STRONGLY p-SUBHARMONIC FUNCTIONS AND VOLUME GROWTH PROPERTY OF COMPLETE RIEMANNIAN MANIFOLDS

KENSHO TAKEGOSHI

(Received January 8, 1998)

1. Introduction

Throughout this article we always denote by (M, g) a non-compact complete (connected) Riemannian manifold of dimension m . For a positive number $p > 1$, a smooth function u on M is said to be *strongly p-subharmonic* (resp. *p-subharmonic*) if u satisfies the following differential inequality on M :

$$
\Delta_p u := \text{div}_g(|\nabla u|^{p-2} \nabla u) \ge c > 0 \quad \text{(resp. } \Delta_p u \ge 0)
$$

We note that Δ_2 is the ordinary Laplacian Δ defined by $\Delta := \text{Trace}_{g} \nabla \nabla$. A few relations lying between the existence of non-constant bounded p -subharmonic functions on complete Riemannian manifolds and their volume growth property are known, and have been applied to show several Liouville type theorems for those functions (cf. [3], [7], [9], [10], [12], [13] etc.). For instance we can show the following volume growth estimate (see [13]), which is related to the p-parabolicity of (M, g) (cf. [6], [14]).

Theorem. Suppose (M, g) admits a non-constant smooth p-subharmonic func*tion bounded from above with* $p > 1$ *. Then the following holds:*

$$
\int_1^{+\infty} \left(\frac{r}{V_x(r)}\right)^{1/(p-1)} dr < +\infty \quad \text{for any point } x \in M,
$$

where $V_x(r)$ *is the volume of geodesic ball* $B_x(r)$ *centered at x of radius* $r > 0$ *. In particular if there exist a point* $x_* \in M$ *and a positive number* $q > 1$ *such that*

$$
\int_1^{+\infty} \left(\frac{r}{V_{x*}(r)}\right)^{1/(q-1)} dr = +\infty,
$$

then (M, g) admits no non-constant smooth p-subharmonic functions bounded from *above with* $p \geq q$ *.*

In this article we continue to study such a kind of relations lying between the ex-

istence of a certain *strongly p*-subharmonic function and the volume growth property of (M, g) for the case $p \geq 2$. In the previous paper [11], we have studied the case $p = 2$ and observed that the relation is deeply related to a generalized maximum principle for the usual Laplacian. In this article it is verified that our argument used in [11] can be also developed to the case $p \ge 2$. However the case $1 < p < 2$ still remains. Furthermore we give a characterization of generalized maximum principle for the p-Laplacian Δ_p and a sufficient condition in terms of volume growth condition depending on p for the principle to hold. This yields a generalization of our previous result for the usual Laplacian (cf. [11]).

To formulate our result, for a smooth function u on M and given constants α 0, $\beta > 0$ and $\sigma \ge 0$, we set

$$
\Omega_p(u, \alpha, \beta, \sigma) := \{ x \in M ; u(x) \ge 0 \text{ and } \Delta_p u(x) \ge \beta K_\sigma(x) u(x)^{p+\alpha-1} \}.
$$

where K_{σ} is a positive continuous function on M satisfying the following condition for a fixed point $x_* \in M$:

$$
K_{\sigma}(x) \ge \frac{C}{1 + d_M(x_*, x)^{\sigma}}
$$
 for any point $x \in M$ and $C > 0$,

and for a given constant $\gamma > 0$, we set

$$
M(u,\gamma):=\{x\in M\,;\,u(x)>\gamma\}.
$$

For any $q \ge 0$, $x \in M$ and $r > 0$ we define the function $h_{q,x}(r)$ by

$$
h_{0,x}(r) := \frac{\log V_x(r)}{\log r}
$$
 and $h_{q,x}(r) := \frac{\log V_x(r)}{r^q}$ if $q > 0$.

First we state the following theorem which is a generalization of [11], Theorem 1.1.

Theorem 1. *Suppose* $M(u, \gamma)$ *is a non-empty subset of* $\Omega_p(u, \alpha, \beta, \sigma)$ *with* $\alpha \geq$ 1, $p \ge 2$ *and* $p \ge \sigma \ge 0$. Then the following assertions hold: (i) If $p > \sigma = 0$, then for any point $x \in M$ there exist positive constants $r_1 =$ $r_1(\alpha, \beta, \gamma, p, x)$ and $C_1 = C_1(\beta, p)$ such that

$$
\frac{\log \text{Vol}(B_{\textbf{x}}(r) \cap M(u, \gamma))}{r^p} \geq C_1 \, \, \gamma^{p\alpha/2}
$$

for any $r \ge r_1$ *. In particular, the following holds:*

$$
\liminf_{r\to+\infty} h_{p,x}(r) = +\infty \quad \text{for any } x \in M.
$$

(ii) *If* $p > \sigma > 0$, *then there exist positive constants* $r_2 = r_2(\alpha, \beta, \gamma, \sigma, p, x_*)$ *and*

