Ichinose, W.
Osaka J. Math.
39 (2002), 181-208

ON CONVERGENCE OF THE FEYNMAN PATH INTEGRAL
IN PHASE SPACE

Dedicated to Professor K. Kajitani on his 60th birthday

Wataru ICHINOSE
(Received June 12, 2000)

1. Introduction

It was an interested and important problem to give the deon of quantization,
i.e. of passing from classical physical systems to the spoeding quantum ones,
from the moment that quantum mechanics came into existdncéhe end we suc-
ceeded in giving it as follows: Lef be a Lagrangian function. Then the Hamiltonian
function H is defined through the Legendre transformationfofThe Hamiltonian op-
eratorH ¢ ) at timer  in quantum mechanics is defined fraimit should be noted that
H(t) has ordering ambiguities (cf. [14]). Lef  be a probabilggnplitude at times .
Then its temporal evolution can be given by the solution & 8chbdinger equation

(1.1) ih%u(l) = H(@)u(r), u(s)=f.

On the other hand Feynman proposed an essentially new plgserin his fa-
mous paper [3] which appeared in 1948. His description isdamn the notion of
a so-called path integral in configuration space. In 1951nfen himself general-
ized this description, using the notion of a path integraphrase space in [4]. Since
then, path integrals in phase space have been discussed ryy art&cles in not only
guantum mechanics but also quantum field theory. But it has hmointed out that
we have hard difficulties of giving a rigorous meaning to thethpintegral in phase
space. There is even a suggestion that such a path integrahatabe defined rigor-
ously. For example see chapter 31 in [16] and section 5 inIf2feems to us that
only Gawedzki’'s work [7] succeeded in giving a rigorous mieg to the path integral
in phase space. His approach is similar to Ito’s one in [11pmhthe path integral
in configuration space was studied. The assumptions pull an in (3] will be men-
tioned later in this section.

In the present paper we study time-slicing approximatiothef Feynman path in-
tegral in phase space and prove its convergence under sameapjassumptions. Paths
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in phase space are approximated by piecewise linear fursctib time variable in con-
figuration space and piecewise constant functions in mamergpace. This approach,
which is different from one in [7], for giving a rigorous meag to the path integral
in phase space is very familiar in physics. For example sée[¢5 [15], [16], and
[18].

We consider some charged patrticles in an electromagnetit fi®r the sake of
simplicity we suppose charge and mass of every particle toneeandm > 0, respec-
tively. Let x € R" andr € [0, T]. Electric strength and magnetic strength tensor are
denoted byE f,x ) =E1,...,E,) € R" and Bjx ¢, x Dh<j<k<n € R""~Y/2, respec-
tively. Let V(,x)e RandA ¢, x)=@A1,...,A,) € R" be electromagnetic potentials.
That is,

0A; 0V .
Ej - 8[ axj (.] 17 ) n)5
1.2) n
d (ZAjdxj) = ) BpdxjAdx; onR".
j=1 1<j<k<n

Then the Lagrangian functiod(z, x, x) is given by
a_m 5.
(1.3) E(t,x,x)—EM +x-A-V

and the Hamiltonian functiorH(z, x, p) is defined through the Legendre transforma-
tion of £ by

1
1.4 t = —|p—AP+V.
(1.4) Ht. x, p) =5 |p — A
Let 7*R" = RY x R}, be phase space and(R")!*1 denote the space of all paths

¢ :[s,1] 36 — ((¥) € T*R". The classical actior§ ] for ¢ = (g, p) € (T*R")l*1 is
given by

1
. ) d
(1.5) S(C):/ p(0) - q(0) — H(0, q(0), p(9))do, q(9):£(9)
(cf. [1]).
lLet A : 0 =16 <1n < -+ < t, =t be a subdiision of an interval [® ]
and set|A| = max<;<,(t; —t;—1). Let ¢, pU)y € T*R" (j = 0,1,...,u — 1).
Thenga =ga ¢@,xD, ... x®=D x) € (R")O1 denotes the piecewise linear func-

tion of & € [0,¢] joining (t;,x¥)) (j = 0,1 ...,u,x* = x) in the order and
pa = pa(pO, p®, ... p=1) ¢ (RO the piecewise constant function taking’
fort; <60 <tj+1(j=01...,0—1). LetS be the space of all rapidly decreas-
ing functions onR" with semi-normsf|; = 3_, < sup| (k02 f() 1=0,12...)
and take ay € S such thatx(0) = 1. Fore; > 0 (j = 01...,px — 1) and
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6 >0k =12...,u—1) we sete = (e, ..., €,-1) and e = (ey, ...
define for f € S

,eiL_l). We

(1.6) Gew(A)f = (2nh) ™ / | (expih (s, pa)

Rn Rn

L=l () () RAE)
X Hx( W o L p0 ) (ehx) b x coy/~5p

™ f(x(o))dp(o)dx(o)dp(l). . ~dp(“_l)dx(“_l).
Our path integral in phase space is defined by

lim lim G:=(A
|A|—>0(|E‘+|E"—>O ’ ( )f)

as will be seen in Theorem below.

For a multi- indeXa = (a1, ..., ) We write 98 = (9/9x1)* -+ - (0/0x,)*, |a| =
Yy, and (x) = /1 +][x[2 Let L? = L?(R™) be the space of all square integrable
functions onR” Wlth inner product-( -) and norm| - ||. Through the present paper

we assume thad'Vv, 0 A;, and 030, A; are continuous in [0 k R” for all j and
«. Our purpose in the present paper is to prove the following.

Theorem. We assume that

|0YE;(t, x)| < Ca, o] > 1,

1.7
. |02 Bjx(t, x)| < Cala)" @, fa > 1

in [0, T] x R" for constantss > 0 and C,,, where§ is independent of. In addition,
we suppose

(1.8) |0FA;| < Co foral a or 97A; =0 for |a|=2

for eachj and

|0¢ V] < Calx), la > 1,
1. " “
9 ST1000A;] < Calx), Jal > 1
Jj=1

in [0, T] x R" for a constanta* > 0. Then we have

(1) Let|A| be small. TherGzz(A) on S can be extended uniquely to a bounded op-
erator on L2. In addition, as|e|+|¢'| — 0, Gz=(A)f for f € L? converges inL?. We
write this limit asG(A)f.

