STRONGLY *p*-SUBHARMONIC FUNCTIONS AND VOLUME GROWTH PROPERTY OF COMPLETE RIEMANNIAN MANIFOLDS

KENSHO TAKEGOSHI

(Received January 8, 1998)

1. Introduction

Throughout this article we always denote by (M, g) a non-compact complete (connected) Riemannian manifold of dimension m. For a positive number p > 1, a smooth function u on M is said to be *strongly p-subharmonic* (resp. *p-subharmonic*) if u satisfies the following differential inequality on M:

$$\Delta_p u := \operatorname{div}_g(|\nabla u|^{p-2} \nabla u) \ge c > 0 \quad (\operatorname{resp.} \ \Delta_p u \ge 0)$$

We note that Δ_2 is the ordinary Laplacian Δ defined by $\Delta := \operatorname{Trace}_g \nabla \nabla$. A few relations lying between the existence of non-constant bounded *p*-subharmonic functions on complete Riemannian manifolds and their volume growth property are known, and have been applied to show several Liouville type theorems for those functions (cf. [3], [7], [9], [10], [12], [13] etc.). For instance we can show the following volume growth estimate (see [13]), which is related to the *p*-parabolicity of (*M*, *g*) (cf. [6], [14]).

Theorem. Suppose (M, g) admits a non-constant smooth p-subharmonic function bounded from above with p > 1. Then the following holds:

$$\int_1^{+\infty} \left(\frac{r}{V_x(r)}\right)^{1/(p-1)} dr < +\infty \quad for any point \ x \in M,$$

where $V_x(r)$ is the volume of geodesic ball $B_x(r)$ centered at x of radius r > 0. In particular if there exist a point $x_* \in M$ and a positive number q > 1 such that

$$\int_1^{+\infty} \left(\frac{r}{V_{x_*}(r)}\right)^{1/(q-1)} dr = +\infty,$$

then (M, g) admits no non-constant smooth p-subharmonic functions bounded from above with $p \ge q$.

In this article we continue to study such a kind of relations lying between the ex-

istence of a certain *strongly p*-subharmonic function and the volume growth property of (M, g) for the case $p \ge 2$. In the previous paper [11], we have studied the case p = 2 and observed that the relation is deeply related to a generalized maximum principle for the usual Laplacian. In this article it is verified that our argument used in [11] can be also developed to the case $p \ge 2$. However the case 1 still remains. Furthermore we give a characterization of generalized maximum principle forthe*p* $-Laplacian <math>\Delta_p$ and a sufficient condition in terms of volume growth condition depending on *p* for the principle to hold. This yields a generalization of our previous result for the usual Laplacian (cf. [11]).

To formulate our result, for a smooth function u on M and given constants $\alpha > 0$, $\beta > 0$ and $\sigma \ge 0$, we set

$$\Omega_p(u, \alpha, \beta, \sigma) := \{ x \in M ; u(x) \ge 0 \text{ and } \Delta_p u(x) \ge \beta K_\sigma(x) u(x)^{p+\alpha-1} \},\$$

where K_{σ} is a positive continuous function on M satisfying the following condition for a fixed point $x_* \in M$:

$$K_{\sigma}(x) \geq rac{C}{1+d_M(x_*,x)^{\sigma}}$$
 for any point $x \in M$ and $C > 0$,

and for a given constant $\gamma > 0$, we set

$$M(u, \gamma) := \{ x \in M ; u(x) > \gamma \}.$$

For any $q \ge 0$, $x \in M$ and r > 0 we define the function $h_{q,x}(r)$ by

$$h_{0,x}(r) := \frac{\log V_x(r)}{\log r}$$
 and $h_{q,x}(r) := \frac{\log V_x(r)}{r^q}$ if $q > 0$.

First we state the following theorem which is a generalization of [11], Theorem 1.1.

Theorem 1. Suppose $M(u, \gamma)$ is a non-empty subset of $\Omega_p(u, \alpha, \beta, \sigma)$ with $\alpha \ge 1$, $p \ge 2$ and $p \ge \sigma \ge 0$. Then the following assertions hold: (i) If $p > \sigma = 0$, then for any point $x \in M$ there exist positive constants $r_1 = r_1(\alpha, \beta, \gamma, p, x)$ and $C_1 = C_1(\beta, p)$ such that

$$\frac{\log \operatorname{Vol}(B_x(r) \cap M(u, \gamma))}{r^p} \ge C_1 \ \gamma^{p\alpha/2}$$

for any $r \ge r_1$. In particular, the following holds:

$$\liminf_{r \to +\infty} h_{p,x}(r) = +\infty \quad for \ any \ x \in M.$$

(ii) If $p > \sigma > 0$, then there exist positive constants $r_2 = r_2(\alpha, \beta, \gamma, \sigma, p, x_*)$ and

