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1. Introduction

We investigate in this paper non-commutative local rings ofthe smallest length
that are potential counter-examples to the pure semisimplicity conjecture.

Throughout the paper is an associative ring with an identityelement. We call
local, if the Jacobson radical ( ) of is a two-sided maximal ideal. We denote

by mod( ) the category of finitely generated right -modules. Given a right -module
of finite length we denote by ( ) the length of .
We recall that a ring is said to be offinite representation type, if is artinian

and the number of the isomorphism classes of finitely generated indecomposable right
(and left) -modules is finite. Following [24] we call a ring right pure semisimple,
if every right -module is a direct sum of finitely generated modules.

It is well known that a ring is of finite representation type ifand only if is
right pure semisimple and is left pure semisimple (see [2], [11], [18], [22]–[24]).
It is still an open question, called thepure semisimplicity conjecture, if a right pure
semisimple ring is of finite representation type (see [2] and[24], [25], [28]). In [13]
the question is answered in affirmative for rings satisfyinga polynomial identity and
for self-injective rings (see also [7], [19] and [31]). The reader is referred to [42]
and to the author’s expository papers [30] and [32] for a basic background and histor-
ical comments on the pure semisimplicity conjecture.

It was shown by the author in [28] and [33] that there is a chance to find
a counter-example to the pure semisimplicity conjecture and might be hereditary
with two simple non-isomorphic modules. The existence of a counter-example depends
on a generalized Artin problem on division ring extensions.

In the present paper we are mainly interested in the existence of counter-examples
to pure semisimplicity conjecture that are local of the smallest length, that is,

of length ( ) two or three. This continues our study started in[28], [35] and [33].
It is shown in Lemma 3.1 that every such a local ring has ( )2 = 0. Therefore

we study representation-infinite right pure semisimple local rings with ( )2 = 0
such that the Auslander-Reiten quiver (mod ) is of the form· · · → •→ •→ •→
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· · · →•→• by applying our recent results on right pure semisimple hereditary rings
and generalized Artin problem on division ring extensions obtained in [33] and [36].

Assume that is a local ring such that the square of the Jacobson radical =
( ) of is zero. Then = / is a division ring and is an - -bimodule. By

applying the results of [33] and [36] we show in Theorem 3.4 that the Auslander-
Reiten quiver (mod ) is connected of the form· · · → •→•→•→ · · · → •→•
if and only if the infinite dimension-sequenced−∞( ) of the - -bimodule
(see Section 2) belongs to the setDS (of cardinality 2ℵ0) of infinite pure semisim-
ple dimension-sequences = (. . . − − +1 . . . −2 −1 0 ∞) with ∈ N con-
structed in [33] (see also Section 2). In this case, we show that the Auslander-Reiten
translation quiver (mod ) of the category mod( ) is connectedand has any of
the forms (see (3.5) and (3.6))

- - - - - +
3 · · · - - - - - +

ր ց ր · · · ր ց
· · · 6 - - - - - 4 - - - - - 2 - - - - - 0 - - - - - +

2 - - - - -· · · +
−1 - - - - - +

+1
· · · ր ց ր ց ր ց ր
· · · - - - - - 4 - - - - - 3 - - - - - 1

- - - - - +
3 · · · - - - - - +

+1
ր ց ր · · · ր

· · · 6 - - - - - 4 - - - - - 2 - - - - - 0 - - - - - +
2 - - - - -· · · +

· · · ր ց ր ց ր ց ր
· · · - - - - - 4 - - - - - 3 - - - - - 1

Moreover, the infinite Jacobson radical rad∞(mod ) =
⋂∞

=1 rad (mod ) of the cat-
egory mod( ) is non-zero and it is generated by all -module homomorphisms from
the ring to , for = 0, 1, 2. . . . The square (rad∞(mod ))2 of rad∞(mod ) is
zero.

For the notion of the Auslander-Reiten translation quiver the reader is referred
to [3] and [27].

In particular, Theorem 3.4 shows how potential local counter-examples to
the pure semisimplicity conjecture of length ( ) two or threeshould look like, if
the Auslander-Reiten quiver of mod( ) is connected of the following form
· · · →•→•→•→ · · · →•→•.

The main results of the paper are presented in Section 3, where also two open
problems are formulated. In Section 2 we collect preliminary facts and notation we
need in this paper.

Throughout this paper we use freely the terminology and notation introduced
in [28] and [33]. The reader is referred to [3] and [27] for a background and termi-
nology on representation theory of finite dimensional algebras and artinian rings.

By the Auslander-Reiten quiver of the category mod( ) we meanthe oriented
graph (mod( )) whose vertices are the isomorphism classes [ ]of indecomposable
modules in mod( ) and there exists an arrow [ ]→ [ ] in (mod( )) if and only
if there exists an irreducible morphism → in mod( ) (see [3], [27]). Usually
we identify the isomorphism class [ ] in (mod ) with the module in mod( ).
Sometimes we view (mod ) as a translation quiver (see [3, Section VII.4] and [27,



LOCAL RIGHT PURE SEMISIMPLE RINGS 987

11.49]). In this case we draw a dashed edge between indecomposable modules and
in (mod ) if there exists an almost split sequence 0→ → → → 0.

