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Introduction

Let (1\714”, 0,¢g) be a quaternionic &hler manifold whereg is the metric and
0O C EndI'M is the guaternionic structure. We will always assume 4t has non
zero scalar curvatureA submanifold 2" ¢ M* with induced metricg is called an
almost Hermitian submanifold it is given a g -orthogonal almost complex structure
J on M which is induced from a sectiosy of the bundleQ;, — M. This means
that hTM =T:M Vx €M andJ =Jyry.

An almost Hermitian submanifoldM?", J, g) is called Hermitian if the almost
complex structure/ is integrablglmost Kahler if the Kahler formF =g o J is
closed andKahler if F is parallel. In the first section we study an almost Hermi-
tian submanifold 2", J, g) of a quaternionic Khler manifold M%'. We give differ-
ent conditions for an almost Hermitian submanifold to be Hermitian. For example, we
prove that any analytic complete almost Hermitian submanifdld  of the quaternionic
Kahler manifold §7%', 0, 3) with positive scalar curvature is Hermitian if din¥/ =
4k (Theorem 1.4). We prove that any almosaifer submanifoldM?”,m # 3, of a
guaternionic Khler manifold % is Kahler and, hence, a minimal submanifold and
give some local characterizations of such submanifold. In particular, by completing a
known result of K. Tsukada, we prove that an almost Hermitian submani¥bld is
Kahler if and only if it istotally complexi.e. it satisfies the condition

PITMLTM VYxeM

where J; is a section ofQ|,, — M which anticommutes with/;. In Section 2 we
study Kahler submanifoldg/?* in a quaternionic Khler manifold (\714", 0, g). Using

the isomorphism/, : TM — T1M between the tangent and the normal bundle, we
identify the second fundamental form @f  with a ten<dr Jzoh € TM ®
S2T*M. This tensor at any point € M belongs to the first prolongation of the space
S; € EndT, M of symmetric endomorphisms anticommuting with  and the associated
covariant tensog o C has the formgC = & whereq € S37;%%M is a holomorphic
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cubic form.

The Gauss-Codazzi equations written in terms of the tea'sor take a simple form.
We show that the second Gauss-Codazzi equation is equivalent to the first. In Subsec-
tion 2.3 we study the case whev?" is a Kahler submanifold of a (locally) symmet-
ric quaternionic Kahler spacel*. We get the necessary and sufficient conditions for
M?' to be a locally symmetric manifold in terms of the tengor . In particulai/if
is curvature invariant, i.e. if the curvatum of M at a pointx € M satisfies the con-
dition

R(T,T)T C T, T=TM

then M is a (locally Hermitian) symmetric manifold if and only if thé¢:)-valued 2-
form

[C,C]: XAY —[Cx.Cy]l, X, YETM

(which satisfies the first and the second Bianchi identity) is parallel.

If M* is a guaternionic space form, then angtfer submanifold is curvature
invariant. Hence, it is symmetric if and only if the tensd@f,[C ] is parallel.

The Section 3 is devoted to a classification oéter submanifoldsi?" of a
quaternionic Khler manifoldM* with parallel non zero second fundamental fokm
or shortly, parallel Kahler submanifoldsin terms of the tenso€ , this means that

VxC=w(X)JoC, XeTM

where w is the 1-form defined by (2.2) an¥ is the Levi-Civita connection o\

We prove that any parallel submanifold’(J, g ) which is not totally geodesic admits
a parallel holomorphic line subbundle  of the bund&r*%°M such that the con-
nection induced or. has the curvatuké i o J, wherev is the reduced scalar
curvature of M4, We give the classification of all suchakler manifoldsM?* with
parallel holomorphic line bundle of cubic form. All of them are Hermitian symmetric
spaces. Moreover, the remarkable Tsukada results [20] show that all these manifolds
M?" admit (an explicitly described) realization as non totally geodesic parahélef
submanifolds of the quaternionic projective spd&®”. The similar problem of real-
ization of M as parallel Khler submanifolds of other Wolf spaces (i.e. symmetric
quaternionic Khler spaces) remains open.

1. Almost Hermitian submanifolds of a quaternionic Kahler manifold
(M*, Q, 9)

1.1. The structure equations of a quaternionic Kahler manifold M* Let
(M*, 0, %) be aquaternionic Kahler manifold that is a Riemannian manifoldz(", 3)
of dimension 4 with parallel quaternionic structuge , i.e. a rank-3 subbundle of the
bundle of endomorphisms locally spanned by a triple of locally defined anticommuting
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g-orthogonal almost complex structurés #,(J2, J3 = J1J2). H is called alocal
basisof Q. SinceQ is parallel, one can write

(1.1) Vi =wy®J5 —ws ® J,

whereV is the Levi-Civita connection, the,, a =1, 2 3, are locally defined 1-forms
and g, 3,~) is a cyclic permutation of (1,2 3). Moreover, if > 1 then the metric
¢ is Einstein [5] and the 1-forms, satisfy the following structure equations (see [1,
Th. 5.7]):

(1.2) dwa +wg Nwy = —vF,,

where v is the reduced scalar curvature related to the scalar curvdture v by
K/4n(n+2), F,=golJ,, a=1,2 3, are Khler forms and the exterior differential of
a 1-formw is given bydw(X,Y) = X - w(¥Y) — ¥ - w(X) — w([X, Y]), X,Y € TM. By
taking the exterior derivative of (1.2) we get

(1.3) v(dFy — F3 Awy+wg A F,)=0.
We recall also that the following identities for the curvature tengonold:
(1.4) [R(X, ¥), Jo] = —v(F,(X, V) I = Fa(X, V)1,).

For n =1 the formula (1.2) and all the following results remain true if we assume
that the metricg is Einstein and anti-self-dud(i.e. the self-dual parW. of the Weyl
tensor vanishes). This will be assumed in the following.

1.2. Almost Hermitian submanifolds of M4 Let (M?", g) be a submanifold
of a quaternionic khler manifold 7', 0, g) with induced metricg =n and J is
a g-orthogonal almost complex structure 87". The manifold ¢72", J, g) is called
an almost Hermitian submanifoldf M if there is a section/; : M — Q|u such that

IhTM=T.M VxeM

andJ =J;|TM.
If the complex structure/ is integrable, theW (J, ¢ ) is calledHermitian sub-
manifold

Remark. Note that the sectio; of Q) is uniquely defined by/ .
For any pointx € M?" we can always choose a local bagls Jg, (Jo, J3= J1J>2)
of Q defined in a neighborhood of x in M* such that/y ;g = /. We will call
it an adapted basisor (M?", J, g). Since our considerations are local, we will assume



872 D.V. ALEKSEEVSKY AND S. MARCHIAFAVA
for simplicity that U > M2" and we put
F=Fyy, w=wiy-

For anyx € M we denoteT ,M the maximal quaternionic (i.eQ -invariant) subspace
of the tangent spac& M and write

T.M=T.M+D,

where D, is the orthogonal complement. Note that if,(J,, J3) is an adapted basis
in a pointx € M thenT , M =T, M N JoT, M.

Recall that if M is a submanifold of a Riemannian manifofu,@) and Ty M =
T.M+T:M is the orthogonal decomposition of the tangent spAdd at pointx € M
then the covariant derivativ€’ x in the direction of a vectoX € T,M can be written
as:

~ Vy —Ay
(1.5) v E< )
Ty vy

that is,
VxY =VyxY +h(X,Y),  Vxé=—ASX +ViE

for any tangent vector field and any normal vector fi€ldon M. HereVy is the
covariant derivative of the induced metgc @i Vi is the normal covariant deriva-
tive in the normal bundler’+M which preserves th@ormal metricgt = g|T+ M,
ALY = h(X,Y) € T+M is the second fundamental forrand Ax¢ = ASX, where
A¢ € EndT M is theshape operatomssociated with a normal vectér

We will use this notation in the sequel.

Theorem 1.1 ([2]). Let (M?",J,g), m > 1, be an almost Hermitian submani-
fold of the quaternionic Ehler manifold(]t~/14”, 0,g). Then
(1) the almost complex structuré is integrable if and only if the lotdbrm ) =
wzoJ —wp on M?" associated with an adapted basis = (J,,) vanishes.
(2) J is integrable if one of the following condition holds

a) dim(,) > 2 on an open dense sét C M,

b) (M, J) is analytic anddim(D,) > 2 at some pointc € M.