(2) As|A| — 0, G(A)f for f € L? converges inL? uniformly in¢ € [0, T]. We call
this limit the path integral in phase space.
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(3) The path integral defined b{) satisfies the Scbdinger equation(1.1) wheres =
0 and
(1.10) H(t):izn:(hl) —A)?+V, D _19

' 2m 4= Y ! ’ Vi ox;”

As a typical exampleV andi satisfying the assumptions of Téraowe have
the following. LetV =a ¢ )x|?, wherea ()€ R is continuous. Letd; =A; X ) is a
linear function ofx or a bounded function QR  such thatA;(x)| < C, < )y~ @),
|a] > 2 for ad > 0.

In [7] Gawedzki gave a rigorous meaning to the path integrgdhase space under
the assumption that =0 and is the Fourier transform of a cexnfihite measure
on R". So our assumptions are much more general than his.

We prove Theorem above, mainly using somewhat delicate fination of the
argument in [9] and [10], where convergence of the path naleqh configuration
space was studied. The outline of the proof of Theorem is Hew®. Let f be the
Fourier transform/[ e=*¢ f(x)dx. Let B (a > 0) denote the weighted Sobolev space
{f € L% | fllse = I()f] +1I{-)*f]l < oo} and B~¢ its dual space with norm
| - ||5-«. We note that the classical actidh ¢ ( ) fgre (R")l* in configuration space
is given by

(L.12) 5.0) = [ £6.90).a0)0
= [ BOF +a)- 46.40) - V. q©)as

(cf. [1]). Forx, y, andp inR" let us defing,’, € (RM=1 by

(1.12) 0 =y+ "2y <0<
and ¢, € (T*R") by
(113) 50= @500 <0<,

Let e > 0 and set forf € S

(1.14)  G.(t,s)f

@y [ [expin i, p))x< Vol )f(y)dpdy, s<t,

f, s=t.
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Then we can easily have from (1.6)

(1.15)  Geez(A)f =G, _,(t, tu1)x(e}—17) -~ Gy (t2, t2)X(€1) G o (11, 0) f-
We first prove

(1.16) G(t,s)f

(\/%) /(expzh YW, 5 x, ) f(y)dy
LU )
+\/E/01A(t9p,x9(xy))d9})dp, s<t,

fios=t,

where Vi =€7/4 p=t—s, and

2

_ ts 1
I Rt

/ A0, 41%,(0))d0

8

—(r—s) / A0, q;:;(e))zde}

Sc(qyy) + F(t, s;x,y).

Set

YTV it s, X, s
(1.18) G(,5)f = (W} /(eXpﬁ w(t,six, ) f()dy, s <t

f, s=t.

Then we prove: (i) There exist constants > 0 andC > 0 so that if 0< 7 —s < p*,
both G ¢, s) andG.(z, s) (¢ > 0) can be extended uniquely to bounded operatorg on
and satisfy

(1.19) sup |Ge(t,s)f|| < ClIfIl, feL?
0<e<1

where Go(t, s) = G(t, s). (i) As € — 0, G.(t,s)f for f € L? converges toG (s J
in L2. From these results (i), (i), and (1.15) we can easily prtwe first statement
(1) in Theorem and

(1.20) G(A) =G(t, t,-1)G(ty—1,tu—2) - - - G(t2, t1)G(t1, 0).
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We prove the statements (2) and (3) in Theorem, using (1.88)showing as in [9]
and [10] thatG {, s ) is stable and consistent for the initial peob (1.1) in the sense
of words used in the theory of difference methods (cf. [13]).

The plan in the present paper is as follows. We prove (1.1&ettion 2. In sec-
tion 3 we show preliminary results. In section 4 it is showattty ¢, s) is stable. In
section 5 we show boundedness results for integral opsratoB . In section 6 we
prove (1.19) and (1.20). In section 7 we show tiaat,s( ) is ceestsfor (1.1) and
then complete the proof of Theorem.

2. Representation in configuration space

Lemma 2.1. Letx,y, andp inR" ands < ¢t. We considery € (R")*/ such
that ¢(s) = y and ¢(r) = x. Set¢ = (g, p) € (T*R")!>1, Then we have

S G I ] e TN e DB

S(Q) = - m lp— 2+{ 20 ) + ) [ A, 9(0))do

-[ V(e,q(e»de}

1 ' 2 :
+m{ / A(0, q(6))db —(t—s)/s A(a,q(e))Zde},

where

- 1 oL . 1 r

L : g(e,q(e),q(e))de_m/s mi(0) + A0, ¢(6))do.

Proof. We have from (1.4) and (1.5)

@D SO= [ a0 5lp - AG.GO)F - Va0

and so together with (1.3)

0 " 1
5550 = [ a0) =~ (p = 40, qOM)a0

La—gpet / g—f(e, 4(0). 4(0))do,

where 9S(¢)/0p = (0S(C)/0pa1, - .., 0S(()/Op,). So the equatiordS(¢)/0p =0 in p
is equivalent top =p*. Consequently, noting tha () is a polynomial of degree 2 in
p, we have from (2.1)

(t—>s)

om |P - P*|2 + S(O|p=p*-

(2.2) S =—
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We use the assumptiaps ( )y= amgdr ( x= . Then we have from (2.1)

t ! 1
p-(x—y)— zi{(t fs)\p|272p~/ Ad9+/ |A2d9} 7/ Vdo
m A s s

1 t 1
p (t—s) 2 / 1 / 2
z —v)+ I S _ _
- {m(x y) /s Ad@} |p| i Vdeo om | |A|“d6.

