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1. Introduction

Since Silverstein [7], several authors had succesfulljam the symmetry of
the Dirichlet form by “nearly symmetry” in applying the “emgy” methods to Markov
processes,the Potential Theory of such processes beitg) amenable. Very signifiant
in this direction is the article [3] of Fitzsimmons, which alg with a right Markov
process such that the sector condition holds. The purpogkifpaper is to improve
some basic results in the frame given by a resolvent of ker@ir first aim is to give
the representation of the extended Dirichlet space [tH, 28ending the similar result
of Fukushima for the symmetric case [4, th. 1.5.3]. Our sdcasult [th. 2.6] shows
the invariance of extended Dirichlet space under a speeis¢ ©f “time change”, in
connection with formulae 6.2.22 and 6.2.23 from [5].

2. The extended Dirichlet space

Let Y = (Un)a>0 be a submarkovian resolvent of positive kernels on a mea-
surable spaceH, £), and ¢ is a fixed excessive measure @h . We denotebhly ( )
(resp.p € )) the sets of bounded (resp. positive) measurailetibns.

It is well known thatl{ induces in the obvious way a resolvent @fcontractions
on the Banach spack? = L%(¢), still denoted byl/. We assume that/ is L?-regular,
that is lim,_. aU.f = f (in L?sense) for anyf € L?, or equivalently the space
U,(L?) is dense inL? for an o > 0 (or for all « > 0). We denote byA the generator
of U on the Banach spack?, and by D (A ) its dense domain. We recall thataifis
(arbitrary) fixed, thenD 4 ) #/,(L?), and we have the basic formukl/, = aU, —I.

The bilinear forma onD A X D(A) defined by

a(f. g) = (f, —Ag)

(where { ) denotes the usual acalar product bf) is called theenergy form and the
seminorme ) =a (, f ¥? (one sees that is positive) is called teaergy norm
Our second assumption is tleector condition that is there exists a positive constant
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M such that

(S) la(f, &)l < Me(f)e(g) f. g € D(A).

Denoting byU =Uj the initial kernel ofi{, our third assumption is tha@f is transient
that is there exists a function® f <1 such thatUf is bounded. It follows then the
inequality (see [2, 2.3])

(F) (|u|, g) < Me(u)(g, Ug)*/?

for any g € L2 such that(g, Ug) < oo, and for anyu € D(A). This implies in partic-
ular thate is a true norm (we can pigk> 0 as above). We denote WP(¢) = L° the
vector space of classes of measurable functions fghides., with respect to the equiv-
alence relationt ~ v <= ¢{u # v} = 0. Following [1, XIll, 55, 56, a)] we define the
(extendel Dirichlet spaceD as the set of all elementg € L° such that there exists a
Cauchy sequencef( ) i A(,9 ) such thgt— f ¢ a.s. It is shown that the energy
norm e extends tdD, D(A) is dense inD, and (D, ¢) is a Hilbert space isomorphic
to the abstract completion ofd( A(,9 ).

Thanks to (S), the energy form extends to a bounded bilinean fon D, still
denoted bya . Also, we shall consider in passing, the traifidirichlet spaceDy,
that is the abstract completion @ A( ) with respect to the nepmassociated with
the bilinear form

ag(f.8)=a(f,8)+B(f.8)  f. g€ D(A),

B > 0 (arbitrary) fixed. (The transience éf is no longer necessary). One can see
that Dy is isomorphic to the extended Dirichlet space asociated whe resolvent
UP = (Ugta)a>o- We remark thatD (and Do) depends only on the resolvedt (of
pseudokernels) o2, and we identify two resolvents which induce the same resol-
vent on L2, So, we can speak of versions for a resolventIgn According to this,
we extend a little our frame, until other specification. léebe ao-finite measure on
a measurable space® (£). A (regular) resolvent family i{(,,).~o oOf (honsymmetric)
a-contractions onL2(¢) is called submarkovianf 0 < f <1 as.=0<al,f <1
a.s. for anya > 0, and transient if there existsg € L°(¢), ¢ > 0, such that
(Ug, g)e < oo, whereU is obviously defined by f = ligo U, f, for any f > 0.
In this case, an elementary adaptation of arguments fronXIll, 56, b)] shows that
lim,_oaU,f =0 for any f € L?(&), which enables to extend (without specification)
to this frame both [2, 2.3] and [2, 3.1], together all resujteted from [1], which still
hold in this frame. See also [6]. We say thatis excessivef £ o alU, < &, for any
a > 0, whereU,, are considered as pseudokernels.

Finally, we say thatDy is transientif there existsg € L', g > 0 and bounded,
such that

(M (lul, g)e < e(u) u € Dy.
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Any such function is called aeference functiorof the Dirichlet spaceD.

Proposition 2.1. The traditional Dirichlet spaceDy is transient iff the resolvent
U is transient.