The Jacobson radical rad = rad(mod ) of the category mod( ) is the two-sided
ideal of the category mod( ) such that rad ( ) consists of all non-invertible ele-
ments of the group Hom ( ) for each pair of indecomposable modules and
in mod( ) (see [3] and [27]). The two-sided ideal

rad∞(mod ) =
∞⋂

=0

rad (mod )

of the category mod( ) is called the infinite Jacobson radicalof mod( ). The reader
is referred to [32] and [37] for some applications of rad∞(mod ) in the representation
theory of artinian rings.

Given two indecomposable modules and in mod( ) we view the abelian
group

Irr( ) = rad ( )/ rad2 ( )

as an End( )/ End( )-End( )/ End( )-bimodule, and we call it abimodule of ir-
reducible morphismsfrom to (see [27, Section 11.1]).

Some of the results of this paper were presented on the Yamaguchi Conference
“The 32nd Symposium on Ring Theory and Representation Theory” in October 1999
(see [34]).

2. Bimodules and pure semisimple dimension sequences

We start this section by recalling from [33] some definitionsand notation we need
throughout this paper.

Assume that and are division rings and is a non-zero - -bimodule.
We recall that the matrix ring

(2.1) =

(

0

)

is hereditary and the modules in mod( ) can be identified with triples =
( ′ ′′ ), where ′ , ′′ are finite dimensional vector spaces over and , re-
spectively, and : ′ ⊗ → ′′ is a -linear map. We write (′ ′′ ) instead
of ( ′ ′′ ), if the choice of is an obvious one. The vector

dim = (dim ′ dim ′′ ) ∈ Z2

is called thedimension vectorof .
Given an - -bimodule we set l dim( ) = dim and r dim( ) =

dim and we define the right dualisation and the left dualisation of to be
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the - -bimodule

(2.2) ∗ = Hom ( ) and ∗ = Hom ( )

respectively. To any bimodule we associate a sequence of iterated right dualisa-
tions of by setting (0) = and ( ) = ( ( +1))∗ for ≤ −1 The sequence
of iterated left dualisations of is defined by the formula( ) = ( ( −1))∗ for
≥ 1 We also set

(2.3) = r dim( ( )) 2 =

(
(2 )

0

)
2 +1 =

(
(2 +1)

0

)

for any ∈ Z.
With any - -bimodule for which there exists an integer≥ 0 such that

(2.4) = r dim ( ) is finite for all ≤ and +1 = r dim ( +1) =∞

we associate theinfinite dimension-sequence

(2.5) d−∞( ) =
(
. . . − ( ) . . . −2( ) −1( ) 0( ) ∞

)

where 0( ) = = r dim ( ) and ( ) = − = r dim ( − ) for all ≥ 1.
The number is called theiterated dimension height of .

Our idea is to study the indecomposable modules over any local right pure
semisimple ring with radical square zero in terms of the infinite dimension-sequence
d−∞( ) of the - -bimodule = ( ), where = / ( ).

For this purpose we recall from [5] that the set

(2.6) D = D2 ∪ D3 ∪ · · · ∪ D ∪ · · ·

of dimension-sequences( 1 . . . ), ≥ 1, is defined inductively to be the minimal
set satisfying the following two conditions:
(i) D2 = {(0 0)} andD3 = {(1 1 1)}.
(ii) If the setD is defined we defineD +1 to be the set of all sequences of the form

+1( 1 . . . ) = ( 1 . . . −1 + 1 1 +1 + 1 +2 . . . )

where ( 1 . . . ) ∈ D and = 1 . . . − 1.
We note that for each the setD of dimension-sequences of length is closed

under the action of cyclic permutations.
We recall from [28] that a sequence (1 . . . ) is said to be asimple restriction

of a dimension-sequenceif it is obtained from a dimension-sequence inD by omitting
the last coordinate.
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Note that the setD∨ of simple restriction of dimension-sequences contains
the following sequences and their reversions: (0), (1 1), (12 1), (2 1 2), (1 2 2 1),
(2 2 1 3), (2 1 3 1).

It was shown in [29, Proposition 3.1] that in the case the ring is right pure
semisimple and representation-infinite there exists an integer ≥ 0 such that
(a) +1 =∞ and <∞ for all ≤ , and
(b) for any pair ≤ and ≥ 2 the sequence (− − +1 . . . −1 ) is not
a simple restriction of a dimension-sequence.

The following definition was introduced in [33] in relation with an idea of con-
structing a large family of potential counter-examples to the pure semisimplicity con-
jecture.

DEFINITION 2.7. The set ofpure semisimple infinite dimension-sequencesis the set
DS = DS (1) ∪ DS (2) , whereDS (1) andDS (2) are defined as follows.

The setDS (1) is a minimal set of sequences

= (. . . − − +1 . . . −2 −1 0 ∞)

with − ∈ N non-zero for any ∈ N, satisfying the following two conditions:
(i) = (. . . 2 2 . . . 2 2 1 ∞) ∈ DS (1) ;
(ii) if = ( . . . − . . . −1 0 ∞) is a sequence inDS (1) then all sequences of
the form

− ( ) = (. . . − −1 1 + − 1 1 + − +1 − +2 . . . −2 −1 0 ∞)

belong toDS (1) , for all ≥ 1.
Given a dimension-sequence = (. . . − − +1 . . . −2 −1 0 ∞) in DS (1)

we define thedepthof to be the minimal integer ( )≥ 0 such that − = 2 for all
≥ 1 + ( ).

