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1. Introduction

In this note, we introduce the concept of the Einstein camdlifor a special type
of conformally Kahler manifolds, called multiplier Hermitian manifolds fi]. Then
for such manifolds, an analogue of the theorems of Calabiafid Matsushima [8]
will be proved.

For ann -dimensional compact connectedher manifold M with Kahler form
wy, let IC denote the set of all &ler forms onM cohomologous to, We write
eachw € K as

w= V1Y g 5dz% ndZP
o,

by using a systemzt, z2, ..., z") of holomorphic local coordinates oW . L& =
Aut®(M) denote the identity component of the group of all holonhécpautomor-
phisms of M . For a holomorphic vector fiekl ad , we put

Kx ={w; Ly w =0},

where X, := X + X denotes the real vector field o associatedto . We say that
X is Hamiltonianif in addition to Kx # (), the holomorphic one-parameter subgroup

T = {exptX);t € C}

of G generated byX sits in the linear algebraic partf , i.er,dachw € Ky, the
holomorphic vector fieldX is expressible as

1 3., 0U, O
ra = — Po_w ___
grad; u, Tl; 8 928 970

for some real-valued smooth function, € C*(M), on M. Hereu,, is always nor-

malized by the conditionf,, u,, w" = 0. Throughout this note, we fix once for all a
Hamiltonian holomorphic vector field # 0 on M . In view of the moment map asso-
ciated to theT' -action o/ , botly := miny, u,, and/; := max, u, are independent
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of the choice ofw in £x. We now fix a nonconstant real-valued smooth function
o[l ] =R, s — o(s),

and leto = o(s) be its derivatives” := (9/30s) oc. We further define a function),, in
C>*(M)g by settingy,, := o(u,), and consider the operator

oY . =
ﬂO‘ ﬂa_w__ = _
E 81“825 E 92 077 O, +v—-10o(u,)X, we Ky,

where [, denotes the Laplacian of thealkler manifold §4, w). Then to each Ehler
metricw in Ky, we associate a conformally&ler metric

0= w exp(—i—“’) ,

which is called amultiplier Hermitian metric of typer. Here, a Hermitian form and
the associated Hermitian metric are used interchangea@hly.associated map

YKy — C*(M)g, w = e,

is called amultiplier, and if in additiono(s) is nowhere vanishing on the open interval
(lo, I1), thenv is said to benonsingular Among nonsingular multipliers, we say that
1 is a Fubini-Study multiplieror a Euclidean multiplier according aso(s) is express-
ible as—log(s +C) or —s + C for some real constar@ on the whole closed interval
[lo, ll] Put

(1.1) RiG(w) = vV—=180log &" = Ricw) + vV—100v,.

DerinimioN. A multiplier Hermitian metricw™ of type o on the Kahler manifold
(M, w) is said to satisfy thé&instein conditionf Ric%(w) = kw for some real constant
k. If (M, w) satisfies the Einstein condition, then Ri¢(is cohomologous td& w, and
by replacingw by its suitable positive constant multiple, we may assumiaut loss
of generality thatt is either O ot-1. According ast is 1, 0, or-1, the Kahler class
of K is 2rci(M), 0 or —2wc1(M). Then only the situatiork = 1 can occur by our
assumptionX # 0.

Hence, we assume thealler class ofC to be 2rc;(M) until the end of this note.
In particular,c;(M) > 0. Then for Fubini-Study multipliers and Euclidean mulgps,
the set€¢ of all w € K satisfying Ri§(w) = w is characterized as follows:

Theorem A. (1) Suppose that) is a Fubini-Study multiplier. Thew € £F if
and only if the pair(w, X) satisfies the following conditions
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(8) w is a “Kahler-Einstein metrit in the sense 0of6];

(b) —X coincides up to a positive constant multiplevith the extremal Ehler vector
field (cf. [4]) on the Kahler manifold(M, w).

(2) Suppose thai) is an Euclidean multiplier. Thew € £7 if and only if the pair
(w, X) is a Kahler Ricci soliton in a strong sense on thé&tder manifold(M, w).