 $C_2 = C_2(\beta, \sigma, p)$ *such that*

$$
\frac{\log \text{Vol}(B_{x_*}(r) \cap M(u,\gamma))}{r^{p-\sigma}} \ge C_2 \, \, \gamma^{p\alpha/2}
$$

for any $r \ge r_2$. *In particular, the following holds:*

$$
\liminf_{r\to+\infty} h_{p-\sigma,x_*}(r)=+\infty.
$$

(iii) *If* $p = \sigma$, *then there exist positive constants* $r_3 = r_3(\alpha, \beta, \gamma, p, x_*)$, $C_3 = C_3(\beta, p)$ *and* $\gamma_* = \gamma_*(\alpha, \beta, p)$ *such that*

$$
\frac{\log \text{Vol}(B_{x_*}(r) \cap M(u,\gamma))}{\log r} \ge C_3 \, \, \gamma^{p\alpha/2}
$$

for any $r \ge r_3$ *and* $\gamma \ge \gamma_*$ *. In particular, the following holds:*

$$
\liminf_{r\to+\infty} h_{0,x_*}(r) = +\infty.
$$

From Theorem 1 we can induce the following non-existence result for non-negative smooth solutions satisfying a certain differetial inequality for the p -Laplacian (cf. [1], [2], [7], [8], [11]).

Corollary 2. *Let* (M, g) *be as above and let* $\alpha \geq 1$ *respectively.* (i) Suppose there exists a positive number q such that

$$
\liminf_{r\to+\infty}h_{q,x_*}(r)<+\infty.
$$

Then any smooth solution $u \ge 0$ *satisfying the inequality* $\Delta_p u \ge \beta K_\sigma u^{p+\alpha-1}$ *outside a compact subset T of M satisfies* $u(x) \le u^*_T := \sup_{y \in T} u(y)$ *for any* $x \in M$ *if* $p \ge \sigma +$ *with* $p \geq 2$ *and* $\sigma \geq 0$, *where* $u^*_T := 0$ *if* $T = \phi$. In particular there exists no non*zero smooth bounded solution* $u \geq 0$ *satisfying the inequality* $\Delta_p u \geq \beta K_\sigma u^\rho$ *on M* if $p \geq \sigma + q$ *with* $p \geq 2$, $\sigma \geq 0$ *and* $\rho \geq 0$ *.* (ii) *Suppose*

$$
\liminf_{r \to +\infty} h_{0,x_*}(r) \ < \ +\infty
$$

Then any smooth solution $u \geq 0$ *satisfying the inequality* $\Delta_p u \geq \beta K_p u^{p+\alpha-1}$ *outside satisfies* $u(x) \le u_T^*$ *for any* $x \in M$ *if* $p \ge 2$ *. In particular there exists no non-zero smooth bounded solution* $u \ge 0$ *satisfying the inequality* $\Delta_p u \ge \beta K_p u^{\rho}$ *on M* if $p \ge 2$ *and* $\rho \geq 0$ *.*

REMARK 1. The range of α is not optimal in general and can be expected to be $\alpha > 0$. On the other hand, if the Ricci curvature of (M, g) satisfies Ricci_g(x) \geq

842 K. TAKEGOSHI

 $-C(1 + r(x))^{2\nu}$ for $x \in M$, $C > 0$, $r(x) := d_M(x_*, x)$ and $\nu \le -1$ (resp. $\nu > -1$), then we can verify that $V_{x*}(r) \leq C_{\nu,1} r^{m+\delta(\nu)}$ with $C_{\nu,1} > 0$ and $0 \leq \delta(\nu) < +\infty$ (resp. $h_{\nu+1,x_*}(r) \leq C_{\nu,2} < +\infty$) for any $r \gg 0$ (cf. [4]).

As a corollary of the proof of Theorem 1 we get the following (see the proof of Theorem 2.1), which is a counterpart of Theorem.

Corollary 3. Let (M, g) be as above and let $p \geq 2$ respectively. Suppose (M, g) *admits a smooth strongly p-subharmonic function* u , *i.e.*, $\Delta_p u \geq c > 0$, *bounded from above. Then the following holds*:

$$
\liminf_{r \to +\infty} h_{p,x}(r) = +\infty \quad \text{for any} \quad x \in M.
$$

REMARK 2. For a given smooth monotone increasing function $h(r) > 0$ on a real line **R** such that $c_h := \int_1^{+\infty} dr / rh(r)^{1/(p-1)} < +\infty$ with $p \ge 2$, there exists a two dimensional complete Riemannian manifold (M, g_h) which admits a smooth bounded function $u \ge 0$ satisfying $\Delta_p u \equiv 1$ and a point $x \in M$ with $h_{p,x}(r) \sim h(r)$ for any $r \gg 0$. In fact let (M, g_h) be a two dimensional model M provided with a pole $x = 0$ and the metric $g_h = dr^2 + f(r)^2 d\theta^2$ on $M \setminus \{0\} \cong (0, +\infty) \times S^1$ such that (1) $f(0) = 0$, $f'(0) = 1$, $f(r) > 0$, $f'(r) > 0$, $f''(r) \ge 0$ if $r > 0$, and (2) $f(r) = c(\exp(r^p h(r)))'$ with $c > 0$ and $r \gg 0$. Setting $u(r) := \int_0^r \{(\int_0^t f(s)ds)^{1/(p-1)}/f(t)^{1/(p-1)}\} dt$, by a direct calculation it can be easily verified that $0 \leq \sup u \leq c_h < +\infty$, $\Delta_p u \equiv 1$ and $h(r)/2 \le h_{p,0}(r) \le h(r)$ for any $r \gg 0$ (cf. [11], Remark 2.4 and [4]).

