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1. Introduction

We introduce shift selfsimilar random sequences, as a discrete time analogue
of semi-selfsimilar processes. They are also extensions ofstationary random se-
quences. We study limit theorems for those sequences havingindependent increments.
Our results will be a potential resource for studying Galton-Watson branching trees
and diffusions on fractals. LetR be the -dimensional Euclidean space and let
Z = {0 ±1 ±2 . . .}, Z+ = {0 1 2 . . .} and N = {1 2 . . .}. We considerR as the
totality of -dimensional column vectors and| · | denotes the Euclidean norm inR .
In this paper, we use the words “increase” and “decrease” in the wide sense allowing
flatness.

DEFINITION 1.1. An R -valued random sequence{ ( ) ∈ Z} is said to beshift
-selfsimilar if there exists a non-zero real number such that

(1.1) { ( + 1) ∈ Z} d
= { ( ) ∈ Z}

where
d
= denotes the equality in finite-dimensional distributions.

Let { ( ) ∈ Z} be a shift -selfsimilar random sequence. Then we see that, for
positive integer , the distribution of ( ) is the same as that of ( −1) ( ). Thus
the shift selfsimilar random sequence is not selfsimilar inthe usual sense.

An R -valued stochastic process{ ( ) ≥ 0} is said to besemi-selfsimilarif
there exist ∈ (0 1)∪ (1 ∞) and > 0 such that

(1.2) { ( ) ≥ 0} d
= { ( ) ≥ 0}

Strictly semi-stable Ĺevy processes inR and a Brownian motion on the unbounded
Sierpinski gasket are important examples of semi-selfsimilar stochastic processes. If
{ ( ) ≥ 0} is semi-selfsimilar, then the random sequence{ ( ) ∈ Z} defined
by ( ) = ( 0) is shift -selfsimilar for every 0 > 0. We extend the property (1.1)
to an operator version as follows.
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DEFINITION 1.2. Let be a real invertible × matrix. An R -valued random
sequence{ ( ) ∈ Z} is calledshift -selfsimilar if

(1.3) { ( + 1) ∈ Z} d
= { ( ) ∈ Z}

DEFINITION 1.3. An R -valued random sequence{ ( ) ∈ Z} is said to have
independent increments if, for every∈ Z, { ( ) ≤ } and ( + 1)− ( ) are in-
dependent. It is equivalent to the condition that, for every∈ Z, ( ), ( +1)− ( ),

( + 2)− ( + 1) . . . are independent. It is called to have independent increments in
the weak sense if ( + 1)− ( ), ∈ Z, are independent. A random sequence with
independent increments is also called anadditive random sequence.

After this, we investigate for shift -selfsimilar additiverandom sequences sev-
eral problems which have already been studied for selfsimilar (or semi-selfsimilar) pro-
cesses with independent increments. As to the latter processes, general results are writ-
ten in [26], problems of recurrence and transience are discussed in [27], [36] and [37]
although any criterion to classify recurrence and transience is not yet known, and
problems on the rate of growth in increasing case are studiedin [25] and [31] in com-
parison with the results for subordinators in [6] and [7].

The contents of this paper are the following. In Section 2 we give a character-
ization for non-degenerate shift -selfsimilar additive random sequences. See Theo-
rem 2.2. In Section 3 we prove that non-degenerate shift -selfsimilar additive ran-
dom sequences are transient if and only if has an eigenvalue whose absolute value
is greater than 1. See Corollary 3.2. Next we discuss in detail the rate of growth of
shift -selfsimilar additive random sequences in the “liminf ” case for increasing se-
quences in Section 4, and in the “limsup” case for general sequences in Section 5
as follows. Let > 1, G0 = { ( ) : ( ) is positive and decreasing on [0∞)} and
G1 = { ( ) : ( ) is positive and increasing on [0∞)}. Suppose that{ ( ) ∈ Z}
is an increasing shift -selfsimilar additive random sequence in (1.4) and that it is an
R -valued non-zero shift -selfsimilar additive random sequence in (1.5) below. We
first prove that, for every 0 ∈ G0 and 1 ∈ G1, there exist 0 and 1 ∈ [0 ∞] such
that

(1.4) lim inf
→±∞

( )

0(| |) = 0 a.s.

and

(1.5) lim sup
→±∞

| ( )|
1(| |) = 1 a.s.

Here the abbreviation “a.s.” means “almost surely”. Then weobtain a necessary and
sufficient condition for the existance of0 ∈ G0 such that (1.4) holds for0 = 1. In the
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case where there does not exist0 ∈ G0 such that (1.4) holds for0 = 1, we give a
criterion which classifies 0 ∈ G0 with 0 = 0 or 0 ∈ G0 with 0 = ∞ in (1.4). Fur-
ther, changing the roles of0 ∈ G0 and { ( ) ∈ Z}, we fix > 1 and 0 ∈ G0 then
consider the family of the sequences{ ( ) ∈ Z} which satisfy (1.4). We obtain a
necessary and sufficient condition for the existance of{ ( ) ∈ Z} such that (1.4)
holds for 0 = 1. In the case where there does not exist{ ( ) ∈ Z} such that (1.4)
holds for 0 = 1, we give a criterion which classifies{ ( ) ∈ Z} with 0 = 0 or
{ ( ) ∈ Z} with 0 = ∞ in (1.4). Moreover we get all of the above results re-
placing 0 ∈ G0, 0 and (1.4) by 1 ∈ G1, 1 and (1.5), respectively. Finally we give
in Section 6 some examples of the results in Sections 4 and 5. The main results are
as follows. The distribution of (0)− (−1) is denoted byρ1. The Laplace trans-
form of a probability distributionµ on [0 ∞) is denoted by µ( ) for ≥ 0, that is,

µ( ) =
∫

[0 ∞)
− µ( ).

Theorem 4.2. There exists ( ) ∈ G0 satisfying (1.4) with 0 = 1 if and only if
ρ1({0}) = 0.

Corollary 4.2. Let ( ) ∈ G0. Suppose thatλ := ρ1({0}) > 0. If

∫ ∞

0
λ

(
1
( )

)
=∞ (resp. <∞)

then

lim inf
→±∞

( )
(| |) = 0 (resp. =∞) a.s.

where λ( ) is regularly varying with indexlogλ/ log and defined on(0 ∞) as

λ( ) = logλ/ log exp

(∫

1

log ρ1( )− logλ
log

)

Theorem 4.3. Let ( ) ∈ G0. There exists{ ( ) ∈ Z} satisfying (1.4) with

0 = 1 if and only if

lim inf
→∞

− log ( )
log

= 0

Corollary 4.3. Let ( ) ∈ G0. Suppose thatρ1({0}) = 0 and

lim inf
→∞

− log ( )
log

> 0

Then we have

lim inf
→±∞

( )
(| |) =∞ a.s.
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Define a functionρ∗1( ) on [0 ∞) as ρ∗1( ) = (| (0)− (−1)| > ). A positive
measurable function ( ) on (0∞) is said to belong to the class if, for every
δ > 1, lim sup→∞ (δ )/ ( ) <∞ and lim inf→∞ (δ )/ ( ) > 0. Define the inverse
function −1( ) on [0 ∞) of ( ) ∈ G1 as

−1( ) = sup{ ≥ 0 : ( )< }

with understanding that sup∅ = 0.

Theorem 5.2. There exists ( ) ∈ G1 satisfying (1.5) with 1 = 1 if and only if
ρ∗1( ) /∈ .

Corollary 5.1. Let ( ) ∈ G1. Suppose thatρ∗1( ) ∈ . If

∫ ∞

0
ρ∗1( ( )) <∞ (resp. =∞)

then

lim sup
→±∞

| ( )|
(| |) = 0 (resp. =∞) a.s.

Theorem 5.3. Let ( ) ∈ G1. There exists{ ( ) ∈ Z} satisfying (1.5) with

1 = 1 if and only if −1( ) + log(1 + ) /∈ .

Corollary 5.2. Let ( ) ∈ G1. Suppose that −1( ) + log(1 + )∈ . If

∫

R

−1(| |)ρ1( ) <∞ (resp. =∞)

then

lim sup
→±∞

| ( )|
(| |) = 0 (resp. =∞) a.s.

REMARK 1.1. Let ( )∈ G1. Then −1( ) + log(1 + ) /∈ provided that

lim inf
→∞

log ( )
log

= 0

For every shift -selfsimilar random sequence{ ( ) ∈ Z}, the sequence
{ ( ) ∈ Z} defined by ( ) = − ( ) is a stationary random sequence. Obviously
the converse relation is also true. While shift -selfsimilar random sequences have in-
dependent increments in some cases, stationary random sequences cannot have inde-
pendent increments except in the trivial case. Thus the sequence{ ( ) ∈ Z} cannot
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inherit the independence of increments from the sequence{ ( ) ∈ Z} through the
above correspondence.

For every semi-selfsimilar process{ ( ) ≥ 0} with independent increments sat-
isfying (1.2) with > 1, the sequence{ ( ) ∈ Z} defined by ( ) = ( ) is
a shift -selfsimilar additive random sequence. This example shows the existence of
a rich class of shift -selfsimilar additive random sequences, but it is formal. A non-
formal interesting example of a shift selfsimilar additiverandom sequence is found in
the hitting time sequence for the Brownian motion{ ( ) ≥ 0} starting at the ori-
gin on the unbounded Sierpinski gasket̂ in R2 as below. Define the sets in̂ as

= { ∈ ̂ : | | = 2 } for ∈ Z and let be the first hitting time of the set for
the process{ ( ) ≥ 0}, that is, = inf{ > 0 : ( ) ∈ }. Then { ∈ Z} is
an increasing shift 5-selfsimilar additive random sequence. The sequence{ ∈ Z}
plays a key role in the theory of the Brownian motion{ ( ) ≥ 0} on ̂ . See [1].
Our results will be applied in a forthcoming paper [34] to this example and its ex-
tensions which are associated with supercritical branching processes. In particular, we
shall give an estimate of the unknown constants in two types of laws of the iterated
logarithm for the process{ ( ) ≥ 0} on ̂ . Moreover those studies will be the
first step to consider the exact Hausdorff and packing measures for the boundary of
a Galton-Watson branching tree, which are discussed in [9],[14] and [15].

