,-diagonal cohomol-
ogy class) ofV [10, p. 125]. For a (continuous) mgp M* — N™** petween closed
manifolds M andN , we define the total Stiefel-Whitney clasy ( ) =, wi(f) by
the equation -

w(f) =w M )f"w(N).

For a map f :M" — N"*, the transfer map (or Umkehr homomorphism)
fii H{(M) — H™(N) is defined by the commutative diagram below:

HiM) —L

Hi+k(N)
elm[M] elﬂ[lv]
ani(M) L) ani(N)'

Here [V]€ Hgimv(V) denotes the fundamental homology class of a manifold
Our main theorem is the following

Theorem 1.1. For a continuous magf: M" — N"* between closed topological
manifolds Uy (1 x wi(f)) + (f x f)*Uy =0 if and only if f* fi(a) = aw,(f) for all
a € H*(M).

The cohomology elements, appearing in this theorem, asdecklto the embed-
dability of f. A. Haefliger [7, Théorém 5.2] proved the fallimg
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Theorem (Haefliger). If a map f: M" — N"* between topological manifolds is
homotopic to a topological embeddinthen w;(f) =0 for i > k and

Un(Lx wi(f)) +(f x £)* Uy =0€ H" (M x M).
Thus we have immediately the following

Corollary 1.2. If a map f: M" — N"* between closed topological manifolds is
homotopic to a topological embeddinthen f* fi(a) = awr(f) for all a € H*(M).

Remark 1. It is well-known, e.g., [4, p. 246], that if is homotopic &odiffer-
entiable embedding theri* fi(a) = awi(f) for all a € H*(M).

Remark 2. As we will see in§3, the assumptionhomotopi¢ in Haefliger's the-
orem or Corollary 1.2 can be weakened B®-bordant

R.L.W. Brown [4] established the conditions that a mgp M* — N"* is
cobordant to a differentiable embedding in the sense of ¢g5fd2]. Here a map
fi: M} — NJ** pbetween differentiable closed manifolds is said to be oddat to
f2: M3 — Ni**if there exist two cobordismsW(, M}, M%), (V, Ni**, N3*) and a
map F :W — V such thatF | M; = f; (i =1, 2).

From Theorem 1.1 and Brown’s theorem [4], we infer immedjate result which
means the converse of Haefligar's theorem up to cobordism agsnin the sense of
Stong [12].

Corollary 1.3. Letk > 0. Then a mapf: M" — N"** between differentiable
manifolds is cobordant to a differentiable embeddinguif(f) = 0 ( > k) and

Un(L x wi(f)+(f x f)*Un =0.
For ann -manifoldM , we use the same symiasl as the generatéfr"oéf >~ )

Zy, ie., H"M) = Zy(M), and denote theH? M X HY(M)-component ofu €
HP*(M x M) by [u],,. To prove Theorem 1.1 we use the following

Proposition 1.4. For a map f: M" — N™* and two elements y € H*(M)
with dimx +dimy =r <n —k,

[(Un(L x wi(£) + (f % [YUNE X Y)nierr = M X (xwie(f) + f7 fi(x))y.
Using this proposition, we can reformulate Brown'’s theorghin casek > n/2.

Theorem 1.5. Letk > n/2. Then a differentiable mag: M" — N"** is cobor-
dant to a differentiable embedding if and only if the follogiitwo conditions hold
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(1) (wi(M)w,;(HHwi(f), [M]) = 0 for any integeri(i > k) and sequences, J of non-
negative integers such that| +|J|+i =n.

(2) Um@xwi()+(f x ) Un)(wi (M) x f*(w;(N))wg(M)) = 0 for any sequences
I, J, K of non-negative integers such thdl +|J| + |K| =n — k.

Here, w; M) = w;(M)---w;, (M) and |I| = >, i; for a finite sequencd =
(i1, ..., i,) of non-negative integers.