The above example indicates us the following (cf. Remark 3 below): *if* (M, g) *admits a strongly p-subharmonic function bounded from above with* $p \geq 2$, *then*

$$
\int_1^{+\infty} \frac{dr}{rh_{p,x}(r)^{1/(p-1)}} < +\infty \quad \text{for any} \quad x \in M.
$$

At least this is true in the case $p = 2$ because (M, g) is not stochastically complete (cf. [3]) if it admits a strongly subharmonic function bounded from above. The author thanks to Prof. A. Atsuji who pointed out the result to him.

The following is a generalization of [11], Theorem 2.3.

Theorem 4. *Let* (M, g) *be as above.* Suppose there exists a point $x \in M$ and *a positive number* $q \geq 2$ *such that*

$$
\liminf_{r \to +\infty} h_{q,x}(r) < +\infty.
$$

If $p \geq q$, *then the following generalized maximum principle for the operator* Δ_p *holds*: *for any smooth function f bounded from above,* $\varepsilon > 0$ *and* $x \in M$ *, there exists a point* $x_{\varepsilon} \in M$ depending on x such that

(1) $f(x) \le f(x_{\varepsilon}),$ (2) $|\nabla f|(x_{\varepsilon}) < \varepsilon$ and (3) $\Delta_{p} f(x_{\varepsilon}) < \varepsilon$.

REMARK 3. As a counterpart of Remark 2, it can be expected to hold the following stronger assertion, i.e., *the generalized maximum principle for* Δ_p holds if $p \geq q > 1$ *and*

$$
\int_1^{+\infty} \frac{dr}{rh_{q,x}(r)^{1/(q-1)}} = +\infty \quad \text{for a certain point } x \in M.
$$

2. A volume estimate for strong *p***-subharmonicity on complete Riemannan manifolds**

This section is devoted to show Theorem 1. Using the same notations introduced in the section we restate Theorem 1 as follows.

Theorem 2.1. *Suppose* $M(u, \gamma)$ *is a non-empty subset of* $\Omega_p(u, \alpha, \beta, \sigma)$ *with* $\alpha \geq 1$, $p \geq 2$ *and* $p \geq \sigma \geq 0$ *. Then the following assertions hold:* (i) *If* $p > \sigma = 0$, then for any point $x \in M$ there exists $r_1 = r_1(\alpha, \beta, \gamma, p, x) \gg 0$ *such that*

$$
\frac{\log \text{Vol}(B_{\chi}(r) \cap M(u,\gamma))}{r^p} \geq \frac{\log 2}{2^{2p+1}} \left(\frac{\beta C_{**}}{2^4 C_* p^2}\right)^{p/2} \gamma^{p\alpha/2}
$$

for any $r \geq r_1$, *where* C_* *and* C_{**} *are positive constants not depending on* $(\alpha, \beta, \gamma, p, x_*)$. In particular, the following holds:

$$
\liminf_{r \to +\infty} h_{p,x}(r) = +\infty \quad \text{for any } x \in M.
$$

(ii) *If* $p > \sigma > 0$, then there exists $r_2 = r_2(\alpha, \beta, \gamma, \sigma, p, x_*) \gg 0$ such that

$$
\frac{\log \text{Vol}(B_{x_*}(r) \cap M(u,\gamma))}{r^{p-\sigma}} \ge \frac{\log 2}{2^{2(p-\sigma)+1}} \left(\frac{\beta C_{**}}{2^{\sigma+4}C_*p^2}\right)^{p/2} \gamma^{p\alpha/2}
$$

for any $r \geq r_2$, where C_* (*resp.* C_{**}) *is a positive constant not depending on* $(\alpha, \beta, \gamma, \sigma, p, x_*)$ (resp. depending only on σ). In particular, the following holds:

$$
\liminf_{r\to+\infty} h_{p-\sigma,x_*}(r) = +\infty.
$$

(iii) *If* $p = \sigma$, *then there exists* $r_3 = r_3(\alpha, \beta, \gamma, p, x_*) \gg 0$ *and* $\gamma_* = \gamma_*(\alpha, \beta, p) \gg 0$ *such that*

$$
\frac{\log \text{Vol}(B_{x_*}(r) \cap M(u,\gamma))}{\log r} \ge \frac{\log 2}{2^3} \left(\frac{\beta C_{**}}{2^{p+4}C_*p^2}\right)^{p/2} \gamma^{p\alpha/2}
$$

for any $r \ge r_3$ *and* $\gamma \ge \gamma_*$, *where* C_* (*resp.* C_{**} *) is a positive constant not depending on* $(\alpha, \beta, \gamma, p, x_*)$ (*resp. depending only on p*). In particular, the following holds:

$$
\liminf_{r\to+\infty} h_{0,x_*}(r) = +\infty.
$$

Proof of Theorem 2.1. First we note

$$
M(u, \gamma) = M\left(\frac{u}{\gamma}, 1\right)
$$
 and $\Omega_p(u, \alpha, \beta, \sigma) = \Omega_p\left(\frac{u}{\gamma}, \alpha, \beta\gamma^{\alpha}, \sigma\right)$.