 $C_2 = C_2(\beta, \sigma, p)$ such that

$$\frac{\log \operatorname{Vol}(B_{x_*}(r) \cap M(u, \gamma))}{r^{p-\sigma}} \ge C_2 \ \gamma^{p\alpha/2}$$

for any $r \ge r_2$. In particular, the following holds:

$$\lim_{r \to +\infty} \inf h_{p-\sigma,x_*}(r) = +\infty.$$

(iii) If $p = \sigma$, then there exist positive constants $r_3 = r_3(\alpha, \beta, \gamma, p, x_*)$, $C_3 = C_3(\beta, p)$ and $\gamma_* = \gamma_*(\alpha, \beta, p)$ such that

$$\frac{\log \operatorname{Vol}(B_{x_*}(r) \cap M(u,\gamma))}{\log r} \ge C_3 \ \gamma^{p\alpha/2}$$

for any $r \ge r_3$ and $\gamma \ge \gamma_*$. In particular, the following holds:

$$\lim_{r\to+\infty} \inf h_{0,x_*}(r) = +\infty.$$

From Theorem 1 we can induce the following non-existence result for non-negative smooth solutions satisfying a certain differential inequality for the *p*-Laplacian (cf. [1], [2], [7], [8], [11]).

Corollary 2. Let (M, g) be as above and let $\alpha \ge 1$ respectively. (i) Suppose there exists a positive number q such that

$$\liminf_{r\to+\infty} h_{q,x_*}(r) < +\infty.$$

Then any smooth solution $u \ge 0$ satisfying the inequality $\Delta_p u \ge \beta K_{\sigma} u^{p+\alpha-1}$ outside a compact subset T of M satisfies $u(x) \le u_T^* := \sup_{y \in T} u(y)$ for any $x \in M$ if $p \ge \sigma + q$ with $p \ge 2$ and $\sigma \ge 0$, where $u_T^* := 0$ if $T = \phi$. In particular there exists no non-zero smooth bounded solution $u \ge 0$ satisfying the inequality $\Delta_p u \ge \beta K_{\sigma} u^{\rho}$ on M if $p \ge \sigma + q$ with $p \ge 2$, $\sigma \ge 0$ and $\rho \ge 0$. (ii) Suppose

) suppose

$$\lim_{r\to+\infty} \inf h_{0,x_*}(r) < +\infty.$$

Then any smooth solution $u \ge 0$ satisfying the inequality $\Delta_p u \ge \beta K_p u^{p+\alpha-1}$ outside T satisfies $u(x) \le u_T^*$ for any $x \in M$ if $p \ge 2$. In particular there exists no non-zero smooth bounded solution $u \ge 0$ satisfying the inequality $\Delta_p u \ge \beta K_p u^{\rho}$ on M if $p \ge 2$ and $\rho \ge 0$.

REMARK 1. The range of α is not optimal in general and can be expected to be $\alpha > 0$. On the other hand, if the Ricci curvature of (M, g) satisfies $\operatorname{Ricci}_{g}(x) \geq 0$

K. Takegoshi

 $-C(1+r(x))^{2\nu}$ for $x \in M$, C > 0, $r(x) := d_M(x_*, x)$ and $\nu \leq -1$ (resp. $\nu > -1$), then we can verify that $V_{x_*}(r) \leq C_{\nu,1}r^{m+\delta(\nu)}$ with $C_{\nu,1} > 0$ and $0 \leq \delta(\nu) < +\infty$ (resp. $h_{\nu+1,x_*}(r) \leq C_{\nu,2} < +\infty$) for any $r \gg 0$ (cf. [4]).

As a corollary of the proof of Theorem 1 we get the following (see the proof of Theorem 2.1), which is a counterpart of Theorem.

Corollary 3. Let (M, g) be as above and let $p \ge 2$ respectively. Suppose (M, g) admits a smooth strongly p-subharmonic function u, i.e., $\Delta_p u \ge c > 0$, bounded from above. Then the following holds:

$$\liminf_{r \to +\infty} h_{p,x}(r) = +\infty \quad for \ any \quad x \in M.$$

REMARK 2. For a given smooth monotone increasing function h(r) > 0 on a real line **R** such that $c_h := \int_1^{+\infty} dr/rh(r)^{1/(p-1)} < +\infty$ with $p \ge 2$, there exists a two dimensional complete Riemannian manifold (M, g_h) which admits a smooth bounded function $u \ge 0$ satisfying $\Delta_p u \equiv 1$ and a point $x \in M$ with $h_{p,x}(r) \sim h(r)$ for any $r \gg 0$. In fact let (M, g_h) be a two dimensional model M provided with a pole x = 0and the metric $g_h = dr^2 + f(r)^2 d\theta^2$ on $M \setminus \{0\} \cong (0, +\infty) \times S^1$ such that (1) f(0) = 0, f'(0) = 1, f(r) > 0, f'(r) > 0, $f''(r) \ge 0$ if r > 0, and (2) $f(r) = c(\exp(r^p h(r)))'$ with c > 0 and $r \gg 0$. Setting $u(r) := \int_0^r \{(\int_0^t f(s) ds)^{1/(p-1)}/f(t)^{1/(p-1)}\} dt$, by a direct calculation it can be easily verified that $0 \le \sup u \le c_h < +\infty$, $\Delta_p u \equiv 1$ and $h(r)/2 \le h_{p,0}(r) \le h(r)$ for any $r \gg 0$ (cf. [11], Remark 2.4 and [4]).