The rest of this article is organized as follows: §&, we will prove Theorem 1.1,
Proposition 1.4 and Theorem 1.83 will be devoted to the study of the relation be-
tween R -bordism and Haefliger’s obstruction. 4, we will give some examples of
maps f :M" — N"*, e.g., a map which is cobordant to a differentiable embegldin
but not R -bordant to a topological embedding.

2. Proofs

To prove Theorem 1.1 and Proposition 1.4, we use the follgwimo lemmas, the
first of which is a slight generalization of [8, Lemma 2].

Lemma 2.1. For a map f: M" — N"* and an element ¢ H"(M), we have
[(f % ) UnCe X Dlpgrr = M < [~ filx).
Proof. We can choose bas¢s;, | i € I} and{v; | i € I} for H*(N) such
that (v;v;,[N]) = &;;. Then the Thom clas¢/y oN can be describedlas

Y icr i X v; by, e.g., [10, Theorem 11.11]. The elemefifx) can be described as
filx) = aivi(oy € Zp). Letlp={i € I | f*(u;)x =M}. Then

a; = (au;v;, [N]) = <Mi Zaiviv [N]> = (u; fi(x), [N])

iel

= (ui, Alx) NVINT) = (ui, fule O [MD)) = (7 (ui)x, [M])
_J1 i€l
"o ¢l

Thus, fi(x) = >, vi and sof* fi(x) = > .., f*(v;). Hence, we have

[(f X /) Un - (x X Dlaesr = KZ I i) x f*(vi)> (x x 1)]
n.,k+r

iel

= lz £ (i)x x f*(v,-)]
n,k+r

iel
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:ZMXf*(Ui):MXZf*(Ui)

i€l i€l

=M x f* fix).

This completes the proof. U

Lemma 2.2. For an n-manifoldM", and an elemenk € H" (M), we have

[UM(x X 1)]n,r =M X x.

Proof. The Thom clas#/y, can be describedlas M=x 1+ a; x bj,
(dima; < n) and there is a relatio®; x(x 1) =Uyu(1x x) (e.g., [10, Lemma 11.8]).
Thus the lemma follows immediately. U

Proof of Proposition 1.4. Let y € H*(M) with dimx +dimy =r. Then, we
have

[(Um(X x wie(£)) + (f > ) UNE X P)]ner
= [Un(@ x we(f))(x x 1) +(f X ) Un(x X Dl seraims (1 X y)
=M xxwi(f)y+M x f*fi(x)y by Lemmas 2.1-2.2

=M x (xwp(f)+ £~ fi(x))y.

Thus, the proposition follows. O

Proof of Theorem 1.1. First we assume tligy x(wi(f))+ (f x f)*Uy = 0.
Take anya € H"(M). Then

0 =[(Un(@xwi(f)+(f x f)*Un)la x Dln s
=M x (aw(f) + f* fi(a)) by Proposition 1.4

Thus we getf™ fi(a) = awi(f) for all a € H*(M).

Conversely, suppose that*fi(a) = awi(f) for all a € H*(M). Since
Up(L x wi(F)+(f x f)*Uy € H"™* (M x M), it is sufficient for our purpose to show
that Uy (Ix we(f)) + (f x f)*Uy)u =0 for all u € H"¥(M x M). By the Kiinneth
formula, we may assume that «=x b with dima +dimb =n — k. Then by Proposi-
tion 1.4, we have

(Un @ x wi(f)) +(f x f)"Un)la x b)
= [Um@ x we(F)) + (f x ) Un)a X D)]nn
=M x (awi(f) + " fi(a))b = 0.

Hence we getl/y (X wi(f)) + (f x f)*Un =0. ]
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Proof of Theorem 1.5. The condition (1) of Theorem 1.5 is jastestatement
of the condition { ) of Brown's theorem. On the other hand, hg issumption that
k > n/2, we have only to consider the case = 2 in the condition ( ) awBrs
theorem, which is reduced to

(f s (NS filwr (M) wi (M), [M]) = (f* (ws (N))wi (M)wx (M)wi(f), [M]).