Selfsimilar processes were introduced in [13] under the name of semi-stable pro-
cesses. Some extensions in operator versions are found in [12] and then [10]. The
meaning of selfsimilarity in the theory of stochastic processes is stronger than that
in the theory of selfsimilar sets and measures which were introduced in [11]. Thus
Maejima and Sato introduced in [18] the notion of semi-selfsimilarity in stochas-
tic processes. They proved that the marginal distributionsof stochastically contin-
uous semi-selfsimilar processes{ ( ) ≥ 0} with independent increments are
semi-selfdecomposable in the sense introduced in [17] and conversely any semi-
selfdecomposable distribution can be the distribution of (1) for some (not necessarily
unique in law){ ( ) ≥ 0}. While the marginal distributions of stochastically con-
tinuous semi-selfsimilar processes are infinitely divisible, those of shift -selfsimilar
additive random sequences are not necessarily infinitely divisible. We show, in The-
orem 2.1, that in the case where is a real invertible× matrix all of whose
eigenvalues have absolute values greater than 1, the marginal distributions of shift

-selfsimilar additive random sequences{ ( ) ∈ Z} are −1-decomposable in the
sense of [16] and [35] and conversely any−1-decomposable distribution can be the
distribution of (0) for some (not necessarily unique in law)shift -selfsimilar ad-
ditive random sequence{ ( ) ∈ Z}. In this way we can have random sequences
of this kind on selfsimilar sets such as the Cantor sets and the Sierpinski gasket.
They cannot be expressed as{ ( ) ∈ Z} for any stochastically continuous semi-
selfsimilar processes{ ( ) ≥ 0} with independent increments satisfying (1.2) with
> 1. See Example 6.1.
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We finish this section by mentioning that, since shift -selfsimilar additive random
sequences with > 1 are considered as sums of independent and shift -selfsimilarly
distributed random variables, it is of interest to compare our results with those on ran-
dom walks. See, for recurrence and transience, [5], [20], [29] and [30], and, for the
rate of growth, [22], [23] and [24].

2. Characterization

Denote by 〈 〉 and | | the Euclidean inner product of and and the Eu-
clidean norm of inR , respectively. Denote by ′ the transpose of a real ma-
trix and by ‖ ‖ the operator norm of a real × matrix on R , that is,
‖ ‖ = sup| |=1 | |. The symbolδ ( ) stands for the probability distribution onR
concentrated at ∈ R . Let µ̂( ) and µ be the characteristic function and the sup-
port of a probability distributuionµ on R , respectively. We denote by ¯µ the reflection
of µ, that is, µ̄( ) = µ(− ) for Borel sets inR . Denote byµ ∗ ρ the convolution
of probability distributionsµ and ρ on R . Let be a real invertible × matrix
all of whose eigenvalues have absolute values less than 1. A probability distributionµ
on R is said to be -decomposableif there exists a probability distributionρ on R
such that

(2.1) µ̂( ) = µ̂( ′ )ρ̂( )

Note that -decomposable distributions are not necessarilyinfinitely divisible. A prob-
ability distributionµ on R is -decomposable if and only if there exists a probability
distribution ρ on R such that

(2.2)
∫

R
log(1 + | |)ρ( ) <∞

and

(2.3) µ̂( ) =
∞∏

=0

ρ̂
(
( ′)

)

Any distribution ρ in (2.1) can be used as the distributionρ in (2.2) and (2.3). Thus
a -decomposable distributionµ on R is determined byρ in (2.1) but ρ is not nec-
essarily determined byµ. In the case whereµ ⊂ [0 ∞) , ρ is uniquely determined
by µ. The class of all -decomposable distributions is rather broad and contains many
important limit distributions such as operator semi-stable distributions and selfsimi-
lar measures. See [4], [19] and [32]. Since2 is expressed as with being a
real × matrix all of whose eigenvalues have negative real parts, -decomposable
distributions are always -decomposable. A probability distribution µ on R is said
to be full if µ is not contained in any proper hyperplane inR . Wolfe showed
in [35] that every full -decomposable distribution is either continuous singular or
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absolutely continuous. Continuity properties of -decomposable distributions are stud-
ied in [32] and [33]. An R -valued random sequence{ ( ) ∈ Z} on a proba-
bility space ( F ) is called a zero sequence if ( ( ) = 0 for ∈ Z) = 1.
It is called deterministic if there exists a non-random sequence ∈ R such that

( ( ) = for ∈ Z) = 1. It is called non-degenerate if the distributions of ( )
are full for all ∈ Z.

From now on, let { ( ) ∈ Z} be an R -valued shift -selfsimilar ran-
dom sequence with independent increments in the weak sense on a probability space
( F ). Denote byµ and ρ the distribution of ( ) for ∈ Z and that of

(0)− (− ) for ∈ N, respectively.

Theorem 2.1. Let be a real invertible × matrix all of whose eigenvalues
have absolute values greater than1 and let = −1.
(i) Let { ( ) ∈ Z} be an R -valued shift -selfsimilar random sequence with in-
dependent increments in the weak sense. The probability distribution ρ1 satisfies that

(2.4)
∫

R
log(1 + | |)ρ1( ) <∞

The distributionsµ are -decomposable and their characteristic functions are repre-
sented as

(2.5) µ̂ ( ) =
∞∏

=0

ρ̂1
(
( ′) − )

Moreover, { ( ) ∈ Z} has independent increments and

lim
→−∞

( ) = 0 a.s.

(ii) Conversely, if a probability distributionρ satisfying(2.2) is given, then there is a
unique (in law) shift -selfsimilar additive random sequence{ ( ) ∈ Z} satisfy-
ing ρ1 = ρ. That is, for every -decomposable distributionµ on R , there is a(not
necessarily unique in law) shift -selfsimilar additive random sequence{ ( ) ∈ Z}
satisfyingµ0 = µ.

Proof. We see from the shift -selfsimilarity that

µ̂ ( ) = µ̂0
(
( ′)−

)

Since ( ′) → as → ∞, we have lim→−∞ µ̂ ( ) = 1 for any ∈ R . Thusµ
converges weakly toδ0( ) as → −∞. Hence (− ) converges in probability to 0
as →∞. Therefore, there are ↑ ∞ such that

(2.6) lim
→∞

(− ) = 0 a.s.
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Thus we see from the independence of increments in the weak sense and the shift
-selfsimilarity that

µ̂0( ) = lim
→∞

exp
(
〈 (0)− (− )〉

)
= lim

→∞

−1∏

=0

ρ̂1
(
( ′)

)

We have in like manner

µ̂−1( ) = lim
→∞

−1∏

=1

ρ̂1
(
( ′)

)

Hence we obtain that

µ̂0( ) = µ̂−1( )ρ̂1( ) = µ̂0( ′ )ρ̂1( )

that is, µ0 is -decomposable and
∫

R log(1 + | |)ρ1( ) < ∞ By the same way, we
get that

µ̂ ( ) = µ̂ ( ′ )ρ̂1
(
( ′)−

)
=

∞∏

=0

ρ̂1
(
( ′) − )

Thereforeµ are -decomposable for ∈ Z. Thus we have proved the first as-
sertion of (i). Taking a sufficiently large positive integer satisfying ‖ ‖ < 1,
(see Lemma 2.6 of [25]) we have

∞∑

=0

(
| (− )− (− − 1)| ≥ ‖ ‖ /(2 )

)

≤
∞∑

=0

(
| (0)− (−1)| ≥ 1‖ ‖− /(2 )

)

≤ 2

∫

R
log(2 + | |)ρ1( ) <∞

where 1 and 2 are positive constants. Hence we see from the Borel-Cantelli lemma
that { (− )} is a Cauchy sequence inR as →∞ almost surely. Since we already
showed in (2.6) that lim→∞ (− ) = 0 almost surely, we get lim→−∞ ( ) = 0
almost surely. Hence it is evident that

( ) =
∞∑

=0

(
( − )− ( − − 1)

)
a.s.

This shows that{ ( ) ∈ Z} has independent increments. Next we prove the as-
sertion (ii). Let ( ), ∈ Z, be independent identically distributedR -valued ran-
dom variables with the distributionρ. The sum

∑∞
=0 (− ) is convergent almost
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surely if and only if (2.2) holds. See [4] and [19]. Then the sequence{ ( ) ∈ Z}
defined by ( ) =

∑
=−∞ ( ) is a shift -selfsimilar additive random sequence

with ρ1 = ρ. Uniqueness is obviously true because all finite dimensional distributions
of { ( ) ∈ Z} are determined byρ1.

REMARK 2.1. Let be a real invertible × matrix all of whose eigenval-
ues have absolute values greater than 1 and let =−1. Let { ( ) ∈ Z}
be an R -valued shift -selfsimilar additive random sequence. We see from Theo-
rem 2.1 that the distribution of{ ( ) ∈ Z} is determined byρ1. Thus properties
of { ( ) ∈ Z} should be characterized in terms ofρ1. If ρ1 is a discrete probabil-
ity distribution, thenµ are selfsimilar for ∈ Z in the following sense. Let ∗ be a
positive integer or ∗ =∞. Define a mapping onR as = + for ∈ R .
Define a probability distribution µ on R for a probability distributionµ on R as
µ( ) = µ( −1 ) for Borel sets inR . If ρ1( ) =

∑ ∗

=1 δ ( ) for ∈ R

and for ≥ 0 with
∑ ∗

=1 = 1, thenµ =
∑ ∗

=1 − µ for ∈ Z. This self-
similarity of probability measures is slightly different from the original one introduced
in [11]. A relationship between the upper Hausdorff dimension of µ0 and the entropy
of ρ1 is discussed in [33].

The following lemma is well known. See Lemma 13.9 of [26].

Lemma 2.1. Let µ be a probability distribution onR . If |µ̂( )| = 1 on a neigh-
borhood of = 0, thenµ( ) = δ ( ) for some ∈ R .