The above example indicates us the following (cf. Remark 3 below): if (M, g) admits a strongly p-subharmonic function bounded from above with $p \ge 2$, then

$$\int_1^{+\infty} \frac{dr}{rh_{p,x}(r)^{1/(p-1)}} < +\infty \quad for \ any \quad x \in M.$$

At least this is true in the case p = 2 because (M, g) is not stochastically complete (cf. [3]) if it admits a strongly subharmonic function bounded from above. The author thanks to Prof. A. Atsuji who pointed out the result to him.

The following is a generalization of [11], Theorem 2.3.

Theorem 4. Let (M, g) be as above. Suppose there exists a point $x \in M$ and a positive number $q \ge 2$ such that

$$\liminf_{r\to+\infty} h_{q,x}(r) < +\infty.$$

If $p \ge q$, then the following generalized maximum principle for the operator Δ_p holds: for any smooth function f bounded from above, $\varepsilon > 0$ and $x \in M$, there exists a point $x_{\varepsilon} \in M$ depending on x such that

(1)
$$f(x) \le f(x_{\varepsilon})$$
, (2) $|\nabla f|(x_{\varepsilon}) < \varepsilon$ and (3) $\Delta_p f(x_{\varepsilon}) < \varepsilon$.

REMARK 3. As a counterpart of Remark 2, it can be expected to hold the following stronger assertion, i.e., the generalized maximum principle for Δ_p holds if $p \ge q > 1$ and

$$\int_{1}^{+\infty} \frac{dr}{rh_{q,x}(r)^{1/(q-1)}} = +\infty$$
 for a certain point $x \in M$.

2. A volume estimate for strong *p*-subharmonicity on complete Riemannan manifolds

This section is devoted to show Theorem 1. Using the same notations introduced in the section we restate Theorem 1 as follows.

Theorem 2.1. Suppose $M(u, \gamma)$ is a non-empty subset of $\Omega_p(u, \alpha, \beta, \sigma)$ with $\alpha \ge 1$, $p \ge 2$ and $p \ge \sigma \ge 0$. Then the following assertions hold: (i) If $p > \sigma = 0$, then for any point $x \in M$ there exists $r_1 = r_1(\alpha, \beta, \gamma, p, x) \gg 0$ such that

$$\frac{\log \operatorname{Vol}(B_x(r) \cap M(u, \gamma))}{r^p} \ge \frac{\log 2}{2^{2p+1}} \left(\frac{\beta C_{**}}{2^4 C_* p^2}\right)^{p/2} \gamma^{p\alpha/2}$$

for any $r \ge r_1$, where C_* and C_{**} are positive constants not depending on $(\alpha, \beta, \gamma, p, x_*)$. In particular, the following holds:

$$\liminf_{r \to +\infty} h_{p,x}(r) = +\infty \quad for \ any \ x \in M.$$

(ii) If $p > \sigma > 0$, then there exists $r_2 = r_2(\alpha, \beta, \gamma, \sigma, p, x_*) \gg 0$ such that

$$\frac{\log \operatorname{Vol}(B_{x_*}(r) \cap M(u,\gamma))}{r^{p-\sigma}} \geq \frac{\log 2}{2^{2(p-\sigma)+1}} \left(\frac{\beta C_{**}}{2^{\sigma+4}C_*p^2}\right)^{p/2} \gamma^{p\alpha/2}$$

for any $r \ge r_2$, where C_* (resp. C_{**}) is a positive constant not depending on $(\alpha, \beta, \gamma, \sigma, p, x_*)$ (resp. depending only on σ). In particular, the following holds:

$$\liminf_{r\to+\infty} h_{p-\sigma,x_*}(r) = +\infty.$$

(iii) If $p = \sigma$, then there exists $r_3 = r_3(\alpha, \beta, \gamma, p, x_*) \gg 0$ and $\gamma_* = \gamma_*(\alpha, \beta, p) \gg 0$ such that

$$\frac{\log \operatorname{Vol}(B_{x_*}(r) \cap M(u,\gamma))}{\log r} \ge \frac{\log 2}{2^3} \left(\frac{\beta C_{**}}{2^{p+4}C_*p^2}\right)^{p/2} \gamma^{p\alpha/2}$$

for any $r \ge r_3$ and $\gamma \ge \gamma_*$, where C_* (resp. C_{**}) is a positive constant not depending on $(\alpha, \beta, \gamma, p, x_*)$ (resp. depending only on p). In particular, the following holds:

$$\lim_{r\to+\infty}\inf h_{0,x_*}(r) = +\infty.$$

Proof of Theorem 2.1. First we note

$$M(u, \gamma) = M\left(\frac{u}{\gamma}, 1\right)$$
 and $\Omega_p(u, \alpha, \beta, \sigma) = \Omega_p\left(\frac{u}{\gamma}, \alpha, \beta\gamma^{\alpha}, \sigma\right)$.