From now on we replace u by u/γ and set $\delta := \beta \gamma^{\alpha}$. Hence we can see $M(u, 1)(\neq$ ϕ) $\subset \Omega_p(u, \alpha, \delta, \sigma)$. For a fixed positive number $\rho > 1$ with $M(u, \rho) \neq \phi$, let λ be a smooth function defined on real line such that $\lambda(t) \equiv 0$ if $t \leq 1$, $\lambda(t) > 0$, $\lambda'(t) > 0$ $0, \lambda''(t) \ge 0$ if $t > 1$ and $\lambda(t) \equiv t$ if $t \ge \rho > 1$. Since the metric g is complete, for any fixed point $x \in M$ and $r > 0$ there exists a Lipschitz continuous function ω_r with $0 \leq \omega_r \leq 1$ on M such that $\omega_r \equiv 1$ on $B_x(r)$, supp $\omega_r \subset \overline{B_x(2r)}$ and $|\nabla \omega_r|^2 \leq C_*/r^2$, where $C_* > 0$ does not depend on x and r. For positive numbers k and q with $q >$ 1, denoting $\omega = \omega_r$ a direct calculation shows

$$
\begin{split}\n\operatorname{div}(\omega^{2k}|\nabla u|^{p-2}\nabla\lambda(u^{q})) \\
&= q \operatorname{div}(\omega^{2k}\lambda'(u^{q})u^{q-1}|\nabla u|^{p-2}\nabla u) \\
&= q \left\{ q\lambda''(u^{q})u^{2q-2}\omega^{2k}|\nabla u|^{p} + (q-1)\omega^{2k}\lambda'(u^{q})u^{q-2}|\nabla u|^{p}\right. \\
&\left. + \omega^{2k}\lambda'(u^{q})u^{q-1}\Delta_{p}u + 2k\omega^{2k-1}\lambda'(u^{q})u^{p-1}|\nabla u|^{p-2}\langle\nabla\omega,\nabla u\rangle\right\} \\
&\geq q \left\{ (q-1)\omega^{2k}\lambda'(u^{q})u^{q-2}|\nabla u|^{p} + \delta\omega^{2k}\lambda'(u^{q})K_{\sigma}u^{p+q+\alpha-2} \\
&- 2k\omega^{2k-1}\lambda'(u^{q})u^{q-1}|\nabla u|^{p-1}|\nabla\omega|\right\}.\n\end{split}
$$

By integrating the left hand side with respect to the measure dv_g induced by g and the hypothesis, for any $\varepsilon > 0$ and $B_x(2r, r) := B_x(2r) \setminus B_x(r)$ we obtain

$$
(q-1)\int \omega^{2k} \lambda'(u^q)u^{q-2}|\nabla u|^p dv_g + \delta \int K_{\sigma} \omega^{2k} \lambda'(u^q)u^{p+q+\alpha-2} dv_g
$$

\n
$$
\leq 2k \int \omega^{2k-1} \lambda'(u^q)u^{q-1}|\nabla u|^{p-1}|\nabla \omega| dv_g
$$

\n
$$
\leq \varepsilon \int \omega^{2k} \lambda'(u^q)u^{q-2}|\nabla u|^p dv_g + \frac{k^2}{\varepsilon} \int_{B_x(2r,r)} \omega^{2(k-1)} \lambda'(u^q)u^q|\nabla u|^{p-2}|\nabla \omega|^2 dv_g
$$

Taking $\varepsilon = (q - 1)/2 > 0$ in the above inequality the following holds for any $p \ge 2$:

$$
\begin{aligned} \int \omega^{2k} \lambda'(u^q) K_\sigma u^{p+q+\alpha-2} \ dv_g + \frac{q-1}{2} \int \omega^{2k} \lambda'(u^q) u^{q-2} |\nabla u|^p \ dv_g \\ \leq \frac{2C_* k^2}{\delta(q-1)r^2} \int_{B_x(2r,r)} \omega^{2(k-1)} \lambda'(u^q) u^q |\nabla u|^{p-2} \ dv_g. \end{aligned}
$$