5@

Using

* 1 ! . _ 1 t
N _s)/S mq(0) + AG.qO)d0 = = {m(x 7y)+/s Ada},

we have

2 1

S@lp=p- = mT_s)""(x—y)* / Ad| — 5

m(x—y)+/tAd9 —/tVdG—%/IMFdG
_mlx—y? x—-y) [ !
‘{ 20-9 s ), A””’*/s V‘”}
1 ! 2 t
+72m(t_s){[Ad9 —(t—s)[ A|2d9}.

So we can prove Lemma 2.1 from (2.2). ]

2
X

Proposition 2.2. Let G.(t,s) be the operator defined bfl.14) Then we have
(1.16)

Proof. Letr >s. We can write from (1.11) and (1.12)

t
m.,. s iy 0 s s
@3 Slai) = [ BUEOF + 0 A0, 4500 - V. 400

_mpx -y (x—) /r s _/t
T s s ) AC @O0 | vdo.

Consequently we have from Lemma 2.1

(t —s)

@4) SE5) =~

XY, P

(2.5) P

‘p _p*|2+\p(t’S;x’ y)’

1 ' 1,8
) {m(x -+ / A(0, qx;y(e))dg}

(t}s) {m(x—y)+(t—s)/olA(t—H(t—s),x—@(x—y))dH},
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where ¥ is the function defined by (1.17). Substituting (2@tpi(1.14) and making
the change of variable®R” > p — p’ = \/(t —5)/(mh)(p — p*) € R", we have

G(t,s)f = (2nh)™" (\/ %) /(eXpiﬁ’l‘I')f(y)dy
T N = e

Hence we obtain (1.16) from (2.5). ]

3. Preliminary results

Let M > 0 be a constant ang x(w ) an infinitely differentiable functionR?*
such that

(3.1) 10207 p(x, w)| < Cap(x;w)™, x,weR"

for all a and 3 with constantsC,, g, where (x; w) = /1 +|x|? + |w|?. Let W (, s;x, y)
be the function defined by (1.17). Fgre S we define

(3.2) P(t,s)f

(W) /(expzh (s x, y))l?( \/—ys>f(y)dy, s <t

h 1 2
< 27’:'71) OS*/ (eXp%) p(x, w)dwf(x), s=t,

where Os- [ g(w)dw means the oscillatory integral lim [ x(ew)g(w)dw. It is easy
to see that the formal adjoint operatat ¢, { * df P(z,s), defined by the relation
(Pu,v) = (u, P*v) for u andv inS, is written as

(3.3) P(t,5)" f

(%) /(eXp iR (s yvx))l’(y’ \/—)f(y)dy, s<t,

; n . )
( %) Os— /(explf’mw')p(x, w)dwf(x), s=t,

where p(x, w) is the complex conjugate gb x(w ).

Remark 3.1. Setp ¢, w ) = 1 in (3.2). Then we havBr,f ) &6 ) from
(1.18) and

L1 2 ; n
(34) Os_/(expm)dw = < @) .
2 m
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Lemma 3.1. Let p(x, w) be a function satisfying3.1). We assume that there ex-
ist constantsM’ > 0 and C,, satisfying

(3.5) 02V +Y 02 A;| < Calx)™,  (t,x) €[0,T] x R"
j=1
for all a. Let f € S. ThendX(P(z, s)f) are continuous M <s <7 <T andx € R"

for all a.

Proof. We can writeF (s %,y ) defined by (1.17) as

2

(3.6) F(t,s:x,y) = 2';{‘/01A(t —0p,x — O(x — y))db

1
-/ |A(tep,xe(xy»|2de}, p=t—s.
0
We can also write from (2.3)

%.,.(x_y)./o At —0p, x — 0(x — y))d

1
fp/o V(i —0p,x —0(x — y))do.

3.7) Se(ayy) =

Make the change of variable®” 5 y — w = (x — y)/vt —s € R" in (3.2). Then,
using (1.17) and (3.7), we have

©8) Pa.s)s = (| gy ) 05 [ pta (e - Viwldw, s <
1
(3.9) ¥(t,s:x, w) = %|w\2+ pw-/o A(t — 0p, x — 0 /pw)db

1
—p/ V(t—0p,x —0\/pw)df + F(t,s;x, x —\/pw)
0

m
E|w‘2+¢(t’S;x’ \/ﬁw)’
where
1 1
otosix€) = € [ A~ 0p.x =000~ p [ Ve~ 0p.x— 06)d0
0 0
+F(t,s;x,x —&).
We have from the assumption (3.5) together with (3.6)

(3.10) 08000| < Cap(x; )™, 0<s<t<T, x, E€R"
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for all o and S.

Let L = (w)~?(1 — ihm*lz’}zl w;d,,) and’L its transposed operator. Let<0
e < 1. Then we have from (3.9)

@11 [ )l ) - Vu)du
) / eI L) (TSNP (ew) px, w) £ (x — /pw) }dw
fori=0,1 2.... Noting f € S, we see from (3.1) and (3.10)

(L) {0 vVP\ (ew) p(x, w) f(x — v/pw)}]
< C[,N<w>_l<x; \/ﬁw>l(2M’+l)<x; w>M<x _ \/ﬁw>_N

forany N =Q 1 2..., whereC, y is a constant independent okQ < 1. So using
(x;y) < (x)(y) and (x +y)~t < V2(x)(y)"!, we have

(L) (" x(ew) p(x, w) f(x — \/pw)}]

< C[/N<x>l(2M'+1)+M+N<\/ﬁw>l(2M'+1)7N<w>Mfl.
Take! andN sothat> M +n+1 andN > [(2M’ +1). Then

(3.12) (LY el sV (ew) plx, w) £ (x — y/pw)}|
g C<x>l(2M/+1)+M+N<w>7(n+1), 0 S s g t S T

with a constantC independent of-0e¢ < 1. Hence, applying the Lebesgue dominated
convergence theorem to (3.11), we see from (3.8) and (3a8)Aly, s)f is continuous
in0<s <r<Tandx € R". Noting (3.10), we can prove in the same way that
0%(P(t,s)f) for all o are also continuous. [

Let x, y, andz inR" and X s <r<T.WesetforO<o,<0;<1

(3.13) 7(0) =7(01,02) =t —o1(t —5) € R,
Y(o) =v(o1, 02, %, y,2) =z +o1(x —2) +o2(y — x) € R".

