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1. Introduction

Throughout this article we always denote b, (¢ ) a non-compact complete (con-
nected) Riemannian manifold of dimensien . For a positive numberl, a smooth
functionu onM is said to betrongly p -subharmonigresp. p-subharmoniy if u sat-
isfies the following differential inequality oM

Apu = dive(|Vu|P?Vu) > ¢ >0 (resp.A,u > 0)

We note thatA; is the ordinary Laplaciam defined by :=TracéVv. A few re-
lations lying between the existence of non-constant boungded -subharmonic functions
on complete Riemannian manifolds and their volume growth property are known, and
have been applied to show several Liouville type theorems for those functions (cf. [3],
[7], [9], [10], [12], [13] etc.). For instance we can show the following volume growth
estimate (see [13]), which is related to tpe -parabolicity &f, ¢ ) (cf. [6], [14]).

Theorem. Suppose(M, g) admits a non-constant smooth -subharmonic func-
tion bounded from above with > 1. Then the following holds

+00 - 1/(p—1)
/ ( ) dr < +oo for any pointx € M,
1 Vx(r)

where V,(r) is the volume of geodesic ball,(r) centered atx of radiug > 0. In
particular if there exist a poink, € M and a positive numbeg > 1 such that

+oo r 1/(g—1)
/ (—) dr = +oo,
1 Vi, (r)

then (M, g) admits no non-constant smooih -subharmonic functions bounded from
above withp > g.

In this article we continue to study such a kind of relations lying between the ex-
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istence of a certairstrongly p-subharmonic function and the volume growth property
of (M, g) for the casep > 2. In the previous paper [11], we have studied the case
p =2 and observed that the relation is deeply related to a generalized maximum prin-
ciple for the usual Laplacian. In this article it is verified that our argument used in
[11] can be also developed to the cgse> 2. However the case & p < 2 still re-
mains. Furthermore we give a characterization of generalized maximum principle for
the p-LaplacianA, and a sufficient condition in terms of volume growth condition
depending onp for the principle to hold. This yields a generalization of our previous
result for the usual Laplacian (cf. [11]).

To formulate our result, for a smooth function @ and given constants
0, 6>0and o >0, we set

Qpyu,a,pB,0)={xeM; ulx)>0andA,u f)> BK o (x)u(x)Pret },

where K, is a positive continuous function oM  satisfying the following condition
for a fixed pointx, € M:

C

K,(x) > Tvdy o)y for any pointx € M and C > 0,

and for a given constant > 0, we set
M@u,vy)={xeM; ulx)>~v }
For anyg > 0, x € M andr > 0 we define the function, . r( ) by

hox(r) := M and hgy. €)=

log V. (r)
logr ra

if g>0.
First we state the following theorem which is a generalization of [11], Theorem 1.1.

Theorem 1. SupposeM(u, ) is a non-empty subset &t,(u, o, 3, o) with o >
1, p>2andp>oc >0. Then the following assertions hold
@) If p > o =0, then for any pointx € M there exist positive constanig =
ri(a, 8,7, p, x) and C1 = C1(8, p) such that

log VOI(B.(r) N M (u, 7))

pa/2
s >C1y

for anyr > r1. In particular, the following holds
lim inf A, ,(r) =+ococ for anyx € M.
r—+oo

(i) If p > o > 0, then there exist positive constants = rx(«, 38,7, o, p, x.) and
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C, = Cy(B, o, p) such that

log VoI(By. (r) N M (. 7)) _ C,) ~P0/2
Py =2 C2 7y

for any r > r,. In particular, the following holds
lim inf h,_s . (r) = +oo.
r—+o0o

(i) If p = o, then there exist positive constamts= r3(«, 5, v, p, x«), C3 = C3(5, p)
and ~, = v.(«, 8, p) such that

|OgV0|(Bx*(V) ﬂM(u, ’7)) >C pa/2
logr ==

for anyr > rz and vy > .. In particular, the following holds
lim inf hoy, (r) = +oo.
r—+o0o

From Theorem 1 we can induce the following non-existence result for non-negative
smooth solutions satisfying a certain differetial inequality for ghe -Laplacian (cf. [1],

(2], [7], [8], [11]).

