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1. Introduction

Throughout this article we always denote by ( ) a non-compact complete (con-
nected) Riemannian manifold of dimension . For a positive number> 1, a smooth
function on is said to bestrongly -subharmonic(resp. -subharmonic) if sat-
isfies the following differential inequality on :

:= div (|∇ | −2∇ ) ≥ > 0 (resp. ≥ 0)

We note that 2 is the ordinary Laplacian defined by := Trace∇∇. A few re-
lations lying between the existence of non-constant bounded -subharmonic functions
on complete Riemannian manifolds and their volume growth property are known, and
have been applied to show several Liouville type theorems for those functions (cf. [3],
[7], [9], [10], [12], [13] etc.). For instance we can show the following volume growth
estimate (see [13]), which is related to the -parabolicity of ( ) (cf. [6], [14]).

Theorem. Suppose( ) admits a non-constant smooth -subharmonic func-
tion bounded from above with > 1. Then the following holds:

∫ +∞

1

(

( )

)1/( −1)

< +∞ for any point ∈

where ( ) is the volume of geodesic ball ( ) centered at of radius > 0. In
particular if there exist a point ∗ ∈ and a positive number > 1 such that

∫ +∞

1

(

∗
( )

)1/( −1)

= +∞

then ( ) admits no non-constant smooth -subharmonic functions bounded from
above with ≥ .

In this article we continue to study such a kind of relations lying between the ex-
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istence of a certainstrongly -subharmonic function and the volume growth property
of ( ) for the case ≥ 2. In the previous paper [11], we have studied the case

= 2 and observed that the relation is deeply related to a generalized maximum prin-
ciple for the usual Laplacian. In this article it is verified that our argument used in
[11] can be also developed to the case≥ 2. However the case 1< < 2 still re-
mains. Furthermore we give a characterization of generalized maximum principle for
the -Laplacian and a sufficient condition in terms of volume growth condition
depending on for the principle to hold. This yields a generalization of our previous
result for the usual Laplacian (cf. [11]).

To formulate our result, for a smooth function on and given constantsα >

0 β > 0 and σ ≥ 0, we set

( α β σ) := { ∈ ; ( ) ≥ 0 and ( )≥ β σ( ) ( ) +α−1 }

where σ is a positive continuous function on satisfying the following condition
for a fixed point ∗ ∈ :

σ( ) ≥
1 + ( ∗ )σ

for any point ∈ and > 0

and for a given constantγ > 0, we set

( γ) := { ∈ ; ( ) > γ }

For any ≥ 0 ∈ and > 0 we define the function ( ) by

0 ( ) :=
log ( )

log
and ( ) :=

log ( )
if > 0

First we state the following theorem which is a generalization of [11], Theorem 1.1.

Theorem 1. Suppose ( γ) is a non-empty subset of ( α β σ) with α ≥
1 ≥ 2 and ≥ σ ≥ 0. Then the following assertions hold:
(i) If > σ = 0, then for any point ∈ there exist positive constants1 =

1(α β γ ) and 1 = 1(β ) such that

log Vol( ( ) ∩ ( γ)) ≥ 1 γ
α/2

for any ≥ 1. In particular, the following holds:

lim inf
→+∞

( ) = +∞ for any ∈

(ii) If > σ > 0, then there exist positive constants2 = 2(α β γ σ ∗) and
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2 = 2(β σ ) such that

log Vol(
∗
( ) ∩ ( γ))
−σ

≥ 2 γ
α/2

for any ≥ 2. In particular, the following holds:

lim inf
→+∞

−σ ∗
( ) = +∞

(iii) If = σ, then there exist positive constants3 = 3(α β γ ∗), 3 = 3(β )
and γ∗ = γ∗(α β ) such that

log Vol(
∗
( ) ∩ ( γ))

log
≥ 3 γ

α/2

for any ≥ 3 and γ ≥ γ∗. In particular, the following holds:

lim inf
→+∞

0 ∗
( ) = +∞

From Theorem 1 we can induce the following non-existence result for non-negative
smooth solutions satisfying a certain differetial inequality for the -Laplacian (cf. [1],
[2], [7], [8], [11]).