Let be a real invertible × matrix and let ( ) be its minimal polynomial.
Assume that ( ) =

∏
=1{ ( )} , where ( ) are distinct irreducible monic poly-

nomials overR1 and are positive integers. Each polynomial ( ) has a unique
real zeroα or has two non-real zerosα and ᾱ , where ᾱ is the complex conju-
gate ofα . Let = ker({ ( )} ) and ′ = ker({ ( ′)} ) for 1 ≤ ≤ . Then

are -invariant and ′ are ′-invariant. We have direct sum decompositions

R = 1⊕ 2⊕ · · · ⊕

and

R = ′
1 ⊕ ′

2 ⊕ · · · ⊕ ′

Lemma 2.2. Let be a real invertible × matrix. Let ζ be a full probability
distribution on R . Suppose that there exists a probability distributionη on R such
that

(2.7) ζ̂( ) = ζ̂( ′ )η̂( )
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Then the following statements are true.
(i) All eigenvalues of have absolute values less than or equal to1. Those with ab-
solute value1 are simple zeros of the minimal polynomial of .
(ii) Let 1 be the direct sum of all satisfying|α | < 1 and let 2 be the direct
sum of all satisfying|α | = 1. Let be the projector to for = 1, 2 in the
direct sum decompositionR = 1 ⊕ 2. Define probability distributionsζ and η on
R for = 1, 2 as ζ ( ) = ζ( −1( ∩ )) and η ( ) = η( −1( ∩ )) for Borel sets

in R . Then we have

(2.8) ζ̂( ) = ζ̂1( )ζ̂2( ) and ζ̂ ( ) = ζ̂ ( ′ )η̂ ( ) for = 1 2

with
∫

1
log(1 + | |)η1( ) <∞ and η2( ) = δ ( ) for some ∈ 2.

Proof. Let Leb( ) be the Lebesgue measure onR . By considering the Jordan
canonical form of the matrix , we have

{
∈ R : lim inf

→∞
| | <∞

}
=

{
∈ R : lim sup

→∞
| | <∞

}

Denote the above set by . Note that is a subspace inR . Denote the closed ball
with radius and the center 0 by . For anyδ > 0, we can take sufficiently small
> 0 such that|ζ̂( )|2 ≥ 1 − δ for ∈ . We see from the Riemann-Lebesgue

theorem that

lim
→∞

∫
cos〈 〉 = 0 for ∈

Note from (2.7) that

|ζ̂( )| ≤ |ζ̂(( ′) )| for ∈ Z+

Hence we obtain that

(1− δ) Leb( )≤
∫
|ζ̂( )|2

≤ lim sup
→∞

∫

R
ζ ∗ ζ̄( )

∫
cos〈 〉

≤ ζ ∗ ζ̄( ) Leb( )

It follows that ζ ∗ ζ̄( ) = 1, that is, =R by the fullness ofζ. Hence the assertion
(i) is true. Next we prove the assertion (ii). We define′ for = 1, 2 by replacing
with ′ in the definition of . We see from (2.7) that

ζ̂ ( ) = ζ̂ ( ′ )η̂ ( ) for = 1 2
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Let be the restriction of to and let be the identity operator on . We see
that ζ1 is -decomposable on1 with = 1 and hence

∫
1
log(1 + | |)η1( ) < ∞.

Since ( ′
2) , ∈ Z+, are relatively compact in operator norm on′2, there is a se-

quence of integers such that +1 − ↑ ∞ and ( ′
2) converges to some oper-

ator ′
0 in the operator norm on ′

2 as → ∞. Note that the absolute values of all
eigenvalues of ′

0 are 1 and hence ′
0 is invertible on ′

2. Thus there is a sequence
:= +1 − ↑ ∞ of integers such that (′2) → ′

2 in operator norm on ′
2 as

→∞. Hence we obtain that

|ζ̂2( )| = lim
→∞
|ζ̂2
(
( ′

2)
)
|

−1∏

=0

|η̂2(( ′
2) )| ≤ |ζ̂2( )||η̂2( )| for ∈ ′

2

Noting that |ζ̂2( )| > 0 on ′
2 ∩ for sufficiently small > 0, we find that|η̂2( )| = 1

on ′
2 ∩ and hence, by Lemma 2.1,η2( ) = δ ( ) for some ∈ 2. Define

probability distributionsσ on R as σ̂ ( ) =
∏ −1

=0 η̂(( ′) ). We obtain from (2.7)
that

ζ̂( ) = ζ̂
(
( ′)

)
σ̂ ( )

Since ( ′) → ′
2 as →∞, we have

lim
→∞

ζ̂
(
( ′)

)
= ζ̂2( )

Taking a subsequence, if necessary, we see from Lemma of [16]or Theorem 2.1
of [21] that σ converges weakly to a probability measureν on R as → ∞. It
follows that

(2.9) ζ̂( ) = lim
→∞

ζ̂
(
( ′)

)
σ̂ ( ) = ζ̂2( )ν̂( )

We haveζ̂2( ′
1 ) = ζ̂2(0) = 1 for ∈ R and hence by (2.9)

ν̂( ′
1 ) =

ζ̂( ′
1 )

ζ̂2( ′
1 )

= ζ̂1( ) for ∈ R

On the other hand, we get by (2.9) that, for some small> 0,

ν̂( ′
2 ) =

ζ̂( ′
2 )

ζ̂2( )
= 1 for ∈

and hence ν ⊂ 1. It follows that ν̂( ) = ν̂( ′
1 ) = ζ̂1( ), that is,ν = ζ1. Thus we have

by (2.9)

ζ̂( ) = ζ̂1( )ζ̂2( )
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The proof of the lemma is complete.

Next we intend to characterize shift -selfsimilar additiverandom sequences.
However, since it is difficult to treat the general case, we discuss only the non-
degenerate case.

Theorem 2.2. Let be a real invertible × matrix. Let { ( ) ∈ Z} be
an R -valued non-degenerate shift -selfsimilar additive random sequence. Then the
following statements are true.
(i) All eigenvalues of have absolute values greater than or equal to 1. Those with
absolute value1 are simple zeros of the minimal polynomial of .
(ii) There is a direct sum decompositionR = 1 ⊕ 2 such that 1 and 2 are

-invariant, all eigenvalues of on 1 have absolute values greater than1, and
those on 2 have absolute value1. Let be the restriction of to for = 1, 2.
Then{ ( ) ∈ Z} is decomposed as the sum of two independent random sequences
{ ( ) ∈ Z}, = 1, 2, such that, for each , { ( ) ∈ Z} is a shift -selfsimilar
additive random sequence on, and almost surely{ 2( ) ∈ Z} has deterministic
increments and almost surelysup∈Z | 2( )| <∞.

Proof. We see from the shift -selfsimilarity and the independence of increments
that

µ̂0( ) = µ̂0(( −1)′ )ρ̂1( )

By setting = −1, ζ = µ0, and η = ρ1, we can use Lemma 2.2 and hence the asser-
tion (i) is true. Define{ ( ) ∈ Z} by ( ) = ( ) for = 1, 2. Then obviously

( ) = 1( ) + 2( ), and { ( ) ∈ Z} are shift -selfsimilar additive random
sequences on for = 1, 2. We see from (ii) of Lemma 2.2 that the distribution
of 2(0)− 2(−1) is a delta distributionδ with ∈ 2 and hence{ 2( ) ∈ Z}
has deterministic increments almost surely. The fact that sup ∈Z | 2( )| < ∞ a.s. is
clear from the fact that sup∈Z+

|∑ =0 | < ∞ and sup∈Z+
|∑0

=− | < ∞
because all eigenvalues of on2 have absolute value 1 and are simple zeros of
the minimal polynomial of . Finally we prove the independence of two random se-
quences{ ( ) ∈ Z} for = 1, 2 by using (ii) of Lemma 2.2 and the indepen-
dence of increments of{ ( ) ∈ Z}. Let be an arbitrary positive integer,(1),

(2) be arbitrary inR and define = ′
1

(1) + ′
2

(2) for 1 ≤ ≤ . Note that
〈 (1)

1( )〉 = 〈 1( )〉 and 〈 (2)
2( )〉) = 〈 2( )〉 for any ∈ Z with

1 ≤ ≤ . We obtain from (2.8) and the properties of increments of{ ( ) ∈ Z},
{ 1( ) ∈ Z}, and { 2( ) ∈ Z} that, for any strictly increasing sequence∈ Z
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with 0≤ ≤ ,

exp

(
∑

=1

(
〈 (1)

1( )〉 + 〈 (2)
2( )〉

))

= exp

(
∑

=1

〈 ( )〉
)

=


∏

=1

exp


 ∑

=

〈 ( )− ( −1)〉




 exp

(
∑

=1

〈 ( 0)〉
)

=
2∏

=1


∏

=1

exp


 ∑

=

〈 ( )− ( −1)〉




 exp

(
∑

=1

〈 ( 0)〉
)

= exp

(
∑

=1

〈 1( )〉
)

exp

(
∑

=1

〈 2( )〉
)

= exp

(
∑

=1

〈 (1)
1( )〉

)
exp

(
∑

=1

〈 (2)
2( )〉

)

Thus we have established the independence of{ 1( ) ∈ Z} and { 2( ) ∈ Z}.

3. Transience

An R -valued random sequence{ ( ) ∈ Z} is said to be transient if
(lim →∞ | ( )| =∞) = 1. In this section we prove the following theorem.

Theorem 3.1. Let be a real invertible × matrix all of whose eigenvalues
have absolute values greater than1. Then all non-zeroR -valued shift -selfsimilar
additive random sequences{ ( ) ∈ Z} are transient.

Corollary 3.1. Let { ( ) ≥ 0} be an R -valued stochastically continuous
semi-selfsimilar process with independent increments satisfying (1.2) with > 1. If

( ( 1) 6= 0) > 0 for some 1 > 0, then the random sequence{ ( 0) ∈ Z} is
transient for every 0 > 0.

REMARK 3.1. In case{ ( ) ≥ 0} is a strictly stable Ĺevy process inR , the
corollary above is already shown in [3]. The assertion of thecorollary remains true in
the case where{ ( ) ≥ 0} is a strictly operator semi-stable Lévy process inR .

We obtain the following corollary, combining Theorems 2.2 and 3.1.
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Corollary 3.2. Let be a real invertible × matrix. Non-degenerateR -valued
shift -selfsimilar additive random sequences{ ( ) ∈ Z} are transient if and only
if has an eigenvalue whose absolute value is greater than1.