Let & denote the set of all “Bhler-Einstein metrics” in the sense of [6] in the
class Zrc;(M)r on M. Note thatG is a linear algebraic group byM) > 0 (see for
instance [2]). Then as an easy corollary of [7] together vilitteorem A above, we
obtain

Corollary B. Let & be nonempty. Thefi,e consists of a singl&; -orbit under
the natural action ofG .

Corollary C. If w € &g, then the diameteDiam(M, w) of the Kahler manifold
(M, w) satisfiesDiam(M, w) < 27(2n — 1 + 4y,)*/?, where~,, > 0 is a holomorphic
invariant of M defined in52 below.

It is easily seen that by the same arguments, a similar dantetund exists also
for Kahler Ricci solitons in a strong sense.

For the Lie algebrg := Ho(M, O(T M)) of G, let Z,(X) and u be respectively
the centralizer ofX ing and the Lie subalgebra @f associated to the unipotent radi-
cal of G. Then in§3, we shall see that the nonsingularity of multipliers playsrucial
role in the proof of the following analogue of the theoremsQC#Hlabi [1] and Mat-
sushima [8]. (For partial results, see also [6] and [9].)

Theorem D. Letw € &7, and assume that the associated multiplier is nonsingu-
lar. Then according agi) o(s) > 0 or (i) o(s) < 0 on (lo, [1), there exists a sequence
of real numberg(i) 0 =X g < A1 < A2 -~ <A or (i) 0=Xg> A1 > X --- > A\, for
a nonnegative integer such that
(@) £&=g(ho) = Zy(X);

(b) g is, as a vector spagewritten as a direct sumpi_y g(\:);

(€) u=a9(N),

where we putg(u) := {Y € g;[V—-1X,Y] = uY} for each real number:, and
t* denotes the complexification in of the spacet of the Killing vector fields on the
Kahler manifold(M, w).

2. Proof of Theorem A

Let w € Kx. Since the Khler class ofC is 2rci(M), there exists a unique func-
tion £, in C>°(M), such that Riaf) = w ++/—109f,, and thatf, (e/s —1)w" = 0.
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Put
(2.1) fo = fu*tu + Cy = fu + o(uy) +Co,

where C,, = log([,,&"/ [,,w") € R. Then by (1.1), we have Rjw) = w +
V—=100f,,. By the definition of€g, we see that € £7 if and only if f,, is a con-
stant. Hence, by (2.1)y belongs to&y if and only if

(2.2) fo +o(u,,) is a constant.

DerinimioN 2.3 (cf. [6]). An elemento in K is a “K&hler-Einstein metritin the
sense of [6], ifX, := gra& (e/« —1) is a holomorphic vector field oM . ThenaX,,
is called theextremal Kahler vector fieldon the Kahler manifold (1, w) (see also [4]).

Derinimion 2.4 (cf. [5], [9]). Forw in K, we put W := grafl f, and V =
vV—1W /2. Then the pair, W) is called aKahler-Ricci soliton in a strong sense
if W is a holomorphic vector field oM . Hence, ifo(W) is a Kahler-Ricci soliton
in a strong sense, the real vectotr fidlg = V + V associated to the holomorphic
vector field V satisfiedy,w = vV—199f,, = Ricw) — w.

Proof of (1) of Theorem A. Since(s) = —log(s + C) for some real constant
C, the statement (2.2) is equivalentig = e~ e/ — C for some real constanty.
Then by [, u,w" = [, (e — 1)w" = 0, this is further equivalent to the following
statement:

(2.5) u, and e’* —1 coincide up to a positive constant multiple.

Hence, by Definition 2.3 above, the conditions (a) and (b)satisfied.
On the other hand, let the paiw,(X) satisfy the conditions (a) and (b). By (b)
together with (a), there exists a positive const@pt> 0 such that

(ef“ — l) — Cru,,

is a constant. Sincg,, u, " = [, (e/* —1)w" = 0, we now obtain (2.5), and hence
w € &9, as required. This now completes the proof of (1) of Theorem A l

Proof of (2) of Theorem A. Since(s) = —s + C for some real constar@ , the
statement (2.2) is equivalent to

(2.6) u,, and f,, coincide up to an additive real constant.