Proof. (1) Remark that ifM is an almost complex submanifold of an almost
complex manifold ¥, J1) then the restriction of the Nijenhuis tensaf;, to the sub-
manifold M coincides with the Nijenhuis tensor, of the almost complex structure
J=Jyrm-
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Using this remark, we can write

AN; (X, Y)=[JX,JY] - J[JX,Y] — J[X,JY] —[X,Y]
= AN, (X, Y) = (Vyx )Y — (Vyy J)X + J(Vy )X — J(Vx )Y

and hence

AN (X, Y) = [w3(J X) — waX)] oY — [wa(J X) + w3(X)]J3Y
—[w3(JY) = wa(Y)]J2X + [wa(JY) + wa(Y)] J3X

for any X, Y € TM, where (1, J,, J3) is a local adapted basis. This implies (1).
(2) We assume thaf is not integrable. Then the 1-form

Y =(wzoJ —wo)|rm

is not identically zero, by (1). Denote by & % the local vector field on associ-
ated with the 1-formy and bya, a’ the projections otz ontd”M andD respectively.
Now we need the following Lemma.

Lemma 1.2. Let (M?", J,g), m > 1, be an almost Hermitian submanifold of
a quaternionic Khler manifold (™%, 0, %). Then in any pointr € M2" where the
Nijenhuis tensorN(J), # 0, or equivalently the vector, # 0, the subspaceD, is
spanned by and Ja}:

D, =spafa,, Ja,}.
In particular D, = 0 if dimM is divisible by4.
Proof. Remark that
4N, (X,Y)=J, {w(x)Y — (I X)JY — (V)X + w(JY)JX] e LTMNTM=TM

for any X, Y € TM. This shows that for any, Y € TM the vector

[z/J(X)Y —p(JX)JY — (V)X + w(JY)JX] eTM.
For X =a =g, the last condition says that

by = |al?Y —¢(Y)a+y(JY)Ja € TM VYeTM.

By projecting the vectoby td for Y =Y € TM andY =Y’ € D respectively we
get the equations:

(1.6) —p(Y)a' +(JY)Ja' =0, VYETM
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and
(1.7) >y’ —'(Y)a' +4'(JY")Ja' =0 vV Y eD.

wherey’ = goa’, ¢ = goa. The last equation shows th@, = {a’, Ja’} whena # 0.
O

The Lemma implies statements (2)a) and (2)b) since in the analytic case the set
U of points wherea # 0 is open and dense and dilp <2 onU . ]

Corollary 1.3 ([2]). Let (M*, J, g) be an almost Hermitian submanifold of di-
mensiondk of a quaternionic Khler manifold M%. Assume that the séf  of points
x € M where the Nijenhuis tensor of is not zero is open and dense. #hen is a
totally geodesic quaternionic &ler submanifold.

Proof. By Lemma 1.2, in a point € U one has dinD, =0 or 2. The sec-
ond case is excluded by dimensional reason. Thlen is a quaternionic, hence totally
geodesic, submanifold afZ. This implies thatM is quaternionic. L]

As another corollary we get the following theorem.

Theorem 1.4([2]). Let (M“", 0, g) be a complete quaternionicaler manifold
with positive scalar curvature. Then any analytic almost Hermitian submanifold
(M, J, g) of dimensiordk with complete induced metric is a Hermitian submanifold.

Proof. Assume that the almost complex structure is not integrable. Then by
Theorem 1.1 and Corollary 1.3/ is a totally geodesic quaterniofillét submani-
fold. It is known that it has the same (positive) reduced scalar curvatund. adence
it is a compact quaternionic &ler manifold. By [4, Theorem 3.8] such manifold has
no almost complex structure. Contradiction. O

1.3. Almost Kahler, K&hler and totally complex submanifolds

Derinmion 1.5.  An almost Hermitian submanifold?”, J, g) of a quaternionic
Kahler manifold (%, Q,g) is called almost Kahler (resp., Kahler) if the Kahler
form F =g o J is closed (resp., parallel).

Theorem 1.6. Let (A~/I4", 0, g) be a quaternionic Khler manifold with non van-
ishing reduced scalar curvature. Then any almost &hler submanifold(M?", J, g),
m # 3, of M is Kahler.

If m =3,thenTM = TM +D whereD is two-dimensional distribution and, o
Jolru = —wz 0 J3|lrm.
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Proof. We will show thatv;, =0 onv . Assume that there exists a poigtM
where N; | # 0. We will prove that this leads to a contradiction. By identity (1.3), the
condition that the Khler form i =Fy, is closed can be written as

(1.8) FI AWl = F] Awh
where FI, wI are the restriction of the forms,,, w, to M.

Ciam 1. If dimT,M > 4 thenwl (T M) = wI(T M) = 0; if dimT,M = 4 then
(Wl oJ +wl) (T, M)=0.

It follows from the lemma below.

Lemma 1.7. Let (V, g) be an Euclidean vector space with(eonstan} quater-
nionic structureQ = span(, J», J3) and F,, = g o J, Kahler forms. Then the equation

FNE=F3An

for 1-forms ¢, n has a non trivial solution if and only if di = 4 and all solutions
are given by

(§=noJi,n) Vneve.

Proof. Assume that divi =k4> 4 and €, n) is a non trivial solution. Then, for
any Y € V there exists a unit vectak  such thatl 0 X. Then

(F2 NE(X, X, Y) = || X|PE(Y) = £(Y)
= (FBsAN(X, X, Y) = F(X, LX)n(Y)=0

and

(FoNE(X, J3X,Y)=0
= (Fs An)(X, 53X, Y) = | X|[*n(Y) = n(¥).

Hence¢ = n = 0 and we get a contradiction. If dih = 4 then any solutignn
satisfies the identity

(F2 A €)X, X, J1X) = || X|)PE(1X)
= (Fs An)(X, J2X, J1X) = F3(J2X, J1X)n(X) = —|| X || ?n(X).

Hence¢ = no J. It is also easy to check that = no J,n),n € V*, is always a
solution.
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Ciam 2. If dimT, M > 4 thenw] (D,) = wl(D,) = 0.

To prove it we calculate both sides of equation (1.8) on veciard, X, Y, where X
is a unit vector fromT M andY € D,. We get

(Ff Awi)(X, 22X, Y) = wi (Y) = F3(X, J2X)w3 (Y) = 0.
Hence,w! (D,) = 0 and similarlyw! (D,) = 0.
Ciam 3. If a, = g7 Y(wso J —wy), #0 then dimp,) = 2.

It follows from Lemma 1.2.

Now we can finish the proof of Theorem 1.6. Denoteldy  the open submanifold
of M where the Nijenhuis tensor of is not zero. Fore U dimD, = 2 by Claim
3 and dimfo = 0,4 by Claims 1 and 2. Hence #/ # () then dimM = 2 or 6.
But it is well known that any 2-dimensional almostKler submanifold is Ehler. This
shows that if the almost complex structufe  dh is not integrable, themlim =6
with the stated properties. ]

Theorem 1.8. Let (M, Q,3) be a quaternionic Ehler manifold withy # 0.
An almost Hermitian submanifolgd/?”, J, g), m > 1, of M is Kahler if and only
if one of the following equivalent conditions halds

k1) w2, m = w3y =0 VxeM,
k2) T M1 TM VxeM

wherew,, are 1-forms associated to an adapted baéis,) by (1.1)

Proof. Let (M?",J,g) be an almost Hermitian submanifold of. Using (1.1)
we get

(V)Y = (VxJ)Y +h(X, JY) — J1h(X, Y)

1.9
(1.9) = w3(X) oY — wa(X)J3Y, X, YeTM.

Taking the orthogonal projection afiiM  we conclude that
(1.10) VxJ)Y =0 <= [wa(X) Y — wa(X) Y] =0

where | ]T means the tangent part. It is clear that any one of the condifignsr

ko) implies VJ| = OVx € M, that is M, J, g) is Kahler. To prove that the condi-
tions k1), k) are also necessary foM( J ) to bealler, we first show that at a point
x € M whereVJ = 0 at least one of them must hold: in fact, from the identities
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(Vx )Y = [wa(X)JaY — wa(X)JaY]" =0, (VxJ)JIY) = —[wa(X)JsY +wy(X) o] =
0 VX,Y eT.M, one gets

[W3(X) +W3(X)] [Y] =0, VX, Y eT.M

and the claim follows immediately. Now we assume thet (, ¢ ) &l€r and prove
that bothk;) and k;) must hold onM .