Applying Proposition 1.4 fox =w; M ) and F*(ws;(N))wx(M), we see that this
equality is equivalent to the condition (2) of Theorem 1.5. ]

3. Relations betweenR-bordisms and Haefliger's obstructions

The concept ofR -bordism of maps is introduced in E3]. Let fi: M! —
N"* (i = 1, 2) be maps between topological manifolds, whafe s &wsed (while
N is not necessarily closed). The two maps are said ttRbe -bpitlthere exist a
topological cobordism W, M1, M,) and a continuous map’ W — N such that (1)
F|M;=f (i =1, 2) and (2) there exsist retractions W: — M; (i =1, 2).

Let j;: M; — W be the natural inclusioni ( =1, 2). Then by [6, Theorem 1.2],

(r2j1)« Hy(M1) — H,.(M>)
is an isomorphism, and by [33]
Jr = fo(r2ja)« 0 Hi(M1) — H.(N).

In this section, we will prove

Theorem 3.1. Let f: M" — N"* be a map between closed topological mani-
folds. If f is R -bordant to a topological embeddintpen w;(f) =0 (@ > k) and

Un(Lx we(f) +(f x f)"Unx =0.
This theorem, together with Corollary 1.3, leads to thediwlhg
Corollary 3.2. Let f: M" — N™** be a map between closed differentiable man-
ifolds. If f is R-bordant to a topological embeddinthen f is cobordant to a differ-

entiable embedding.

Remark 3. If we considercobordismand embeddingsn topological category, the
conclusion of this corollary is rather trivial.

Theorem 3.1 follows from Proposition 3.3 (or Corollary 3bBlow and Haefliger's
theorem.



74 Y. KUuRAMOTO AND T. YAsUI

Proposition 3.3. Let f;: M — N"*(i =1, 2) and g: M} — M} be maps such
that g.: H.(M1) — H.(M3) is an isomorphism andi, = f2,8«: H.(M1) — H.(N).
Thenw(f1) = g*w(f2) and

Un, (1 x wi(f1)) + (f1 % f1)"Un
= (g % 8)"(Unmy(1 x wi(f2)) + (f2 x f2)"Un).

Proof. Let{u; | i € I} and{v; | i € I} be two bases forH*(M2) such
that (u;v;, [M>]) = 6;;. Then the Thom clas#/y, of M, can be described aSy, =
> icr i X v; (see [10, Theorem 11.11]). Singg[M;] = [M>] and g* is an isomor-
phism, because so 5., we have the two baseg*u; | i € I} and {g*v; | i € I} for
H*(M1) with ((g*u;)(g*v;), [M1]) = é;;. Hence,

Uiy =Y 8%ui X g0 = (g X 8)° i x v = (g X 8)* Up,.
iel iel
Since f1, = fo,g«, we have fI" = g* f5 and w (f1) = g*w(f2) by [3, Theorem 4.2].
Hence we have

Up, (1 x wi(f1)) + (f1 x f1)"Un
= (g X @) Um(1 x g"wi(f2)) + (g x 8)"(f2 x f2)"Un
= (g X &) (Unm,(I x wi(f2)) + (f2 X f2)"Un).

This completes the proof. [l

Corollary 3.4. Let fi: M — N"*(i = 1, 2) be maps between closed topologi-
cal manifolds. If f1 is R-bordant to f>, then w;(f1) (i > 0) and U, (1 x wi(f1)) +
(f1 x f1)*Un correspond tow;(f2) (i > 0) and Up,(1 x wi(f2)) + (f2 x f2)*Un, re-
spectively by the canonical isomorphisms.

Remark 4. By virtue of Proposition 1.4 and the fact that fgr M" — N"*,
wie(f)+ f* fi(1) is the Poincaré dual to the elemeéltlf) € H,_x(M) in [3], the results
in Theorem 3.1, Proposition 3.3 and Corollary 3.4 are, rethgdy, somewhat stronger
than those in [3, Corollary 4.4, Theorem 4.2 and Corollai3] 41 caseN is a closed
manifold.