Proof. The implication =" is obvious, using a normalization in (F). Con-
versely, if Dy is transient angz is a reference function, we remark first ghat L2.
HenceU,g € D(A) for any o > 0 and we have the relations (take Uzg in (T)):

(Uag. 8)* < a(Uag, Usg) = (Uag, g — aUag) < (Uag. 8)
and hencdUg, g) = |im0<Uag,g> <L O

We recall that a functiod™ R — R is called anormal contractionif 7(0) = O
and |[T(x) — T(y)| < |x —y| for anyx,y € R. If F is set of functions onE , we say
that T operates o if Tou € F for anyu € F. If moreover~ is a bilinear form
on F x F we say thatT operates ony if we have

© Yu+Tou,u—Tou)>0 uelkF
Yu—Tou,u+Tou)>0.
The unit contraction is defined b x ( )= A 1. Let now¢ be ao-finite measure
on a measurable spacé (£).

Derinimion 2.2, A couple D, a) is called an (extended) transient Dirichlet space
(with reference measurg) if:
1) D is a Hilbert space whose normm  comes fram given bounded (momsyric)
bilinear forma onD x D, that ise ¢ ) =a ¢, u }/?, and there exists a constahf > 0
such that

a(u,v) < Me(u)e(v) u, veD.

2) There exists & integrable bounded fuctiog > 0 on E such tha® ¢ Li(g-&)(C
LO()) and

(lul, g)e <e(w) ueD.

3) DN L%¢) is dense in both.2(¢) and D.
4) The unit contraction operates an

Theorem 2.3. For any (extendell transient Dirichlet spacgwith reference mea-
sure§) (D, a), there exists a transient regular submarkovian resolvent-gbntractions
U = (Ua)a>o 0On L?(€) for which ¢ is excessiveld satisfies the sector conditipsuch
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that (D, a) is the (extendell Dirichlet space associated withl and £. Moreoverl/ is
unique subject to the relation

0 a(u, Uf)=(u, f)e u€D,
valid for any f € LI(¢) such that(f, Uf)¢ < .

Proof. Let us consider the vector spaGe= D N L2 (we abbrev.L? for L2(¢))
which is dense inL? from hypothesis 3). For any > 0, we consider the bilinear
form a, on G x G defined by

ao(u,v) =a,v)+aou,v)e u, veg.

One can see tha§ is complete with respect to the nore, associated witha,,.
Since the unit contraction also operates on the restrictiba to G x G, it follows
from [1, XIII, 53] that there exists a regular submarkoviasalvent ofa-contractions

= (Ua)a>0 ON L2(€), for which ¢ is excessive and/ satisfies the sector condition,
|ts (traditional) Dirichlet spacé, coincides tog anda|G x G is its energy form. So,
we can consider the extended Dirichlet sp@eassomated tdl. D is isomorphic to
D as the abstract completion @&f A( ), sinfeA ( ) is dens€ ifwith respect to norm
¢) and G is dense inD from hypothesis 3),D being complete as Hilbert space from
hypothesis. In order to show that actually = D as subspaces af°, let u € D, and
a sequenceu(, X D(A) such thate 4, — u) — 0. Using hypothe5|s 2) we can plck
a subsequenceu, ) oft( ) such thaf — u ¢ a.s. and sar € D (definition of D)
Conversely, ifu € D, let (u,) C D(A) such that 4, ) ise -Cauchy and, — u £ a.s.
SinceD is complete, there exists € D such thate 4, —u’) — 0, and using again 2),
we conclude that: =’ € D.

Using one more time hypothesis 2), it follows from Proposit2.1 thatl/ is tran-
sient.

As to the relation (1), it holds from [2, 3.1], where it is alshown thatUf € D
for such f . Let* = (Ul)aso and U? = (U2),>0 be two resolvents as above for
which the initial kernelsU' and U? satisfy (I). We can choosg > 0 such that
(g,Ulg) < o0, (g, U?%g) < co. We have then

a(u, U f) =a(u, U?f) ueD,

for any 0< f < k-g, wherek € N. Takingu =U'f — U?f we see thalU'f = U?f
as elements of.%, and then from the resolvent equation it follows tiat f = U2 f
for any o > 0. Since the se{f € L?:0< |f| < k-g;k € N} is dense inL?(¢), it
follows thatf* = 142. O

Remark 2.4. The converse of above result is also true, that is theneed
Dirichlet space associated to such a resolvent fulfills ther faxioms. The first three
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are obvious, and are well known. Also the unit contractioerapes on the restriction
of a to Dy x Dy (see [1, Xlll, 51] where oufDy is denoted byD), and the principle
of contractions onDy holds. If u € D, takeu,, € Dy such thate 4, — u) — 0 and
u, — u £ a.s. SinceT ou, — T ou £ a.s., and the sequeneeT ¢ u,)(< e(u,))
is bounded, if follows thatT o u, converges weakly td@" o u in D (see [2, 2.5]).
Hencea ,, T o u,) (resp.a o u,,u,)) — a(u,T o u) (resp.a € o u,u)), and
e(T ou) < liminf, & T o u,)), which show that

aw+Tou,u—Tou) >0
alu—Tou,u+Tou) > 0.