1) Suppose that;) does not hold att € M. Thenky) holds on an open neigh-
bourhoodU, ofx inM and the structure equation (1.3) for= 2, 3 gives {3 A
Fi)r,u = (w2 A Fi)r,y = 0 which imply (since dirf; M > 2) w7y = w2ir,m = 0,
by contradicting the assumption.

2) On the other hand, assume tha) does not hold att € M. Hencek;) holds
on an open neighbourhood, of and the structure equation (1.2) foR, 3 gives
vk, , =vF,, =0. Sincev # 0 these give a contradiction. U

Theorem 1.9. Let (A~/I4", 0, g) be a quaternionic Bhler manifold with non van-
ishing reduced scalar curvature and (M?",J,g), m > 1, an almost Hermitian
submanifold ofd*".

(1) If (M?",J,g) is Kahler then the second fundamental form Mf satisfies the
identity

(1.11) h(X,JY)=h(X,Y)=Jih(X,Y) VX, Y € TM.

In particular, M is minimal (see[7]).

(2) Converselyif the identity(1.11) holds on an almost Hermitian submanifold?”

of M*" then it is either a Khler submanifold or a quaternionic submanifold and these
cases cannot happen simultaneously.

Proof. (1) From identity (1.9) and Theorem 1.8 it is clear that M,(J ) is
Kahler then (1.11) holds. It implies thatJX, JY )-=h(X,Y). This shows that the
mean curvature vector o

m m

n=tr(h) = h(E;, E)+ Y h(JE;, JE)=0

i=1 i=1

whereEq, ..., E,, JE1, ..., JE, IS an orthonormal basis df, M . Hencg] is min-
imal.

(2) Conversely, let assume that (1.11) holds on the almost Hermitian submanifold
(M, J,g). Then for anyX,Y € T,M we have

(VxJ)Y = Vx(JY) —JVyxY
= Vx(JY) = h(X, JY) — J1[VxY — h(X, Y)]
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= Vx (1Y) — J1(VxY) = (VxJ1)Y.

Hence
(VxJ)Y = wa(X)JoY — wo(X)J3Y € T, M VX, Y € .M
and also
(Vx (YY) = —ws(X)JzY — wo(X)JoY € T, M VX,Y € T, M.
These imply that
(1.12) [W3(X) +3(X)][¥]Y =0, VX, YeTM,

where | }N means the normal part. We set
My = {x eM, Jo,T,M = TxM}, My = {X eEM— M, WZ\T,M = wg‘TAM = 0}

Then by (1.12)M =M, U My, M1 N M, = () and My is a closed subset antl, is
an open subset oif . We prove th#f, is also closed. The structure equations (1.2),
a =2, 3 show thatF,|M, = F3|M, = 0. HenceM, C M3 where

Ms={xeM, J,T,M L T,M}

is a closed subset aff  withd;N M3 = (). This shows thaf\/, = M3 is a closed subset
of M. Then, eitherM; =0, M, = M is a Kahler submanifold o, =0 and M =M,
is a quaternionic Ehler (totally geodesic) submanifold. Since the set of paints Mof
where Jo,T,M # T, M is open the conclusion follows. |

Corollary 1.10. A totally geodesic almost Hermitian submanifdie, J/, g) of a
quaternionic Kahler manifold (M*', Q,2) with v # 0 is either a Kahler submanifold
or a quaternionic submanifold and these conditions cannot happen simultaneously.

Proof. The first statement follows directly from Theorem 1.9) since (1.11) cer-
tainly holds for a totally geodesic submanifoldd ( = 0). To prove the last statement we
remark that a quaternionic submanifoltft¢, ¢ = z|,,) of M* is a quaternionic Ehler
manifold with the same reduced scalar curvaturdf M is also Kahler, VJ =0, then
it must berv =0 (see [4]). ]

Derinimion 1.11.  An almost Hermitian submanifoldf, J, ¢ ) of a quaternionic
Kahler manifold ¢/#, Q, g) is calledtotally complexif

LT M 1L TM VxeM
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where (/1, J2, J3) is an adapted basis.

Theorem 1.12(see also [20]). (1)A totally complex submanifol(h?”, J, g) of
a quaternionic Kihler manifold(M, Q, 3) is Kahler.
(2) Converselyif M* hasv # 0 then any Kahler submanifold M2, J, g) of M* is
totally complex.

Proof. (1) Let (42", J, g) be a totally complex submanifold d/**. Then using
(1.1) for o =1 we get

(VxJ)Y = [wa(X) oY — wa(X)J3Y]" =0 VX, YETM.

(2) is a corollary of Theorem 1.8 (see conditigy). Ul

Remark. The local 1-formw = wi|y on the Kahler submanifold M2, J, g) of
(AN/I“", 0, g) is the connection form of the circle bund{sintJ, + costJ3} orthogonal
to J in @ and the global 2-form-dw = v F is the curvature. In particular, the Chern
form c1 = v/(2r)F is an integer.

2. Maximal Kahler submanifolds of a quaternionic Kahler manifold
(M*,Q,0)

2.1. The shape tensoiCx Let (M?*,J,g) be a Kahler submanifold of maxi-
mal possible dimensionn2 of a quaternioni@tder manifold (\714", 0, ). We fix an
adapted basisJ{, J,, J3) of Q. For simplicity we will assume that it is defined on a
neighbourhood of\/?" in M*. We have the orthogonal decomposition

(2.1) T.M =T.M & LT M VxeM.
Then the following equations hold:
(22)  Vx21=0, Vyh=w(X)Js, VxJs=—-wX)), VXeTM

wherew is a 1-form.
We identify the normal bundlg M with the tangent bundl@M  usingp:

o=Joriy  TeM — T.M
§— J€.

Then the second fundamental forkm  &f is identified with the tensor field
C=JyoheTM®S’T*M

and the normal connectio+ on T+ M is identified with a linear connectioR" =
JoVtol,tonTM.
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We will call C the shape tensoof the Kahler submanifoldyvs .

Note thatC depends on the adapted bagdis) @nd it is defined only locally. If
(J.) is another adapted basis amfl= cosfJo+sindJ; then the shape tensor transforms
as

C+— C'=cosfC +sindJoC.

Lemma 2.1. One has
(1) For any X € TM the endomorphisnCxy of M is symmetric adg = APTX =
—A”X where A¢ is the shape operatpdefined in(1.5).
(Note thatCre = AS, V&€ THM.)
(2 V¥ =Vx—-w(X)J, X eTM.
(3) The curvature of the connection” is given by

RY, = Rxy — dw(X, Y)J.
(4) {Cx,J} =CxoJ+JoCx=0and hencetrC =5, CgE; =0, where(E;) is
an orthonormal basis of, M .
(5) The tensorgC, ¢gC o J defined by
8C(X.Y, Z) = g(CxY, Z), (8CoJ)X,Y,Z)=3C(UX,Y, Z)
are symmetrici.e. gC,gCoJ € S°T*M.

Proof. (1) Using (2.1) and (2.2), for any, Y, Z € TM one has

(CxZ,Y) = —(h(X, Z), I,Y) = (Vx (oY), Z)
= (Jo,VxY, Z) = —(VxY, JZ) = —(h(X, Y), J,Z)
= <ny, Z> .

Moreover

(=AY, 7) = —(h(Y, Z), J2X) = (Joh(Y, Z), X) = (Cy Z, X)
= <Z, CXy>

This proves (1).
(2) We have

<V§Y, Z)y=(Jpo V)% o (J{lY), Z)= <V§(]2y)’ D7) = <%X(J2Y), 17)
(W(X)J3Y, J2Z) + (Jo(VxY +h(X,Y)), J2Z)
(—w(X)Y, Z) + (VxY, Z).
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() RYy =[Vx —w(X)J, Vy —w(¥)J] = Vixy +w(X, Y])J.
= Ryy —{X -w() =Y -w(X) —w([X, Y)}J = Rxy —dw(X,Y)J.

(4) By using (1.10) we have
CxJY = Joh(X,JY) = JoJih(X,Y) = —J Joh(X,Y) = —JCxY .
(5) The first statement follows from (1). Using (4) we prove the second one:

gCoJ(X,Y,Z) = gC(JX,Y,Z)=(CxY, Z) =(Cy(VX), Z)
—<JCYX, Z> = <ny, JZ> = <Cij, X> = <Csz, X>
gCoJ(Z,7Y,X). ]

We denote byV’ the linear connection in a tensor bundle which is a tensor prod-
uct of a tangent tensor bundle af and a normal tensor bundle defined bpnd
V-+. For example, ifk is a section of the bundle-M ® S2T*M then

(Vik)(Y, Z) = Vx(k(Y, Z)) — k(VxY, Z) — k(Y, Vx Z).