We also set

Bjx=—Byj, 1<k<j<n,

(3.14)
Bjj=0, ]:LZ,H

Lemma 3.2. Let p(x, w) be a function satisfying3.1). Let f € S. Then for any
O<e<land0<s<t<T we have
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15 PO NP = (s [ 100y [

X <expl c—y)- e (Ds))p(Z’ %)p(z, %>dz’

where ® = &(t,s;x,y,z) = (P, ..., P,) and

. . _ 1
(319 Pz % * (tm—S)/O Aj(s, y +0(x — y))do
— n 1 rop
_ (¢ ms) ;(Zk — Xk)/o /0 Bjk(T(o')’ v(0))dosdoy
- 5)?

1 ro;
/ / E(7(0). 1(0))doadoy
0 0

0 [0, F)esizy + o~ y)ao,

Proof. It follows from (3.2) and (3.3) that
1) P WP = () [ S0
X /|X(ez)|2{exp—ih‘1(\ll(t,s;z, x)—U(, 5,2, 9)}

X Z S z S dz
p K /t _ S p 9 /—t — s -
We write from (1.17)

(3.18) w(t,s;z,x)— W(t,s;z,y)
= 8c(q2y) — Segly) + F(t, 552, x) — F(1, 5,2, y).

SetA = (=V, A), x=(t, x), andq;",(0) = (0, ¢;:(9)). Then we can write from (2.3)

mlx — y|?
gy =2+ [ ALax.
Z(t—s) -

Y

So, using the Stokes theorem, we have
Se(gly) — Se(qly)

e ) [ o [[ao o

X,y

where A is the 2-dimensional plane with oriented boundary comsisbf —qy, qgs}
and —q’%. Noting thato = (01, 02) in (3.13) are coordinates with positive orientation
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on A, we obtain as in section 3 of [9] and as in the proof of Lemmai@.10]

(8.19)  S.(gh) — Sc(a

— o (e ) e [ Aot - as

+;(xj =) ;(Zk - xk)/o /O Bji(7(0), ¥(0))dozday

1 por
#e-9 -9 [ [ B )doadon
0 JO
Hence we can prove Lemma 3.2 from (3.17)-(3.19). ]

4. Stability of G(t, s)

We write @ =@ ¢, s ;x, y, z) defined by (3.16) as

B 1
@) 32+ ) [ty 00 - yas
) - )B(t $1X,v,2) — (t:n—s)zE’(t,s;x,y,z)
( 5)

- 2F'(t,s;x,,2),

whereE' = (Ef, ..., E)), B'=(By,...,B)), and F' = (F{, ..., F)).

n

Lemma 4.1. Assume(1l.7) and (1.8) in Theorem Let «, 5 and v be multi-
indices such thafa + 5 ++| > 1. Then we have foj =1,2...,n

4.2) 0000 E)| < Caprs
(4.3) 020707 B| < Cap.rs
(4.4) 080T F]| < Capyy 0<s<t<T,x,y,zER"

Proof. The inequalities (4.2) and (4.3) can be proved fron¥)(1These have
been already proved in page 28 of [9] and Lemma 3.1 of [10]. e easily prove
(4.4) from (1.8), noting (3.6). U

Proposition 4.2. Assume(1.7) and (1.8). Then we have
(1) There exist constants* > 0 and ¢o > 0 such that the mappingR” > z — ¢ =
@(t,s;x,y,2) € R" is homeomorphic andeto®/9z > ¢o for all 0 <1 —s < p*, x,
and y. We write its inverse mapping &' 3 £ — z = z(t, s;x,y,&) = (22, .-+, 20) €
R".
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(2) We have forj=1,2...,n

(4.5) |6§‘8§8gzj(t, 5;%, 9,8 <Capy |atB+y>1,
0<t—s<p*" x,y,£€R".

Proof. It follows from (4.1) that

0o (t—s)0B" (t—s)?0E" (t—s)OF'

(4.6) 0z m 0z m 0z m 0z’

where I, is the identity matrix. So, using Theorem 1.22 in [IW§ can prove the
statement (1) from Lemma 4.1.
We note that we have from (1.8) fgr 51 .2.,n

(4.7) 04,1, %)| < Cav o] > 1
in [0, T] x R". So we obtain together with Lemma 4.1

(4.8)  |000J0Y®| < Cupy. la+B+q|>1 0<s<t<T, x,y,z€R"

Hence we can prove (2) from (1). Ll

We fix p* > 0 determined in Proposition 4.2 hereafter.

Theorem 4.3. Assume(1.7) and (1.8). Let G(z, s) be the operator onS defined
by (1.18)and 0 <t —s < p*. ThenG(¢, s) can be extended to a bounded operator on
L2, In addition, there exists a constait > 0 such that
(4.9) IG@. ) f| <V f]l. 0<t—s<p’ feL?

Proof. The proof below is analogous to that of Theorem 3.79hand of The-

orem 3.3 in [10]. Letr =s . Then (4.9) is clear. LetQ¢t — s < p*. It follows from
Remark 3.1 and Lemma 3.2 that

G(t,s)*‘X(E')‘ZG(t,S)f
_ m " 2 . m®
- (Tw _s)) [ 10y [ 1) (expz(x ) s _S)>dz.

We can make the change of variablég: > z — & = ®(t, s;x, y, z) € R" from Propo-
sition 4.2. Then
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@10) Gl PGS = (s ) [ fo)

< [ eesix, s, 0 (expi 3y ) det e

We can prove from (4.6), Lemma 4.1, and Proposition 4.2 that

(4.11) detg—z =1+ —s)b(t,s;x,y,8),
(4.12) 02077 b(t, 57 %, 3, )| < Cap, for all o, 8, andy.