From now on we replace u by u/γ and set $\delta := \beta \gamma^{\alpha}$. Hence we can see $M(u, 1)(\neq \phi) \subset \Omega_p(u, \alpha, \delta, \sigma)$. For a fixed positive number $\rho > 1$ with $M(u, \rho) \neq \phi$, let λ be a smooth function defined on real line such that $\lambda(t) \equiv 0$ if $t \leq 1$, $\lambda(t) > 0, \lambda'(t) > 0, \lambda''(t) \geq 0$ if t > 1 and $\lambda(t) \equiv t$ if $t \geq \rho > 1$. Since the metric g is complete, for any fixed point $x \in M$ and r > 0 there exists a Lipschitz continuous function ω_r with $0 \leq \omega_r \leq 1$ on M such that $\omega_r \equiv 1$ on $B_x(r)$, supp $\omega_r \subset \overline{B_x(2r)}$ and $|\nabla \omega_r|^2 \leq C_*/r^2$, where $C_* > 0$ does not depend on x and r. For positive numbers k and q with q > 1, denoting $\omega = \omega_r$ a direct calculation shows

$$\begin{aligned} \operatorname{div}(\omega^{2k} |\nabla u|^{p-2} \nabla \lambda(u^{q})) &= q \operatorname{div}(\omega^{2k} \lambda'(u^{q}) u^{q-1} |\nabla u|^{p-2} \nabla u) \\ &= q \left\{ q \lambda''(u^{q}) u^{2q-2} \omega^{2k} |\nabla u|^{p} + (q-1) \omega^{2k} \lambda'(u^{q}) u^{q-2} |\nabla u|^{p} \right. \\ &+ \omega^{2k} \lambda'(u^{q}) u^{q-1} \Delta_{p} u + 2k \omega^{2k-1} \lambda'(u^{q}) u^{p-1} |\nabla u|^{p-2} \langle \nabla \omega, \nabla u \rangle \right\} \\ &\geq q \left\{ (q-1) \omega^{2k} \lambda'(u^{q}) u^{q-2} |\nabla u|^{p} + \delta \omega^{2k} \lambda'(u^{q}) K_{\sigma} u^{p+q+\alpha-2} \right. \\ &- 2k \omega^{2k-1} \lambda'(u^{q}) u^{q-1} |\nabla u|^{p-1} |\nabla \omega| \Big\}. \end{aligned}$$

By integrating the left hand side with respect to the measure dv_g induced by g and the hypothesis, for any $\varepsilon > 0$ and $B_x(2r, r) := B_x(2r) \setminus B_x(r)$ we obtain

$$\begin{aligned} &(q-1)\int\omega^{2k}\lambda'(u^{q})u^{q-2}|\nabla u|^{p} dv_{g} + \delta\int K_{\sigma}\omega^{2k}\lambda'(u^{q})u^{p+q+\alpha-2} dv_{g} \\ &\leq 2k\int\omega^{2k-1}\lambda'(u^{q})u^{q-1}|\nabla u|^{p-1}|\nabla \omega| dv_{g} \\ &\leq \varepsilon\int\omega^{2k}\lambda'(u^{q})u^{q-2}|\nabla u|^{p} dv_{g} + \frac{k^{2}}{\varepsilon}\int_{B_{x}(2r,r)}\omega^{2(k-1)}\lambda'(u^{q})u^{q}|\nabla u|^{p-2}|\nabla \omega|^{2} dv_{g} \end{aligned}$$

Taking $\varepsilon = (q-1)/2 > 0$ in the above inequality the following holds for any $p \ge 2$:

$$\begin{split} \int \omega^{2k} \lambda'(u^q) K_{\sigma} u^{p+q+\alpha-2} \ dv_g + \frac{q-1}{2} \int \omega^{2k} \lambda'(u^q) u^{q-2} |\nabla u|^p \ dv_g \\ &\leq \frac{2C_* k^2}{\delta(q-1)r^2} \int_{B_x(2r,r)} \omega^{2(k-1)} \lambda'(u^q) u^q |\nabla u|^{p-2} \ dv_g. \end{split}$$