Then using (2) of Lemma 2.1, we get the following expression for the covariant
derivative of the second fundamental form.

L (Vih) (Y, Z) = (VxC)lyZ —w(X)J o CyZ
= (VYC)(Y, Z) + 2u(X)J o Cy Z.

(2.3)

Denote by
S;={A€EndTM,{A,J}=0,g(AX,Y)=g(X, AY)}

the bundle of symmetric endomorphisms M , which anticommute with  and by
SV ={A cHom(I'M, S;)=T*M ® S;, AxY = AyX}

its first prolongation. Then conditions (4), (5) can be reformulated as follows.

Corollary 2.2. The tensorC = Joh belongs to the spacs(Jl) and its covariant
derivative is given by

VxC = LVyh+w(X)JoC.

2.2. Gauss-Codazzi equationsLet M be a submanifold of a Riemannian man-
ifold M and

= pTT 4 plT o pTL 4 pll
Rxy = Ryy * Rxy + Rxy * Rxy
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the decomposition of the curvature operaRyy, X, Y € T, M of the manifold M ac-
cording to the decomposition

End(, M) = End(I M ) + Hom{, M, T M) + Hom(T' ;- M, T, M) + End(T;* M).

Using (1.5) and calculating the curvature operaRyy = [Vx, Vy] — Vix.y of the
connectionV, we get the followingGauss-Codazzi equatians

Ryy = Ryy — AxAL + Ay AL (TT)
= Rxy — Y, ASX N ASY

Ry € = Ryy€ — X, (X, [A%, A%]Y)¢ (L1)

RIFe = —(VxAS — AVXE)Y +(VyAS — AV &)X (TL)

Ryy Z = (Vyh)(Y, Z) — (Vyh)(X, Z) (L)

where ¢ is an orthonormal basis of *M, X, Y € TM, ¢ € T+M, R, R+ are the
curvature tensors of the connectioRs V+. (We identify a bivectorX A Y with the
skew-symmetric operatoZ — (Y, Z)X — (X, Z)Y.) Recall thatV’ is the connection
in T-M ® S?TM induced byV+ and V.

Dernmion 2.3. LetM be a submanifold/  of a Riemannian manifaid Then
(1) M is calledcurvature invariantif

RxyyZeTM, VX, Y,ZcTM,
or equivalently,
RTL=pLT =0

(2) ([15]) M is called strongly curvature invariantif it is curvature invariant and
moreover

Re,C € THM, Y&, CeTHM.
(3) M is calledparallel if the second fundamental form is parall&F’% = 0.

Let us recall the following known result.

Proposition 2.4. A parallel submanifoldM of a locally symmetric manifold
is curvature invariant and locally symmetric.

Proof. First statement follows froml(T). The second;jatement follows by co-
variant derivation of TT) and remark thalWVR’” =0 sinceVR = R+ T =0, see also
the formula (2.5.1) below. O
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2.2.1. Gauss-Codazzi equations for a &hler submanifoINd By specifying the
previous formulas to the totally complex submanifo? c M** of a quaternionic
Kahler manifold and using Lemma 2.1 and (2.3) we get the following Proposition.

Proposition 2.5. The Gauss-Codazzi equations for a maximal totally complex
submanifold(M?', J) of a quaternionic Khler manifold (%, 0, %) can be written
as
(1) R%y = Rxy —[Cx, CY]
(2) R Jy ' =RY, —[Cx, Cyl = Rxy — [Cx, Cy] — dw(X, Y)J
(3) J2Rxy = Pxy — Pyx
where(J,,) is an adapted basis qiM?", J), C = Joh is the shape operator anftyy :=
(VXC)Y — w(X)J o Cy .

Note thatR%; J, is the adjoint of /LR5 .

Corollary 2.6. The Ricci tensoRicy, of the Kahler submanifold?' ¢ M* is
given by

Ricy = Ric(R"")~ tr,(C., C) = Ric(R™") = (3" -, )

or, more precisely

2n
Ricy (X, Y) =Ric®R"")X.Y)— > (CrX,CrY) X,YeTM
i=1

whereRic(R77) is the Ricci tensor of the tangential paR”” &, that is
Ric(RTT)(X,Y) = tr(Z — RLTY) and (E;),i = 1,...,2n, is an orthonormal basis
of TM. In particular, the Ricci curvatureRicy (X, X) of M in the direction of a unit
vector X € TM is not bigger therRic(RTT)(X, X). If Ric(RTT) < 0 then Ricy < 0.

Proof. It is a straightforward consequence of (1) above and Lemma 2.1(4).
U

Corollary 2.7. Let M* be a quaternionic hler manifold of non positive sec-
tional curvature. Then any totally complex submanifoid” of M* has non positive
Ricci curvature. Moreover the second fundamental formV3f vanishes at any point
x where the Ricci curvature aff?" vanishes.

Proposition 2.8. Let M?* be a Kahler submanifold of a quaternionic &kler
manifold M**. Then
(1) M? is parallel if and only if Pxy := (VxC)y — w(X)J o Cy = 0;
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(2) M? is curvature invariant if and only if the tensaPyy  belongs to the second
prolongation S of the spaces;,, where

S@ ={A e HomT M, V), Axy = Ayx}.
Then M2 is strongly curvature invariant.

Proof. 1) follows from (2.3). First statement of 2) follows from (3) of Proposi-
tion 2.5. The last statement follows from the general identity for the curvature tensor
R of M*:

(R(J2X, J2Y), JoZ, JoW) = (R(X,Y), Z, W) VX,Y,Z,WeTM
and remark that,7, M =T M, Vx € M. O

Propo~sition 2.9. For a Kahler submanifold M?* of a quaternionic HKhler
manifold M, the second Gauss-Codazzi equation follows from the first.

Proof. For anyX,Y,U,V € TM, by using (1.4), one has:

(JaR3t5-J2U, V) = (JoRyxy JoU, V)
= —(RxyU, V) — v(F(X,Y)JLU + F3(X, Y)J3U, V)
—(RxyU, V) —v(F(X,Y)11U, V),

that is,
(2.4) Ryy = LRI I, P —vF(X, V)1
Moreoverdw(X,Y) = —vF(X,Y). ]

2.3. Maximal Kahler submanifolds of a quaternionic symmetric space Now
we assume that the quaternioniéiider manifoldM*' is a (locally) symmetric mani-
fold, i.e. VR = 0.

Proposition 2.10. Let M?" be a Kahler submanifold of a quaternionic locally
symmetric spaca~/14". Then the covariant derivatives of the tangential p&t”, the
normal part R+ and mixed partR'” of the curvature tensoR;,, can be expressed
in terms of these tensors and the shape operéter J, o h as follows

051 (VxRTT)(Y, Z)U, V) = —(RYT(Y, Z)U, J.Cx V) + (RYT(Y, Z)V, J.CxU)
(251) —[{LRYT(U, V)CxY, Z) + (RET(U, V)Y, J,Cx Z)],
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(VXRETYY, Z)U = JL,CxRTT(Y, Z)U — R+1(Y, 2)J.CxU
— [R(J2CxY, Z)U + R(Y, J,Cx Z)U*
= LCx R (Y, Z)U — LRI (Y, Z)CxU + vF(Y, Z)JsCxU
(2.5.2) —[R(J2CxY, Z)U + R(Y, J,CxZ)U]*,

(Vi RTL)Y, 2)¢ = —[R(J:CxY, Z)¢+ R(Y, JoCx 2)¢]"

(2.5.3)
—RTT(Y, Z)Cre X + Cx LR1(Y, Z)E,

(2.5.4)
(VYRIH)Y, 2) 12U, JoV) = (RHT(U, V)Z, Jo.CxY) — (RET(U, V)Y, JoCx Z)

+HRT(Y, Z)CyX, JoV) + (CxRTH(Y, Z)J2U, V)
forany X,Y,Z, U, Ve TM, € T+M.

Proof. ForY,Z,U € TM we have the decompositioR(Y, Z)U = R77 (v, Z)U +
RLT(Y, Z)U. Then it follows

0= (VxR)(Y, Z)U =(VxRTT)(Y, Z)U + (V5 R T)(Y, Z)U
+h(X, R"T (Y, Z)U) — AxR*T (v, Z)U
—[R(h(X,Y), Z)U + R(Y, h(X, Z))U + R(Y, Z)h(X, U)].