Especially if $2k > p > 2$, then

$$
\begin{split} & \int_{B_x(2r,r)} \omega^{2(k-1)} \lambda'(u^q) u^q |\nabla u|^{p-2} \ dv_g \\ & \leq \left(\int_{B_x(2r,r)} \omega^{2k} \lambda'(u^q) u^{q-2} |\nabla u|^p \ dv_g \right)^{(p-2)/p} \left(\int_{B_x(2r,r)} \omega^{2k-p} \lambda'(u^q) u^{p+q-2} \ dv_g \right)^{2/p}, \end{split}
$$

which implies the following for $p > 2$

$$
\int \omega^{2k} \lambda'(u^q) u^{q-2} |\nabla u|^p \ dv_g \leq \left(\frac{4C_* k^2}{\delta(q-1)^2 r^2}\right)^{p/2} \int_{B_x(2r,r)} \omega^{2k-p} \lambda'(u^q) u^{p+q-2} \ dv_g.
$$

Hence for any k and p with $2k > p \ge 2$, we can induce the following estimate from the above estimates:

$$
\begin{aligned} \int \omega^{2k} \lambda'(u^q) K_\sigma u^{p+q+\alpha-2}\ dv_g \\ &\leq \frac{2C_*k^2}{\delta(q-1)r^2} \left(\frac{4C_*k^2}{\delta(q-1)^{2}r^2}\right)^{(p-2)/2} \int_{B_x(2r,r)} \omega^{2k-p} \lambda'(u^q) u^{p+q-2}\ dv_g. \end{aligned}
$$

Since $\alpha \ge 1$ and $\lambda'(u^q) > 0$ if and only if $u > 1$, setting $k = p(p + q + \alpha - 2)/2 > 0$, we get

$$
\begin{aligned} &\int_{B_x(2r,r)}\omega^{2k-p}\lambda'(u^q)u^{p+q-2}\;dv_g\\ &\leq \left(\int \omega^{2k}\lambda'(u^q)K_\sigma u^{2k(p+q-2)/(2k-p)}dv_g\right)^{(2k-p)/2k}\left(\int_{B_x(2r,r)}K_\sigma^{-(2k-p)/p}\lambda'(u^q)dv_g\right)^{p/2k}\\ &\leq \left(\int \omega^{2k}\lambda'(u^q)K_\sigma u^{2k/p}\;dv_g\right)^{(2k-p)/2k}\left(\int_{B_x(2r,r)}K_\sigma^{-(2k-p)/p}\lambda'(u^q)\;dv_g\right)^{p/2k}. \end{aligned}
$$

Therefore the following holds:

$$
\int \omega^{2k} \lambda'(u^q) K_{\sigma} u^{2k/p} dv_g
$$
\n
$$
\leq \left(\frac{2C_* k^2}{\delta(q-1)r^2}\right)^{2k/p} \left(\frac{4C_* k^2}{\delta(q-1)^2 r^2}\right)^{k(p-2)/p} \int_{B_x(2r,r)} K_{\sigma}^{-(2k-p)/p} \lambda'(u^q) dv_g
$$

for any $q > 1$, $p \ge 2$ and $r \ge r_0 = r_0(x, \gamma)$ with $B_x(r_0) \cap M(u, 1) \ne \emptyset$. If $\inf_{y \in B_{x*}(2r,r)} K_{\sigma}(y) \ge C_{\sigma}/(2r)^{\sigma}$ for any $r > r_0$ and $C_{\sigma} > 0$, then the above estimate

implies

$$
\int \omega^{2k} \lambda'(u^q) u^{2k/p} dv_g
$$
\n
$$
\leq \left(\frac{2^{1+\sigma} C_{*} k^2}{\delta C_{\sigma} (q-1) r^{2-\sigma}}\right)^{2k/p} \left(\frac{4C_{*} k^2}{\delta (q-1)^2 r^2}\right)^{k(p-2)/p} \int_{B_{x}(2r,r)} \lambda'(u^q) dv_g
$$

for any $x \in M$. Taking $q > 0$ so that $q \ge \max\{p+\alpha-2, p\} \ge 2$, we get the following:

$$
\frac{2C_*k^2}{\delta(q-1)} \le \frac{4C_*p^2q}{\delta} \quad \text{and} \quad \frac{4C_*k^2}{\delta(q-1)^2} \le \frac{16C_*p^2}{\delta}.
$$

Hence setting $F(q, r) := \int_{B_x(r)} \lambda'(u^q) dv_g \ge 0$ and $C_{**} := \min\{C_{\sigma}, 1\}$, we can see

$$
F(q,r) \leq \left(\frac{2^{\sigma+4}C_*p^2}{\delta C_{**}}\right)^{p(p+q+\alpha-2)/2} \left(qr^{\sigma-p}\right)^{p+q+\alpha-2} F(q,2r).
$$

For $p \geq \sigma$ we put

$$
q = q(r) := \frac{1}{2} \left(\frac{\delta C_{**}}{2^{\sigma+4} C_{*} p^2} \right)^{p/2} r^{p-\sigma} \ \left(\ge \max\{p+\alpha-2, p\} \right) \text{ and } F(r) := F(q(r), r).
$$