Hence, by using the notation in Definiton 2%, = draf, = grad u, = X is
holomorphic. Thus, the pairs( X) is a Kahler-Ricci soliton in a strong sense.
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Next, let (v, X) be a Kahler-Ricci soliton in a strong sense. Then by Definition
2.4, X coincides with gre@%ifw, and is a holomorphic vector field af . On the other
hand, by X = gra@uw, we obtain (2.6), and hence € £7, as required. This now
completes the proof of (2) of Theorem A. ]

Proof of Corollary B. For an element in &, by Definition 2.3,—X,, is the
associated extremal &ler vector field. Now, let’, w”’ € &c. By [4], there exists
g € G such that

(2.7) X" = Ad@)X" = g.X',

where we putX’ := X, and X” := X, for simplicity. Write X’ = grad, «’ and
X" = grad, u”, whereu’ := efo’ —1 andu” := e/o” — 1. Sincew’ and g*w” are in
the same WKhler class, by [6] and,, u'(w')" = [}, u”(w")" = 0, we obtain

2.8) max,, u’' (= max, g*u") = max, u” = B,
' miny «’ (= miny g*u”) = miny, u” = —ay,,

for some nonnegative real constants;, [y satisfying «,, < 1. Then by setting
o(s) := —log(s + 1), we see from Theorem A that

W' e &y and W' e &Y.

Now by (2.7),€7, = g*£%, and hence both’ and g*w” belongs tof¢,. On the other
hand, by [7, Theorem C[¢, consists of a singlez®(X’)-orbit, where Z°(X’) denotes
the identity component of the subgroup

Z(X') = {geG;Ad(g) X' = X"}

of G. Thenw' = g*(g*w") = (gg)*w” for someg € Z%X’). We now conclude that
Exe consists of a singlés -orbit, as required. U

Proof of Corollary C. Note thatyy, and 3, in (2.8) are holomorphic invariants
of M. Put

vu = max{log(l +Sy), —log(1— ay)} > 0,

which is also a holomorphic invariant d## . Since the functiefs) = —log(s + 1)
is considered on the intervdl =y, By, and since max; |o(s)| = yu, we now
apply the diameter estimate in [7, Theorem B] to the case)(= (1, vu), we obtain
Diam(M, w) < 27(2n — 1 + 4y,)Y/?, as required. O

RemArRk 2.9. Only in this remark, we get rid of the assumption that ase
pact. In order to see why the terminology “Fubini-Study” dEutlidean” is used, we
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consider the noncompact case whate C== {z=(z',z%...,7") € C"}. Put
w = \/—12 dz* Ndz%, u, = Z |z%%, X = —1_ Z zo‘i.
(0% « —l (03 6Za
(@ If o(s) = —log(s +C) with C > 0, then e ¥«w" = ¢ W)y = nl(u, +

C) M4 (v—1dz* Adz®), and the corresponding Ri@w) is given by
— Ric}(w) = V=188log (u, +C) = V=100log (X, | %> + C),

and by lettingC — 0, this converges to the pullback of the Fubibi-Study form by
the natural projection of" \ {0} onto P*~(C). This is why multipliers associated to
o(s) = —log(s +C) are called Fubini-Study multipliers.

(b) If o(s) = —s +C, then e Vow" = ¢ Wy = pleto=CTI,(vV—=1dz™ A dz®),
and the corresponding Rj¢v) is given by

— Ricg(w) = \/—lﬁa_uw = w,

which is the Kahler form associated to the standard Euclidean metricCbnThere-
fore, multipliers associated to(s) = —s + C are called Euclidean multipliers.