By taking the tangential and the normal part of the equation, we get

(@) (VxRIT)(Y, 2)U =AxR*1 (v, 2)U

— [R(J,CxY, Z)U + R(Y, J,Cx Z)U + R(Y, Z)J,CxU]",
(b)  (VKRII)Y, Z)U =J,Cx R (Y, Z)U

— [R(J,CxY, Z)U + R(Y, J,Cx Z)U + R(Y, Z)J,CxU]*.

The scalar product of (a) witlv  gives

(VxRTTY(Y, 2)U, V) = —(R*T(Y, Z)U, Jo.Cx V)
—(R(J2CxY, Z)U, V) + (R(Y, J2Cx Z)U, V) + (R(Y, Z)J2Cx U, V)].

Now we take into account that for any tangent vect&rsY, U,V € TM one has
(LR (U, V)X, Y) = (R(JLX, Y)U, V). In fact, let us recall the identity

[R(U. V). J2] = v({U, 1V} J3 — (U, J3V) Jr).

Then one has, for example,
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(R(J2CxY, Z)U, V) = (R(U, V)JoCxY, Z)
= (LR(U, V)CxY, Z) + v(U, J1V){(J3CxY, Z)
= (LR(U, V)CxY, Z) = (LRI (U, V)CxY, Z).
Hence (2.5.1) follows.
The first equality in (2.5.2) coincides with (b). To get the second equality it is

sufficient to use (1.4).
The other two identities are proved analogously, as follows. We have

0= (VxR)(Y, Z)¢ = (V'R)H(Y, Z)& + (V' RT)(Y. Z)¢
+ R(J2CxY, Z)E + R(Y, JoCx Z)¢ + R(Y, Z)C e X
+h(X, RTH(Y, 2)¢) — AxR++(¥, Z)¢.

Hence, by passing to the tangential and normal part, we get

() (ViRTH)(Y, 2)¢ = — [R(J2CxY, Z) + R(Y, JoCx 2)¢]"
— RTT(Y, Z)Cre X + Cx LRM(Y, Z)E,
(d) (V4 R, 2)6 = — [R(2Cx Y, 2)E + R(Y, JoCx 2)¢]

— RMT(Y, Z)Cre X + J,Cx RTH(Y, Z)E.
(c) is (2.5.3). If we taket = LU, n = JoV then (d) is equivalent to the identity

(VYRED)Y, 2)J2U, JoV) = — (R(U, V)J2CxY, Z) — (R(U, V)Y, JoCx Z)
— (RMT(Y, Z)Cre X, J2V) + (CxRTH(Y, Z)E, V)

that is (2.5.4). Il
By (2.5.1) we get immediately the following result.

Proposition 2.11. If the Kahler submanifoldM?' ¢ M* is curvature invariant
i.e. R+T =0, then the tensor fielR”” is parallel

VR =0,
and satisfies the identity

—CxRTI(Y,Z) + RTT(Y, Z)Cx +vF (Y, Z)J:Cx

(2.6) 7 R
= [J2(R(J2Cx Y, Z) + R(Y, J.Cx Z))

]TT

where (A)7T denotes theEnd(T, M ) component of an endomorphism  BfM.
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Denote by , C ] the End{, M )-valued two-form, given by
[C,Cl(X,Y)=][Cx, Cy] VX, YeTM.

(One can easily check that it is globally defined anh )
For a subspac€¢ C End(f, M) we define the spack(G) of the curvature tensors
of typeG by

RG)={REGOA’TM | cyclR(X,Y)Z=0VYX,Y,ZcT,M}

where cycl is the sum of cyclic permutations ®f Y, Z
As another corollary of Proposition 2.10 and Proposition 2.5 1) we have the fol-
lowing result.

Proposition 2.12. Under the assumptions dProposition 2.11the tensor field
[C,C]= R—R™T belongs to the spacR(u,) and satisfies the second Bianchi iden-
tities:

CyCl VZ[CXa Cy] =0.

Proof. The tensor(, C ] satisfies the first Bianchi identity silke  &id do
it. Since [Cx, Cy ] commutes with/ and it is skew-symmetric with respect to the met-
ric g, the tensor , C ] belongs to the spa®u,) of the u,—curvature tensors. The
last statement follows from remark th&R”” = 0 and thatR satisfies the second
Bianchi identity. ]

As another corollary of Proposition 2.10 we get the following result.

Proposition 2.13. A maximal Kahler submanifold?* of a locally symmetric
quaternionic Kahler manifold M*" is locally symmetric(that is VR = 0) if and only
if the following identity holds

(Vx [C,ClyzU, V) = (R1(Y, Z)U, J.Cx V) — (RYT(Y, Z)V, J.CxU)

@7 (R (U, V)CxY, Z) + (RET(U, V)Y, J2Cx Z)].

If, moreover M is curvature invariant ther(2.7) reduces to the condition that the ten-
sor field[C, C] is parallel (V[C, C] = 0).

Proof. The proof follows directly from the Gauss-Codazzi equations, see Propo-
sition 2.5(1), and (2.5.1). ]

2.4. Maximal totally complex submanifolds of quaternionic space forms
Now we assume thatM*', Q,3) is a non flat quaternionic space foyme. a quater-
nionic Kahler manifold which is locally isometric to the quaternionic projective space
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HP" or the dual quaternionic hyperbolic spaBd{” with standard metric of reduced
scalar curvaturer. Recall that the curvature tensor af/{", Q, %) is given by R =
VRyp» Where

1
Rapn (X, ¥) = 7 (X AY 3T X ALY =3 200X, Y)Ja> .
(6% «

We denote byRcp: the curvature tensor of the complex projective sp&d@’ (nor-
malized such that the holomorphic curvature is equal to 1):

1
Repe(X,Y) = Z(X ANY+IXATY —2(JX, Y>J) .

Proposition 2.14. Let (M?*,J,g) be a totally complex submanifold of the
quaternionic space form/%. Then
(1) RIT =y(Repn)xy = W/A)X AY + I1X A 1Y — 2(01X, V) Jh).
2 RicR"") =@/2)n + 1), g =8u-

(3) RT =RTL =0,
(4) Ry = (/)X A LY + J3X A J3Y — 2(J1X, Y)Jy).
Proof. It is a straightforward verification. U

As a consequence of Corollary 2.6 and Proposition 2.14 we get

Proposition 2.15. Let M?" be a Kahler submanifold of a quaternionic space
form M* with reduced scalar curvature. Then

Ricy (X, X) = %(n +1)g (X, X)—trC2 < %(n + g (X, X), X € T, M.

Moreover the second fundamental formm  Mf  at poirk M vanishes if and only
if (Ricy ), = (@/2)(n +1)g. In particular M is a totally complex totally geodesic sub-
manifold if and only if

Ricy, = g(n +1)g.
From Proposition 2.13 we get
Proposition 2.16. A maximal Kihler submanifold(M?",J, g) of a non flat
quaternionic space form is locally symmetric if and only if the tensor fi€ldC] is

parallel. In particular, any maximal Khler submanifold with parallel second funda-
mental form is(locally) symmetric.
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Proof. It is sufficient to prove only the last statement. Assume Wigt = 0.
ThenVxC =w(X)JC and

VX[C, C] = [VXC, C] + [C, VXC]
:w(X)([JC, cl+[c, JC]) =0

since Cy anticommute witly . O

Conjecture. let (M?', J,g) be a Kahler manifold. Any tensor fieldC < Sﬁl)
which satisfies conditions

1) v(Rcpr)xy = Rxy — [Cx, Cy]

and

2)  (VxC)y —w(X)JoCy €SP,
wherew is a 1-form such thatlw = —vF, defines a totally complex embedding in
HP",

3. Classification of parallel Kahler submanifolds M2" of M4

3.1. The parallel cubic line bundle We will assume that/* is a quaternionic
Kahler manifold with the reduced scalar curvatwe? 0 and (2", J) is a parallel
totally complex submanifoldf M, that isV’h = 0 or, equivalently,

(31) Pxy = (V)(C)y - w(X)J oCy=0 X, YeTM.

We will assume that is not a totally geodesic submanifold, /i.¢. 0.

By Proposition 2.8M is a curvature invariant submanifoRt-{ = 0). We denote
by T°M = T2°M + T%1M the decomposition of the complexified tangent bundle into
holomorphic and antiholomorphic parts and BYy“M = T*1°M + 7*%1M the dual
decomposition of the cotangent bundle.