Corollary 2. Let (M, g) be as above and let > 1 respectively.
(i) Suppose there exists a positive number such that

lim inf A, . (r) < +oo.
r—+oo

Then any smooth solutian > 0 satisfying the inequalityt ,u > 3K, u?**~1 outside a
compact subsel’ ol  satisfiegx) < ur 1= supyu(y) foranyx e M if p > o+gq
with p > 2 and o > 0, whereuj = 0 if T = ¢. In particular there exists no non-
zero smooth bounded solution> 0 satisfying the inequalityd ,u > 5K, u” on M if
p>o+qg withp>2 06>0andp>0.
(i) Suppose

lim inf Ao, (r) < +oo.

r—+oo
Then any smooth solutiom > 0 satisfying the inequalityd ,u > BK,u?**~1 outside
T satisfiesu(x) < uj for anyx € M if p > 2. In particular there exists no non-zero
smooth bounded solutiom > 0 satisfying the inequalityd ,u > K ,u” on M if p > 2
and p > 0.

Remark 1. The range ofx is not optimal in general and can be expected to be
a > 0. On the other hand, if the Ricci curvature a¥/(g ) satisfies Riaci &)
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—CA+rx) forx e M, C >0, r(x) =dy(x.,x) and v < —1 (resp.v > —1),
then we can verify that, (r) < C,.1r""® with C,; > 0 and 0< 6(v) < +oo
(resp.hy+1,4,(r) < Cp 2 < +o0) for any r > 0 (cf. [4]).

As a corollary of the proof of Theorem 1 we get the following (see the proof of The-
orem 2.1), which is a counterpart of Theorem.

Corollary 3. Let (M, g) be as above and lep > 2 respectively. Suppos@/, g)
admits a smooth strongly -subharmonic functioni.e.,, A,u > ¢ > 0, bounded from
above. Then the following holds

lim inf 4, ,(r) =+c0 forany x e M.
r—+oo

Remark 2. For a given smooth monotone increasing functton X Q on a real
line R such thate, := 1+°° dr/rh(r)Y/?=1 < +o0 with p > 2, there exists a two
dimensional complete Riemannian manifoltf (¢, ) which admits a smooth bounded
function » > 0 satisfyingA,u = 1 and a pointx € M with 4, .(r) ~ h(r) for any
r> 0. In fact let M, g, ) be a two dimensional mod#&  provided with a pele =0
and the metricg, =r?+ f(r)?d6? on M\ {0} = (O, +00) x S* such that (1)f (0) =0,
0 =17¢)>0f(r)>0f"(r) >0if r >0, and (2) f £ ) =c (exp’h 1 )))
with ¢ > 0 andr > 0. Settingu ¢ ) = [y {(Jy f(s)ds)Y/ =D/ f()Y/*~D}dr, by a
direct calculation it can be easily verified thatOsup « < ¢, < +oo, A,u =1 and
h(r)/2 < h,o(r) < h(r) for anyr > 0 (cf. [11], Remark 2.4 and [4]).

The above example indicates us the following (cf. Remark 3 beldw()d, ¢) ad-
mits a stronglyp -subharmonic function bounded from above with 2, then

+oo
/ d7r<+oo forany xe M
1 rhp,.\‘(r)l/(pil) ’
At least this is true in the casp = 2 becaudé, ¢ ) is not stochastically complete

(cf. [3]) if it admits a strongly subharmonic function bounded from above. The author
thanks to Prof. A. Atsuji who pointed out the result to him.

The following is a generalization of [11], Theorem 2.3.

Theorem 4. Let (M, g) be as above. Suppose there exists a poit M and
a positive numbeg > 2 such that

lim inf A, (r) < +oo.
r—+oo

If p > g, then the following generalized maximum principle for the operatgr holds
for any smooth functiorf bounded from abpye> 0 and x € M, there exists a point
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x. € M depending onx such that
1) f)<flx), (@ |[Vfllx) <e and (3) 4,f(x) <e.

Remark 3. As a counterpart of Remark 2, it can be expected to hold the fol-

lowing stronger assertion, i.ethe generalized maximum principle fofi, holds if
p>q>1and
oo dr
e —— i i
/1 Py ()G D oo for a certain pointx € M.

2. A volume estimate for strongp-subharmonicity on complete Riemannan
manifolds

This section is devoted to show Theorem 1. Using the same notations introduced
in the section we restate Theorem 1 as follows.