Consequently we can write

@1 Gl @Peer = (5 ) [ 1oy [esix
x &= (1+@ —s)b(t,s;x,y,8))dn, €= @
Noting (4.5), we can prove from (4.13) fof € S

(4.14) lim G(t. s)"[x(e)*G(t. 5) f

:f+(t—S)<21) o5 [[ et y)"b(tsxy, e - )”>f(y)dydn

in the topology ofS. The second term on the right-hand side of (4.14) is a pseudo-
differential operator with double symbol (cf. [12]). It folvs from (4.12) that we can
apply the Calddém-Vaillancourt theorem (cf. [12]) to this term. Then thesrists a
constantk > 0 such that thel.-norm of this term is bounded byR¢ ¢ s)| f| for

all f € S. Consequently we have

lim ()G, ) f | = (G e, s) [\(€) PG, 5) . f) < €5 £
and so by the Fatou lemma
G )fIl < I f]. fes.
Hence we can easily complete the proof of Theorem 4.3. ]

The corollary below follows from Theorem 4.3.

Corollary 4.4. Assume(1.7) and (1.8). Let |A| < p*. Then we have for allf €
LZ

(4.15) ||G(t, tu—1)G(ty—1,tu—2) - - - G(t2, t1)G(t1, O) f|| < eX'|| f|l, O0<t<T.
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Remark 4.1. LetF ¢, s ;x,y) be a function satisfying (4.4), where

1
P :/ (5_F) (1,512, y +0(x — y))db
o \9y;

and defineWw £ s x,y ) byS. 4 ) # s %,y ) ands t(s ) by (1.18), respectively.
Assume (4.2), (4.3), and (4.7). Then we can prove that theesasults as in Theorem
4.3 and Corollary 4.4 hold, following our proofs.

5. Boundedness of integral operators

Lemma 5.1. Assume(1.7) and (1.8). Let z;(¢,s;x,v,€) (j =1, 2 ...,n) be the
function defined irProposition 4.2 Then

h /
i Zj t,s;x,x+\/_y,@+ \/577 *Xj
N m m

can be extended to be continuousOn< ¢ — s < p*, x,y,n, and»’ in R", where
p=t—s. We also have foj =1,2,...,n

h h/pn’

m

(5.1)

< Cy/p(L+[x]+ |y +[nl + 0],

hpn , B/pnf

m

(5.2)

87‘;‘87‘;‘,,8585/ <zj (t,s;x,x+\/ﬁy, ) —xj>‘ < Ca.ar 8.8 VP>

la+a'+p+8>1, 0<t—s<p", x,y,n,n €R"

Proof. Letz =z €, s x,x +/py, hpn/m +h/pn’/m). Then we have from (4.1)

B hy/pn 2x + L
hpn b/ :Z_M.Fﬁ/ Als, x + (1= 0)/py)dd
m m 2 m Jo
p *
— =B'(t,s;x,x+\/py,2) — —E'(t,s;x,x +\/py, z)
m m
—%F’(z‘,s;x,x+\/ﬁy,z)
and so

— / 1 3/2
(5.3) < x:X+M+hi_@/ Ad9+ﬁB/+p—E/+\/—ﬁF/,
VP 2 m m m Jo m m m

Hence we can easily complete the proof, using (4.7), Lemrhaahd Proposition 4.2.
]
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We can prove Lemma 5.2, Proposition 5.3, and Theorem 5.4wbe® in the
proofs of Lemma 4.2, Proposition 4.3, and Theorem 4.4 in,[18%pectively. So we
give a little rough sketch of their proofs.

Lemma 5.2. Assume(1.7) and (1.8). Let p(x, w) be a function satisfyind3.1)
and P(z, s) the operator defined b{3.2). Let0 <7 —s < p* and set

(5.4) q(t,s;x,7) = (%)HOS_ //e_iy'n/p (z’ %)p <Z’ #)

Jz hon | hy/pn/ /
t— ; + —_
x de o€ <t,s,x,x NI p” dydn’,

wherez = z(t, s; x, x +/py, hpn/m + h,/pn’ /m). Then we have
(1) For any a and 3 there exists a constar@, s such that

(5.5) 0507 q(t, s3x,m)| < Ca sl ).

(2) We have forf € S

(5.6) 1P(,9)f1I? = (Q(t, s:x, D) S, f),

where O(t,s;x, D,) f is the pseudo-differential operat§@r)~" [e/*q(t, s; x, n) f (n)dn.
Proof. We use the integration by parts with respectyto  ahdih (5.4). Then

we get the statement (1) from (4.5), (5.1), and (5.2).

We consider (2). Letf € S. At first let 0< t —s < p*. As in the proof of (4.13)
we can easily show from Lemma 3.2

(5.7) P(t.s)" [x(e)P(t.5) f
= (%) /f(y)dy/IX(GZ)Ize"("""””p (z, Z\;ﬁx>p (z, Z\;ﬁy)
X detg—z (t, S X, Y, %) dn

l n ) o
(E) /f(y)dy/e’(x DG (t, 55 x, y, n)dn,

wherez =z ¢, s x, y, hipn/m). The right-hand side above is a pseudo-differential oper-
ator with double symbol. Set

1\" iy ~ "
. . - _ iy-m . + + /‘
(5.8) qe(t,s;x,m) <27T) Os //6 qe (t,S.x,x NOR \/ﬁ) dydn
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Then since

1 n - -
9elt, six,m) = (Z) Os- //”'" Gelt, s3x, x + y,n+)dydr,

we see from Theorem 2.5 of chapter 2 in [12] that the rightshside of (5.7) is equal
to Q.(t,s;x, D,)f. Consequently we hav® r,6 *|\(e-)|?P(t,s)f = Q.(t,s;x, Dy)f
and so

(5.9) IX() P, ) F11? = (Qe(t, 5%, D). f).

We write from (5.7) and (5.8)

9elf, 5i4,7) = (%)nOS— / / NG <z, Z\;ﬁ)‘)

2=x—py\ 0z hpn b/’ /
><p< 7 )deta§<tsxx+\/—y, - dydn’,

wherez =z € s x,x +/py, hpn/m + h,/pn’ /m). Hence, lettinge tend to 0, we can
show as in the proof of the statement (1) that the right-hadd ef (5.9) converges
to (O(t, s;x, Dy)f, f). Thus we could prove? (s f)e L? and (5.6).