Lemma 3.1. Let { ( ) ∈ Z} be anR -valued random sequence. If

∞∑

=0

(| ( )| ≤ ) <∞ for ∀ > 0

then { ( ) ∈ Z} is transient.

Proof. Proof is clear from the Borel-Cantelli lemma.

REMARK 3.2. There exists a non-zero, non-transient shift -selfsimilar random
sequence. It is shown as follows. Let be a real invertible× matrix. Let
{ ( ) ∈ Z} be an R -valued shift -selfsimilar random sequence such that

( ), ∈ Z, are independent. Then it follows from the Borel-Cantelli lemma that
{ ( ) ∈ Z} is transient if and only if

∞∑

=0

(
| ( )| ≤

)
<∞ for ∀ > 0

In the case where is a real invertible × matrix all of whose eigenvalues
have absolute values greater than 1, it is equivalent from the shift -selfsimilarity to

(− log(| (0)| ∧ 1))<∞. Thus the first assertion is obviously true.

Lemma 3.2. Let { ( ) ∈ Z} be anR -valued random sequence and letη be
the distribution of ( ) for ∈ Z. If there exists 0 > 0 such that

(3.1)
∞∑

=0

∫

| |≤ 0

|η̂ ( )| <∞

then { ( ) ∈ Z} is transient.

Proof. Let = ( )=1 ∈ R . Define a function ( ) onR for > 0 as

( ) =
∏

=1

(
2 sin( /2)

)2

with understanding that (sin 0)/0 = 1. Then the Fourier transform̂ ( ) of ( ) is
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given by

̂ ( ) =
∫

R
exp
(
〈 〉

)
( )

= (2π −1)
∏

=1

(
1− −1| |

)
1[− ]( )

where 1[− ]( ) is the indicator function of the interval [− ]. We see from the Per-
seval’s equality that

∞∑

=0

(
( ( ))

)
= (2π)−

∞∑

=0

∫

R
η̂ ( )̂ (− )

≤ −
∞∑

=0

∫

| |≤
√ |η̂ ( )|

Hence we find that (3.1) implies that
∑∞

=0 ( ( ( ))) <∞ for any ∈ (0 0/
√

).
Thus the lemma follows from Lemma 3.1.

Let ∈ (0 1). Define ( ) for > 0 as

( ) =
∞∑

=0

∫ 2π

0
exp

(
∑

=0

(cos( − )− 1)

)

Let =
(

α −β
β α

)
with β 6= 0 andα2 + β2 < 1. Let be a square inR2 having the

area 4π2 with a vertex at 0. Define ( ) for > 0 and ∈ R2 satisfying | | = 1
as

( ) =
∞∑

=0

∫
exp

(
∑

=0

(
cos〈( ′)− 〉 − 1

)
)

Lemma 3.3. (i) ( ) <∞ for all > 0.
(ii) sup| |=1 ( ) <∞ for all > 0.

Proof. We first prove the assertion (i). Let ∈ Z+ be sufficiently large and let
δ be an arbitrary real number. Define sequencesφ (δ) for ∈ Z+ and for ∈ Z+

as

φ (δ) =
∑

=0

∫ 2π

0
exp

(
∑

=0

(
cos( − ( + δ))− 1

)
)

and

= inf
0≤ ≤2π

(
1− cos( ( + 2 π) + δ)

)
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Denote = [ − ] + 1 and = (2 /3 + − /3), where [ ] stands for the largest
integer not exceeding a real number . We have

(3.2)

φ (δ) = φ0(δ) +
∑

=1

∫ − 2π

0
exp

(
∑

=0

(
cos( −( −1) ( + − δ))− 1

)
)

≤ φ0(δ) +
∑

=1

−1∑

=0

∫ 2π

0
exp

(
∑

=0

(
cos( −( −1) ( + 2 π + − δ))− 1

)
)

≤ φ0(δ) +
−1∑

=0

φ −1(2 π + − δ) exp(− )

Since is sufficiently large, so is and we can assume that the number of satis-
fying ≥ 1 for 0 ≤ ≤ − 1 is more than /3. Hence we see that 0< < 1
and

−1∑

=0

exp(− ) ≤

Noting thatφ0(δ) ≤ 2π we obtain from (3.2) that

φ (δ) ≤
∑

=0

2π ≤ 2π
1−

It follows that

( ) = lim
→∞

( +1) −1∑

=0

∫ 2π

0
exp

(
∑

=0

(
cos( − )− 1

)
)

(3.3)

≤ lim
→∞

∑

=0

−1∑

=0

∫ 2π

0
exp

(
∑

=0

(
cos( −( + ) )− 1

)
)

= lim
→∞

∑

=0

−1∑

=0

∫ 2π −

0
exp

(
∑

=0

(
cos( − )− 1

)
)

≤ lim
→∞

∑

=0

−1∑

=0

[ − ]∑

=0

∫ 2π

0
exp

(
∑

=0

(
cos
( − ( + 2 π)

)
− 1
)
)

= lim
→∞

−1∑

=0

[ − ]∑

=0

φ (2 π) ≤ 4 π

1− <∞

Next we prove the assertion (ii). Let =
(

cosθ − sinθ
sinθ cosθ

)
with =

√
α2 + β2 and

0≤ θ < 2π. We continue to use and as above. Letξ ∈ R2 be arbitrary. Define
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a sequence (ξ ) for ∈ Z+ as

(ξ ) =
∑

=0

∫
exp

(
∑

=0

(
cos〈( ′)− ( + ξ) 〉 − 1

)
)

Denote 1 =
(

cos θ − sin θ
sin θ cos θ

)
and denote the vertices of1 by {0 1 2 1 + 2}.

Define ( 1 2) for 1, 2 ∈ Z+ as

( 1 2) = inf
∈ 1


1− cos

〈
( ′)


 +

2∑

=1


 + ξ

〉


We have, as in (3.2),

(ξ )− 0(ξ )

= 2
∑

=1

∫

−
1

exp

( ∑

=0

(
cos
〈
( ′)−( −1) ( + ( ′)− ξ)

〉
− 1
))

≤ 2
∑

=1

−1∑

1=0

−1∑

2=0

∫

1

exp(
∑

=0

(cos〈( ′)−( −1) ( +
2∑

=1

+ ( ′)− ξ) 〉 − 1))

≤ 2
−1∑

1=0

−1∑

2=0

−1

( 2∑

=1

+ ( ′)− ξ 1

)
exp
(
− ( 1 2)

)

Since is sufficiently large, we can assume that there is a positive absolute constant
δ ∈ (0 1) such that the number of (1 2) for 0 ≤ 1, 2 ≤ − 1 satisfying
( 1 2) ≥ 1 is more thanδ 2. Denote = 2 ((1− δ) 2 + δ 2 − ). Then we see

that 0< < 1 and

2
−1∑

1=0

−1∑

2=0

exp
(
− ( 1 2)

)
≤

Noting that

0(ξ ) ≤ 4π2

we have

(ξ ) ≤
∑

=0

4π2 ≤ 4π2

1−

Hence we obtain by the same manner in (3.3) that

sup
| |=1

( ) ≤ 8π2

1− for ∀ > 0
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Thus the proof is complete.

Proof of Theorem 3.1. We can assume without loss of generality that there is no
proper subspace such that ( ( )∈ for ∈ Z) = 1. Let = −1 be the real
Jordan canonical form of the matrix with a real invertible× matrix . Since we
have

{ ( + 1) ∈ Z} d
= { ( ) ∈ Z}

the random sequence{ ( ) ∈ Z} is shift -selfsimilar and additive. If
{ ( ) ∈ Z} is transient, then{ ( ) ∈ Z} is also transient. Thus we can as-
sume that = . There are two possible cases.

CASE 1. An eigenvalue of is real.
CASE 2. No eigenvalue of is real.

Let = {( 1 . . . )′ ∈ R : = 0 for 1 ≤ ≤ − } and let be the or-
thogonal projector to for = 1, 2. Define the random sequence{ ( ) ∈ Z} by

( ) = ( ) for = 1, 2. In Case 1, there is a Jordan block with a real eigenvalue
−1 ∈ (−∞ −1)∪(1 ∞) in . We can assume that this Jordan block lies in the lowest

position in . Thus{ 1( ) ∈ Z} is a non-zero shift −1-selfsimilar additive random
sequence on 1. In Case 2,{ 2( ) ∈ Z} is a non-zero shift 2 -selfsimilar additive
random sequence on2. Thus it is enough to prove the transience in the case of = 1
and in the case where = 2 and−1 = with β 6= 0 andα2 + β2 < 1. We treat only
the latter case. The proof of the first case is similar by virtue of (i) of Lemma 3.3 and
is omitted. By using the inequalities| | ≤ | |−1 and | cos | − 1 ≤ 4−1(cos 2 − 1),
we obtain from (2.5) that

|µ̂ ( )|2 =
∞∏

=0

∣∣∣∣
∫

R2

cos〈( ′) − 〉ρ1 ∗ ρ̄1( )

∣∣∣∣(3.4)

≤ exp

( ∞∑

=0

∫

R2

(
| cos〈( ′) − 〉| − 1

)
ρ1 ∗ ρ̄1( )

)

≤ exp

(
4−1

∞∑

=0

∫

R2

(
cos〈2( ′) − 〉 − 1

)
ρ1 ∗ ρ̄1( )

)

If ρ1 ∗ ρ̄1( ) = δ0( ), then ρ1( ) = δ ( ) for some ∈ R and hence
{ ( ) ∈ Z} has deterministic increments and transient. Note that6= 0 because
{ ( ) ∈ Z} is not a zero sequence. Thus we can choose a compact set in
R2 not containing 0 and a positive number0 such that := ρ1 ∗ ρ̄1( ) > 0
and 0 sup ∈ | | ≤ π. Let 1 = [0 2π] × [0 2π], 2 = [−2π 0] × [0 2π],

3 = [−2π 0]× [−2π 0] and 4 = [0 2π]×[−2π 0] Then by using Jensen’s inequal-
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ity and letting = 2| | , we conclude from (3.4) and (ii) of Lemma 3.3 that

∞∑

=0

∫

| |≤ 0

|µ̂ ( )|

≤
∞∑

=0

∫

| |≤ 0

exp

(
8−1

∞∑

=0

∫ (
cos〈2( ′) − 〉 − 1

)
ρ1 ∗ ρ̄1( )

)

≤
∞∑

=0

∫
ρ1 ∗ ρ̄1( )

4 | |2
4∑

=1

∫
exp

(
8−1

∞∑

=0

(
cos

〈
( ′) −

| |

〉
− 1

))

≤
4∑

=1

∫ (

8 | |

)
ρ1 ∗ ρ̄1( )

4 | |2 <∞

It follows from Lemma 3.2 that{ ( ) ∈ Z} is transient.