Finally there exists $r_0 := r(\alpha, \beta, \gamma, \sigma, p, x) \gg 1$ such that $F(r)$ satisfies the following:

$$
F(r) \le \left(\frac{1}{2}\right)^{q(r)+\alpha} F(2r)
$$

for any $r \ge r_0$. Suppose $p > \sigma$ and take any r with $r \ge 2r_0$. Since there exists $k \ge 1$ such that $2^{-(k+1)} < r_0/r \le 2^{-k}$, by putting $r_i = 2^i r_0$, we obtain for any $r \ge r_1$

$$
F(r_0) \leq \left(\frac{1}{2}\right)^{\sum_{i=0}^{k-1} q(r_i)+k\alpha} F(r_k) \leq \left(\frac{1}{2}\right)^{\lambda r^{p-\sigma}} \left(\frac{r_1}{r}\right)^{\alpha} F(r),
$$

where

$$
\lambda := \frac{1}{2^{2(p-\sigma)+1}} \left(\frac{\beta C_{**}}{2^{\sigma+4} C_* p^2} \right)^{p/2} > 0.
$$

Therefore there exists $r(\alpha, \beta, \gamma, \sigma, p, x) > 0$ such that

$$
\frac{\log F(r)}{r^{p-\sigma}} \geq \frac{\log 2}{2^{2(p-\sigma+1)}} \left(\frac{\beta C_{**}}{2^{\sigma+4}C_*p^2}\right)^{p/2} \gamma^{p\alpha/2}
$$

for any $r \ge r(\alpha, \beta, \gamma, p, x)$. Since we have replaced u by u/γ in the beginning and may assume $\sup_{\mathbf{R}} \lambda'(t) = 1$, $F(r) \le \text{Vol}(B_x(r) \cap M(u, \gamma))$ for any $r \gg 0$. Therefore we can obtain the desired estimate. The case $p = \sigma$ can be shown similarly.

With respect to the divergence of volume if the function u is unbounded, then the assertion is trivial respectively. If $u^* := \sup_M u < +\infty$ and satisfies $\Delta_p u \ge \beta K_\sigma$ with $t \geq 0$, then we may assume that $u^* > 1$ and u does not attain u^* on M by the hypothesis $p \ge 2$. Hence $v := 1/(u^* - u)$ is unbounded on M and satisfies $\Delta_p v \ge$ $\beta \gamma^t K_{\sigma} v^p$ on $M(v, 1/(u^* - \gamma)) (= M(u, \gamma))$ with $\gamma \ge u^* - 1$. Therefore we can attain the conclusion similarly. This completes the proof of Theorem 2.1.

3. A characterization of generalized maximum principle for the operator Δ_p **on complete Riemannian manifolds**

Let (M, g) be a non-compact complete (connected) Riemannian manifold of dimension m. Generalized maximum principle for the operator Δ_p is formulated and characterized as follows.

Theorem 3.1. *For a fixed positive number* $p \geq 2$ *the following two statements are equivalent*:

(i) *For any smooth function u on M with* $\{x \in M; u(x) > 0\} \neq \emptyset$, $\alpha > 0$, $\beta > 0$ *and* $\gamma > 0$, $M(u, \gamma)(\neq \phi)$ *can not be contained in* $\Omega_p(u, \alpha, \beta) := \{x \in M; u(x) > 0\}$ 0 *and* $\Delta_p u(x) \geq \beta u(x)^{p+\alpha-1}$ *.*

(ii) *For any smooth function f bounded from above,* $\varepsilon > 0$ *and* $x \in M$ *, there exists a point* $x_{\varepsilon} \in M$ *such that*

(1)
$$
f(x) \le f(x_{\varepsilon}),
$$
 (2) $|\nabla f|(x_{\varepsilon}) < \varepsilon$ and (3) $\Delta_p f(x_{\varepsilon}) < \varepsilon$.

REMARK. To show the indication (i) \implies (ii) it is sufficient to assume $\alpha \geq 1$.

Proof of (i) \implies (ii). We need two lemmas to show our claim. First the following lemma follows from the hypothesis (i) immediately.

Lemma 3.2. Let u be a smooth function on M such that $0 < u^* := \sup_M u \leq$ +∞ *and u does not attain* u^* *on M. Suppose the assertion* (i) *in* Theorem 3.1 *holds. Then for constants* $\alpha \geq 1, \beta > 0, \sigma > 0$ *with* $p \geq \sigma$ *, the following holds:*

(1) $\Gamma_p(u, \alpha, \beta) := \{x \in M : \Delta_p u(x) < \beta u(x)^{p+\alpha-1}\}$ *is a non-empty unbounded open subset of M.*

(2) $u(x) \leq u^*(\alpha, \beta) := \sup_{y \in \Gamma_p(u, \alpha, \beta)} u(y)$ for any $x \in M$. Especially if $u^*(\alpha, \beta)$ is *finite for a certain pair* (α, β) , *then* $u^*(\alpha, \beta)$ *is independent of* α *and* β , *and hence* $* = u*(\alpha, \beta) < +\infty$.