A sequence = (. . . − − +1 . . . −2 −1 0 ∞) belongs toDS (2) if there
exists a sequence of positive integers (1), (2). . . ( ) . . . such that
(a) for every ≥ 0 the set{ ∈ N; ( ) = } is finite,
(b) lim →∞ − ( ) − ( −1) · · · − (1)( ) = , where lim→∞ ( ) = means that there

exists a sequence 0< 1 < 2 < · · · < < · · · of positive integers such that( )
0 = 0,

( )
−1 = −1 . . . ( )

− = − ,
(c) for every integer ≥ 0 there exists an integer > such that ( )≥ 1 +
( − ( −1) − ( −2) · · · − (1)( )).

It was shown in [33] that the cardinality of the setDS (2) is continuum. The set
DS (1) is constructed from the principal sequence

= (. . . 2 2 . . . 2 2 1 ∞)
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in a similar way as the setD of dimension-sequences was constructed in [5] starting
from the trivial dimension-sequence (1 1 1). In particular,each of the countably many
sequences

(. . . 2 2 . . . 2 2 3 1 2∞)

(. . . 2 2 . . . 2 2 3 1 5 1 2 2∞)

(. . . 2 2 . . . 2 2 3 1 5 1 2 5 1 2 2∞)

(. . . 2 2 . . . 2 2 3 1 5 1 2 5 1 2 5 1 2 2∞)

(. . . 2 2 . . . 2 2 3 1 5 1 2 5 1 2 5 1 2 5 1 2 2∞)

...
...

...
...

.. .

belongs toDS (1) . The setDS (2) is constructed from the principal sequence by ap-
plying infinitely many operations− (1) . . . − ( ) . . . with the fast growth of the se-
quence (1). . . ( ) . . . described by the property (c) in Definition 2.7. Note that
the sequence

(. . . 2 1 5 . . . 2 1 5 2 1 5 2 1 5 1 2∞)

belongs to the setDS (2) .

3. Small right pure semisimple local rings

Our investigation of potential counter-examples to the pure semisimplicity conjec-
ture of length two or three depends on the following useful observation.

Lemma 3.1. Let be a right pure semisimple local ring of infinite representa-
tion type. If 2≤ ( ) ≤ 3, then ( )2 = 0.

Proof. If ( ) = 2, then = ( ) is a simple right -module and therefore
2 = 0. Let ( ) = 3 and assume to the contrary that2 6= 0. Let ∈ be such

that its square 2 ∈ 2 is not zero. It follows that 3 = 0, 2 is a simple right ideal,
2 = 2 and therefore 6∈ 2. Since ( ) = 3 and 2 6= 0, it follows that / 2

is a simple module generated by the cosetof and therefore = + 2 = .
This shows that is right serial. Since is of infinite representation type, is not
left serial, by [8]. On the other hand, is right pure semisimple and right serial. It
then follows from [26, Theorem 2.2] that2 = 0, and we get a contradiction. This
finishes the proof.

The above lemma shows that right artinian local rings of right length two or three,
that are potential counter-examples to the pure semisimplicity conjecture, are square
zero radical rings. Therefore we assume throughout this section that is a local right
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artinian ring such that ( )2 = 0. It follows that = / ( ) is a division ring and
= ( ) is an - -bimodule in a natural way.

Following Gabriel [10], we associate with the hereditary right artinian ring

=

(
/ ( / ) ( / )

0 /

)
=

(

0

)

and the reduction functor

(3.2) F : mod( )−→ mod( )

defined by attaching to any module in mod( ) the tripleF( ) = ( ′ ′′ ) where
′ = / and ′′ = are viewed as right / -modules and : ′ ⊗ / / →
′′
/ is a / -homomorphism defined by formula (⊗ ) = · for = + and
∈ . The tripleF( ) is viewed as a right -module in a natural way. If :→

is an -homomorphism we setF( ) = ( ′ ′′), where ′′ : ′′ → ′′ is the restriction
of to ′′ = and ′ : ′ → ′ is the / -homomorphism induced by .

Now we collect the main properties of the functorF we need later.

Lemma 3.3. Let be a local right artinian ring such that ( )2 = 0. Let us
view = ( ) as an - -bimodule, where = / ( ) is a division ring. Under the
notation introduced above the functorF (3.2) has the following properties.
(i) F is full and establishes a representation equivalence between mod( ) and
the categoryIm F, that is, a homomorphism : → is an isomorphism if and only
if F( ) is an isomorphism.
(ii) A right -module belongs toIm F if and only if has no non-zero summand
isomorphic to a simple projective right -module.
(iii) The functorF preserves the indecomposability, projectivity and the length. More-
over, F defines a bijection between the isomorphism classes of indecomposable mod-
ules in mod( ) and the isomorphism classes of indecomposable modules inmod( ),
which are not simple and projective.
(iv) The functorF carries a homomorphism : → in mod( ) to zero if and only
if Im ⊆ . For any pair , of indecomposable modules inmod( ) the functor
F induces ring isomorphisms

End( )/ End( )∼= End
(
F( )

)
/ End

(
F( )

)

and

End( )/ End( )∼= End
(
F( )

)
/ End

(
F( )

)

If, in addition, is not isomorphic to a direct summand of thenF induces
an End( )/ End( )-End( )/ End( )-bimodule isomorphism

Irr( ) ∼= Irr
(
F( ) F( )

)
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In particular, the functor F carries irreducible morphisms inmod( ) to irreducible
morphisms or to zero.
(v) F carries rad to rad for all ≥ 2 and carries rad∞ to rad∞ in such a way
that

• rad∞ 6= 0 if and only if rad∞ 6= 0, and
• (rad∞)2 6= 0 if and only if (rad∞ )2 6= 0.