4. Rate of growth I

In this section, let{ ( ) ∈ Z} be an increasing shift -selfsimilar additive ran-
dom sequence with non-deterministic increments, that is,> 1, ρ1 ⊂ [0 ∞) and
ρ1( ) 6= δ ( ) for any ≥ 0. Note that all distributionsµ are continuous thanks
to Wolfe’s theorem in [35]. We investigate the rate of growthof { ( ) ∈ Z} in the
“liminf” case. We state the results only as→∞ except in Theorem 4.1. The results
and their proofs as → −∞ are similar and omitted. Define

G0 = { ( ) : ( ) is positive and decreasing on [0∞)}

The abbreviation “i.o.” means “infinitely often”. First we study some preliminary re-
sults.

Lemma 4.1. Let be a real invertible × matrix all of whose eigenvalues
have absolute values less than1. Let ζ , ≥ 1, be -decomposable distributions on
R such that

(4.1) ζ̂ ( ) = ζ̂ ( ′ )η̂ ( )

where η are probability distributions onR satisfying
∫

R log(1 + | |)η ( ) < ∞.
Suppose thatη converges weakly to a probability distributionη∞ on R as → ∞
and

(4.2) lim
→∞

sup
≥1

∫

| |≥
log(1 + | |)η ( ) = 0

Thenζ converges weakly to some -decomposable distributionζ∞ on R as →∞,
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which is defined by

ζ̂∞( ) = ζ̂∞( ′ )η̂∞( )

Proof. Fix ∈ R and let ∈ N. We obtain from (4.1) that

(4.3) ζ̂ ( ) =
−1∏

=0

η̂
(
( ′)

) ∞∏

=

(
1 +
∫

R

( 〈 〉 − 1
)
η ( )

)

Choose ∈ N satisfying‖ ‖ < 1. Then we have

∞∑

=

∣∣∣∣∣

∫

| |≤‖ ‖− /(2 )

( 〈 〉 − 1
)
η ( )

∣∣∣∣∣(4.4)

≤
∞∑

=

∫

| |≤‖ ‖− /(2 )

|〈 〉|η ( )

≤ 1

∞∑

=

| |‖ ‖ /(2 ) ≤ 2| |‖ ‖ /(2 )

and

∞∑

=

∣∣∣∣∣

∫

| |≥‖ ‖− /(2 )

( 〈 〉 − 1)η ( )

∣∣∣∣∣(4.5)

≤ 2
∞∑

=

∫

| |≥‖ ‖− /(2 )

η ( )

≤ 3

∫

| |≥‖ ‖− /(2 )

log
(
2 + | |

)
η ( )

where , = 1, 2, 3, are positive constants. We see from (4.2), (4.4) and (4.5) that

lim sup
→∞

sup
≥1

∞∑

=

∣∣∣∣
∫

R

( 〈 〉 − 1
)
η ( )

∣∣∣∣(4.6)

≤ lim sup
→∞

(
2| |‖ ‖ /(2 ) + 3 sup

≥1

∫

| |≥‖ ‖− /(2 )

log
(
2 + | |

)
η ( )

)
= 0

Note that

lim
→∞

−1∏

=0

η̂
(
( ′)

)
=

−1∏

=0

η̂∞
(
( ′)

)
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It follows from (4.3) and (4.6) that

lim
→∞

ζ̂ ( ) = lim
→∞

∞∏

=0

η̂
(
( ′)

)
=

∞∏

=0

η̂∞
(
( ′)

)
= ζ̂∞( )

Thus ζ converges weakly toζ∞ as →∞.

For two positive functions ( ) and ( ) on [1∞), we define a relation
( ) ≍ ( ) as lim sup→∞ ( )/ ( ) < ∞ and lim inf→∞ ( )/ ( ) > 0, and a re-

lation ( ) ∼ ( ) as lim→∞ ( )/ ( ) = 1. As mentioned in Section 1, a positive
measurable function ( ) on (0∞) is said to belong to the class if, for every
δ > 1, lim sup→∞ (δ )/ ( ) <∞ and lim inf→∞ (δ )/ ( ) > 0. The Laplace trans-
form of a probability distributionµ on [0 ∞) is denoted by µ( ) for ≥ 0, that is,

µ( ) =
∫

[0 ∞)
− µ( ). The following lemma is a version of Theorem 1 of [8]. The

proof is similar and omitted.

Lemma 4.2. Let µ be a probability distribution on[0 ∞). Then the following
are equivalent.
(i) µ([0 1/ ]) ∈ .
(ii) µ( ) ∈ .
(iii) µ([0 1/ ]) ≍ µ( ) as →∞.

Define a regularly varying function λ( ) on (0 ∞) with the index− logλ/ log
for a probability distributionρ on [0 ∞) with λ := ρ({0}) > 0 as

(4.7) λ( ) = − logλ/ log exp

(∫

1

logλ− log ρ( )
log

)

The following proposition is an extension of Theorem 1.6 of [28] concerning one-sided
selfdecomposable distributions.

Proposition 4.1. Let = ∈ (0 1) and let µ be a -decomposable distribution
on [0 ∞) with ρ in (2.1). If λ := ρ({0}) > 0, then

(4.8) µ
([

0
1]) ≍ λ( ) as →∞

Proof. We have by (2.1)

µ( ) =
∞∏

=0

ρ( )
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Hence we get that

lim
→∞

µ( −1 )

µ( )
= lim

→∞ ρ( −1 ) = λ

Since µ( ) is decreasing, it follows that µ( ) ∈ . Define ( ) = [− log / log ].
Since ( ) ≍ 1 and

µ( ) =
( )∏

=0

ρ( )
∞∏

=0

ρ( ( )+ +1 )

we see that

µ( ) ≍
( )∏

=0

ρ( ) = exp

(
( )∑

=0

log ρ( )

)

≍ exp

(
−
∫

1

log ρ( )
log

)
= λ( )

Therefore, we obtain (4.8) from Lemma 4.2.

Proposition 4.2. Let = ∈ (0 1) and let µ be a -decomposable distribution
on [0 ∞) with ρ in (2.1). Then there are positive constants1 and 2 such that, for
0< < and 0< ε < 1− ,

(4.9) µ([0 ]) ≤ 1 exp

(
−
∫ 1 logρ([0 ])

log

)

and

(4.10) µ([0 ]) ≥ 2 exp

(∫ 1

ε

logρ([0 ])
log( −1(1− ε))

)

Proof. We use , ≥ 1, as positive constants. We see from (2.1) that

(4.11) µ([0 ]) =
∫

[0 ]
µ
(
[0 −1( − )]

)
ρ( )

Define ˜ ( ) = [log / log ] and ( ) = [− log / log( −1(1− ε))]. We have by (4.11)

µ([0 ]) ≤ µ
(
[0 −1 ]

)
ρ
(
[0 ]

)
(4.12)

≤
e ( )∏

=0

ρ
(
[0 − ]

)
µ
(
[0 −e( )−1 ]

)
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≤ 3 exp




e ( )∑

=0

logρ([0 − ])




≤ 1 exp

(
−
∫ 1 logρ([0 ])

log

)

On the other hand, we see from (4.11) that, for anyε ∈ (0 1− ),

µ([0 ]) ≥ µ
(
[0 ( −1(1− ε)) ]

)
ρ
(
[0 ε ]

)

≥
( )∏

=0

ρ
(
[0 ε( −1(1− ε)) ]

)
µ
(
[0 ( −1(1− ε)) ( )+1 ]

)

≥ 4 exp

(
( )∑

=0

logρ
(
[0 ε( −1(1− ε)) ]

)
)

≥ 2 exp

(∫ 1

ε

logρ([0 ])
log( −1(1− ε))

)

Thus the proof of the proposition is complete.

REMARK 4.1. Under the same assumption as in Proposition 4.2, we see from
(4.9) that, if ρ({0}) 6= 1, then

∫ 1

0
µ
(
[0 ]

) −1 <∞

Now we present a key theorem in this section.

Theorem 4.1. Let ( ) ∈ G0. If

(4.13)
∫ ∞

0

(
(0)≤ ( )

)
<∞ (resp. =∞)

then

(4.14)
(

( ) ≤ ( ) i.o. as →∞) = 0 (resp. = 1
)

and

(4.15)
(

( ) ≤ (− ) i.o. as → −∞) = 0 (resp. = 1
)

Proof. Suppose that
∫ ∞

0

(
(0)≤ ( )

)
<∞
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that is,

∞∑

=0

(
(0)≤ ( )

)
<∞

Then we have by the shift -selfsimilarity

∞∑

=0

(
( ) ≤ ( )

)
<∞

Hence we see from the Borel-Cantelli lemma that almost surely ( ) > ( ) for all
large , that is,

( ( ) ≤ ( ) i.o. as →∞) = 0

Conversely, suppose that

∫ ∞

0

(
(0)≤ ( )

)
=∞

that is,

∞∑

=0

(
(0)≤ ( )

)
=∞

Then we get by the shift -selfsimilarity

(4.16)
∞∑

=0

(
( ) ≤ ( )

)
=∞

Define the events and a sequence with∈ N as

= {ω : ( ) ≤ ( )}

and

=
(

( )− ( ) > ( ) for ∀ ≥ + 1
)

We find from (4.16) that there is with 0≤ ≤ − 1 such that
∑∞

=0 ( + ) =∞.
We assume that = 0. Discussion in the case6= 0 is similar. We have by the inde-
pendence of increments

1≥
(∞⋃

=0

)
≥

∞∑

=0

(( ∞⋃

= +1

)
∩

)
≥

∞∑

=0

( )
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Hence we see that there is a subsequence ( ) := such that ( )→ 0 as → ∞.
Define a sequence ( ) and a sequence ( ) of functions on [0∞) as