Corollary 2. Let ( ) be as above and letα ≥ 1 respectively.
(i) Suppose there exists a positive number such that

lim inf
→+∞ ∗

( ) < +∞

Then any smooth solution≥ 0 satisfying the inequality ≥ β σ
+α−1 outside a

compact subset of satisfies( ) ≤ ∗ := sup∈ ( ) for any ∈ if ≥ σ +
with ≥ 2 and σ ≥ 0, where ∗ := 0 if = φ. In particular there exists no non-
zero smooth bounded solution≥ 0 satisfying the inequality ≥ β σ

ρ on if
≥ σ + with ≥ 2, σ ≥ 0 and ρ ≥ 0.

(ii) Suppose

lim inf
→+∞

0 ∗
( ) < +∞

Then any smooth solution ≥ 0 satisfying the inequality ≥ β +α−1 outside
satisfies ( ) ≤ ∗ for any ∈ if ≥ 2. In particular there exists no non-zero

smooth bounded solution≥ 0 satisfying the inequality ≥ β ρ on if ≥ 2
and ρ ≥ 0.

REMARK 1. The range ofα is not optimal in general and can be expected to be
α > 0. On the other hand, if the Ricci curvature of ( ) satisfies Ricci ( )≥
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− (1 + ( ))2ν for ∈ > 0 ( ) := ( ∗ ) and ν ≤ −1 (resp.ν > −1),
then we can verify that

∗
( ) ≤ ν 1

+δ(ν) with ν 1 > 0 and 0≤ δ(ν) < +∞
(resp. ν+1 ∗

( ) ≤ ν 2 < +∞) for any ≫ 0 (cf. [4]).

As a corollary of the proof of Theorem 1 we get the following (see the proof of The-
orem 2.1), which is a counterpart of Theorem.

Corollary 3. Let ( ) be as above and let ≥ 2 respectively. Suppose( )
admits a smooth strongly -subharmonic function, i.e., ≥ > 0, bounded from
above. Then the following holds:

lim inf
→+∞

( ) = +∞ for any ∈

REMARK 2. For a given smooth monotone increasing function ( )> 0 on a real
line R such that :=

∫ +∞
1 / ( )1/( −1) < +∞ with ≥ 2, there exists a two

dimensional complete Riemannian manifold ( ) which admits a smooth bounded
function ≥ 0 satisfying ≡ 1 and a point ∈ with ( ) ∼ ( ) for any
≫ 0. In fact let ( ) be a two dimensional model provided with a pole = 0

and the metric = 2 + ( )2 θ2 on \ {0} ∼= (0 +∞)× 1 such that (1) (0) = 0,
′(0) = 1, ( ) > 0 ′( ) > 0 ′′( ) ≥ 0 if > 0, and (2) ( ) = (exp( ( )))′

with > 0 and ≫ 0. Setting ( ) :=
∫

0 {(
∫

0 ( ) )1/( −1)/ ( )1/( −1)} , by a
direct calculation it can be easily verified that 0≤ sup ≤ < +∞, ≡ 1 and

( )/2 ≤ 0( ) ≤ ( ) for any ≫ 0 (cf. [11], Remark 2.4 and [4]).
The above example indicates us the following (cf. Remark 3 below):if ( ) ad-

mits a strongly -subharmonic function bounded from above with≥ 2, then

∫ +∞

1 ( )1/( −1)
< +∞ for any ∈

At least this is true in the case = 2 because ( ) is not stochastically complete
(cf. [3]) if it admits a strongly subharmonic function bounded from above. The author
thanks to Prof. A. Atsuji who pointed out the result to him.

The following is a generalization of [11], Theorem 2.3.