Especially if 2k > p > 2, then

$$\begin{split} &\int_{B_{x}(2r,r)} \omega^{2(k-1)} \lambda'(u^{q}) u^{q} |\nabla u|^{p-2} dv_{g} \\ &\leq \left(\int_{B_{x}(2r,r)} \omega^{2k} \lambda'(u^{q}) u^{q-2} |\nabla u|^{p} dv_{g} \right)^{(p-2)/p} \left(\int_{B_{x}(2r,r)} \omega^{2k-p} \lambda'(u^{q}) u^{p+q-2} dv_{g} \right)^{2/p}, \end{split}$$

which implies the following for p > 2

$$\int \omega^{2k} \lambda'(u^q) u^{q-2} |\nabla u|^p \ dv_g \leq \left(\frac{4C_*k^2}{\delta(q-1)^2 r^2}\right)^{p/2} \int_{B_x(2r,r)} \omega^{2k-p} \lambda'(u^q) u^{p+q-2} \ dv_g.$$

Hence for any k and p with $2k > p \ge 2$, we can induce the following estimate from the above estimates:

$$\int \omega^{2k} \lambda'(u^q) K_{\sigma} u^{p+q+\alpha-2} \, dv_g$$

$$\leq \frac{2C_* k^2}{\delta(q-1)r^2} \left(\frac{4C_* k^2}{\delta(q-1)^2 r^2} \right)^{(p-2)/2} \int_{B_x(2r,r)} \omega^{2k-p} \lambda'(u^q) u^{p+q-2} \, dv_g.$$

Since $\alpha \ge 1$ and $\lambda'(u^q) > 0$ if and only if u > 1, setting $k = p(p+q+\alpha-2)/2 > 0$, we get

$$\begin{split} &\int_{B_{x}(2r,r)} \omega^{2k-p} \lambda'(u^{q}) u^{p+q-2} \, dv_{g} \\ &\leq \left(\int \omega^{2k} \lambda'(u^{q}) K_{\sigma} u^{2k(p+q-2)/(2k-p)} dv_{g} \right)^{(2k-p)/2k} \left(\int_{B_{x}(2r,r)} K_{\sigma}^{-(2k-p)/p} \lambda'(u^{q}) dv_{g} \right)^{p/2k} \\ &\leq \left(\int \omega^{2k} \lambda'(u^{q}) K_{\sigma} u^{2k/p} \, dv_{g} \right)^{(2k-p)/2k} \left(\int_{B_{x}(2r,r)} K_{\sigma}^{-(2k-p)/p} \lambda'(u^{q}) \, dv_{g} \right)^{p/2k}. \end{split}$$

Therefore the following holds:

$$\int \omega^{2k} \lambda'(u^q) K_{\sigma} u^{2k/p} \, dv_g$$

$$\leq \left(\frac{2C_* k^2}{\delta(q-1)r^2}\right)^{2k/p} \left(\frac{4C_* k^2}{\delta(q-1)^2 r^2}\right)^{k(p-2)/p} \int_{B_x(2r,r)} K_{\sigma}^{-(2k-p)/p} \lambda'(u^q) \, dv_g$$

for any q > 1, $p \ge 2$ and $r \ge r_0 = r_0(x, \gamma)$ with $B_x(r_0) \cap M(u, 1) \ne \phi$. If $\inf_{y \in B_{x_*}(2r,r)} K_{\sigma}(y) \ge C_{\sigma}/(2r)^{\sigma}$ for any $r > r_0$ and $C_{\sigma} > 0$, then the above estimate

implies

$$\int \omega^{2k} \lambda'(u^q) u^{2k/p} \, dv_g$$

$$\leq \left(\frac{2^{1+\sigma} C_* k^2}{\delta C_{\sigma}(q-1) r^{2-\sigma}} \right)^{2k/p} \left(\frac{4C_* k^2}{\delta (q-1)^2 r^2} \right)^{k(p-2)/p} \int_{B_x(2r,r)} \lambda'(u^q) \, dv_g$$

for any $x \in M$. Taking q > 0 so that $q \ge \max\{p + \alpha - 2, p\} \ge 2$, we get the following:

$$\frac{2C_*k^2}{\delta(q-1)} \leq \frac{4C_*p^2q}{\delta} \quad \text{and} \quad \frac{4C_*k^2}{\delta(q-1)^2} \leq \frac{16C_*p^2}{\delta}.$$

Hence setting $F(q, r) := \int_{B_x(r)} \lambda'(u^q) dv_g \ge 0$ and $C_{**} := \min\{C_\sigma, 1\}$, we can see

$$F(q,r) \le \left(\frac{2^{\sigma+4}C_*p^2}{\delta C_{**}}\right)^{p(p+q+\alpha-2)/2} (qr^{\sigma-p})^{p+q+\alpha-2} F(q,2r).$$

For $p \ge \sigma$ we put

$$q = q(r) := \frac{1}{2} \left(\frac{\delta C_{**}}{2^{\sigma+4} C_* p^2} \right)^{p/2} r^{p-\sigma} \quad (\geq \max\{p + \alpha - 2, p\}) \text{ and } F(r) := F(q(r), r).$$