( ) = ( ( ) > ( ) for ∀ ≥ + 1)

and

( ) =
(

( )− (( + 1) )> ( )− ( +1) for ∀ ≥ + 2
)

Note that ( ) is increasing and bounded in . We have

( ) =
∫

( (( +1) ) ∞)
( )ρ ( )

and

( ) =
∫

( (( +1) ) ∞)
( )µ0( )

We show that ( )→ 0 as → ∞ by considering two possible cases. Case (i).
:= sup µ0 <∞; Case (ii). =∞ In Case (i) we can choose, for anyε > 0,

sufficiently large such that − ε < sup ρ . If lim →∞ ( ) ≥ , then trivially
( ) = 0 for all ≥ 0. Thus we can and do assume that lim→∞ ( ) < . Hence

we obtain that, for sufficiently smallε > 0,

0 = lim
→∞

( ) ≥ lim
→∞

( − ε)ρ
(
[ − ε ]

)

that is, lim →∞ ( − ε) = 0. We have

( ) ≤
∫

[0 −ε)
( − ε)µ0( ) + µ0

(
[ − ε ]

)

Letting → ∞ and then ε ↓ 0, we see from the continuity ofµ0 that
lim →∞ ( ) = 0. In Case (ii), we can prove by the same way that lim→∞ ( ) = 0
Denote the events as

= {ω : ( ) ≤ ( ) for some ≥ }

Then is decreasing and ( )≥ 1− ( ). It follows that

( ) =

(∞⋂

=1

)
= 1

that is,
(

( ) ≤ ( ) i.o. as →∞
)

= 1
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The proof of (4.15) is similar and omitted. Thus we have proved the theorem.

Corollary 4.1. Let ( ) ∈ G0 and ∈ [0 ∞]. Then

(4.17) lim inf
→∞

( )
( )

= a.s.

if and only if

(4.18)
∫ ∞

0

(
(0)≤ δ ( )

) {
<∞ for 0< δ <

=∞ for δ > .

Thus, for any ( ) ∈ G0, there exists ∈ [0 ∞] such that(4 17) holds.

Proof. The corollary is clear from Theorem 4.1.

REMARK 4.2. We see from Remark 4.1 and Corollary 4.1 that, for anyε ∈ (0 ),

lim
→∞

( )
( − ε) =∞ a.s.

Theorem 4.2. There exists ( ) ∈ G0 satisfying

(4.19) lim inf
→∞

( )
( )

= 1 a.s.

if and only if ρ1({0}) = 0.

Proof. Suppose thatρ1({0}) > 0. Sinceµ0 is −1-decomposable, we have as
in (4.11)

µ0([0 ]) =
∫

[0 ]
µ0
(
[0 ( − )]

)
ρ1( )(4.20)

≥ µ0
(
[0 ]

)
ρ1({0})

If there is ( )∈ G0 satisfying (4.19), then we get by Corollary 4.1 that

∫ ∞

0
µ0
(
[0
√

( )]
)

=∞ and
∫ ∞

0
µ0

([
0

( )√
])

<∞

But they contradict (4.20). Hence ifρ1({0}) > 0, then there is no ( )∈ G0 sat-
isfying (4.19). Conversely, suppose thatρ1({0}) = 0. If := inf ρ1 > 0, then
inf µ0 = (1− −1)−1 > 0. Define ( ) = (1− −1)−1 on [0 ∞). Then we
have (4.18) with = 1 and hence (4.19) by Corollary 4.1. Thus itis enough to con-
struct ( )∈ G0 satisfying (4.19) under the assumption that 0∈ ρ1 and ρ1({0}) = 0.
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We see from the assumption that there is a positive and decreasing sequence such
that

(4.21)
∞∑

=0

ρ1
(
[0 ]

)
<∞

We see as in (4.12) that

(4.22) µ0
(
[0 ]

)
≤ µ0

(
[0 ]

)
ρ1
(
[0 ]

)

Hence we obtain that

(4.23) µ0
(
[0 −1 ]

)
≤ µ0

(
[0 ]

)
ρ1
(
[0 ]

)

and

(4.24) µ0
(
[0 ]

)
≥ µ0([0 ])
ρ1([0 ])

We define an increasing sequence by induction as follows. Set0 = 0. Assume
that are defined for 0≤ ≤ . Then we define +1 considering two cases. If
µ0([0 ]) ≤ ρ1([0 ]), then choose +1 satisfying

ρ1
(
[0 ]

)
≤ µ0

(
[0 ]

)
( +1− ) ≤ 1

If µ0([0 ]) > ρ1([0 ]), then set +1 = + 1. Note that +1 ≥ + 1 and hence
lim →∞ = ∞. Define ( )∈ G0 as ( ) = on [ +1) for ∈ Z+. Then we
have by (4.21) and (4.23)

∫ ∞

0
µ0
(
[0 −1 ( )]

)
≤

∞∑

=0

µ0
(
[0 ]

)
ρ1
(
[0 ]

)
( +1− )

≤
∞∑

=0

ρ1
(
[0 ]

)
<∞

On the other hand we get by (4.24)

∫ ∞

0
µ0
(
[0 ( )]

)
≥

∞∑

=1

µ0([0 ])
ρ1([0 ])

( +1− ) =∞

It follows from Corollary 4.1 that there is ∈ [ −1 ] satisfying (4.18). Thus we
get (4.19) using ( ) in place of ( ).
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Corollary 4.2. Let ( ) ∈ G0. Let λ( ) be the function defined in(4.7) with
ρ = ρ1 and = −1. Suppose thatλ := ρ1({0}) > 0. If

∫ ∞

0
λ

(
1
( )

)
=∞ (resp. <∞)

then

lim inf
→∞

( )
( )

= 0 (resp. =∞) a.s.

Proof. We see from Proposition 4.1 that

∫ ∞

0

(
(0)≤ δ ( )

)
=∞ (resp. <∞) for ∀δ > 0

if and only if

∫ ∞

0
λ

(
1
( )

)
=∞ (resp. <∞)

Therefore the corollary follows from Corollary 4.1.

In the following theorem, we fix > 1 and consider the family of all increasing
shift -selfsimilar additive random sequences{ ( ) ∈ Z}.

Theorem 4.3. Let ( ) ∈ G0. There exists{ ( ) ∈ Z} satisfying(4 19) if and
only if

(4.25) lim inf
→∞

− log ( )
log

= 0

Proof. We use as positive constants. Without loss of generality, we can as-
sume that (1)< 1. Suppose that (4.25) is not true and that there is{ ( ) ∈ Z}
satisfying (4.19). Then we see thatρ1({0}) = 0 by Theorem 4.2 and there is > 0
such that

( ) ≤ − on [1 ∞)

Noting thatρ1([0 ]) ↓ 0 as ↓ 0, we have by (4.9), for anyδ > 0,

∫ ∞

0

(
(0)≤ δ ( )

)
≤ 1 +

∫ ∞

1

(
(0)≤ δ − )

≤ 1 + 1

∫ ∞

1
exp

(∫ 1

δ −

logρ1([0 ])
log

)
<∞
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It follows from Corollary 4.1 that

lim inf
→∞

( )
( )

=∞ a.s.

This is a contradiction. Thus if there is{ ( ) ∈ Z} satisfying (4.19), then
(4.25) is true. Conversely, suppose that the condition (4.25) is true. In case :=
lim →∞ ( ) > 0, defineρ1 as ρ1({(1− −1) }) = ρ1({2(1− −1) }) = 2−1. Then
(4.19) is true by Corollary 4.1. Thus we can assume that = 0. Weshow the exis-
tence of{ ( ) ∈ Z} satisfying (4.19) by constructing the measureρ1. The condition
(4.25) says that there are sequences↑ ∞ and δ ↓ 0 for ∈ Z+ such that 0 = 1,

+1 > 2 ,

(4.26) ε−1 (2−1
+1) ≤ −1 ( ) with ε = 1− −1/2

and

(4.27) ( )≥ −δ

We constructρ1([0 ]) together with ↑ ∞ and ↑ ∞ for ∈ Z+ by induction in
such a way that with :=

+1 ≥ + 1 andρ1([0 ]) = − log on
[

( ) ( −1)
)

for ∈ Z+

and

(4.28) 2−1 ≤
∫

2−1

µ0
(
[0 ε−1 ( )]

)
+
∫ 2−1

−1

µ0
(
[0 −1 ( )]

)
≤ 2 for ≥ 1

First set −1 = 0 = 0 and 0 = 0. Let ≥ 0. Let { ( )( ) ∈ Z} be an increasing
shift -selfsimilar additive random sequence with

ρ( )
1 ([0 ]) =

{ − log on
[

( ) ( −1)
)

for 0≤ ≤
0 on

[
0 ( )

)

Denote the distribution of ( )(0) by µ( )
0 . Define, for 1≤ ≤ ,

( )( ) =
∫

2−1

µ( )
0

(
[0 ε−1 ( )]

)
+
∫ 2−1

−1

µ( )
0

(
[0 −1 ( )]

)

Assume that ≥ −1 + 1 and 2−1 + 2− ≤ ( )( ) ≤ 2 − 2− for 1 ≤ ≤ .
Temporarily set, for some ≥ + 1 and ≥ + 1,

ρ1([0 ]) =





− log on
[

( ) ( −1)
)

for 0≤ ≤
− log on

[
( ) ( )

)

0 on
[
0 ( )

)
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and define

( ) =
∫

2−1

µ0
(
[0 ε−1 ( )]

)
+
∫ 2−1

µ0
(
[0 −1 ( )]

)

Fix ≥ + 1, then we obtain from (4.10) and (4.27) that

lim inf
→∞

( ) ≥ lim inf
→∞

∫

2−1

µ0
(
[0 ε−1 ( )]

)

≥ lim inf
→∞

µ0
(
[0 ε−1 ( )]

)
2−1

≥ 2 lim inf
→∞

exp

(
−
∫ 1

( )

log
log( (1− ε))

)