(vi) The ring is right pure semisimple(resp. of finite representation type) if and only
if is right pure semisimple(resp. of finite representation type).

Proof. The statements (i)–(iv) are essentially proved in [10, Section 9] (see also
[3, Lemma X.2.1]).

(vi) It follows easily from (iii) that is of finite representation type if and only
if of finite representation type. To finish the proof of (vi) werecall from [22]
and [23] that a right artinian ring is right pure semisimple if and only if the ideal

rad = rad(mod ) is right T-nilpotent, that is, for every sequence 1
1→ 2 → · · · →

→ +1 → · · · of indecomposable modules1, 2 . . . in mod connected by
non-isomorphisms 1, 2 . . . there exists ≥ 2 such that −1 · · · 2 1 = 0 (see
also [12]). Hence, in view of (iii), the ring is right pure semisimple if and only if

is right pure semisimple.
(v) Apply a well-known and standard arguments used in [10, Section 9] and [3,

Section X.2]). The details are left to the reader.

Our main result of this section is the following.

Theorem 3.4. Assume that is a local right artinian ring such that every in-
decomposable non-projective module inmod( ) admits an almost split sequence
0 → → → → 0. Assume that ( )2 = 0 and view = ( ) as a bimod-
ule over the division ring = / ( ). Then = r dim ( ) < ∞ for all ≤ 0 and
the following conditions are equivalent.
(a) The ring is of infinite representation type and the Auslander-Reiten quiver

(mod ) of mod( ) is connected of the form· · · →•→•→•→ · · · →•→•.
(b) There exists an integer ≥ 0 such that +1 = r dim ( +1) = ∞, =
r dim ( ) < ∞ for all ≤ and the Auslander-Reiten translation quiver(mod )
of the categorymod( ) has the form
(3.5)

+
1 - - - - - +

3 · · · - - - - - +

ր ց ր · · · ր ց
· · · 6 - - - - - 4 - - - - - 2 - - - - - 0 - - - - - +

2 - - - - -· · · +
−1 - - - - - +

+1
· · · ր ց ր ց ր ց ր
· · · - - - - - 4 - - - - - 3 - - - - - 1
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if ≥ 1 is odd, and the form
(3.6)

+
1 - - - - - +

3 · · · +
−1 - - - - - +

+1
ր ց ր · · · ց ր

· · · 6 - - - - - 4 - - - - - 2 - - - - - 0 - - - - - +
2 - - - - -· · · - - - - - +

· · · ր ց ր ց ր ց ր
· · · - - - - - 4 - - - - - 3 - - - - - 1

if ≥ 0 is even, where +
1 = , 0 is a unique simple right -module and

1
∼= ( 0) is an injective envelope of 0. Here we draw a dashed edge between

indecomposable modules and if they are connected by an almost split sequence
0→ → → → 0.
(c) There exists an integer ≥ 0 such that +1 = r dim ( +1) = ∞, =
r dim ( ) < ∞ for all ≤ and the infinite dimension-sequenced−∞( ) of
the - -bimodule belongs to the setDS = DS (1) ∪ DS (2) .
(d) The infinite radical rad∞ = rad∞(mod ) of the categorymod( ) is non-zero,
whereas its square(rad∞)2 is zero.

If any of the conditions(a)–(d) is satisfied, then the infinite Jacobson radical
rad∞ of mod( ) is generated by all -module homomorphisms0 → +1 and all

-module homomorphisms+ → for = 0, 1, 2 . . . and ≥ 1.

Proof. Consider the reduction functorF : mod( )−→ mod( ) of (3.2) associ-
ated with , where

=

(

0

)

is hereditary and right artinian. We claim that every indecomposable non-projective
module in mod( ) admits an almost split sequence 0→ → → → 0.
For, since is not projective, is in the image ofF and according to Lemma 3.3
there exits a non-projective indecomposable module in mod() such that ∼= F( ).
By our assumption, there exists an almost split sequence 0→ → → → 0
in mod( ) and applying Lemma 3.3 (v) one shows that the derivedsequence 0→
F( ) → F( ) → F( ) → 0 in mod( ) is almost split. In view of the isomorphism
∼= F( ) our claim follows. It follows from [25, Corollary 1.9] that the number
= r dim ( ) is finite for any ≤ 0.
(c) ⇒ (b) Assume (c) is satisfied. By Theorem 4.16, Proposition 4.17 and

Corollary 4.18 of [33] the hereditary ring is of infinite representation type,
the Auslander-Reiten translation quiver (mod ) of mod( ) hastwo connected
components and is of the form
(3.7)

(0)
1 · · · - - - - - (0)

ր ց · · · ց ր ց
(0)
0 - - - - - · · ·- - - - - (0)

−1 - - - - - (0)
+1

· · · (0)
4 - - - - - (0)

2 - - - - - (0)
0

· · · ր ց ր ց ր
· · · - - - - - (0)

3 - - - - - (0)
1
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if ≥ 1 is odd, and of the form
(3.8)

(0)
1 · · · - - - - - (0)

+1
ր ց · · · ց ր

(0)
0 - - - - - · · ·- - - - - (0)

· · · (0)
4 - - - - - (0)

2 - - - - - (0)
0

· · · ր ց ր ց ր
· · · - - - - - (0)

3 - - - - - (0)
1

if ≥ 0 is even, where the left hand component is preprojective andfinite, whereas
the other one is preinjective and infinite. The infinite radical rad∞ = rad∞(mod ) of
the category mod( ) is non-zero, whereas its square (rad∞ )2 is zero.