Denote byS(jl)(C the complexification of the bundlﬂgl) (see Corollary 2.2) and by
goSWE the associated subbundle of the bunsfé7* M)C. We will call S3(7*M)" the
bundle of cubic forms

Proposition 3.1. Let (M?",J) be a parallel Kahler submanifold of a quater-
nionic Kahler manifold M** with v # 0. If it is not totally geodesic then oM  there
is a canonically defined parallel complex line subbundle  of the buS&{@*'-°Mm)
of holomorphic cubic forms such that the curvature of the connectiéninduced by
the Levi-Civita connectio’V has the curvature form

(3.2) RL =ivF,
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where F = g o J is the Kahler form of M .
Proof. We first prove the following lemma.
Lemma 3.2. go S = §37+10) + §37+01p

Proof. SinceJ|T*°M =i and J|T%'M = —i, the space of complex endomor-
phisms of 7°M which anticommute with/ is

Hom@*°Mm, T%*M) + Hom@ %M, 71 M) .
Hence the spacg o S§ of symmetric bilinear forms, associated wisly is
g oSS =SA1*1oM) + AT M),
which proves the lemma. O

Using Lemma 3.2 we can decompose the cubic fgithe goSgl) associated with
the shape operataf #&h into holomorphic and antiholomorphic parts:

gC=qg+g¢€ §37*L0ps 4 3701,
Since, by assumption,
VxC =w(X)JoC
we have
gVxC =VxgC =Vxq+Vxqg=w(X)g(J o).

ForY,Z e T*%M, we get

Vx(gO)Y, Z) = w(X)g(JC(Y, Z)) = —iw(X)gC(Y, Z)
sinceC ¢, Z)e T%*M and JC (, Z) =—iC(Y, Z). This shows that
(3.3) Vxq = —iw(X)gq.
Using (2.3), one check that under the changing of adapted basjs— (J7) with

J} = cosfJ, — sinfJz

the cubic formg changes by

g — q’ = (cos? — sinbi)g .
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Note also that the cubic forg # O at any point, since by assumption the second
fundamental forn: is parallel and not zero. These show that the complex line bundle
L = span(q) C S37*10 is globally defined and parallel, i.e. the Levi-Civita connec-
tion V preservesL and defines a connectidh in L. Using (3.3), we calculate the
curvature of V% as follows:

RE(X,Y)q = ([VL, Vil - V[Lx,n)‘l
= ([VX, Vyl - V[x,y])q
=~V (w(V)ig) + Vy (w(X)ig ) +w(X, VDiq
= —dw(X,Y)ig =vF(X, Y)iq.

This proves Proposition 3.1. ]

Derinimion 3.3. A parallel subbundld. ¢ S3(7*%°M) with the curvature form
(3.2) on a Kahler manifoldM is called garallel cubic line bundleof type v.

Corollary 3.4. A parallel maximal Khler not totally geodesic submanifod  of
a guaternionic Kahler manifold M with v # 0 has a parallel cubic line bundld.  of

type v.

3.2. de Rham decomposition of Khler manifolds with parallel cubic line
bundle Let M be a complete simply connectechlider manifold with the de Rham
decomposition

(3.4) M=Mox My x---xM,

into product of the flat Khler manifoldM, and of the irreducible Ehler manifolds
M; izl,...,p.
We will assume that admits a parallel cubic line bundle of typg 0.

Lemma 3.5. Assume that¥ admits a parallel cubic line bundle of type O.
Then there is no flat factoMy in (3.4).

Proof. If My exists, for a non zerd € T M, using (3.2), we get 0 Ry,;x =
R%,x =vF(X, JX) # 0. Contradiction. O

Denote byh = h1 +--- + b, the direct sum decomposition of the holonomy Lie
algebrah at a pointx € M associated to the de Rham decomposition. Then the com-
mutator b’ = [h, h] is a semisimple Lie algebra with the direct sum decomposition

b =bi+---+b), b = [bi. bl .
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Remark 3.6. The subalgebrg} = 0 if dimg M; = 2 andb; acts irreducibly on the
holomorphic tangent spacE>°M; if dimgM; > 2. (See the Table 1 below.)

Let V. =T2OM = Vi +---+V, be the decomposition of the holomorphic tangent
space associated to the de Rham decomposition. Then the Speteof cubic forms
on V hasp-invariant decomposition

P
(3.5) SBvr= > vrviye
i jk=1

where for simplicity V"V V" denotes the symmetric tensor product and the subalge-
brah; acts non trivially only onV;*.

Remark that if L. is a parallel line bundle the commutafioracts trivially on its
fiber L, c S3V*, that is,

(3.6) L, C (SsV*)"

where we always denote by" the subspace of-invariant vectors of arh-module
V. Denote byg =) gijk, qijx € V* Vj*Vk* the decomposition of a non zero element
q € L,.

Lemma 3.7. If g;;x 70, then the set(, j, k} contains all indexed1, ..., p}.

Proof. Assume that ¢ {i, j, k} and take vectorsX,Y € T.M; such that
F(X,Y) = 1. Since the curvature operat@®yy acts trivially oh V;, Vi and pre-
serves the decomposition (3.4) this contradicts to the identity (3.2). O

Corollary 3.8. 1) p<3
2) If p=3,thenL, C VV; VS anddimgcV;=1,i=123

3) If p=2,thenL, C V;2V, + V;V,2 and one of the spaceg;, V, has dimension
1.

Proof. It is sufficient to prove statement about dimension. ket =3, then
Ly C (Vi V5 V)" = (Vi) L(V5)"2(V5)" #0.

By Remark 3.6 (/,.*)"f # 0 if and only if dimz V; = 1 and henceéy, = 0. The proof in
casep =2 is similar. ]

This implies the following proposition.
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Proposition 3.9. Let M be a simply connected completé&hter manifold with
parallel cubic line bundleL of type # 0. If M is reducible then either

(371) M =M1 x My x M3, dImR M; = 2 (i =12 3)
or
(372) M =My x M,

where M is an irreducible Kahler manifold anddimg M, = 2.
The following Proposition specifies the structure of such a reducible manifold

Proposition 3.10. Let M be a simply connecteccomplete reducible Kahler
manifold with parallel cubic line bundld. of type # 0. Then either

(3.8.1) M =M? x M? x M?
where M2(= CPYor CH?) is the 2-dimensional manifold of constant curvature or
(3.8.2) M =M; x M?

where M; is a complete simply connected irreducibléter-Einstein manifold with
Ricy, = v(m/2)gw), wheredim My = 2m, such that

(82v*)"r #0

where b} is the commutator of the holonomy Lie algeliyaof M, at a pointx € M,
and V = 710M;.

Conversely, any manifold/ given K$.8.1) or (3.8.2) has a parallel cubic line
bundle of typev.

Proof. First we consider the case (3.8.1). Denoteghy Ji;y, Fi;) = gq) © Jg) re-
spectively the metric, the complex structure and tréhlér form of the de Rham fac-
tor M; of M, i = 1 2 3. ThenJ =) J; and F =}, F;. Denote byz; a ba-
sis of the holomorphic cotangent spafg-l’oMi >~ C at x; € M;. Then at the point
x = (x1, x, x3) the fiber of the line bundld. is given bl, &g, g = z1z2z3 The
curvature operatorY),, X, Y € T, M; of M; is given by

XY»
Ry = =k Fi(X. Y)J@ = —ky F(X. ¥)Jg) i=123
wherekg is the curvature oflf; . Using this, we obtain from (3.2)

R%yq = Rg)y(ZﬂzZs) = —ki) F(X, Y)J3y(z12223)
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= —koyF (X, Y)(Jinyzi)zjzx) = ko F(X, Y)ig
=vF(X,Y)ig

wherei =1 2 3 andi(j, k ) is a cyclic permutation of, (1 2 3). Henkg, = v =
const and M; =M?2. Conversely it is clear that (3.8.1) has parallel cubic line bundle
of type v generated by =z1zz3.