Theorem 4. Let ( ) be as above. Suppose there exists a point∈ and
a positive number ≥ 2 such that

lim inf
→+∞

( ) < +∞

If ≥ , then the following generalized maximum principle for the operator holds:
for any smooth function bounded from above, ε > 0 and ∈ , there exists a point
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ε ∈ depending on such that

(1) ( ) ≤ ( ε) (2) |∇ |( ε) < ε and (3) ( ε) < ε

REMARK 3. As a counterpart of Remark 2, it can be expected to hold the fol-
lowing stronger assertion, i.e.,the generalized maximum principle for holds if
≥ > 1 and

∫ +∞

1 ( )1/( −1)
= +∞ for a certain point ∈

2. A volume estimate for strong p-subharmonicity on complete Riemannan
manifolds

This section is devoted to show Theorem 1. Using the same notations introduced
in the section we restate Theorem 1 as follows.

Theorem 2.1. Suppose ( γ) is a non-empty subset of ( α β σ) with
α ≥ 1 ≥ 2 and ≥ σ ≥ 0. Then the following assertions hold:
(i) If > σ = 0, then for any point ∈ there exists 1 = 1(α β γ ) ≫ 0
such that

log Vol( ( ) ∩ ( γ)) ≥ log 2
22 +1

(
β ∗∗

24
∗

2

) /2

γ α/2

for any ≥ 1, where ∗ and ∗∗ are positive constants not depending on
(α β γ ∗). In particular, the following holds:

lim inf
→+∞

( ) = +∞ for any ∈

(ii) If > σ > 0, then there exists2 = 2(α β γ σ ∗) ≫ 0 such that

log Vol(
∗
( ) ∩ ( γ))
−σ

≥ log 2
22( −σ)+1

(
β ∗∗

2σ+4
∗

2

) /2

γ α/2

for any ≥ 2, where ∗ (resp. ∗∗) is a positive constant not depending on
(α β γ σ ∗) (resp. depending only onσ). In particular, the following holds:

lim inf
→+∞

−σ ∗
( ) = +∞

(iii) If = σ, then there exists3 = 3(α β γ ∗) ≫ 0 and γ∗ = γ∗(α β ) ≫ 0
such that

log Vol(
∗
( ) ∩ ( γ))

log
≥ log 2

23

(
β ∗∗

2 +4
∗

2

) /2

γ α/2
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for any ≥ 3 and γ ≥ γ∗, where ∗ (resp. ∗∗) is a positive constant not depending
on (α β γ ∗) (resp. depending only on). In particular, the following holds:

lim inf
→+∞

0 ∗
( ) = +∞

Proof of Theorem 2.1. First we note

( γ) =

(

γ
1

)
and ( α β σ) =

(

γ
α βγα σ

)

From now on we replace by/γ and setδ := βγα. Hence we can see ( 1)(6=
φ) ⊂ ( α δ σ). For a fixed positive numberρ > 1 with ( ρ) 6= φ, let λ be
a smooth function defined on real line such thatλ( ) ≡ 0 if ≤ 1, λ( ) > 0 λ′( ) >
0 λ′′( ) ≥ 0 if > 1 andλ( ) ≡ if ≥ ρ > 1. Since the metric is complete, for
any fixed point ∈ and > 0 there exists a Lipschitz continuous functionω with
0 ≤ ω ≤ 1 on such thatω ≡ 1 on ( ), suppω ⊂ (2 ) and |∇ω |2 ≤ ∗/

2,
where ∗ > 0 does not depend on and . For positive numbers and with>
1, denotingω = ω a direct calculation shows

div(ω2 |∇ | −2∇λ( ))

= div(ω2 λ′( ) −1|∇ | −2∇ )

=
{
λ′′( ) 2 −2ω2 |∇ | + ( − 1)ω2 λ′( ) −2|∇ |

+ ω2 λ′( ) −1 + 2 ω2 −1λ′( ) −1|∇ | −2〈∇ω ∇ 〉
}

≥
{

( − 1)ω2 λ′( ) −2|∇ | + δω2 λ′( ) σ
+ +α−2

− 2 ω2 −1λ′( ) −1|∇ | −1|∇ω|
}

By integrating the left hand side with respect to the measure induced by and
the hypothesis, for anyε > 0 and (2 ) := (2 )\ ( ) we obtain