Corollary 2.5. Dg=Dn L2

Proof. The initial kernelU fulfils the relation (I) in the stahent of theorem.
On the other hand we have produced in the proof of theoremrai@nat resolvents’
whose associated traditional (resp. extended) Dirichpeice isD N L? (resp.D) and
its initial kernel U’ fulfils (I). Hencel =’ by the uniqueness assertion andBg=
DN L2 O

Suppose thatH, &) is a Radon measurable space. Using a general regulanzatio
procedure (see [1, XIII, 43)) it follows thd# comes from a transient resolvent of ker-
nels on €, £) as in our initial frame. We return now to this frame, so tha¢ mea-
surable spaceH|, &) is arbitrary, and{ is a transient resolvent of kernels.

We suppose from now on th@t 0. We choose a functiog € L%, 1> g > 0,
such thatUg is bounded and moreover there exist>- 0 andc¢ > 0 such that
U,g < c-g. To see that such a function exists, we start witne L', 0 < f < 1,
Uf bounded, we pick 0< 3, and we putg =BUsf. Theng € L! since¢ is ex-
cessive, and for any > 3 we can takec =d — 3)"L. Let now V = (V,)as0 be
the submarkovian resolvent of kernels af, €) whose initial kernel isV -§ = U(g-)
(Hunt's transform).

We consider the measurg= g - £ which is finite and V-excessive.

Theorem 2.6. The resolventy considered onl?(n) is regular, it satisfies the
sector conditionand its extended Dirichlet space coincides with the extdridigichlet
space oft/ on L?(¢).

Proof. We fixa > 0. For the first statement, we have to show thWa{L?(n)) is
dense inL?(n). SinceV =V, is a bounded kernel, it follows from resolvent equation
that V,(b(E)) = V(b(E)).

Using the definition ofV , we have the identity

1) V(b(E)) ={U(f) : In € N such that f| < ng}.
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We look at the equation
Uh=Ush+aUUyh

and we remark that ifz| < ng for somen € N, the same being true fqt,h| by the
choice ofg , it follows that

2 Uoh =U(h — aUyh) € {U(f) : 3n € N such that|f| < ng}

But the resolveni/ is regular onL?(¢), that is the set/,(L?(¢)) is dense inL3(¢),
and by truncation the same is true for the §&t,(h) : 3n € N such that|h| < ng}.

From (1) and (2) it follows thaV K K ) L2(&) is dense inL3(¢), and sincen < &
and L2(¢) is dense inL?(n) as subset, it follows easily that b E( )) B.(b(E)) (and
henceV,(L?3(n))) is dense inL3(n).

Next, we may consider the Dirichlet formm  defined &nA’YX D(A’), where A’
denotes the generator of the resolvéhton L?(n), and in factD @’) = V,(L3(n)).
Using the basic formulas it is easy to see thab F( ( W.#b(E)) is dense inD 4’)
with respect to the seminor@i associated withi’, sinceb E ) is dense ii.2(n).

We claim that the following formula is valid (we don't know ty¢hat the sector
condition is fulfilled byV, which would imply it by [2, 3.1]):

3) a'(u,Vf)=(u, f), uecD(A), fe€b(E).
Indeed, from the resolvent equation, we have:

a'u,Vf)=d u, Vo f +aV,Vf)
= <l/t, f>77 - oz<u, Vozf>77 +a<uv Vf>77 - a2<uv Vavf>77 = <Mv f>7]~

Now, if we putu =Vh ¢ € b(E)), and we make use of [2, 3.1] fa¥, it follows the
relations

(4) a'(Vh, Vf)=(Vh, f)n = (U(gh). gf )¢ = a(U(gh). U(gf))

In particular, the above formula insures us thatsatisfies the sector condition (with
the same constant as fof), and we may consider the extended Dirichlet sp@e
Finally, since the spaceg b (E( )) add/(gh); f € b(E)} are dense irD’ and resp. in
D, and moreover they coincide, it follows from (4) and defunitiof extended Dirichlet
space) thatD’ =D, a’ = a. O

From [1, XIll, 60], we know that the operatov,: Dy — D’ (the composite of
the restriction of then-contractionV,, on L?(n) to D} and the injection ofD} in D’)
extends to a continuous operatdy: D' — D’.

Corollary 2.7. \N/au = V,u for any u € D,, where V, is considered here as
pseudokernel.
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Proof. Letu, € D(A’) C L?(n) converging tou inD. Since from [1, XIlI, 60]

the sequence, — aV,u, is converging tou — oV, u in D, it follows in particular that
the sequenc&,u, is Cauchy inD. But u, — u in L(n) (see [2, 2.3] forf = 1) and
hence

1
/\Vau,,—Vau|dn§/Va|u,,—u|dn§ —/|un—u|dn—>0.
Q

In particular, there exists a subsequeneg ( ) such What, — V,u n a.s. Therefore
Vou € D and moreoveW,u = V,u. O

Note. Applying Theorem 2.3 to the formi(u, v) = a(v, u), we get a resolvent/

with the same properties @#, such that/ andi{ are in duality with respect tg.

(1]
(2]

(3]
(4]
(5]
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(7]
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