The following lemma has been proved in a special case in [5]. Since the proof for general case is essentially the same, we state it without proof here.

Lemma 3.3. Let (X, h) be a complete Riemannian manifold and let f be a *smooth function bounded from above on X. For any* $\varepsilon > 0$ *take a point* $y_{\varepsilon} \in X$ *with* $\sup_X f - \varepsilon^2 < f(y_\varepsilon)$. Then there exists a point $x_\varepsilon \in X$ such that (i) $f(y_\varepsilon) \le f(x_\varepsilon)$, (ii) $d_X(x_\varepsilon, y_\varepsilon) \leq \varepsilon$ *and* (iii) $|\nabla f|(x_\varepsilon) \leq \varepsilon$, *where* d_X *is the distance function relative to h.*

We are now in a position to begin the proof. Since $p \geq 2$, the assertion is trivial if f attains $f^* := \sup_M f$. We suppose that f does not attain f^* on M. For any given point $x \in M$, we put $\varepsilon_* := \min\{\varepsilon, f^* - f(x)\}/(1 + \min\{\varepsilon, f^* - f(x)\}) > 0$. Set := $1/(1 + f^* - f) > 0$ and M_q := $M(w^q, 1 - \varepsilon^2)$ for any positive integer q. Then clearly $M_{q_1} \subset M_{q_2}$ and $\partial M_{q_1} \cap \partial M_{q_2} = \phi$ if $q_1 > q_2 \ge 1$. On the other hand, setting $\alpha := p-1 \geq 1$, $\Gamma_q := \Gamma_p(w^q, \alpha, \varepsilon_*)$ is non-empty by Lemma 3.2, (i). By using the fact $\geq w^{p-1}(q/q-1)^{p-1}\Delta_p w^{q-1}$ for any $q\geq 2$ repeatedly and $0 < w < 1$ on M, we obtain $\Gamma_{q_1} \subset \Gamma_{q_2}$ and $\partial \Gamma_{q_1} \cap \partial \Gamma_{q_2} = \phi$ if $q_1 > q_2 \ge 1$. Setting $\Sigma_q := \Gamma_q \cap M_q$, Σ_q is also non-empty and $\sup_{\Sigma_a} w^q = 1$ by Lemma 3.2, (ii). In particular Σ_q is unbounded for any $q \ge 1$ because \dot{f} does not attain f^* , and it can be verified that $\Sigma_{q_1} \subset \Sigma_{q_2}$ and $\partial \Sigma_{q_1} \cap \partial \Sigma_{q_2} = \phi$ if $q_1 > q_2 \geq 1$. Suppose Σ_q converges to a non-empty subset $\Sigma_{\infty} \subset M$ containing a point x_{∞} as q tends to infinity. Then w should attain 1 at x_{∞} . This is a contradiction. Hence $M \setminus \Sigma_q$ converges to the whole space M as q tends to infinity. This implies that $d_M(x_*, \Sigma_q)$ is unbounded for a fixed point $x_* \in M$. Setting $\lambda_q := \sup_{y \in \partial \Sigma_q} d_M(y, \partial \Sigma_1) \in (0, +\infty]$ for any $q > 1$, $\lim_{q \to +\infty} \lambda_q = +\infty$ by the above observation. Since λ_q is non-decreasing in q, there exists a large positive integer q_* such that $\varepsilon_* < \lambda_q \leq +\infty$ for any integer q with $q \geq q_*$. For a fixed $q \geq q_*$, there exists a point $y_* \in \partial \Sigma_q$ with $d_M(y_*, \partial \Sigma_1) > \varepsilon_*$. Clearly such a point admits a small positive constant δ_* such that $B_z(\varepsilon_*) \subset \Sigma_1$ if $z \in B_{y_*}(\delta_*) \cap \Sigma_q$. Now we take a point $\epsilon \in B_{y_*}(\delta_*) \cap \Sigma_q$. By Lemma 3.3, there exists a point $x_{\epsilon} \in \overline{B_{z_{\epsilon}}(\epsilon_*)} \cap M_q \subset \Sigma_1$ such that $|\nabla w^q|(x_\varepsilon) \leq \varepsilon_*$. If q is large enough, then x_ε is the desired point.