Now we consider the case (3.8.2). We will assume thatzdifp > 2. (The case
dimg M; = dimg M, = 2 can be treated similarly.) Then Corollary 3.8 3) shows that at
any pointx € M the fiber L, =Cq = C(bzz) wherez; is a basis of the holomorphic
cotangent spac&*-°M, = C and b € (52V*)"" is an b’-invariant symmetric bilinear
form on vy = T}%M;. The same calculation as before shows that (3.2) is equivalent to
the following conditions
(1) the curvaturekz) of M, is equal tov, kpy=v
2) RY) = —(w/F (X, Y)Jay+ Riyy,,
where R{Y) is the curvature operator off; and R’ayxy is its projection onb; =
[b1, b1]. Now, since 2Rig, (X, Jo)Y) = —trJoyRY) = —(v/2)F(X,Y)(2n) where
2m = dimg M3, the condition (2) is equivalent to the condition
(2') Ricy, =v(m/2)gq).

The converse statement is clear now. ]

Remark 3.11. The above proof still works if we drop the assumption of com-
pleteness and leads to the conclusion th&t will be locally isomorphic to (3.8.1) or
(3.8.2).

The next proposition gives necessary and sufficient conditions for an irreducible
Kahler manifold to admit a parallel cubic line bundle of typeZ O.

Proposition 3.12. A complete simply connected irreduciblé{er manifold /7%
with holonomy Lie algebrd at a pointx admits a parallel cubic line bundle of type
v if and only if it is Kahler-Einstein with

(3.9) RiGy :%ng
and
(SPvH)" #0

where V = T1M is the holomorphic tangent space with the natural action of the Lie
algebra b’ = [h, b].

Proof. The proof is similar to the reducible case. The conditishv )"’ #0
is equivalent to the existence of a parallel cubic line bunbllec S37*:%) (which
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Table 1.
List of holonomy of irreducible Khler manifoldspz?:

n’. H b’ = [, 6] 7O G n = dime M
1 | S(U, x Uy) | sup+suq | V(m)® V(m) S(lSJf,JIQzJ,I) = Gr, (CP*) pq
2180250, 50m V(m) =C™ % = Gry(R?*") m
3 Ui sw.y | V(2m) = S2CH1 % gﬂglﬁ)
4 Uin sy | V(m) = A2CH % 1)
5|802-8S010| so10 V(ms) = C16 ﬁ 16
6| T'-Es ¢ V(my) =C?% e 27
& Ui S V(m) = CHL SUiz = Cpiit I+ 1
8" SUn S+ V(m) = C* S I+1
o* Spi sp, V(my) =C% - —— 2

We indicate by* the groupsH which are holonomy groups of non-symmetric irreducildiielét
manifolds.

is obtained by parallel translation of the line, Gy, 0 # g € (S3V*)“') and the
Kahler-Einstein condition means that the curvatie of the induced connégfion
satisfies (3.2). ]

Propositions 3.10 and 3.12 reduce the classification @fl& manifolds with pa-
rallel cubic line bundle to the determination of the irreducible holonomy Lie algebras
b of Kahler manifolds such that the representationjof= [f, h] in the holomorphic
tangent spac&/ %M has non trivial invariant quadratic or cubic form, i.e. such
that

S2VY #0  or  S3(VH)Y #0.
We give such description in the next subsection.

3.3. Quadratic and cubic invariants of the holonomy representation’ on
V = TL%M In the previous Table 1 we give the list of all irreducible holonomy
groups H of simply connected &ler manifoldsM . We indicate also the semisimple
part b’ of the holonomy Lie algebrg = Lie(H) and its representation in the holomor-
phic tangent spac& £1° and the compact Hermitian symmetric spaGgH with
holonomy groupH if it exists.

For h’-modules we use notations according to [17] and denoterdy. ., n; the
fundamental weights associated with simple rawis. .., o; of the Lie algebray’. We
denote byV k) the irreducible)’-module with highest weight. In particularV r) is
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the simplest representation of a simple Lie algelyra

The following proposition describes all irreducibleaKler manifolds which admit
a parallel quadratic or cubic line bundle.

Proposition 3.13. Let M be a simply connected compact irreducibléhler
manifold with holonomy Lie algebrg such that the semisimple pafit = [h, §] has
a non trivial quadratic or cubic invarianti.e. S2(V*)"" # 0 or S3(V*)" # 0, where
V = TXOM. ThenM is one of the following Hermitian symmetric spaces fi@ble
1.

. S3vH)Y #0

SU4
S(U2 X U2)
V = C? ® C? = Maty(C) is the b’ = (sup + sup)-module with the action
h>3(A,B): X — AX + XB';

1 (p=q=2) ME=Gnr(C*%=

S2VY =Cd,  d(X)=detX.
SO
0 2m — m+2y — 2+m
2 M?" =Gr(R™?) = 22
" 2AR™) = <5 50,

V =C™ is the standardy’ = so0,,-module
SZ(V*)“' =Cg whereg is the complex Euclidean metric.

RemARK. It is known that G§(C?*) = Gry(R®).

W03 (=1 ME=3P2
Uz

V = 52C2 = MatY™(C) is the i’ = sup-module with the action
h>A: X — AX +XA";

S2 (v =Cd,  d(X)=detX.

. SV #0

SUs

0 - - 18 _ 6y —
n-1 (p=q =3) M _GrS((C)_S(ngUg)

vV =C3% ® C3 = Matz(C) is the b’ = suz + suz-module with the action
h>3(A,B): X — AX + XB';

S}V =Cd, d(X)=detX.
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_ Sps

Us
V = §2C3 = Mat"™(C) is b’ = suz-module with the action
h32A:X— AX + XA,

n°3 (=20 M*?

S}V =Cd,  d(X)=detX.

_S0O12
T Us
V = A2CS = Ma*®{(C) is b’ = sug-module with the action
h2A:X— AX + XA,

n’4 (=5 M®

S}V =CPf, Pf(X) = pfaffian ofX .

E
n°6 M = !
T1. E6

V = C? = Hermg(0) (Hermitian matrices of order3 over the octoniansis a
b’ = eg-module(see[17]);

S}V =Cd, d(X)=det(X)

Proof. Using criterion for existence of a symmetric bilinear invariant for an irre-
ducible representatio A\ of a semisimple Lie algebrf’ (see [17], pp. 195-196) we
get that only the following Lie algebras from Table 1 have such invariant:

n’1) for p=¢q=2 n’ 2) n° 3) for [ =1

Now the proof is straightforward. To prove the second statement, we remark that for
any two irreducibleh/-modulestU, V. we havel{® V)" = Hom(@U*, V). In particular,
if S3(V*)"" #0 then

0 # (V* ® S2v*)" = Hom(V, S2v*)".

This implies that they’-module S?V* has an irreducible submodule isomorphic Vto
The decomposition 0§2V* into irreducible submodules for alif -modulesV from Ta-
ble 1 is described in [17]. They are the following:
n°l) V=V(m)@V(m), V= V(r,_1) ® V(r,—1), S¥(V*) = V(2r,-1)® .
V(27rq—l) + V(Trp—Z) ® V(ﬂ—q—Z) ,
VCS?V* e p=qg=3
n°2) V=V(r)=V* S?V*) =V(2r)+Cg (g is the Euclidean metric)
vV ¢ s?v+
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n°3) V=V(@2r), V*=V(Q2r), S3%V*)=V(4m)+V(2r_1)
VCSViel=2

n°4) V=V(m), V*=V(m_1), SAV*)=V(2m_1)+V(m_3)
VCcSA(V)el1=5

n°5) V=V(ms), V*=V(m), SAV*)=V(2rs)+V(m)
V & S3Vv*)

n°6)  V=V(r), V*=V(m);, SAV*)=V(2ms)+V(r)
V C S3(V¥)

n°7-8) V=V(r), V*=V(m), S¥V*)=V(2nr)
V & S3v*)

n°9) V =V(m)=V*, S2(V*) = V(2m)
V ¢ S2v*,

It follows that V ¢ S?(V*) only in the cases:

n°l) p=¢q=3 n°3) 1 =2 n°4) 1 =5 n’6)

We can easily describe the cubic invariant in all these cases as it was stated in the
proposition. ]

Propositions 3.10, 3.12, 3.13 imply the following theorem.

Theorem 3.14. Let M?* be a simply connected completéitder manifold which
admits a parallel cubic line bundle of type # O.

If v > 0 then M?" is one of the Hermitian symmetric spaces describedable 2,
where also the representation of the semisimple pamf the holonomy Lie algebrg
of M on the holomorphic tangent spaée= T1°M is given as well as the description
of the fiber of line bundle. . The metric of irreducibM? is normalized such that
the scalar curvaturek = 2/3vn?. The metric of P := CP! = SU,/T?! has constant
curvaturev. If M = Mf(”_l) x CP?! then the metric of\f; is normalized such that the
scalar curvaturek, = v(n — 1)°.