= 2 lim inf
→∞

( )2 ≥ 2 lim
→∞

(1−2 δ ) =∞

On the other hand, fix ≥ + 1, then we get by (4.9) and (4.26) that

lim sup
→∞

( ) ≤ 2−1 lim sup
→∞

µ0
(
[0 −1 ( )]

)
+ lim sup

→∞

∫ 2−1

µ0
(
[0 −1 ( )]

)

≤ lim sup
→∞

µ0
(
[0 −1 ( )]

)

≤ 3 lim sup
→∞

exp

(
−
∫ ( )

−1 ( )

)

= 3 lim
→∞

exp(− ) = 0

Hence we have ( + 1)≥ 1 for sufficiently large satisfying ≥ + 1. Since
( ) is continuous in on account of Lemma 4.1, we can take = ( )≥

+ 1 such that ( ( )) = 1 for sufficiently large . Since ( )→∞ as →∞,
ρ1 and µ0 are convergent weakly toρ( )

1 and µ( )
0 , respectively as → ∞ by virtue of

Lemma 4.1. Hence we can choose sufficiently large =+1 and defineρ( +1)
1 such that

+1 = ( +1) and 2−1 + 2− −1 ≤ ( +1)( ) ≤ 2− 2− −1 for 1≤ ≤ + 1. Finally we
defineρ1 as the weak limit ofρ( )

1 as →∞. Let { ( ) ∈ Z} be the corresponding
increasing shift -selfsimilar additive random sequence. Then (4.28) is satisfied clearly
by virtue of Lemma 4.1. Hence we see that

∫ ∞

0
µ0
(
[0 ε−1 ( )]

)
=∞

and that

∫ ∞

0
µ0
(
[0 ( )−1 ( )]

)
≤ 1 +

∞∑

=1

∫

−1

µ0
(
[0 −1 ( )]

)
ρ1
(
[0 ( )]

)
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≤ 1 + 2
∞∑

=1

− log <∞

using (4.22) and noting +1 ≥ +1. It follows from Corollary 4.1 that (4.18) holds
for some ∈ [( )−1 ε−1 ] and hence (4.19) is true by replacing{ ( ) ∈ Z} with
{ −1 ( ) ∈ Z}.

In the proof of the theorem above, we have proved the following corollary.

Corollary 4.3. Let ( ) ∈ G0. Suppose thatρ1({0}) = 0 and

lim inf
→∞

− log ( )
log

> 0

Then we have

lim inf
→∞

( )
( )

=∞ a.s.

5. Rate of growth II

In this section, let{ ( ) ∈ Z} be anR -valued non-zero shift -selfsimilar ad-
ditive random sequence for some> 1. We study the rate of growth of{ ( ) ∈ Z}
in the “limsup” case. We state the results only as→ ∞ except in Remark 5.1. De-
fine

G1 = { ( ) : ( ) is positive and increasing on [0∞)}

Define the inverse function−1( ) on [0 ∞) of ( ) ∈ G1 as

−1( ) = sup{ ≥ 0 : ( )< }

with understanding that sup∅ = 0. Define a functionρ∗1( ) on [0 ∞) as

ρ∗1( ) =
(
| (0)− (−1)| >

)

A positive measurable function ( ) on [0∞) is said to besubmultiplicativeif there
is a positive constant 1 such that

( + ) ≤ 1 ( ) ( ) for ∀ ≥ 0

Lemma 5.1. Let ( ) ∈ G1 and let ∈ N. If

∫ ∞

0

(
| (0)− (− )| > ( )

)
=∞
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then, for all ∈ N and all ε ∈ (0 1),

∫ ∞

0

(
| (0)− (− )| > (1− ε) ( )

)
=∞

Proof. Note that, for any ∈ N,

(5.1)
∫ ∞

0

(
| (0)− (− )| > ( )

)
=
∫

R

−1(| |)ρ ( )

There are two cases. Case 1. := lim→∞ ( ) < ∞; Case 2. =∞. In Case 1,
ρ ({ : | | > (1− ε) }) > 0 for all ∈ N and all ε ∈ (0 1) wheneverρ ({ : | | >
(1− ε) }) > 0 for all ε ∈ (0 1). Hence we see from (5.1) that, if

∫ ∞

0

(
| (0)− (− )| > ( )

)
=∞

then, for all ∈ N and all ε ∈ (0 1),

∫ ∞

0

(
| (0)− (− )| > (1− ε) ( )

)
=∞

In Case 2, we find from (5.1) that, if

∫ ∞

0

(
| (0)− (− )| > ( )

)
=∞

then
∫

R

−1(| |)ρ ( ) =∞

Choose > 0 such thatρ ({ : | | ≤ }) > 0. We get, for all ∈ N and all δ > 0,
that

∫

R

−1
(
(1 + δ)| |

)
ρ ( )

=
∫

(R )

−1

(
(1 + δ)

∣∣∣∣∣

−1∑

=0

−

∣∣∣∣∣

) −1∏

=0

ρ ( )

≥ {ρ ({ : | | ≤ })} −1
∫

R

−1
(
(1 + δ)| | − (1 + δ)(1− − )−1

)
ρ ( )

≥ 1

∫

R

−1(| |)ρ ( )

where 1 is a positive constant. Note that we used the condition =∞ in the last
inequality. Thus the lemma is true from (5.1).
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Lemma 5.2. Let ( ) ∈ G1 and let ∈ N.
(i) If

(5.2)
∫ ∞

0

(
| (0)− (− )| > ( )

)
=∞

then

(5.3) lim sup
→∞

| ( )|
( )
≥ 1 a.s.

(ii) If

(5.4)
∫ ∞

0

(
| (0)− (− )| > ( )

)
<∞

then

(5.5) lim sup
→∞

| ( )|
( )
≤ (1− − )−1 a.s.

Proof. Suppose the condition (5.2) holds. That is,

∞∑

=0

(
| (0)− (− )| > ( )

)
=∞

Then we see from the shift -selfsimilarity that

∞∑

=0

(
| ( )− ( − )| > ( )

)
=∞

Hence there is (0≤ ≤ − 1) such that

∞∑

=0

(
| ( + )− (( − 1) + )| > + ( + )

)
=∞

Define = + for ∈ Z. It follows from the Borel-Cantelli lemma that

(
| ( )− ( −1)| > ( ) i.o. as →∞

)
= 1

Owing to Kolmogorov’s 0-1 law, we see that

(
lim sup

→∞

| ( )|
( )
≥ 1

)
= 0 or 1
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If the probability above is 1, then (5.3) is true. Thus we can assume that the probabil-
ity above is 0 and thereby we get

lim sup
→∞

| ( )|
( )

< 1 a.s.

and hence| ( −1)| < −1 ( −1) for all large almost surely. Hence we obtain
that

(
| ( )| > (1− − ) ( ) i.o. as →∞

)

≥
(
| ( )− ( −1)| > (1− − ) ( ) + | ( −1)| i.o. as →∞

)

≥
(
| ( )− ( −1)| > ( ) i.o. as →∞

)
= 1

Thus we have

(5.6) lim sup
→∞

| ( )|
( )
≥ 1− − a.s.

Hence we get (5.3) by using Lemma 5.1.
Suppose the condition (5.4) holds. Namely,

∞∑

=0

(
| (0)− (− )| > ( )

)
<∞

Then we find from the shift -selfsimilarity that

∞∑

=0

(
| ( )− ( − )| > ( )

)
<∞

It follows from the Borel-Cantelli lemma that there is (ω) ∈ Z+ such that

(5.7)
(
| ( )− ( − )| ≤ ( ) for ∀ ≥ (ω)

)
= 1

Let ≥ (ω) and let = (ω) be the largest integer satisfying≥ + (ω). We
obtain from (5.7) that, for 0≤ ≤ ,

(5.8) | ( − )| − | ( − ( + 1) )| ≤ − ( − ) a.s.

Summing up (5.8) in , we have

| ( )| − | ( − ( + 1) )| ≤
∑

=0

− ( − ) ≤ ( )
1− − a.s.
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Hence we see that

lim sup
→∞

| ( )|
( )
≤ 1

1− − a.s.

Thus we establish the inequality (5.5).

REMARK 5.1. The assertions of the lemma above remain valid as→ −∞. How-
ever, we must replace− by −

1 for some 1 ∈ (1 ) in (5.5) and (5.6) as → −∞.
We need an analogue of Lemma 4.4 of [31], which is proved by virtue of (2.4).

Theorem 5.1. Let ( ) ∈ G1 and ∈ [0 ∞]. Then

(5.9) lim sup
→∞

| ( )|
( )

= a.s.

if and only if

(5.10)
∫ ∞

0

(
| (0)− (− )| > δ ( )

) {
=∞ for 0< ∀δ < and ∃ (δ) ∈ N
<∞ for ∀δ > and ∀ ∈ N.

Thus, for every ( ) ∈ G1, there exists ∈ [0 ∞] such that(5.9) holds.

Proof. The proof is clear from Lemma 5.2.

Theorem 5.2. There exists ( ) ∈ G1 satisfying

(5.11) lim sup
→∞

| ( )|
( )

= 1 a.s.

if and only if ρ∗1( ) /∈ .

Proof. Suppose thatρ∗1( ) ∈ and there is ( )∈ G1 satisfying (5.11). Then
we see from Lemma 5.2 that

∫ ∞

0

(
| (0)− (−1)| > 2−1(1− −1) ( )

)
=∞

and
∫ ∞

0

(
| (0)− (−1)| > 2 ( )

)
<∞

But they contradict the conditionρ∗1( ) ∈ . Hence if ρ∗1( ) ∈ , then there is
no ( ) ∈ G1 satisfying (5.11). Conversely, suppose thatρ∗1( ) /∈ . Then there is a
positive sequence ↑ ∞ for ∈ Z+ such that 2− ρ∗1( ) ≥ ρ∗1(2 ) for ∈ Z+. In
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case := sup∈ ρ1
| | <∞, we define ( )∈ G1 as ( ) = (1− −1)−1 on [0 ∞).