Proof of (ii) \implies (i). Suppose $M(u, \gamma) \subset \Omega_p(u, \alpha, \beta)$ with $\alpha > 0$. Let λ be a smooth function defined on real line such that $\lambda(t) = 0$ for $t < \gamma$, $\lambda'(t) > 0$, $\lambda''(t) \ge 0$ for $t \ge \gamma$ and $\lambda'(t) = 1$ for $t \ge \gamma + \delta$ with $\delta > 0$. Taking δ arbitrarily we may assume that $v := \lambda(u)$ satisfies $\Delta_p v \ge \beta v^{p+\alpha-1}$ on $\{v > \gamma^*\} \ne \phi$ with $\gamma^* := \lambda(\gamma + \beta)$ δ) > 0. Set $w := -1/(1 + v)^q$ with $q := \alpha/p > 0$ and $\varepsilon_* := \min\{\sup_M w - 1/(1 + \varepsilon)\}$ γ^*)^q, 1} > 0. By the hypothesis for any $\varepsilon > 0$ with $0 < \varepsilon < \varepsilon_*$, there exists a point $x_{\varepsilon} \in M$ such that (1) sup_M $w - \varepsilon < w(x_{\varepsilon}),$ (2) $|\nabla w|(x_{\varepsilon}) < \varepsilon$, (3) $\Delta_p w(x_{\varepsilon}) < \varepsilon$. Since $(x_\varepsilon) \ge \beta v^{p+\alpha-1}(x_\varepsilon)$, by a direct calculation there exists a constant $C(\alpha, \beta, p) > 0$ not depending on $\varepsilon > 0$ such that

$$
\left(\frac{v(x_{\varepsilon})}{1+v(x_{\varepsilon})}\right)^{p+\alpha-1} \leq C(\alpha,\beta,p)\varepsilon
$$

This implies $v^* := \sup_M v < +\infty$ and so there exists $C > 0$ not depending on ε such

that $v(x_\varepsilon)^{p+\alpha-1} \leq C\varepsilon$. Letting $\varepsilon \to 0$ we obtain $v^* = 0$, which implies $u \leq \gamma$ on $M(u, \gamma) = {u > \gamma} \neq \phi$. This is a contradiction. This completes the proof of Theorem 3.1. 3.1.

As a byproduct of Theorem 3.1, we get the following non-existence theorem for nonnegative solution satisfying a certain differential inequality (cf. [8]).

Corollary 3.4. *For a positive number* $p \geq 2$ *suppose the generalized maximum principle for* Δ_p *holds on* (M, g) *. Then any smooth solution* $u \geq 0$ *satisfying the inequality* $\Delta_p u \geq \beta u^q$ *outside a compact subset* T of M *satisfies* $u(x) \leq u^*_T$:= $\sup_{y \in T} u(y)$ *for any* $x \in M$ *if* $q > p - 1$ *, where* $u_T^* := 0$ *if* $T = \phi$ *. In particular there exists no non-zero smooth bounded solution* $u \geq 0$ *satisfying the inequality* $\Delta_p u \geq \beta u^{\rho}$ *on M* if $\rho \geq 0$.

Now it is clear that Theorems 2, 3 and 4 follow from Theorems 2.1 and 3.1 immediately.

References

- [1] K-S. Cheng and J-T. Lin: *On the elliptic equations* $\Delta u = K(x)u^{\sigma}$ and $\Delta u = K(x)e^{2u}$, Trans. Amer. Math.Soc. **304** (1987), 639–668.
- [2] S.Y. Cheng and S.T. Yau: *Differential equations on Riemannian manifolds and their geometric applications*, Comm. Pure Appl. Math. **28** (1975), 333–354.
- [3] A.A. Grigor'yan: *On stochastically complete manifolds*, Soviet Math. Dokl. **34** (1987), 310– 313.
- [4] R.E. Greene and H. Wu: Function theory on manifolds which possess a pole, Lecture Notes in Math. **699**, Springer-Verlag.
- [5] J.B. Hiriart-Urruty: *A short proof of the variational principle for approximate solutions of a minimaization problem*, Amer. Math. Monthly, **90** (1983), 206–207.
- [6] I. Holopainen: *Volume growth*, *Green's functions, and parabolicity of ends*, Duke Math. J. **97** (1999), 319–346.
- [7] L. Karp: *Subharmonic functions on real and complex manifolds*, Math. Z. **179** (1982), 535– 554.
- [8] Y. Naito and H. Usami: *Entire solutions of the inequality* $div(A(Du|)Du) \ge f(u)$, Math. Z. 225 (1997), 167–175.
- [9] M. Rigoli, M. Salvatori and M. Vignati: *A note on p-subharmonic functions on complete manifolds*, Manuscripta Math. **92** (1997), 339–359.
- [10] M. Rigoli, M. Salvatori and M. Vignati: *Volume growth and p-subharmonic functions on complete manifolds*, Math. Z. **227** (1998), 367–375.
- [11] K. Takegoshi: *A volume estimate for strong subharmonicity and maximum principle on complete Riemannian manifolds*, Nagoya Math. J. **151** (1998), 25–36.
- [12] K. Takegoshi: *A maximum principle for p-harmonic maps with L^q finite energy*, Proc. Amer. Math. Soc. **126** (1998), 3749–3753.
- [13] K. Takegoshi: *A divergence property of L^q-integral of P-subharmonic functions on complete Riemannian manifolds*, preprint.
- $[14]$ K. Takegoshi: A note on divergence of L^p -integral of subharmonic functions and its applica*tions*, preprint.

850 K. TAKEGOSHI

Department of Mathematics Graduate School of Science Osaka University Machikaneyama-cho 1-16 Toyonaka-shi, Osaka 560-0043 Japan e-mail: kensho@math.wani.osaka-u.ac.jp