( − 1)
∫
ω2 λ′( ) −2|∇ | + δ

∫
σω

2 λ′( ) + +α−2

≤ 2
∫
ω2 −1λ′( ) −1|∇ | −1|∇ω|

≤ ε

∫
ω2 λ′( ) −2|∇ | +

2

ε

∫

(2 )
ω2( −1)λ′( ) |∇ | −2|∇ω|2

Taking ε = ( − 1)/2> 0 in the above inequality the following holds for any≥ 2:
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∫
ω2 λ′( ) σ

+ +α−2 +
− 1
2

∫
ω2 λ′( ) −2|∇ |

≤ 2 ∗
2

δ( − 1) 2

∫

(2 )
ω2( −1)λ′( ) |∇ | −2

Especially if 2 > > 2, then
∫

(2 )
ω2( −1)λ′( ) |∇ | −2

≤
(∫

(2 )
ω2 λ′( ) −2|∇ |

)( −2)/ (∫

(2 )
ω2 − λ′( ) + −2

)2/

which implies the following for > 2

∫
ω2 λ′( ) −2|∇ | ≤

(
4 ∗

2

δ( − 1)2 2

) /2 ∫

(2 )
ω2 − λ′( ) + −2

Hence for any and with 2> ≥ 2, we can induce the following estimate from
the above estimates:
∫
ω2 λ′( ) σ

+ +α−2

≤ 2 ∗
2

δ( − 1) 2

(
4 ∗

2

δ( − 1)2 2

)( −2)/2 ∫

(2 )
ω2 − λ′( ) + −2

Sinceα ≥ 1 andλ′( ) > 0 if and only if > 1, setting = ( + +α− 2)/2> 0,
we get
∫

(2 )
ω2 − λ′( ) + −2

≤
(∫

ω2 λ′( ) σ
2 ( + −2)/(2 − )

)(2 − )/2 (∫

(2 )

−(2 − )/
σ λ′( )

) /2

≤
(∫

ω2 λ′( ) σ
2 /

)(2 − )/2 (∫

(2 )

−(2 − )/
σ λ′( )

) /2

Therefore the following holds:
∫
ω2 λ′( ) σ

2 /

≤
( 2 ∗

2

δ( − 1) 2

)2 / ( 4 ∗
2

δ( − 1)2 2

) ( −2)/
∫

(2 )

−(2 − )/
σ λ′( )

for any > 1 ≥ 2 and ≥ 0 = 0( γ) with ( 0) ∩ ( 1) 6= φ. If
inf ∈ ∗ (2 ) σ( ) ≥ σ/(2 )σ for any > 0 and σ > 0, then the above estimate
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implies
∫
ω2 λ′( ) 2 /

≤
( 21+σ

∗
2

δ σ( − 1) 2−σ

)2 / ( 4 ∗
2

δ( − 1)2 2

) ( −2)/
∫

(2 )
λ′( )

for any ∈ . Taking > 0 so that ≥ max{ +α−2 } ≥ 2, we get the following:

2 ∗
2

δ( − 1)
≤ 4 ∗

2

δ
and

4 ∗
2

δ( − 1)2
≤ 16 ∗

2

δ

Hence setting ( ) :=
∫

( ) λ
′( ) ≥ 0 and ∗∗ := min{ σ 1}, we can see

( ) ≤
(

2σ+4
∗

2

δ ∗∗

) ( + +α−2)/2 (
σ−

) + +α−2
( 2 )

For ≥ σ we put

= ( ) :=
1
2

(
δ ∗∗

2σ+4
∗

2

) /2
−σ

(
≥ max{ + α− 2 }

)
and ( ) := ( ( ) )

Finally there exists 0 := (α β γ σ ) ≫ 1 such that ( ) satisfies the following:

( ) ≤
(

1
2

) ( )+α

(2 )

for any ≥ 0. Suppose > σ and take any with ≥ 2 0. Since there exists ≥ 1
such that 2−( +1) < 0/ ≤ 2− , by putting = 2 0, we obtain for any ≥ 1