3. Proof of Theorem D

The purpose of this section is to prove Theorem D. SiGce is@ali algebraic
group, every element ig is uniquely written as gr{dcp for somey € C*°(M). sat-
isfying chpw" = 0, wherew is as in Theorem D. Before getting into the proof of
Theorem D, we give the following remark:

Remark 3.1. In Theorem D, leik denote the connected Lie subgrou@ of n- ge
erated byt. Then K is easily shown to be a maximal compact subgrou@ in  las fo
lows: Take an arbitrary compact subgroip in G such thatk C K’, and the proof
is reduced to showingk’ = K. We first observe that, by the below proof of Theo-
rem D, the groupk coincides with the connected componerk ‘ofHence, it suffices
to show thatk’ is connected. Let/ be the unipotent subgroupGf  generated by
u, and consider the connected reductive algebraic subgkoumf G obtained as the
complexification ofK inG . Then by the Chevalley decompositiase can writeG as
a semidirect product

G = K x U.

Let p : G — G/U (= K©) be the natural quotient homomorphism. Since the image
p(K’) is a compact group containing , and sinke is a maximal cotnpangroup
of KC, the groupsp(K’) and K coincide. In particularp(K’) is connected. On the
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other hand, the kernel of the restriction
Pk’ - K' — K©

is a compact subgroup df , and is a trivial group. Hengg, is injective, and we
now conclude thak’ is connected, as required.

Proof of Theorem D. As to the sign of the functienon (o, /1), it is easily seen
that the proof forc'> 0 and that foro'< 0 are similar. Hence, we may assume> 0
on the open intervalld, [;) without loss of generality. ByX € ¢, we see thay has an
ad(X )-invariantC-linear subspacen containingu such thatg is a direct sume® @ m
of vector spaces. There exist sequences of real numbers A\, < --- < A, and
p1 < p2 < -+ <, such that

m =D an) and € =P auy).
i=1 j=1
Then the proof is reduced to showing > 0 = pu; andm = 1, Because if we

can show these, then (a) and (b) follow immediately, and goraent in [1, p. 109]
shows thatt is the Lie algebra of a maximal compact subgroupGf , whictetogr
with u C m implies the equalityn = m and (c) above. Now by (2.2), our assumption
w € &y allows us to writef,, = —,, + C for some real constar@ . Hence,

Let § (resp.t) denote the space Keffl, + 1) (resp. Kex(Cl., + 1)) of all complex-
valued (resp. real-valued)> functionsu onM such that{,+1)u = 0. PutéC := £+
V—1E. By [3, p. 41], we have an isomorphis;> g (resp.tC = ¢C) of complex Lie
algebras by sending each  §n(resp.tC) to gracf u in g (resp.t®). The preimage of
m under the isomorphisny = g will be denoted bym. Let v be a nontrivial element

of g. Then
/ velow" = / velown = 7/ (Ouv) efewr = 0,
M M M

where all eigenvalues of-[J,, are nonnegative real numbers and its first positive
eigenvalue is 1 (cf. [3]). Hence,

/(—ﬁwﬁ)v efowm > / lv[? e/ w" if vem;
M M

(3.2)
/(—Iiwﬁ)v elow = / [v[? el w" if vetC.
M M
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On the other hand, by((, +1)v = 0,
(3.3) /(—ﬁwv)ﬁef“w” = / [v]2efew".
M M

Subtracting (3.3) from (3.2), we see thfj { (-0, v)v + @, v)v} e/w" is positive
or zero, according as € m or v € £€. Then we obtain

/ 2v/=1{(Im0,)v}vel~u" > 0, if vem;
(3.9) M

/ 2v/=1{(Im0, ) v} velw" = 0, if v ek’

M

where RéJ, (resp. Ini] ) are the real (resp. imaginary) part bf ,, so that(], =
Red, + v—1 ImO,. In view of f, = —o(u,) + C, we here observe that

@5  2/-1{(mO)v} = (V-1)Y fu. v] = o) [V-Tus, vl,

where the Poisson bracket is defined as in [4]. I#@ra& v € g(\1), then we have
[vV=1u,, v] = A\v, and by the positivity ofo(s) on (o, [1), (3.5) together with the
first line of (3.4) impliesA; > 0. Next, we consider the case;Ogracfv € g(u;)-
Then [v/—1u,, v] = p; v, and by the positivity ofr(s) on (o, /1), (3.5) and the sec-
ond line of (3.4) show thap; = 0, which implies the equalities: =1 and =0, as
required. ]
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