Since is of infinite representation type, in view of Lemma 3.3(ii), the module
(0) is in the image of the functorF for any ≥ 0, because it follows from [6] that

none of the modules (0) is simple projective. For any ∈ N and 1≤ ≤ + 1, we
denote by

(3.9) =F−1( (0)) and + = F−1( (0))

an indecomposable module in mod( ) corresponding, via the functor F, to (0) and

to (0) in (mod ), respectively, that is, and+ are indecomposable modules
in mod( ) such thatF( ) ∼= (0) and F( +) ∼= (0) (apply Lemma 3.3 (iii)).

By Lemma 3.3 (i)–(v), the preinjective component of (mod( ))corresponds to
the part of the Auslander-Reiten translation quiver of mod() formed by the mod-
ules 0 1 . . . . . . shown in (3.5) and (3.6). It follows from Lemma 3.3 (iii) that
the module 0 is simple, and therefore ( )∼= 0⊕ · · · ⊕ 0 (a direct sum of dim
copies of 0). Since the inclusion soc( ) = ( )→ is an irreducible morphism and

0 is a direct summand of ( ), there is an irreducible morphism :0 → such
that F( ) = 0. The preprojective component of (mod( )) starts with two projective
modules

(0 ) = (0)
0 → (0)

1 = ( )

It follows from Lemma 3.3 (i)–(iii) thatF( ) ∼= (0)
1 and (0)

0 is not in the im-
age of F. We recall from Lemma 3.3 (iv) thatF carries irreducible morphisms to
irreducible ones or to zero. Consequently, the Auslander-Reiten translation quiver
of mod( ) is obtained from (mod ) viaF as a gluing of the preprojective com-
ponent of mod( ) with its preinjective component by the identification of (0)

0 with
(0)
0 . It follows that (mod ) is connected and has the required shape shown in (3.5)

and (3.6). This finishes the proof of the implication (c)⇒(b).
(c)⇒(d) Apply Lemma 3.3 (v) and the facts used above in the proof ofthe impli-

cation (c)⇒(b).
(d)⇒(c) By Lemma 3.3 (v), the infinite radical rad∞ = rad∞(mod ) of the cat-

egory mod( ) is non-zero, whereas its square (rad∞ )2 is zero. It follows from [32,
Theorem 4.4] and [36] that there exists an integer ≥ 0 such that +1 =
r dim ( +1) = ∞, = r dim ( ) < ∞ for all ≤ and the infinite dimension-
sequenced−∞( ) of the - -bimodule belongs to the setDS = DS (1) ∪
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DS (2) and is of infinite representation type. This yields (c).
The implication (b)⇒ (a) is obvious.
(a) ⇒ (c) Assume that (a) holds and let : → be an irreducible mor-

phism in mod( ) with and indecomposable modules such thatF( ) = 0.
By Lemma 3.3 (iv), Im ⊆ and therefore is projective, is injective and
the monomorphism Im ⊆ splits. Hence, in view of Lemma 3.3 (iv), either

( ) is irreducible, or elseF( ) = 0, ∼= and is a simple direct summand
of soc ∼= ( ) . It then follows that the Auslander-Reiten quiver (mod ) has
at most two components and one of them is finite if (mod ) is not connected, be-
cause (mod ) is connected of the form· · · →•→•→•→ · · · →•→•, by our
assumption. Since is of infinite representation type, according to Lemma 3.3 (vi),
the ring is also of infinite representation type. We also recall that the dimension

= r dim ( ) is finite for all ≤ 0.
In order to prove (c), we assume to the contrary that = r dim( ) is finite for

all ≥ 0. It follows from [17], [25, Section 1] and [33, Proposition2.6] that there
exists a sequence of reflection functors

· · ·⇆ mod( − )
S+
−−→←−
S−−

mod( − +1) ⇆ · · ·⇆ mod( −1)
S+
−1−→←−
S−−1

mod( )
S+

0−→←−
S−0

mod( 1) ⇆ · · ·⇆ mod( −1)
S+

−1−→←−
S−−1

mod( )⇆ . . .

which is infinite to the left and infinite to the right, and therefore the preprojective
modules form an infinite connected componentP of (mod ) of the form

(0)
1 - - - - - · · · - - - - - (0) - - - - -

ր ց ր · · · ց ր ց ր
(0)
0 - - - - - (0)

2- - - - - - - - - - (0)
−1 - - - - - (0)

+1- - - - -

· · ·
· · ·
· · ·

and the preinjective modules form an infinite connected componentQ of (mod )
of the form shown in (3.7) such thatP 6= Q and (mod ) =P ∪ Q . This is
a contradiction, because we have observed above that one of the components should
be finite.