( 0) ≤
(

1
2

)P −1
=0 ( )+ α

( ) ≤
(

1
2

)λ −σ (
1
)α

( )

where

λ :=
1

22( −σ)+1

(
β ∗∗

2σ+4
∗

2

) /2

> 0

Therefore there exists (α β γ σ ) > 0 such that

log ( )
−σ

≥ log 2
22( −σ+1)

(
β ∗∗

2σ+4
∗

2

) /2

γ α/2

for any ≥ (α β γ ). Since we have replaced by/γ in the beginning and
may assume supR λ

′( ) = 1, ( )≤ Vol( ( ) ∩ ( γ)) for any ≫ 0. Therefore we
can obtain the desired estimate. The case =σ can be shown similarly.
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With respect to the divergence of volume if the function is unbounded, then the
assertion is trivial respectively. If ∗ := sup < +∞ and satisfies ≥ β σ

with ≥ 0, then we may assume that∗ > 1 and does not attain∗ on by the
hypothesis ≥ 2. Hence := 1/( ∗ − ) is unbounded on and satisfies ≥
βγ σ on ( 1/( ∗ − γ))(= ( γ)) with γ ≥ ∗ − 1. Therefore we can attain
the conclusion similarly. This completes the proof of Theorem 2.1.

3. A characterization of generalized maximum principle for the operator p

on complete Riemannian manifolds

Let ( ) be a non-compact complete (connected) Riemannian manifold of di-
mension . Generalized maximum principle for the operator is formulated and
characterized as follows.

Theorem 3.1. For a fixed positive number ≥ 2 the following two statements
are equivalent:
(i) For any smooth function on with{ ∈ ; ( ) > 0} 6= φ, α > 0 β > 0
and γ > 0, ( γ)(6= φ) can not be contained in ( α β) := { ∈ ; ( ) >
0 and ( ) ≥ β ( ) +α−1}.
(ii) For any smooth function bounded from above, ε > 0 and ∈ , there exists a
point ε ∈ such that

(1) ( ) ≤ ( ε) (2) |∇ |( ε) < ε and (3) ( ε) < ε

REMARK. To show the indication (i)=⇒ (ii) it is sufficient to assumeα ≥ 1.

Proof of (i) =⇒ (ii). We need two lemmas to show our claim. First the follow-
ing lemma follows from the hypothesis (i) immediately.

Lemma 3.2. Let be a smooth function on such that0 < ∗ := sup ≤
+∞ and does not attain ∗ on . Suppose the assertion(i) in Theorem 3.1holds.
Then for constantsα ≥ 1 β > 0 σ > 0 with ≥ σ, the following holds:
(1) ( α β) := { ∈ ; ( ) < β ( ) +α−1} is a non-empty unbounded open
subset of .
(2) ( ) ≤ ∗(α β) := sup∈ ( α β) ( ) for any ∈ . Especially if ∗(α β) is
finite for a certain pair (α β), then ∗(α β) is independent ofα and β, and hence
∗ = ∗(α β) < +∞.

The following lemma has been proved in a special case in [5]. Since the proof for
general case is essentially the same, we state it without proof here.
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Lemma 3.3. Let ( ) be a complete Riemannian manifold and let be a
smooth function bounded from above on . For anyε > 0 take a point ε ∈ with
sup − ε2 < ( ε). Then there exists a pointε ∈ such that(i) ( ε) ≤ ( ε),
(ii) ( ε ε) ≤ ε and (iii) |∇ |( ε) ≤ ε, where is the distance function relative
to .