4. Relations among obstructions to embeddings

For a mapf :M" — N™**, we describe conditions (0)—(3) below:
©O) w; (f) =0 fori > k.
Q) f* fi(a) +awi(f) =0 for all a € H*(M).
(or equivalently, Uy (Ix wi(f))+ (f x f)*Uy =0 by Theorem 1.1.)
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) f* filw;(M)) + w;(M)wi(f) = 0 for all sequenced of non-negative integers,
wherew; M ) =w, (M) ---w; (M) if I="_(i1,...,i).
(3) /7 fi(1) +wi(f) = 0.

So far, for a mapf M" — N™* between closed differentiable manifolds, we
know

f is homotopic to a topological embedding
4
f is R-bordant to a topological embedding=- (0) + (1)
4
f is cobordant to a differentiable embeddirg (0) + (2)

4
f is cobordant to a differentiable embeddigg (0) + (3)

Remark 5. If k > n—4, 2%k > n and if f satisfies the conditions (0) and (3),
then f is cobordant to a differentiable embedding ([1, Thewr€3.6) and (3.9)] and
[9, Corollary 1.3]).

Remark 6. Even if f is cobordant to an embedding, the conditions (@) €3)
do not necessarily hold ([8, Remark 2]).

In this section, we will show that
(a) even if f isR -bordant to an embedding, is not necessarilpdiopic to an
embedding (see Example 1 below),
(b) the conditions (0) and (2) do not imply the conditions (4¢e Example 2),
(c) the condition (3) does not lead to the condition (2) (seariple 3), and
(d) the conditions (0) and (3) induce the relation (see Psibiom 4.1)

I* fiwi(M)) = vi(M)wi(f),

wherev; (M ) stands for thé -th Wu class of  defined by
§q (3 0<; vi(M)) = w(M).

ExavpLe 1. Let S*={z € C'||z| = 1} be the circle, and leff $§* — §* x §*
be a map defined by z( ) =f((z), f2(z)) = (z?,1). Then f is not homotopic to an
embedding. Butf isR -bordant to an embedding.

Remark 7. This example is a modification of an example appearing irieea
versions of [3], but omitted in the final one.

Proof. Suppose thay is homotopic to a topological embeddirg (g1, g2):
St — 81 x St Then g, is homotopic to the constant maf. Hence, g, has a lifting
gh: ST — RL If we put g’ = (g1, g5): S* — S* x RY, theng’ is also an embedding.
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Identifying S*xR! with C*—{0}, we have a topological embedding: s* — C'—{0}.
From now on, the authors owe C. Biasi, J. Daccach and O. Saekhé proof. Note
that g’ : Hy(S%, Z)(2 Z) — Hy(C* — {0},Z)(¥ Z) mapsa € Z to 2a. By the
Schoenflies theoremg’(s1) bounds a regiony inC! homeomorphic to the closed
2-dimensional disk. If &2 U, theng’ is null-homotopic inC* — {0}, which is a con-
tradiction. If 0 € U, then g’ represents a generator &f;(C! — {0}), which is also
a contradiction. Thusf is not homotopic to an embedding. Gnather hand,f is
R-bordant to an embedding by [3, Example 4.8]. U

ExampLe 2. We denote by P™ the real projectiven -space. Furthermore,
7. P2 — P3/P2=5%andj : P! c P"** stand for the natural projection and inclusion,
respectively. LetM” =P3 x P!, N =53 x P** and letf =r x j: M" — N"*. Then
f satisfies (0) and (2), buf does not satisfy (1).
Proof. Put
HY(P®) = Za(x1), HY(P')=Za(x2), H3(S®)=Za(s), HY(P'™)=2Za(y).
Then
@) =03, ) =x w(f) =L +x) T L)t = (L +x)
Therefore
wi(f)=0 fori >k, wi(f)=xh.