Finally there exists $r_0 := r(\alpha, \beta, \gamma, \sigma, p, x) \gg 1$ such that F(r) satisfies the following:

$$F(r) \leq \left(\frac{1}{2}\right)^{q(r) + \alpha} F(2r)$$

for any $r \ge r_0$. Suppose $p > \sigma$ and take any r with $r \ge 2r_0$. Since there exists $k \ge 1$ such that $2^{-(k+1)} < r_0/r \le 2^{-k}$, by putting $r_i = 2^i r_0$, we obtain for any $r \ge r_1$

$$F(r_0) \leq \left(\frac{1}{2}\right)^{\sum_{i=0}^{k-1} q(r_i) + k\alpha} F(r_k) \leq \left(\frac{1}{2}\right)^{\lambda r^{p-\sigma}} \left(\frac{r_1}{r}\right)^{\alpha} F(r),$$

where

$$\lambda := \frac{1}{2^{2(p-\sigma)+1}} \left(\frac{\beta C_{**}}{2^{\sigma+4}C_*p^2}\right)^{p/2} > 0.$$

Therefore there exists $r(\alpha, \beta, \gamma, \sigma, p, x) > 0$ such that

$$\frac{\log F(r)}{r^{p-\sigma}} \geq \frac{\log 2}{2^{2(p-\sigma+1)}} \left(\frac{\beta C_{**}}{2^{\sigma+4}C_*p^2}\right)^{p/2} \gamma^{p\alpha/2}$$

for any $r \ge r(\alpha, \beta, \gamma, p, x)$. Since we have replaced u by u/γ in the beginning and may assume $\sup_{\mathbf{R}} \lambda'(t) = 1$, $F(r) \le \operatorname{Vol}(B_x(r) \cap M(u, \gamma))$ for any $r \gg 0$. Therefore we can obtain the desired estimate. The case $p = \sigma$ can be shown similarly.

846

With respect to the divergence of volume if the function u is unbounded, then the assertion is trivial respectively. If $u^* := \sup_M u < +\infty$ and satisfies $\Delta_p u \ge \beta K_\sigma u^t$ with $t \ge 0$, then we may assume that $u^* > 1$ and u does not attain u^* on M by the hypothesis $p \ge 2$. Hence $v := 1/(u^* - u)$ is unbounded on M and satisfies $\Delta_p v \ge \beta \gamma^t K_\sigma v^p$ on $M(v, 1/(u^* - \gamma)) (= M(u, \gamma))$ with $\gamma \ge u^* - 1$. Therefore we can attain the conclusion similarly. This completes the proof of Theorem 2.1.

3. A characterization of generalized maximum principle for the operator Δ_p on complete Riemannian manifolds

Let (M, g) be a non-compact complete (connected) Riemannian manifold of dimension *m*. Generalized maximum principle for the operator Δ_p is formulated and characterized as follows.

Theorem 3.1. For a fixed positive number $p \ge 2$ the following two statements are equivalent:

(i) For any smooth function u on M with $\{x \in M; u(x) > 0\} \neq \phi, \alpha > 0, \beta > 0$ and $\gamma > 0, M(u, \gamma)(\neq \phi)$ can not be contained in $\Omega_p(u, \alpha, \beta) := \{x \in M; u(x) > 0 \text{ and } \Delta_p u(x) \geq \beta u(x)^{p+\alpha-1}\}.$

(ii) For any smooth function f bounded from above, $\varepsilon > 0$ and $x \in M$, there exists a point $x_{\varepsilon} \in M$ such that

(1)
$$f(x) \leq f(x_{\varepsilon})$$
, (2) $|\nabla f|(x_{\varepsilon}) < \varepsilon$ and (3) $\Delta_p f(x_{\varepsilon}) < \varepsilon$.

Remark. To show the indication (i) \implies (ii) it is sufficient to assume $\alpha \ge 1$.

Proof of (i) \implies (ii). We need two lemmas to show our claim. First the following lemma follows from the hypothesis (i) immediately.

Lemma 3.2. Let u be a smooth function on M such that $0 < u^* := \sup_M u \le +\infty$ and u does not attain u^* on M. Suppose the assertion (i) in Theorem 3.1 holds. Then for constants $\alpha \ge 1, \beta > 0, \sigma > 0$ with $p \ge \sigma$, the following holds:

(1) $\Gamma_p(u, \alpha, \beta) := \{x \in M ; \Delta_p u(x) < \beta u(x)^{p+\alpha-1}\}$ is a non-empty unbounded open subset of M.

(2) $u(x) \leq u^*(\alpha, \beta) := \sup_{y \in \Gamma_p(u,\alpha,\beta)} u(y)$ for any $x \in M$. Especially if $u^*(\alpha, \beta)$ is finite for a certain pair (α, β) , then $u^*(\alpha, \beta)$ is independent of α and β , and hence $u^* = u^*(\alpha, \beta) < +\infty$.