We are now in a position to begin the proof. Since≥ 2, the assertion is trivial
if attains ∗ := sup . We suppose that does not attain∗ on . For any
given point ∈ , we putε∗ := min{ε ∗ − ( )}/(1 + min{ε ∗ − ( )}) > 0. Set

:= 1/(1 + ∗ − ) > 0 and := ( 1− ε2
∗) for any positive integer . Then

clearly 1 ⊂ 2 and ∂ 1 ∩ ∂ 2 = φ if 1 > 2 ≥ 1. On the other hand, setting
α := −1 ≥ 1, := ( α ε∗) is non-empty by Lemma 3.2, (i). By using the fact

≥ −1( / − 1) −1 −1 for any ≥ 2 repeatedly and 0< < 1 on ,
we obtain 1 ⊂ 2 and∂ 1∩∂ 2 = φ if 1 > 2 ≥ 1. Setting := ∩ , is
also non-empty and sup = 1 by Lemma 3.2, (ii). In particular is unbounded
for any ≥ 1 because does not attain∗, and it can be verified that 1 ⊂ 2

and ∂ 1 ∩ ∂ 2 = φ if 1 > 2 ≥ 1. Suppose converges to a non-empty subset

∞ ⊂ containing a point ∞ as tends to infinity. Then should attain 1 at∞.
This is a contradiction. Hence \ converges to the whole space as tends to
infinity. This implies that (∗ ) is unbounded for a fixed point∗ ∈ . Setting
λ := sup∈∂ ( ∂ 1) ∈ (0 +∞] for any > 1, lim →+∞ λ = +∞ by the above
observation. Sinceλ is non-decreasing in , there exists a large positive integer∗

such thatε∗ < λ ≤ +∞ for any integer with ≥ ∗. For a fixed ≥ ∗, there
exists a point ∗ ∈ ∂ with ( ∗ ∂ 1) > ε∗. Clearly such a point admits a small
positive constantδ∗ such that (ε∗) ⊂ 1 if ∈

∗
(δ∗) ∩ . Now we take a point

ε ∈
∗
(δ∗) ∩ . By Lemma 3.3, there exists a pointε ∈

ε
(ε∗) ∩ ⊂ 1 such

that |∇ |( ε) ≤ ε∗. If is large enough, thenε is the desired point.

Proof of (ii) =⇒ (i). Suppose ( γ) ⊂ ( α β) with α > 0. Let λ be a
smooth function defined on real line such thatλ( ) = 0 for < γ, λ′( ) > 0 λ′′( ) ≥ 0
for ≥ γ and λ′( ) = 1 for ≥ γ + δ with δ > 0. Taking δ arbitrarily we may
assume that :=λ( ) satisfies ≥ β +α−1 on { > γ∗} 6= φ with γ∗ := λ(γ +
δ) > 0. Set :=−1/(1 + ) with := α/ > 0 and ε∗ := min{sup − 1/(1 +
γ∗) 1} > 0. By the hypothesis for anyε > 0 with 0 < ε < ε∗, there exists a point

ε ∈ such that (1) sup − ε < ( ε), (2) |∇ |( ε) < ε, (3) ( ε) < ε. Since
( ε) ≥ β +α−1( ε), by a direct calculation there exists a constant (α β ) > 0

not depending onε > 0 such that

(
( ε)

1 + ( ε)

) +α−1

≤ (α β )ε

This implies ∗ := sup < +∞ and so there exists > 0 not depending onε such
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that ( ε) +α−1 ≤ ε. Letting ε → 0 we obtain ∗ = 0, which implies ≤ γ on
( γ) = { > γ} 6= φ. This is a contradiction. This completes the proof of Theorem

3.1.

As a byproduct of Theorem 3.1, we get the following non-existence theorem for non-
negative solution satisfying a certain differential inequality (cf. [8]).

Corollary 3.4. For a positive number ≥ 2 suppose the generalized maximum
principle for holds on( ). Then any smooth solution ≥ 0 satisfying the
inequality ≥ β outside a compact subset of satisfies( ) ≤ ∗ :=
sup ∈ ( ) for any ∈ if > − 1, where ∗ := 0 if = φ. In particular there
exists no non-zero smooth bounded solution≥ 0 satisfying the inequality ≥ β ρ

on if ρ ≥ 0.

Now it is clear that Theorems 2, 3 and 4 follow from Theorems 2.1 and 3.1 immedi-
ately.
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