Let r =s. It follows from (4.1) and (5.3) that

z(s, s;x,x,0) =x, det< )(s §;x,y,8) =

and

1
Iim—< (tsxx+ Py, —
t%s\/ﬁ \[

Substituting these equations into (5.4), we have

1\" - hn'! — hn'
q(s,s;x,m) = — | Os— //e*’y'77 p|x, Y plx, AL dydn’
27 2 m 2 m
2
m " i m|w|?
= <%) Os— //eh wI/2 p(x, w)dw

Hence we see (5.6) from (3.2). O

ﬁpn ﬁfn) x>:X+
2

m

Proposition 5.3. Assume(1.7) and (1.8). Let p(x, w) be a function satisfying
(3.1). Then we have

(5.10) |P@.s)fI| < Cllfllpn, O0<t—s<p" feBY
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for a constantC .
Proof. There exist a constapt, > 0 and awy £, n) such that we have
|05 0 war (x, )| < Caplx;m) ™
for all « and 8 and
(5.11) War(x, Dy) = (ua + ()M + (D)) on S

(Lemma 2.3 in [8]). LetQ A, s x, D, ) be the operator determined in Lean®2. Then
we can prove

(5.12) [Wa(x, Dx)Q(t, 55 x, Di) f|| < Const|| f|| gu

from (5.5), using Lemmas 2.1 and 2.5 in [8]. Consequently aeeh

(Wat(x, D)OS, (1w + ()™ + (D)™) f)
Const| f||3w, 0<r—s<p*, fecBY.

(Q(l, S5 X, Dx)f’ f)

IN

Hence we can prove (5.10) from (5.6). [
Remark 5.1. LetF ¢,s;x,y) and¥ 4, s x,y ) be the functions stated in Remark
4.1 andp &, w ) a function satisfying (3.1). Let's defiret, s ) by {3i2 general.
Assume (4.2), (4.3), and (4.7). Then we can prove (5.10)pviahg our proof.
Theorem 5.4. Assume(1.7), (1.8), and
(5.13) 00V (. x)| < Calx)”, o] >1

in [0, T] x R" for a constantb* > 0. SetM* = maxp*, 1). Let p(x, w) be a function
satisfying(3.1). Then we have fof=0,1 2 ...

(5.14) | P(t,5)fllg < Cillfllguar=, O0<t—5<p* fe BMIM
Proof. Let's use (3.8). Then we can write

(5.15) 0y (P(t,9)f) =Y Pslt, )@y 1),

BLa

where 5 < a meansf; < «; (j=1,2...,n). We have from (3.6) and (4.7)

(5.16) 0200 F(t,57x,y)| < Cap(L+|x|+]y]), |+ > 1.
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So we get from (3.9) together with (4.7) and (5.13)
10507 (e, 5.3, w)| < Car g (3 y/pw) ™
for all o’ and || > 1. Consequently we have
(5.17) 10502 pa(t. s1x, w)| < Car g (x; w)MHIM

for all o’ and g'.

Let W, = W,(x, D;) (@ > 0) be the operator defined by (5.11). We can write
W, (05 f) = WaafWaj‘la‘(WaHa‘f). As in the proof of (5.12) we get together with
Lemma 2.4 in [8]

(5.18) 107 fllg« < Const||W, (07 f)l
< Const||Wsjo| f |
<

Const|| f

Batlel .

Using Proposition 5.3, we have from (5.15), (5.17), and&p.1

1Yo P )Pl = ||D ()Pt $)oe P f

Ba

COI’]S'[.Z ||8)(C¥_Bf||BM+|G|M*+k

B<a

< Const.> || £l guersisesesia—s
B<a

< Const|| f| gusjaiaeess.

IN

From this we can easily complete the proof. ]

Corollary 5.5. Let p(x, w) be a function satisfyind3.1). We see under the as-
sumptions ofTheorem 5.4that P(¢,s)f for f € BMYM" (1 = 0,1,2..) is a B'-
valued continuous function i <1 —s < p*.

Proof. Let 0<t—s <p* andg € S. As in the proof of (5.18) we have
107 ((x)"/Z P (1, $)g)l| < | P(t, 5)gl|gnszrssa -
Hence we have together with the Sobolev inequality and §5.14

|<x>”/2+1P(t, s)g|
< Const. > [[07((x)"/** P(t, 5)g)]

|a|<n/2+1
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< Const|| P(z, s)g|| g
< Const||g|| prrasams < o0,

So |P(t, s)g| is bounded by a function id2(R") uniformly in 0 < ¢ —s < p*. Con-
sequently, applying the Lebesgue dominated convergeremein toP {,s § , we see
from Lemma 3.1 thatP (s 9 is al?-valued continuous function in € t — s < p*.
We have from (5.14)

IP(t',s")f = P(t.)f|| < | P(t'. s")g = P(t. 5)g|| +2Col| f — gll

for f € BY andg € S. Hence we can easily prove th&ts, § f) fgre BM is also
an L?-valued continuous function in & r —s < p*. In the same way we can prove
the statement in general. U

6. Convergence ofGzz(A) as [¢| + €| — 0

Let G.(r,s) be the operator defined by (1.14). We proved (1.16) in Psijoo
2.2. We can write (1.16) as

<\/%) /(eXpih‘1\D(t,s;x, )

X pe (t,s;x, ;;Tys) fdy, s <1,

(6.1)Ge(t.9)f =

f, s=t.

Then we can easily prove the following from (3.4).

Lemma 6.1. Assume(4.7) for j = 1,2 ...,n. Then there exist constants, s
independent 00 < € <1, 0< s <t < T, and (x, w) € R? for all o and 3 such that

(6.2) 10502 pe(t, 53 x, w)| < Cap.

We also have

(6.3) i@oa,‘jaf(pe(t, s;x,w)—1)=0 pointwisely
for all « and g3.