Theorem 2.1. SupposeM(u,v) is a non-empty subset d,(u, o, 5, o) with
a>1 p>2andp>oc >0. Then the following assertions hold
@i If p > o =0, then for any pointx € M there existsry = ri(o, 5,7, p,x) > 0
such that

log VOI(B,(r) N M(u, 7)) _ log2 [ BC.. \"'? pa/2
rpP = 22p+1 24C*P2 K

for any r > r;, where C,. and C,.. are positive constants not depending on
(v, B, v, p, xx). In particular, the following holds

lim inf 4, ,(r) =+c0 for anyx e M.
r—+oo

@iy If p> o >0, then there exists, = ra(a, 5,7, 0, p, x.) > 0 such that

log VOI(B,_(r) N M(u, 7)) log 2 BCo \"? e
> vP
ypP—0o 22(p—o)+l 20+4C*p2

for any r > rp, where C, (resp. C..) is a positive constant not depending on
(o, 8,7, 0, p, x.) (resp. depending only oa). In particular, the following holds

lim inf h,_,. (r) = +o0.
r—+oo

(iiiy If p = o, then there exist$; = r3(a, 5,7, p, x.) > 0 and v, = v.(a, 8, p) > 0
such that

log Vol(B,, (r) N M(u, 7)) < log2 [ AC.. \"'* por/2
logr =3 \wicp?) T
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for any r > r3 and v > ., where C,. (resp.C..) is a positive constant not depending
on (o, 8,7, p, x«) (resp. depending only op). In particular, the following holds

lim +inf hox,(r) = +oo.
Proof of Theorem 2.1. First we note
u u
M(u,’Y):M(;,]-) and Q]l (’tﬂaaﬁva)zgp <;,Oﬁ,ﬁ'}/a,0>.

From now on we replaca by/v and setd := 8y*. Hence we can sedf u( B(/
¢) C Qp(u, o, d,0). For a fixed positive numbep > 1 with M(u, p) 7 ¢, let A be
a smooth function defined on real line such thét) = 0 if + < 1, A(r) > 0, N'(¢) >
0,\N'#) >0if r >1andA(t) =t if t > p > 1. Since the metrig¢ is complete, for
any fixed pointx € M andr > 0 there exists a Lipschitz continuous functiep with
0<w,<1onM such thaty, =1 on B, ), suppw, C B,(2r) and|Vw,|? < C,/r?,
where C, > 0 does not depend on  and . For positive numhliers @nd gvith
1, denotingw = w, a direct calculation shows

div(w®[VulP 2V Au?)
= g div(w? N ()~ Vul? V)
= Q{qA/I(Mq)M%72w2k|Vu|1’ +(q — 1)w2k)\/(uq)uq72|vu‘p
+ PN (LA pu + 2k TN (T VP2V, Vi) }
= q{(q — DN @)ud 2| VulP + 5w N u9)K ;ub*1re—2

- 2kw2k*l/\’(uq)uq*1|Vu|1’*1|Vw|}.

By integrating the left hand side with respect to the measiig inducegl by and
the hypothesis, for any > 0 and B, (2,r ) :=B, (2 )\ B.(r) we obtain

(q —1)/w2k)\’(u‘1)uq_2|Vu\p dv, + 5/Kaw2k)\’(uq)u”+q+o‘_2 dvg
< 2k/kale(uq)u‘Ifl\Vu|”*1|Vw\ dv,
2% y/ -2 p k? 2(k—1)y/ 29, |2
<e [ wINuu?|\Vul|? dv, + ~ w N (@)u! |Vu|P~%|Vw|® dv,.
By (2r,r)

Taking e = (¢ — 1)/2 > 0 in the above inequality the following holds for apy> 2:
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pHq+a— q— 1 — p
/wz‘)\'(uq)Kgu”qJ' 2 dv, + > /wzk/\’(uq)uq 2|Vul? dv,

2C . k?

< — W DN ()l | VulP~? dv,.
e [Vl dve

Especially if Z > p > 2, then

/ W EDN Y| Vu|P~2 du,
B,(2r,r)

(r=2)/p 2/p
< </ WEN (@)ud =2V ul? dvg) </ WETP N (u?)uPra—2 dvg> ,
B, (2r,r) B,(2r,r)

which implies the following forp > 2

2%/ 2 4C.k* P2 %—py/ +q—2
W N (D u!4|\Vul? dv, < (7*> / WP N uP*% do,.
[y av < (5egn) [ @ e .

Hence for anyk ang with> p > 2, we can induce the following estimate from
the above estimates:

2k \ ! +g+a—2
/w N@")K uP™ ™% dv,

(r—2)/2

< 2C.k2 AC.k* 1 PN (ut)uP* % dy

= 3lg — 17 \olg — 172 coo «
B (2r,r)

Sincea > 1 and X' (u?) > 0 if and only if u > 1, settingk =p p + +«a—2)/2> 0,
we get

/ WP N (u?)uP*17? dv,
By (2r,r)

(2k—p)/2k p/2%
< ( / N (1) Kauzupm—z)/(zk—p)dvg) ( / K@=/ ”/\'(u")dvg)
B, (2r,r)

(2k—p)/2k p/2k
< (/ka)\’(u")KUMZk/” dvg> </ K @=P)/P ) (%) dvg> )
By(2r,r)