Consequently, there exists an integer≥ 0 such that +1 = r dim ( +1) = ∞
and = r dim ( ) < ∞ for all ≤ . It then follows from [33, Proposition 2.6]
and the remarks made above that there exist a finite preprojective componentP
of the form (3.7) or (3.8), and an infinite preinjective component Q of (mod )
such that (mod ) =P ∪ Q , because (mod ) has at most two components.
By [32, Theorem 4.4] and [36], the infinite dimension-sequence d−∞( ) of the

- -bimodule belongs to the setDS = DS (1) ∪DS (2) . This finishes the proof
of the implication (a)⇒ (c), and consequently, the statements (a)–(d) are equivalent.

Since the final statement of the theorem follows from the Proposition 3.10 (f) be-
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low, the theorem is proved.

Proposition 3.10. Assume that is a local right artinian ring such that( )2 =
0 and view = ( ) as a bimodule over the division ring = / ( ). As-
sume also that there exists an integer ≥ 0 such that +1 = r dim ( +1) = ∞,

= r dim ( ) < ∞ for all ≤ and the dimension-sequenced−∞( ) =
(. . . − ( ) . . . −1( ) 0( ) ∞) belongs toDS = DS (1) ∪ DS (2) . Then the fol-
lowing statements hold.
(a) The ring is right pure semisimple of infinite representationtype, that is, is
a counter-example to the pure semisimplicity conjecture.
(b) The ring is not self-injective and the global dimension of isinfinite.
The length ( ) of the right -module is1 + dim .
(c) The Auslander-Reiten translation quiver(mod ) of the categorymod( ) con-
sists of the modules and+ (3.9) with ≥ 0 and 0 ≤ ≤ + 1. It has the form
(3.5) if is odd, and the form(3.6) if is even, where +

1 = , 0 is a unique
simple right -module and 1

∼= ( 0) is an injective envelope of 0.
(d) For any ≥ 2 and 0≤ ≤ − 1 there exist almost split sequences inmod( )

0−→ −→ ( −1) − −→ −2−→ 0

and

0−→ +−→ ( +
+1) −→ +

+2−→ 0

where = r dim ( ), and + are the modules(3.9), and we set +
0 = 0 and

+
1 = .

(e) There is no almost split sequence inmod( ) starting from an indecomposable
module if and only if is isomorphic to 1, + or +

+1.
(f) The infinite Jacobson radicalrad∞ of mod( ) is generated by all -module ho-
momorphisms from 0 to +1 and all -module homomorphisms from+ to for

= 0, 1, 2 . . . and arbitrary ≥ 1.

(g) If d−∞( ) = = (. . . 2 2 . . . 2 2 2 1∞), then ( ) ∼= 0
0 , ( ) = 2 + 1

for ≥ 0, ( ) = ( +
1) = 1 + 0 , ( +) = 1 + 0 for = 1 . . . + 1, all irre-

ducible morphisms → −1 are surjective, all irreducible morphisms + → +
+1

are injective, and the number of indecomposable modules inmod( ) of length is0,
1 or 2, for every ≥ 1.

Proof. Consider the reduction functorF : mod( ) → mod( ) (3.2) with
the properties collected in Lemma 3.3, where =

(
0

)
.

(a) Sinced−∞( ) = (. . . − ( ) . . . −1( ) 0( ) ∞) belongs to the setDS =
DS (1) ∪ DS (2) , Theorem 4.16, Proposition 4.17 and Corollary 4.18 of [33] apply to
the hereditary ring . In particular, it follows that is rightpure semisimple of in-
finite representation type and therefore the ring is also right pure semisimple of in-
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finite representation type, by Lemma 3.3.
(b) Let 0 denote a unique simple right -module. Since is a local non-simple
ring, 0

∼= / is not projective. It follows that the semisimple right -module
∼= 0⊕· · ·⊕ 0, a direct sum of ( ) copies of 0, is not projective and the global

dimension of is infinite. In view of (a), we conclude that is not self-injective, be-
cause self-injective right pure semisimple rings are finiterepresentation type, by [13,
Corollary 5.3]. The remaining statement of (b) is obvious, because ( )2 = 0.

The statement (c) is a consequence of Theorem 3.4.
(d) Fix ≥ 2. By Theorem 3.4, the Auslander-Reiten translation quiverof mod( )
has one of the forms (3.5) and (3.6) and is obtained via the reduction func-
tor F : mod( ) → mod( ) of (3.2) from the Auslander-Reiten translation quiver
of mod( ) shown in (3.7) and (3.8). The ring is of infinite representation type.
It follows from [33, Corollary 2.11] applied to = , = and =
that there exist ring isomorphisms End((0)

2 ) ∼= , End( (0)
2 +1)

∼= for all ≥ 0,

an - -bimodule isomorphism Irr((0) (0)
−1) ∼= Hom ( (0) (0)

−1) ∼= (− −1) and
an almost split sequence

(3.11) 0−→ (0) ϕ−→ ( (0)
−1) −

ψ−→ (0)
−2−→0

in mod( ), where − = r dim (− ) = l dim (− −1) = l dim Irr( (0) (0)
−1) Since

(0) ∼= F( ) for ≥ 0 and the functorF is full, there exist -module homomor-
phisms

−→ ( −1) − −→ −2

such that = 0,ϕ = F( ) and ψ = F( ), that is, F carries the above sequence
to the exact sequence (3.11), up to isomorphism. Hence, by applying the definition
of the functorF, we easily conclude that the sequence