Proposition 6.2. Assume(1.7) and (1.8). Let0 <t — s < p*. Then we have
(1) There exists a consta@t  independentOof ¢ < 1 such that

(6.4) Gt ) fl <Clfl, felL?
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(2) We have

(6.5) im [|Ge(t,5)f = G@t.5)f[ =0, fe L2

Proof. The statement (1) follows from Lemma 6.1 and Projmwosib.3. We con-
sider (2). Letr > s. We have from (1.18) and (6.1)

Gt,s)f —G(t,s)f = ( /%) /(expih—llll(z,s;x,y))

X {pe (t, 53X, %) - 1} fy)dy.
Let's apply Lemma 5.2 taG.(¢, s) f — G(¢t,s)f. Then we have from (6.2)

(6.6) 1Ge(t,5)f — G(t, ) fIIP = (Te(t, s;x, D) . f),
(6.7) |00 027e(t, 3%, m)| < Cap < 00,

for all o and 3, whereC, g are independent of &2 ¢ < 1, 0 <t —s < p*, and
(x,n) € R?. In addition, we can easily prove

(6.8) Iimoajfﬁf%(t, s;x,m) =0 pointwisely

for all « and 3, noting (4.5), Lemma 5.1, (6.2), and (6.3). Using Lemma 2.78],
we get from (6.7) and (6.8)

Iim0 IT(z, s;x, D) f|| = 0.
Hence we can prove (6.5) from (6.6). ]

Theorem 6.3. Assume(1.7) and (1.8). Let |A| < p*. Then we have forf € L?
(6.9) . +I|i21|_>0 Gez(A)f =Gt 1, 1) - G(t1,0)f in L?
and so(1.20)
Proof. We have from (1.15)
Gee(A)f — Gt ty—1) - G(12, 0)

i
= Z Ge”,l(t’ t,u—l)X(e,/u—l')Geﬂ,z(t,u—la t,u—Z) T X(elj’){Gej,l(tj, tj—l)
j=1

pn—1
—G(tj. tj-1)}G(tj-1.tj—2) -+ G(t. O)f + > Ge,,(t. tu—1)x(€), 1)
j=1
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XGe, (tu-1,1u-2) - G (tjs1, ;) {x(€}-) = 1}G (), ;1) - - - G(11, 0)
and so from (4.9) and (6.4)
(6.10) |Gee(A)f —G(t,t,—1) - - G(r1, O) f ||

m
< CO“St-Z {Ge,_,(tj, t;j—1) — G(t), t; 1)} G(tj—1,t;2) - -~ G(t1, O) f |
=1
pn—1
+Const> " [[{x(¢})) — 1}G(tj. tj-1) - -- G(t2, O)f .

j=1

Using Proposition 6.2 and the Lebesgue dominated conveegdreorem, then we can
prove (6.9). ]

7. Proof of Theorem
Lemma 7.1. We assume that there exists a constafit > 0 satisfying
n 1
(7.1) 02V (@ x)[ + DS |0F0 At x)] < Calx)™
j=1 k=0

for all o in [0, T] x R". Let H(¢) be the Hamiltonian operator defined 1§%.10) Then
there exists a continuous functioffr, s;x,w) in 0 < s < ¢ < T, x, andw inR"
satisfying(3.1) for an M > 0 such that forf € S

(7.2) (m% — H(z)) G(t,s)f

=\t—s (1 /%) /(expih*1W(t,s;x, )r <t,s;x, \);;Tys) f(y)dy

=Vt —sR(t,s)f, 0<s<r<T.

Proof. We note (3.6). Then we have

X =y
(7.3) Oy F(t,s:x,y) = pp (l, 8§ X, ) ,
' NG
(7.4) AF(t,5,x,y) = \/pp2 <t, S;X, u) ,
NG
and
(7.5) O F(t,s;x,y)=\/pp3 <t,s;x,x\/ﬁy) , p=t—s,
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using the Taylor formula for the proof of (7.5). Hepg ¢, { x,w ) ( 5 13} are
functions satisfying (3.1) for am/
We get by direct calculations

.0 _ /
(76) <lh5 — H(t)) G(t,s)f = — < m) /(eXplh l\IJ(t Sy X, y))

iy
< (teosino )+ goratusix, ) £0M,

where

n

1 2
OVt 52, 9) + o D (06,W = Aj(t.x)) "+ V(e x),

=

— AW+ 0y At x)
J

r

nm

r2
t—s

and so from (1.17)
A 1 - S 2
77 = {afsc(q;:y) o> (04 8e(ary) — Aj(e x) "+ V(t,x)}
Jj=1

1 n
+{8,F(t, sx )+ > (0x,Sc(gly) — Aj(t. x)) 0y, F (e, 55 x, y)

j=1
+ ii(a F)Z}
2m £ i
j=1
=11+ 1,

{ - s DS 9} - 8, six,)

N

(78) ro
=J—AF(,s;x,y).

It follows from (2.3) that

m|x — y|? '
Selaxy) = 7+(x—y)- A(t —Op, x — 0(x — y))do
2(t —s) 0
t —
/V(@,y+9 s(xy))d9
P r—s
So we can prove
LSy = _ |X y‘ o . X—y
9Sc(q.y) 20— V(t.x)+\/ppa <t,s,x, 7 )



204 W. ICHINOSE

Here let's use (2.23) and (2.25) of [9]. Then we have

(79) Il = \/ﬁpg) <l,S;x,x\;py),
-y
7.10 J = t,8;X, .
(7.10 Virs (1.six. 222
We have from (2.22) of [9]
m (x; —yj )’l)
axj- SC(Q;’S~) —A ‘(l, .X') = == \/—
SEYY = f z ﬁ
3Ak — k) ( X — y>
— + t,s; x, ——
2\[2 \/ﬁ pp7 7
and so together with (7.3) and (7.5)
(7.11) L= \/pps <t S X, x\/ﬁy) .
Hence we can complete the proof together with (7.4) and {(7.6)0). L]

Proposition 7.2 below follows from Lemma 7.1 and Theorem 5.4

Proposition 7.2. Assume(1.7), (1.8), and (7.1). Let M* and M be the con-
stants determined inmrheorem 5.4and Lemma 7.1 respectively. Then we have for
[=0,1,2...