The Thom classes off anN  are given by

Uy = E xixh x xh+ E x2xh X x5~

0<i<I 0<i<I
+ g X1 X xixp E xbh X x3xh
0<i<I 0<i<I
Uy = E sy’ % y1+l<—1 + E yl % Ska_l.
0<i <I+k 0<i <+

Hence, and becausg*(y'*!) = x5" = 0, we have

[Um(L % we(F))+ (f X £) Unlux = M x (wi(f) + £*£i(1)) = 0,
[Um(L % wi(f)) + (f % f) Unla—1pe1 = X225 X x15,

M x f*fi(xh) = [(f x £) Un)xh X Dlagsi =M x x5
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Thus f does not satisfy the condition (1). Bt  satisfies (2yabsew; # ) =("")x}
and f£* fi(x5) = x5™ = xbwi (f). O

RemARk 8. The above example shows that a map  satisfying the consli{i®)
and (2) is not necessaril® -bordant to an embedding, in qudati that a map which
is cobordant to a differentiable embedding is not necdgs&bordant to a topological
embedding.

Exavple 3. Letw: P2 — P?/Pl =82 andj : P c P'** be the natural projec-
tion and inclusion, respectively and gt 7=x j: M = P? x P! — §2 x P"**, Then,
if kis even, the relationf™ fi(1) = w(f) holds, however (2) does not hold.

Proof. As in Example 2, put
HY(P?) = Zo(x1), HY(P')=Za(x2), H*(S?)=Za(s), HY(P™)=2Za(y).
Then
wi(M) =i+ (+ 12, fH)=af fRO)=x wi(f) =3
Just as in Example 2, we have

M x (wi(f) + f7 /i) = [Un (1 x wie(£)) + (f X ) Unlni =0,

M x (wi(M)wi(f) + [ fi(wi(M)))
= [(Un@ 3w () + (f x ) Un)wa(M) X )] ret
=M x xlx’Z‘.

Thus the relationf™ fi(1) = wi(f) holds, howeverf™* fi(wi(M)) # wi(M)wi(f).
]

Proposition 4.1. Assume thatf: M" — N"** satisfies the conditions that
wi(f) =0 (k <i) and f* fi(1) = wi(f), then

F (M) = vi(M)we(f) (0<i).
Proof. For eachx ¢ H"*~(M), we have

xf* filvi(M)) =v;(M) f* fi(x) by, e.g., [9, Lemma 2.1, (4)]
=Sq' f* fi(x) because dinf* fi(x)=n —i
=[Sqf" fi(x)]n
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= [f* fi(Sg()w(f))]. by, e.g., [9, Lemma 2.1, (2)]

= £ D Sq (xwi—j(f)

0<j
=Y Sq/()wi—;(/)f*fi(1) by, e.g, [9, Lemma 2.1, (4)]
0<j
=S¢/ (Jwi—;(f)wi(f) becausef* fi(1) = wi(f)
0<j
=) " Sq/(x)Sq' Jun(f) becausew; [ )=O0k< i)
0<j

= 8q' xwi (£)) = vi (M )xwi (f).

Here, [y]; for y EZOS, H(M) means thej -dimensional component of . Thus
xf*fivi(M)) = xvi(M)wi(f) for all x € H"*~i(M). Hence f* fi(vi(M)) =
v;i(M)wi(f) by the Poincaré duality. O

For k = 1, the conditions (0) and (3) imply the condition (2g.iwe have

Proposition 4.2. Assume thatf: M" — N satisfies the conditions that
wi(f) = 0 (1 < i) and f* fi(1) = wi(f), then for all sequence$g of non-negative
integers, we have

oA (M) = wi(M)w(f).

Proof. By the assumption we hawe M (f*(N) = w(f) = L+wi(f) = 1+
f*£i(1). Hencew M ) =f*w(N)(L+f*A()* = f*(w(N)A + fi(1))H) € f*H*(N).
Thusw; M )e f*H*(N) for all I, and therefore we obtain the result sinf¢f*y) =
vA(1) for all y € H*(N). O
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