If » < 0thenM?" is the (non compagtdual space of one of the symmetric spaces
of Table 2.

3.4. Classification of parallel totally complex not totally geodesic submani-
folds M?" of a quaternionic Kahler manifold M4 Let M? be a parallel totally
complex not totally geodesic submanifold of a quaternion&hlér manifold* with
the reduced scalar curvature# 0. Then by Theorem 1.81/ is&hler and by Propo-
sition 3.1 and Corollary 3.4 it has a canonically defined parallel cubic line bundle of
type v. By applying Theorem 3.14 we get the following theorem.

Theorem 3.15. Let M?* be a simply connected complete parallel totally complex
not totally geodesic submanifold of a quaternioniater manifold M** with reduced
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Table 2.
List of simply connected Khler manifoldsy/?
with parallel cubic line bundld. of type > 0

Case of reducibley?

n® | n M b’ 70 L
I|n|s5%8— xP|son1+R| V(m)®C gso,_, - THO(PY)
1|2 P x P’ 0 CoC S2riop) - TP
23| PxP xP" 0 CeCacC|TP) - TLP) - TP
3|4 Sé—’; x P Sllp §2C?®C (Cdet)-C

Case of irreducible M%
|l n| M* b 710 L
411 P 0 C s3C
506 ¥ suz | V(2m) = $2V(my) | Cdet
6|9 % sugtsuz | V(m)® V(m) |Cdet
7|15 Sgm sl V(r1) = A2V (my) | Cpf
8|27 = 6 Y=t Cdet

where P, P/, P"" denote copies of P! and dot means the symmetric product.
REMARK. 193 of reducible case is isomorphic @1 for n = 4.

scalar curvaturev. Assume thatr > 0. Then M?" is one of the compact Hermitian
symmetric spaces described Table 2and the scalar curvature of each factor is de-
scribed as in previous theorem. For < 0 the submanifold? is one of the dual
symmetric spaces.

Corollary 3.16. Under the hypothesis of the theorem assume that the complex
dimensionn of the parallel totally complex submanifald? M* is different
from 1, 2, 3, 4, 6, 9, 15, 27Then M is isometric to the compact symmetric space
S0,+1/(SO2-S0,_1) x CP* or its non compact dual.

Remark that Tsukada constructed the explicit realization of all these manifolds as
parallel totally complex submanifolds in the quaternionic projective sfiaeé ([20]).
On the other hand he proved that in dual hyperbolic quaternionic da#fg n > 2,
any parallel totally complex submanifolsf?" is totally geodesic (see [20] Th. 7.2).
The problem of realization of these manifolds as parallel totally complex submanifolds
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in other Wolf spaces is still open. For this purpose let us consider the following re-
sults.

4. Curvature invariant K &hler submanifolds in a quaternionic Kahler sym-
metric space

Let M* be a locally symmetric quaternionicaller manifold with non zero scalar
curvature,v # 0.

We will prove some result on non existence of non totally geodesic curvature
invariant Kahler submanifold?* in the manifold % which is not a quaternionic
space form.

We need the following lemma.

Lemma 4.1. On a curvature invariant Khler submanifold/?* of a locally sym-
metric quaternionic khler manifold ¥ the following identity holds

2(R(J,CxY, IV)U, V) =
4.1) <[CXRTT(Y, JY) — R'T(Y, JY)Cx — 1/HY||ZJCX} U, v>

- u<<JU, VY(CxY, Y) + (U, V)(JCyY, Y>) VX,Y,U,VeTM.

Proof. By using the usual properties of the curvature tensor of a Riemannian
manifold, the anticommutation property of  with amy adg and finally (1.4)
we have the following identities:

(R(Y, J.Cx JY)U, J,V) = (R(U, JLV)Y, Jo,CxJY) =
(R(U, J2V)Y, JJo2CxY) = —(R(U, J2V)J JoCx Y, Y) =
—(JR(U, J,V)Jo,CxY, Y) + V(<F3(U, LV)J3CxY — Fy(U, J,V)J3JoCxY, Y>) =
(R, JV)JoCxY, Y) + u(uu, VY(CxY, Y) + (U, V)(JCxY, Y>) =
(R(U, J2V)JoCxY, JY) + y((JU, VY(CxY, Y) + (U, V)(JCyY, Y>).
That is:
(R(Y, J,CxJY)U, JoV) =
(R(CxY, JY)U, LV + V((]U, VY(CxY, Y) + (U, V)(JCxY, Y>).
On the other hand (2.6) fof #Y is equivalent to the identity
(R(J2CxY, JY)U, JoV) + (R(Y, Jo2Cx JY)U, J3V) =
<[CXRTT(Y, JY) = RTT(Y, JY)Cx — u||YH2JCX] U, J2V>.
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Then by substituting the previous identity in this last one (4.1) follows immediately.
]

Now we prove the following result.

Theorem 4.2. Let M?", n > 1, be a curvature invariantKahler submanifold of
the locally symmetric quaternionic &ler manifold M. Assume thatM?' has the
holonomy groupSU, orU, . Then

R = aRcpn

for some real numbetr and one of the following possibilities holds.
(1) a #v: then M? is totally geodesiqC = 0),
(2) a=v: then for anyx € M?* one has the identity

(R(J2CxY, IY)U, €) = v(Rups(J2Cx Y, JY)U,E) VX,Y,U € T*M, & € T.M™*.

Moreover if for somex € M?" there exists a vectoX € T, M such thatCyx is non
degenerateone hasrR, = (vRyp), and M*' is a quaternionic space form.

Proof. SrEp 1. By proposition 2.11 thes,-curvature tensor fiellR”7 =R —
[C, C] € R(u,) is parallel, hence invariant under the holonomy gréip, Upr . Since
the SU, -invariants inR(w,) are spanned bRcp, we get

R™ = aRcpn

for some constand.
STEP 2. The (4.1) becomes

2(R(J,CxY, JY)U, J2V) = (a —v)||Y|?(JCxU, V)
+% [<JY, UY(CxY, V) + (Y, UNJCxY, V)
+(JCxY, UMY, V) + (CxY, U){JY, V)]
(4.2) —u[(CXY, Y)WJU, V) + (JCxY, YU, v>].

Let v # a and assume that # 0 at a pointx € M?". If there exist non zero vectors
X,Y € T,M such thatCxY =0 and hence

(a — )|V |2(JCxU, V) =0 YU,V €T.M,

it implies CxU = Q VU € T.M. Since by exchangingd witly one getU =
0, VX,U € T.M, that isC =0, there is a contradiction. On the other hand(Clet be
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non singular for any non zero vectof € 7,M. Then for any fixed non zero vector
Y € T, M and arbitrary¢ € T, M-+ one can compute

@3) 2RE Y. = (Sa )P+ (v+ 3) [ v+ (e a7V

since¢ can be always written a§= Jo,CxY for someX € T, M. Let us also take into
account that for anyw € T, M one has

2n
RIC(R)(W, W) = Ric(R"")(W, W) +> (R(J2E;, W)W, JoE;)

where ;) is an orthonormal basis @M . That is

2n
RIC(R)(W, W) = aRic(Rcp ) (W, W) + > (R(JLE;, W)W, E;).

i
Moreover one has

n+
2
RIC(R)(W. W) = Ric(Rap (W, W) = (n + 2)||W||?

. 1
Ric(Rcp)(W, W) = W],

and, by (4.3),

2> (R(E1. W)W, J2E;) = [(3n + 1) — 201 — 1)1/} W2

Hence the previous identity reduces to

n+1)+<3n+1)a72(n71)

(n+ 2| W2 = [a( %5 5 >

v]lwi?
that is « = v, which gives again a contradiction.

Hence,v # o implies thatM?" is totally geodesic. It remains to study the case
V=

STEP 3. In caserv = « one has the identity

(R(J2CxY, JY)U, JoV) = v(Rup: (Jo2Cx Y, JY)U, J,V).

It remains to show that in fact if there exist a pointc M?* and a vectorX € T.M
such thatCx is non degenerate then the identity obtained by puting instead of
CxY,

(R(LW, JY)U, JoV) = v(Rups (oW, JY)U, J,V)
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holds. This is easily proved by using the fact thatCi§ is non degenerate for some
X then this is true for vectors on an open neighbourhoo&k of . Then it follows that

kx = V(RHP” )x -

In this caseM*', which is assumed to be symmetric, is locally isometric to a quater-
nion space form of reduced scalar curvature ]
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