Therefore the following holds:
/ka/\’(uq)KguZ‘/p dv,

2C,k2 \%/p, ACk% \Kp-2/p
< * * K =@=p)/P)\'(49) d
- (5(q - 1)r2) (5(q - 1)2,»2) /B,(Zr,r) o (u?) dvg

foranyg > 1, p > 2 andr > ro = ro(x,v) with B.(ro) N M(u,1) # ¢. If
infyep. @.r) Ko(y) > Cy/(2r)” for any r > ro and C, > 0, then the above estimate
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implies
/ka)\/(uq)MZk/p dUg

olto 12 2/p AC. k2 k(p—=2)/p
< - u N(@?) d
- <5C0(q — 1)r2_‘7> (5(q — 1)27'2) AX(Zr.r) (u ) %

for any x € M. Takingq > 0 so thatg > max{p+a—2, p} > 2, we get the following:

2 2 2 2
2C.k < 4C,. pq and 4C.k < 16C.p .
o(g—1) 0 3(g — 1)2 )

Hence settingF ¢, r ) ::fB_(r) N(u?) dvg > 0 andC,., := min{C,, 1}, we can see

o+ 2 p(prq+a—2)/2 B
- > (qr7=")" " * F(q, 2r).

2
F <|———
wn = (5

For p > o we put

=)= 1 (28
q q ) 2 2g+4c*p2

/2
>p pp—o (2 max{p+a—2,p}) andF¢)=Fg()r)

Finally there existsy :=r(«, 8, v, o, p, x) > 1 such thatF £ ) satisfies the following:

1 q(r)+a
F(r) < <§> F(2r)

for any r > ro. Supposep > o and take any- withr > 2r¢. Since there exists > 1
such that 2**0) < o /r < 27%, by puttingr; = 2r, we obtain for anyr > ry

F(r) < (%)A (%) ko,

1 St gl ke
F(VO) < <§>

where

-1 BC.. \"*
A= 22(p—o)+1 (20+4C*p2> > 0.

Therefore there exists o 8, v, o, p, x) > 0 such that

|Og F(r) |Og 2 BC s v/ po/2
Fp—0 2 22(p—a+1) \ 20+4C, p2 7

for any r > r(«, 3,7, p, x). Since we have replaced hy/~ in the beginning and
may assume syp\'(r) =1, F () < Vol(B.(r) N M(u, 7)) for any r > 0. Therefore we
can obtain the desired estimate. The caseo Gan be shown similarly.
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With respect to the divergence of volume if the function is unbounded, then the
assertion is trivial respectively. i* := sup, u < +oo and satisfiesA,u > BKu’
with 7 > 0, then we may assume that > 1 andu does not attain* on M by the
hypothesisp > 2. Hencev := X(u* — u) is unbounded om and satisfies,v >
By K,vP on M@, /(u* — 9))(= M(u,v)) with v > u* — 1. Therefore we can attain
the conclusion similarly. This completes the proof of Theorem 2.1. ]

3. A characterization of generalized maximum principle for the operator A
on complete Riemannian manifolds

Let (M, g) be a non-compact complete (connected) Riemannian manifold of di-
mensionm . Generalized maximum principle for the operatgy is formulated and
characterized as follows.

Theorem 3.1. For a fixed positive numbep > 2 the following two statements
are equivalent
(i) For any smooth functiom oM withx € M; u(x) >0} # ¢, >0, >0
andy > 0, M(u,v)(# ¢) can not be contained i2,(u, o, 8) := {x € M; u(x) >
0 and A,u(x) > Bu(x)’**~1},
(i) For any smooth functiory bounded from abpve> 0 and x € M, there exists a
point x. € M such that

(1) f&) < flxe), (@) [VSl(xe) <e and (3) 4,f () <e.
Remark. To show the indication (iy=- (ii) it is sufficient to assumex > 1.

Proof of (i) = (ii). We need two lemmas to show our claim. First the follow-
ing lemma follows from the hypothesis (i) immediately.

Lemma 3.2. Letu be a smooth function o/  such that< u* := sup, u <
+o0o and u does not attaine* on M. Suppose the assertidi) in Theorem 3.1holds.
Then for constants > 1, 5 > 0, 0 > 0 with p > o, the following holds
(1) Ty, o, B)={x € M ; Apu(x) < Bu(x)"**~1} is a non-empty unbounded open
subset ofM .

2) ux) < u*(a,p) = SUR'EI"I,(u,a,ﬁ)M(y) for any x € M. Especially ifu*(a, 8) is
finite for a certain pair(«, 5), then u*(«a, 8) is independent ofv and 3, and hence
u* =u*(a, B) < +o0.