Then it is evident that

sup
∈ ρ

| | = (1− − )
1− −1

∫ ∞

0

(
| (0)− (− )| > ( )

)
= 0 for ∀ ≥ 1

and
∫ ∞

0

(
| (0)− (− )| > (1− − +1) ( )

)
=∞ for ∀ ≥ 1

Hence we see from Lemma 5.2 that (5.11) is true. In case =∞, we define
( ) ∈ G1 together with ↑ ∞ as 0 = 0 and ( ) = on [ +1) satisfying

1≤ ρ∗1( )( +1− ) ≤ 2 for ∈ Z+

Then we obtain that

∫ ∞

0

(
| (0)− (−1)| > ( )

)
=

∞∑

=0

ρ∗1( )( +1− ) =∞

and

∫ ∞

0

(
| (0)− (−1)| > 2 ( )

)
≤

∞∑

=0

2− ρ∗1( )( +1− ) <∞

It follows from Lemma 5.2 that there is ∈ [1 2(1− −1)−1] satisfying (5.9). Thus
we have (5.11) by replacing ( ) with ( ).

Corollary 5.1. Let ( ) ∈ G1. Suppose thatρ∗1( ) ∈ . If

∫ ∞

0
ρ∗1
(

( )
)

<∞ (resp. =∞)

then

lim sup
→∞

| ( )|
( )

= 0 (resp. =∞) a.s.

Proof. Proof is clear from Lemma 5.2 and Theorem 5.2.

As in Theorem 4.3, we fix > 1 and consider the family of allR -valued shift
-selfsimilar additive random sequences{ ( ) ∈ Z} in the following theorem.
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Theorem 5.3. Let ( ) ∈ G1. There exists{ ( ) ∈ Z} satisfying(5 11) if and
only if −1( ) + log(1 + ) /∈ .

Proof. We obtain from (5.1) that

(5.12)
∫ ∞

0
ρ∗1
(

( )
)

=
∫

R

−1(| |)ρ1( )

Suppose that −1( ) + log(1 + ) ∈ and there is{ ( ) ∈ Z} satisfying (5.11).
By the same way as in the proof of the preceding theorem, we seefrom (5.12) that
absurdity occurs. Thus if −1( ) + log(1 + ) ∈ , then there is no{ ( ) ∈ Z}
satisfying (5.11). Conversely, suppose that−1( ) + log(1 + ) /∈ . In case −1( )
is not finite, := lim →∞ ( ) < ∞. Let = ((1− −1) 0 . . . 0)′ ∈ R . Define
ρ1 as ρ1({0}) = 1/2 andρ1({ }) = 1/2. Then we see as in the proof of Theorem 5.2
that (5.11) is true. Thus we can assume that−1( ) is finite on [0∞). So there is
↑ ∞ for ∈ Z+ such that 0 = 1 and 2− ( −1( ) + log(1 + )) ≥ −1(2−1 ) +

log(1 + 2−1 ) for ∈ Z+ and 2 :=
∑∞

=0 1/( −1( ) + log(1 + )) < ∞. Choose
∈ R for ∈ Z+ satisfying | | = . Defineρ1 as

ρ1({ }) =
1

2( −1( ) + log(1 + ))
and ρ1

((∞⋃

=0

{ }
) )

= 0

Then we obtain that

∫

R

( −1(| |) + log(1 +| |)
)
ρ1( ) =

∞∑

=0

−1
2 =∞

and
∫

R

( −1(2−1| |) + log(1 + 2−1| |)
)
ρ1( )

=
∞∑

=0

−1(2−1 ) + log(1 + 2−1 )

2( −1( ) + log(1 + ))
≤ −1

2

∞∑

=0

2− <∞

It follows from Theorem 5.1 and (5.12) that (5.10) holds for some ∈
[1 2(1− −1)−1] and hence (5.11) is true by replacing{ ( ) ∈ Z} with
{ −1 ( ) ∈ Z}.

Corollary 5.2. Let ( ) ∈ G1. Suppose that −1( ) + log(1 + )∈ . If

∫

R

−1(| |)ρ1( ) <∞ (resp. =∞)
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then

lim sup
→∞

| ( )|
( )

= 0 (resp. =∞) a.s.

Proof. Proof is evident from Lemma 5.2, Theorem 5.3 and (5.12).

REMARK 5.2. We see from (2.4) and Corollary 5.2 that, for anyε > 0,

lim
→∞

| ( )|
( + ε)

= 0 a.s.

It follows from Remark 4.2 that, if{ ( ) ∈ Z} is increasing and not zero, then

lim
→∞

log ( )
= log a.s.

Corollary 5.3. Let ( ) ∈ G1 and ∈ [0 ∞]. Suppose that −1( ) is finite and
submultiplicative on[0 ∞). Then(5.9) is true if and only if

∫

R

−1(δ| |)ρ1( )

{
<∞ for 0< δ < −1

=∞ for δ > −1.

Proof. We prove that, for 0< δ,

(5.13)
∫

R

−1(δ| |)ρ1( ) <∞ implies
∫

R

−1(δ| |)ρ ( ) <∞ for ∀ ≥ 2

We have, for ≥ 2,

∫

R

−1(δ| |)ρ ( ) =
∫

(R )

−1

(
δ

∣∣∣∣∣

−1∑

=0

−

∣∣∣∣∣

) −1∏

=0

ρ1( )

≤ 1

−1∏

=0

∫

R

−1(δ − | |)ρ1( )

≤ 1

{∫

R

−1(δ| |)ρ1( )

}

where 1 is a positive constant. Thus (5.13) is true. Therefore the corollary follows
from (5.1) and Theorem 5.1.

REMARK 5.3. In the case whereρ1 is an infinitely divisible distribution onR ,
we can replaceρ1 and R by the Ĺevy measure ofρ1 and { : | | > 1}, respectively
in the integral of Corollary 5.3. See Theorem 25.3 of [26].
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6. Examples

In this section, we give some examples for the results in Sections 4 and 5. Let
{ ( ) ∈ Z} be anR -valued non-zero shift -selfsimilar additive random sequence
for some > 1. In Examples 6.1 and 6.2, we assume that = 1 and{ ( ) ∈ Z} is
increasing. More interesting examples will be found in [34].

EXAMPLE 6.1. Suppose thatρ1( ) = δ0( )+(1− )δ1( ) with 0< < 1. De-
noteγ = − log / log , 1 = (− log −(1− ) log(1− ))/ log and 2 = log 2/ log .
Then µ are called infinite Bernoulli convolutions with upper Hausdorff dimension 1

for > − (1− )−(1− ) and µ are the Cantor sets with Hausdorff dimension2
for > 2.
(i) Let ( ) ∈ G0. If

∫ ∞

0
{ ( )}γ <∞ (resp. =∞)

then

lim inf
→±∞

( )
(| |) =∞ (resp. = 0) a.s.

(ii) We have

lim sup
→±∞

( )
(1− −1)−1

= 1 a.s.

Proof. Since we have

λ( ) = −γ exp

(
−
∫

1

log − log( + (1− ) − )
log

)
≍ −γ

the assertion (i) follows from Corollary 4.2. The assertion(ii) is essentially proved in
the proof of Theorem 5.3.

EXAMPLE 6.2. Let 0< α < 1 and letξ( ) be a measurable function on [0∞)
such thatλ1 ≤ ξ( ) ≤ λ2 on [0 ∞) and lim ↓0 ξ( ) = λ0 for some positive constants
λ0, λ1, andλ2. Denote the constantα as

α =

(
1− α
α

)(1−α)/α( (1− α)λ0

1− −α

)1/α

Suppose thatρ1 is an infinitely divisible distribution on [0∞) given by

ρ1( ) = exp

(∫ ∞

0
( − − 1)

ξ( )
α+1

)
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(i) We have

lim inf
→±∞

( )
(log | |)(α−1)/α

= α a.s.

(ii) Let ( ) ∈ G1. If

∫ ∞

0
{ ( )}−α <∞ (resp. =∞)

then

lim sup
→±∞

( )
(| |) = 0 (resp. =∞) a.s.

Proof. First we prove the assertion (i). We have

µ0( ) =
∞∏

=0

ρ1(
− ) = exp

( ∞∑

=0

∫ ∞

0
( − − 1)

ξ( ) − α

α+1

)

Note that

lim
↓0

∞∑

=0

ξ( ) − α =
λ0

1− −α

Hence we see from Theorem 8.2.2 of [2] that

(6.1) − logµ0

([
0

1
])
∼ 1− α

α

(
(1− α)λ0

1− −α

)1/(1−α)
α/(1−α) as →∞

Define ( ) = (log( ∨ ))−(1−α)/α. Then ( )∈ G0 and we obtain (4.18) from (6.1)
with = α. It follows from Corollary 4.1 that the assertion (i) is true. Next we
prove the assertion (ii). We see from Proposition 4.1 of [31]that ρ1(( ∞)) ∈
and ρ1(( ∞)) ≍ −α as →∞. Hence the assertion (ii) follows from Corollary 5.1.

EXAMPLE 6.3. Letα > 0. If
∫

R
| |αρ1( ) <∞ (resp. =∞)

then

lim sup
→±∞

| ( )|
| |1/α

= 0 (resp. =∞) a.s.

Proof. Proof is clear from Corollary 5.2.
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EXAMPLE 6.4. Let β > 0 and ∈ [0 ∞]. Then we have

(6.2) lim sup
→±∞

| ( )|
(log | |)1/β

= a.s.

if and only if

∫

R
exp(δ| |β)ρ ( )

{
<∞ for 0< ∀δ < −β and ∀ ∈ N
=∞ for ∀δ > −β and ∃ (δ) ∈ N.

In the case where 0< β ≤ 1, (6.2) holds if and only if

∫

R
exp(δ| |β)ρ1( )

{
<∞ for 0< δ < −β

=∞ for δ > −β.

Proof. Let ( ) = (log( ∨ ))1/β on [0 ∞). Obviously, ( )∈ G1 and −1( ) =
exp( β) on [1 ∞). The first assertion is due to (5.1) and Theorem 5.1. Since−1( )
is submultiplicative on [0∞) for 0< β ≤ 1, the second assertion follows from Corol-
lary 5.3.

REMARK 6.1. Let { ( ) ≥ 0} be a Brownian motion inR and set ( ) =
( 2 ) for ∈ Z. Then the equation (6.2) withβ = 2 and =

√
2 is a discrete

analogue of the classical law of the iterated logarithm for the Brownian motion inR .
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