(3.12) 0−→ −→ ( −1) − −→ −2−→ 0

is exact in mod( ). By Lemma 3.3 (v) and the observation made above, there is a ring
isomorphism End( )/ End( ) ∼= End(F( ))/ End(F( )) ∼= End( (0)) ∼= , and
an - -bimodule isomorphisms

Irr( −1) ∼= Irr
(
F( ) F( −1)

) ∼= Irr
(

(0) (0)
−1

) ∼= (− −1)

Irr( −1 −2) ∼= Irr
(
F( −1) F( −2)

) ∼= Irr
( (0)

−1
(0)
−2

) ∼= (− )

and (− −1) ∼= Hom ( (− ) ). It follows that

l dim Irr( −1) = l dim (− −1)

= r dim ( )

= −
= r dim Irr( −1 −2)
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Hence, in view of [27, Proposition 11.13] applied to the category A = mod( ), we
conclude that (3.12) is an almost split sequence in mod( ).

The existence of the second almost split sequence in (d) can be proved in a sim-
ilar way by applying the functorF and using an almost split sequence

0−→ (0) ϕ′

−→ ( (0)
+1)

ψ′

−→ (0)
+2−→ 0

in mod( ) for 0≤ ≤ − 2 (see [33, Corollary 2.11]).
(e) Apply (d) and the shape of the Auslander-Reiten translation quiver of mod( ) de-
scribed in (3.5) and (3.6).
(f) First we show that Hom (+ ) = rad∞( + ) for all ≥ 0 and ≥ 1.
Assume that ≥ 2 and let : + → −2 be a non-zero -homomorphism. Note
that is not isomorphic to +, becauseF( +) is preprojective, whileF( ) is not
preprojective for all ≥ 0. Since (3.12) is an almost split sequence, there is an -
module homomorphism ( −1) = ( ( −1)) : + → ( −1) − of such that = ( −1)

and ( −1) : + → −1 belongs to rad(mod ) for all . It follows that( −1) also
belongs to rad(mod ). Since (3.12) is an almost split sequence, is an irreducible
morphism and therefore belongs to rad(mod ). Consequently,= ( −1) belongs
to the square of rad(mod ). Applying the above arguments to each of the homomor-
phisms ( −1) : + → −1, we show that ( −1) belongs to the square of rad(mod ).
It follows that ( −1) belongs to the square of rad(mod ) and consequently =

( −1) belongs to the cube of rad(mod ). Continuing this way we show that be-
longs to rad (mod ) for any ≥ 0, and therefore ∈ rad∞(mod ) (compare
with [40]).

The above arguments also yield Hom (0 +1) = rad∞( 0 +1) for all ≥ 0.
Consequently, rad∞ contains the set

X =
⋃

≥1

⋃

≥0

Hom ( + ) ∪Hom ( 0 +1)

Now we show thatX generates the infinite radical rad∞ of mod( ). For this pur-
pose we note first that any -module homomorphism∈ rad∞( ) has a factori-
sation through a direct sum of monomorphisms soc→ for some ≥ 1. Assume
for simplicity that < . Then F( ) ∈ Hom (F( ) F( )) = 0 and according to
Lemma 3.3, factorises through ⊆ soc ⊆ as we required. The remaining
cases follow in a similar way. Since the monomorphism soc→ is a sum of ho-
momorphisms 0 → , it follows that rad∞( ) is contained in the two-sided
ideal of mod( ) generated by the setX .

Further we note that any -module homomorphism∈ rad∞( + +) has a fac-
torisation through a direct sum of monomorphisms soc+ → + for some ≥ 1, and
therefore has a factorisation through a homomorphism+ → soc +, which is a sum
of homomorphisms + → 0. It follows that rad∞( + +) is contained in the ideal
of mod( ) generated by the setX .
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Finally, take any homomorphism ∈ rad∞( +). SinceF( ) = 0, according to
Lemma 3.3, factorises through+ ⊆ soc + ⊆ +. It follows that there is a fac-
torisation = ′′ ′, where ′ ∈ rad∞( soc +). Consequently, ′ is a sum of ho-
momorphisms in rad∞( 0). It follows that rad∞( +) is contained in the ideal
of mod( ) generated by the setX . This finishes the proof of (f).
(g) Since we assume thatd−∞( ) = , = 2 for all ≤ −1, = 1 and +1 =
∞, where ≥ 0. Recall that the Auslander-Reiten translation quiver of mod( ) has
one of the forms (3.5) or (3.6), the module(0)

0 is simple injective and (0)
1 is the in-

jective envelope of (0)
0
∼= (0 ). It follows that (0)

0
∼= ( 0), (0)

1
∼= ( (−2) )

(see [25]) and thereforedim (0)
0 = (1 0), dim (0)

1 = ( −2 1) = (2 1). Furthermore,
the almost split sequence (3.11) in mod( ) yields

dim (0) = − dim (0)
−1 − dim (0)

−2 = 2dim (0)
−1− dim (0)

−2

for all ≥ 2. Hence, for = 2, we getdim (0)
2 = 2dim (0)

1 − dim (0)
0 = (3 2) and

applying inductively the above equality yieldsdim (0) = ( + 1 ) and ( (0)) = 2 + 1
for any ≥ 0. Hence, in view of Lemma 3.3 (iii), we conclude that ( ) = (F( )) =
( (0)) = 2 + 1 We recall that every irreducible morphism between indecomposable

modules is either injective or surjective (see [3, Lemma 5.1] and [27, Section 11.1]).
It follows that any irreducible morphism → −1 is surjective for ≥ 1, because it
is not injective.