The following lemma has been proved in a special case in [5]. Since the proof for general case is essentially the same, we state it without proof here.

Lemma 3.3. Let (X, h) be a complete Riemannian manifold and let f be a smooth function bounded from above on X. For any $\varepsilon > 0$ take a point $y_{\varepsilon} \in X$ with $\sup_X f - \varepsilon^2 < f(y_{\varepsilon})$. Then there exists a point $x_{\varepsilon} \in X$ such that (i) $f(y_{\varepsilon}) \leq f(x_{\varepsilon})$, (ii) $d_X(x_{\varepsilon}, y_{\varepsilon}) \leq \varepsilon$ and (iii) $|\nabla f|(x_{\varepsilon}) \leq \varepsilon$, where d_X is the distance function relative to h.

We are now in a position to begin the proof. Since $p \ge 2$, the assertion is trivial if f attains $f^* := \sup_M f$. We suppose that f does not attain f^* on M. For any given point $x \in M$, we put $\varepsilon_* := \min\{\varepsilon, f^* - f(x)\}/(1 + \min\{\varepsilon, f^* - f(x)\}) > 0$. Set $w := 1/(1 + f^* - f) > 0$ and $M_q := M(w^q, 1 - \varepsilon_*^2)$ for any positive integer q. Then clearly $M_{q_1} \subset M_{q_2}$ and $\partial M_{q_1} \cap \partial M_{q_2} = \phi$ if $q_1 > q_2 \ge 1$. On the other hand, setting $\alpha := p-1 \ge 1, \ \Gamma_q := \Gamma_p(w^q, \alpha, \varepsilon_*)$ is non-empty by Lemma 3.2, (i). By using the fact $\Delta_p w^q \ge w^{p-1} (q/q-1)^{p-1} \Delta_p w^{q-1}$ for any $q \ge 2$ repeatedly and 0 < w < 1 on M, we obtain $\Gamma_{q_1} \subset \Gamma_{q_2}$ and $\partial \Gamma_{q_1} \cap \partial \Gamma_{q_2} = \phi$ if $q_1 > q_2 \ge 1$. Setting $\Sigma_q := \Gamma_q \cap M_q$, Σ_q is also non-empty and $\sup_{\Sigma_q} w^q = 1$ by Lemma 3.2, (ii). In particular Σ_q is unbounded for any $q \ge 1$ because f does not attain f^* , and it can be verified that $\Sigma_{q_1} \subset \Sigma_{q_2}$ and $\partial \Sigma_{q_1} \cap \partial \Sigma_{q_2} = \phi$ if $q_1 > q_2 \ge 1$. Suppose Σ_q converges to a non-empty subset $\Sigma_{\infty} \subset M$ containing a point x_{∞} as q tends to infinity. Then w should attain 1 at x_{∞} . This is a contradiction. Hence $M \setminus \Sigma_q$ converges to the whole space M as q tends to infinity. This implies that $d_M(x_*, \Sigma_q)$ is unbounded for a fixed point $x_* \in M$. Setting $\lambda_q := \sup_{v \in \partial \Sigma_a} d_M(v, \partial \Sigma_1) \in (0, +\infty]$ for any q > 1, $\lim_{q \to +\infty} \lambda_q = +\infty$ by the above observation. Since λ_q is non-decreasing in q, there exists a large positive integer q_* such that $\varepsilon_* < \lambda_q \leq +\infty$ for any integer q with $q \geq q_*$. For a fixed $q \geq q_*$, there exists a point $y_* \in \partial \Sigma_q$ with $d_M(y_*, \partial \Sigma_1) > \varepsilon_*$. Clearly such a point admits a small positive constant δ_* such that $\overline{B_z(\varepsilon_*)} \subset \Sigma_1$ if $z \in B_{y_*}(\delta_*) \cap \Sigma_q$. Now we take a point $z_{\varepsilon} \in B_{y_*}(\delta_*) \cap \Sigma_q$. By Lemma 3.3, there exists a point $x_{\varepsilon} \in \overline{B_{z_{\varepsilon}}(\varepsilon_*)} \cap M_q \subset \Sigma_1$ such that $|\nabla w^q|(x_{\varepsilon}) \leq \varepsilon_*$. If q is large enough, then x_{ε} is the desired point.