.0
(7.12) H (lhat — H(I)) < Civt = s|| fl| gusia=
B!

O0<t—s<p*, feBMIM

Theorem 7.3. We assumél.7), (1.8), and (7.1). Then there exist a constaht>
0 and a function\(p) > 0 in 0 < p < p* such that

(7.13) lim A(p) =0,
p—0

G@t,s)f — f
N

(7.14) Wh t

H(s)ng/\(ts)HfHB:, O<t—s<p*, feB.

Proof. Noting Lemma 3.1, we can write from Lemma 7.1

LGt f—f _ ., [1OG
(715) lh? - lhA E(S‘i'gp, s)fd9
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1 1
= / H(s +0p)G(s +0p,s) fdo + \/ﬁ/ VOR(s +0p, s) fdb,
0 0
p=t—s, fes
and so

(7.16)

inSUS =T gy
t—=s

1 1
= [ HG 006+ 09,011 Fyav+ [ (G005 — HO)pYas
1
+\/ﬁ/ VOR(s +0p, s) fdb.
0

We see from (7.1) and (7.15)

(7.17) [H(s +0p){G(s +6p,s)f — [}
< Const|[G(s +0p, s).f — fllp:
< Constpl|f | 5.

for somel; and/, > 0, using Theorem 5.4. We have
V(s +0p, ) f = V(s )f | < (suplV (s +0p,) = V(s, ) )M D) £ gurron.

It follows from (7.1) that lim, . |V (t, x)|(x)~™"*Y = 0 uniformly in ¢ € [0, T]. So
we can easily prove

lim (sup|V (s +8p, ) = V(5. )|(-) ") =0
pP—

uniformly in s € [0, T]. Consequently there exists a functiof(p) > 0 such that
(7.18) lim \(p) =0,

p—0
(7.19) V(s +0p,)f = Vs, )F I < XNt = )] £ ]| .

Hence, noting the assumption (7.1) dn¢, . ), we can prove theaetkxist a function
X'(p) > 0 and an/z > 0 satisfying lim,_o\”(p) =0 and

(7.20) [H(s +0p)f — HE) || < X't = 5)[ ] gss-
Thus we can prove Theorem 7.3 from (7.16) together with (7ati@l (7.20). U

Proof of Theorem. We proved the statement (1) of Theorem arDY in Theo-
rem 6.3. LetH () be the operator defined by (1.10). We are asgui{i.8) and (1.9).
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Consequently we see from Theorem of [8] that for afif B (—oo < a < o) there
exists a unique solutio® (s f) B -valued continuous aBft?-valued continuously
differentiable in 0< s, r < T, of the Schodinger equation (1.1) and that we have

(7.21) { WU, s)fllpe < Co(T)||fllpe, aFO,

U@ s)fIl =171

Hence we can prove the following as in the proof of Theorem Tlt&re exist a con-
stant!’ > 0 and a function\,(p) > 0 in 0< p < p* such that

(7.22) lim A(p) = O,
p—0

029 [ L g <o slislp0ss << fe s

We can write

ihG(t,s)f —ihU(t,s)f

— (l‘—S){l.FLG(t’ s)f_f ihU(t’s)f_f
-5 -5

~HO |09 ~HOI
So we have from (7.14) and (7.23)
(7.24) ||G(t.s)f = U(t. 5)f|| < Const.t — s)A(t — s)[| fllpe. O<t—5<p",
where \(p) = max(\(p), M (p)) anda = max{, I’). We also have from (7.13) and (7.22)
(7.25) Lir_’?o;\(p) =0.
Let f € B® and |A| < p*. We write by (1.20)

G(A)f - U(t,0)f
G@t,ty-1)-G(t1,0)f = U(t, t,—1)---U(t1,0)f

I
Z G(t, ty—1) - Gtj+1.1;)(G(tj, tj-1) — U(tj, tj-1))U(tj—1, 0)f.
j=1
So we have from Theorem 4.3 and (7.24)

m
IG(A)f = U(t, 0)f|| < Consty " eX™(t; — t; 1)A(t; — t;-1)|U(tj -1, 0)f | 5=
j=1

m
< Conste®”  sup Mp) Y (t; — t;-0)||U(tj—1. 0)f || 5o
o<p<ial 4o
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Consequently we obtain together with (7.21)

(7.26) |G(A)f — U(t,0)f|| < Const&™T  sup A(p)| f
0<p<|A|

g, 0<t<T, feB"

Hence it follows from (7.25) that agA| — 0, G(A)f for f € B“ converges to
U(t,0)f in L? uniformly in ¢ € [0, T].
Let f € L? and|A| < p*. Using Corollary 4.4 and (7.21), we see for agy= B¢

(7.27) [|[G(A) f — U1, O)f [ < [[G(A)g — U, O)gl| + (1 + €T ) f —gl, 0<t<T.

Hence we can easily prove that A (f) convergedito, (f 0) Linuniformly in ¢ €
[0,T] as|A] — 0. Thus we could complete the proof of Theorem. ]

Remark 7.1. As in [9] and [10] we assume
0,02V (t,x)| < Calx), |a|>1

for a constant* > 0 besides the assumptions of Theorem. Then, following ooofpr
we can easily see that we can take Cqpigtas A(p) in (7.14) and take Congt.as
Au(p) In (7.23). Consequently we obtain (7.26) where SYR 4| A(p) is replaced by

V1Al

Remark 7.2. In [9] and [10] we studied the path integral in configimatspace
defined by

Iz o "
7.28 lim __m 057/ [ (expin-is,
(7:28) IAIHOJI.:{ < 2rih(t; — tjl)) . R”( p (q4))

X FxdxOax®. .. gxr=1)

wherega =ga @, x®, ... x¢#=D x) e (R")®1 is the piecewise linear function de-
fined in introduction. In [10] we proved statements similarthose of Theorem under
the assumption (1.7) without (1.8) and (1.9) for arbitraptgmtialsV andA .
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