Now we note that the second almost split sequence in (d) yields

( +
+2) = ( +

+1)− ( +) = 2 ( +
+1)− ( +)

for = 0 1 . . . −1. Since +
0 is simple and +

1
∼= , ( +

0) = 1 and ( +
1) = 1+ 0 ≤

3. Hence we get (+
2) = ( +

1) − ( +
0) = 2(1 + 0 ) − 1 = 1 + 2 0 , and inductively we

show that ( +) = 1+ 0 for = 1 . . . +1. Consequently the statement (g) follows.

The following corollary shows how potential local counter-examples to the pure
semisimplicity conjecture of length two or three should look like, and gives the struc-
ture of their Auslander-Reiten translation quiver (mod ).

Corollary 3.13. Assume that is a local right pure semisimple ring of infinite
representation type such that2≤ ( ) ≤ 3. Then ( )2 = 0, = ( ) is a bimodule
over the division ring = / ( ), there exists an integer ≥ 0 such that +1 =
r dim ( +1) =∞, = r dim ( ) < ∞ for all ≤ , the infinite dimension-sequence
d−∞( ) = (. . . − ( ) . . . −1( ) 0( ) ∞), with − ( ) = − , (2.5) is defined
and the following conditions are equivalent:
(a) The Auslander-Reiten quiver (mod ) of mod( ) is infinite and connected of
the form · · · →•→•→•→ · · · →•→•.
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(b) The infinite dimension-sequenced−∞( ) of belongs to the setDS =
DS (1) ∪ DS (2) .
(c) The infinite radical rad∞ = rad∞(mod ) of the categorymod( ) is non-zero,
whereas its square(rad∞)2 is zero.

If any of the conditions(a)–(c) is satisfied, then is a counter-example to
the pure semisimplicity conjecture, the Auslander-Reiten translation quiver(mod )
has one of the forms(3.5) or (3.6), and has the properties presented inProposi-
tion 3.10.

Proof. We know from Lemma 3.1 that ( )2 = 0. Since is right pure semisim-
ple, according to [25, Proposition 2.4] every indecomposable non-projective module
in mod( ) admits an almost split sequence 0→ → → → 0 and Theorem 3.4
and Proposition 3.10 apply.

In connection with [28, Remark 2.4] the following observation is useful.

Corollary 3.14. Assume ⊂ are division rings such that ∼= ,
dim =∞ and that the associated infinite dimension-sequenced−∞( ) (3.2) of
the - -bimodule belongs toDS = DS (1) ∪ DS (2) . Then
(a) the trivial extension = ⋉ of by is a local ring and it is
a counter-example to the pure semisimplicity conjecture oflength two(that is, ( ) =
2, when is viewed as a right -module),
(b) the ring is not self-injective,
(c) the global dimension of is infinite, and
(d) the Auslander-Reiten quiver (mod ) of mod( ) is connected of the form
· · · →•→•→•→ · · · →•→•.

Proof. Apply Theorem 3.4.

REMARK 3.15. Since for any = (. . . − . . . −1 0 ∞) ∈ DS there ex-
ists ≥ 1 such that − = 1, according to [28, Remark 4.5] the existence of
an - -bimodule such thatd−∞( ) = is an infinite version of the Artin
problem for division ring extensions studied in [4], [20], [28] and [29] (see [28, Sec-
tion 4]). In the situation we study in Corollary 3.14 we assume in addition that ∼=

.
We hope that, by applying a modification of the bimodule amalgam rings con-

struction of Schofield [21, Chapter 13], one can construct a division ring embedding
⊆ ∼= such thatd−∞( ) = for some of the dimension-sequences∈

DS .
A solution of this problem is strongly related with the main problems stud-

ied in [15], [38] and [39] of finding special classes of artinian rings without self-
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extensions (compare with [1], [41]).
We finish the paper by raising the following problems relatedwith the one stated

in [33, Problem 4.21] for hereditary rings of the form (2.1).

Problem 3.16. Assume that is a right artinian local ring with the Jacobson
radical = ( ), such that 2 = 0, = / and the associated infinite dimension-
sequenced−∞( ) of (2.5) associated to the - -bimodule belongs to the set
DS = DS (1) ∪ DS (2) . Let 0, 1, 2 . . . . . . be pairwise non-isomorphic inde-
composable -modules shown in (3.5) and defined by (3.9) (see Theorem 3.4).
(a) Find a decomposition of the right -module

(3.17) L( ) =
∞∏

=0

/ ∞⊕

=0

in a direct sum of indecomposable modules.
(b) Give a characterization of local rings for which the -module L( ) is projec-
tive.

In [16] a partial solution of the problem [33, Problem 4.21] is presented for hered-
itary rings of the form (2.1).

The following interesting problem stated in [31, Problem 3.2] remains unsolved.

Problem 3.18. Give a characterisation of semiperfect rings for which ev-
ery indecomposable right -module is pure-projective or pure-injective. Is every such
a ring right artinian or right pure semisimple?

Let us finish the paper by the following open question relatedwith Theorem 3.4.

Problem 3.19. Prove that under the assumption in Theorem 3.4 the statement(a)
is equivalent to the following one:

(a′) The Auslander-Reiten quiver (mod ) is infinite and connected.
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