Proof of (ii) \Longrightarrow (i). Suppose $M(u, \gamma) \subset \Omega_p(u, \alpha, \beta)$ with $\alpha > 0$. Let λ be a smooth function defined on real line such that $\lambda(t) = 0$ for $t < \gamma$, $\lambda'(t) > 0$, $\lambda''(t) \ge 0$ for $t \ge \gamma$ and $\lambda'(t) = 1$ for $t \ge \gamma + \delta$ with $\delta > 0$. Taking δ arbitrarily we may assume that $v := \lambda(u)$ satisfies $\Delta_p v \ge \beta v^{p+\alpha-1}$ on $\{v > \gamma^*\} \ne \phi$ with $\gamma^* := \lambda(\gamma + \delta) > 0$. Set $w := -1/(1+v)^q$ with $q := \alpha/p > 0$ and $\varepsilon_* := \min\{\sup_M w - 1/(1+\gamma^*)^q, 1\} > 0$. By the hypothesis for any $\varepsilon > 0$ with $0 < \varepsilon < \varepsilon_*$, there exists a point $x_{\varepsilon} \in M$ such that (1) $\sup_M w - \varepsilon < w(x_{\varepsilon})$, (2) $|\nabla w|(x_{\varepsilon}) < \varepsilon$, (3) $\Delta_p w(x_{\varepsilon}) < \varepsilon$. Since $\Delta_p v(x_{\varepsilon}) \ge \beta v^{p+\alpha-1}(x_{\varepsilon})$, by a direct calculation there exists a constant $C(\alpha, \beta, p) > 0$ not depending on $\varepsilon > 0$ such that

$$\left(\frac{v(x_{\varepsilon})}{1+v(x_{\varepsilon})}\right)^{p+\alpha-1} \leq C(\alpha,\beta,p)\varepsilon$$

This implies $v^* := \sup_M v < +\infty$ and so there exists C > 0 not depending on ε such

that $v(x_{\varepsilon})^{p+\alpha-1} \leq C\varepsilon$. Letting $\varepsilon \to 0$ we obtain $v^* = 0$, which implies $u \leq \gamma$ on $M(u, \gamma) = \{u > \gamma\} \neq \phi$. This is a contradiction. This completes the proof of Theorem 3.1.

As a byproduct of Theorem 3.1, we get the following non-existence theorem for nonnegative solution satisfying a certain differential inequality (cf. [8]).

Corollary 3.4. For a positive number $p \ge 2$ suppose the generalized maximum principle for Δ_p holds on (M, g). Then any smooth solution $u \ge 0$ satisfying the inequality $\Delta_p u \ge \beta u^q$ outside a compact subset T of M satisfies $u(x) \le u_T^* :=$ $\sup_{y \in T} u(y)$ for any $x \in M$ if q > p - 1, where $u_T^* := 0$ if $T = \phi$. In particular there exists no non-zero smooth bounded solution $u \ge 0$ satisfying the inequality $\Delta_p u \ge \beta u^{\rho}$ on M if $\rho \ge 0$.

Now it is clear that Theorems 2, 3 and 4 follow from Theorems 2.1 and 3.1 immediately.

References

- [1] K-S. Cheng and J-T. Lin: On the elliptic equations $\Delta u = K(x)u^{\sigma}$ and $\Delta u = K(x)e^{2u}$, Trans. Amer. Math.Soc. **304** (1987), 639–668.
- [2] S.Y. Cheng and S.T. Yau: Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333–354.
- [3] A.A. Grigor'yan: On stochastically complete manifolds, Soviet Math. Dokl. 34 (1987), 310–313.
- [4] R.E. Greene and H. Wu: Function theory on manifolds which possess a pole, Lecture Notes in Math. 699, Springer-Verlag.
- [5] J.B. Hiriart-Urruty: A short proof of the variational principle for approximate solutions of a minimaization problem, Amer. Math. Monthly, 90 (1983), 206–207.
- [6] I. Holopainen: Volume growth, Green's functions, and parabolicity of ends, Duke Math. J. 97 (1999), 319–346.
- [7] L. Karp: Subharmonic functions on real and complex manifolds, Math. Z. 179 (1982), 535– 554.
- [8] Y. Naito and H. Usami: Entire solutions of the inequality $div(A(|Du|)Du) \ge f(u)$, Math. Z. 225 (1997), 167–175.
- [9] M. Rigoli, M. Salvatori and M. Vignati: A note on p-subharmonic functions on complete manifolds, Manuscripta Math. 92 (1997), 339–359.
- [10] M. Rigoli, M. Salvatori and M. Vignati: Volume growth and p-subharmonic functions on complete manifolds, Math. Z. 227 (1998), 367–375.
- [11] K. Takegoshi: A volume estimate for strong subharmonicity and maximum principle on complete Riemannian manifolds, Nagoya Math. J. 151 (1998), 25–36.
- [12] K. Takegoshi: A maximum principle for p-harmonic maps with L^q finite energy, Proc. Amer. Math. Soc. 126 (1998), 3749–3753.
- [13] K. Takegoshi: A divergence property of L^q-integral of P-subharmonic functions on complete Riemannian manifolds, preprint.
- [14] K. Takegoshi: A note on divergence of L^p-integral of subharmonic functions and its applications, preprint.

K. TAKEGOSHI

Department of Mathematics Graduate School of Science Osaka University Machikaneyama-cho 1-16 Toyonaka-shi, Osaka 560-0043 Japan e-mail: kensho@math.wani.osaka-u.ac.jp