The following lemma has been proved in a special case in [5]. Since the proof for
general case is essentially the same, we state it without proof here.
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Lemma 3.3. Let (X,h) be a complete Riemannian manifold and |t be a
smooth function bounded from above &n . For any O take a pointy. € X with
sup, f — €2 < f(y:). Then there exists a point € X such that(i) f(y.) < f(x.),

(i) dx(xc, y-) < e and (i) |Vf|(x:) < e, wheredy is the distance function relative
to h.

We are now in a position to begin the proof. Sinpe> 2, the assertion is trivial

if f attains f* := sup, f. We suppose thgt  does not attgih on M. For any
given pointx € M, we pute, := min{e, f* — f(x)}/(1+min{e, f*— f(x)}) > 0. Set
w:=1/1+f*— f)>0andM, =M @I, 1-2) for any positive integeg . Then
clearly M,, C M,, andOM, NOM,, = ¢ if g1 > g> > 1. On the other hand, setting
a=p-1>1,1I, =TI, «a,c.) is non-empty by Lemma 3.2, (i). By using the fact
A,w? > wP~Yg/q —1)P71A,w?7t for any ¢ > 2 repeatedly and & w <1 on M,

we obtainl,, C I';, anddI,,NoI,, = ¢ if g1 > q> > 1. SettingX, =I,NM,, %, is
also non-empty and sgpw? =1 by Lemma 3.2, (ii). In particuizr is unbounded
for any ¢ > 1 becausef does not attajfi*, and it can be verified thak,, C X,
andoX¥, NoxX, = ¢ if g1 > q» > 1. SupposeX, converges to a non-empty subset
Y. C M containing a pointc,, asg tends to infinity. Them should attain 1at.
This is a contradiction. Hencg/ \ X, converges to the whole spad¢ @s tends to
infinity. This implies thatdy £., X,) is unbounded for a fixed point, € M. Setting

Ag = SURcos, du(y, 0X1) € (0, +oo] for any g > 1, lim,_.+oc A, = +oo by the above
observation. Since\, is non-decreasing iy , there exists a large positive integer
such thate, < A\, < +oo for any integerq withg > ¢.. For a fixedg > g¢., there
exists a pointy, € 0%, with dy(y., 0X1) > .. Clearly such a point admits a small
positive constanb, such thatB.(c.) C X1 if z € By (6,) N X,. Now we take a point

ze € By_(6.) N X,. By Lemma 3.3, there exists a point € B;_(.) N M, C X1 such
that |[Vw?|(x.) < e.. If ¢ is large enough, then. is the desired point.

Proof of (i) = (i). SupposeM i, ~v) C Q,(u, «, 8) with a > 0. Let A be a
smooth function defined on real line such thdt) = 0 for r < v, A'(£) > 0, \"(t) > 0
fort > yand N(t) = 1 fort > v+ 4 with § > 0. Taking ¢ arbitrarily we may
assume thav :A\(u) satisfiesA,v > pvP*~1 on {v > v*} # ¢ with v* 1= A\(y +
0) > 0. Setw =-1/(1+v) with¢g :=a/p > 0 ande, = min{sup, w — 1/(1 +
~v*)4,1} > 0. By the hypothesis for any > 0 with 0 < ¢ < &,, there exists a point
x. € M such that (1) supw — e < w(x.), (2) [Vw|(x:) <e, (3) A,w(x.) < e. Since
A,v(x.) > BvPr*~Y(x.), by a direct calculation there exists a consténty, £, p) > 0
not depending or > 0 such that

X pta—1
(roks) < clasne

This impliesv* := sup, v < +co and so there exist€ > 0 not depending omr such
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that v (x.)?**~1 < Ce. Letting e — 0 we obtainv* = 0, which impliesu < v on
M(u,v) ={u >~} # ¢. This is a contradiction. This completes the proof of Theorem
3.1 U

As a byproduct of Theorem 3.1, we get the following non-existence theorem for non-
negative solution satisfying a certain differential inequality (cf. [8]).

Corollary 3.4. For a positive numberp > 2 suppose the generalized maximum
principle for A, holds on(M, g). Then any smooth solutiom > 0 satisfying the
inequality A,u > (Bu? outside a compact subsdt  af satisfielx) < uj =
sup,cp u(y) foranyx € M if ¢ > p — 1, whereu; :=0if T = ¢. In particular there
exists no non-zero smooth bounded solution 0 satisfying the inequalityd ,u > Su”
onM if p>0.

Now it is clear that Theorems 2, 3 and 4 follow from Theorems 2.1 and 3.1 immedi-
ately.
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