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1. Introduction

Let V € LZ.(R?) be a non negative potential; the now classical Cwikel-Lieb-
Rozenblum (CLR) inequality asserts that the numNe¥ ( ) of negative eigenvalues for
the Schédinger operato—A — V verifies

N(V) < C4 / V() ?dx,

whend > 2. More generally Egorov [7] proved that if the Laplacian is replaced by
an elliptic positive differential operator of ordet 2 , the CLR inequality remains valid
whend > 2/ with d/2 replaced by//(2!). Recently Rozenblum and Solomiak [13] ob-
tained a general result for a wide class of perturbed hamiltontans V.

When the RHS in the CLR inequality is finite we can define the nunibexV) (of
negative eigenvalues foH, — AV. The principal term of the asymptotic fa¥ AY)
when A — +o0o was found independently by Birman and Borzov [3] and Martin [10]
in the cased > 3:

N(\V) ~ \i/2 / V(x)?dx .
Tamura [15] obtained later on a sharp remainder estimate/ for =3:
N(OV) = )32 / V(x)¥2dx + O()), when\ — +oo,

for very regular potential likex)~" with m > 2. More recently Birman and Solomiak
[4] obtained asymptotics foH, = (—A)' andd > 2/ (and also ford < 2/ but we do
not consider this case here).

The aim of this paper is to obtain similar Weyl asymptotics whénis a pseu-
dodifferential operator. Global ellipticity is not required; roughly speaking, we suppose
that the complete symbol ofly is hypoelliptic and satisfy a condition which looks
like ellipticity near ¢ = 0, see the complete assumptions in 2.1. A typical example is
for instance the relativistic Laplaciafy = (—A + 1)%/2 — 1. The class of potential¥
considered here is less restrictive than those considered in [15].
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Here is the plan of our work: in Section 2 we specify the different assumptions
on the unperturbed hamiltoniali; and on the potentia¥ and we state the main the-
orem. In Section 3, following [15], we use Birman-Schwinger principle: this leads to
estimate the number of eigenvalues less thafor a selfadjoint operator x( \) de-
pending on the parameters A with 0 < x < 1 and X > 1. For exploiting this idea
Tamura has showed that it is essential to provide adapted weight functions, in the ter-
minology of Beals, and corresponding classes of symbols in which \)(admits a
principal symbol satisfying uniform estimates with respeckio. In Section 4 we lo-
calize the spectral problem and decompose the phase space in three regions; each of
these regions requires a different method. These methods are explicited respectively in
Sections 5, 6, 7. In particular the results of [13] are used in Section 5. Sections 6 and
7 are an adaptation of [1] and the proofs are only sketched.

2. Assumptions and main results

2.1. Let p(x, &) € C(R%) be a non negative symbol satisfying the following
assumptions: there is positive real numbere < 1< m such that for all £, &):

(1) 0 < p(x, &) < Clé|™,
) EVep(x, &) > plx, £),

and for¢ # 0,

3) 108D p(x, €)| < Capplx, O] (x) =17

here we have used the standard notatioh= (1 +|x|?)%/?; when |3| = 1 we require
more precisely that for some > O:

) [Vep(x, )| < Cplx, &) x) 7%
we suppose that fog| > 1

®) plx, &) > el

and for [¢| < 1, we assume that

(6) P, &) > CHem,

and furthermore that whefi| < m,

) 08 DL p(x. )] < Caple]" 1 (x) 7171,
and when|a| > m,

(8) 108D2 p(x, &) < Caplx)™1;
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lastly we suppose that the operagore, O ) with classical symbel £)(is symmetric
positive onS:

(9) Vu €S, (p(x, D)u,u) >0,

where ¢, v) denotes/ uvdx as usual. With the assumptions (1) to (9), the operator
p(x, D) defined onS is essentially selfadjoint; lefy be its selfadjoint realization;
then Hy > 0. For eachr > 0, e~'*o is an integral operator wittC> bounded ker-

nel O(;x,y). Let

M) = ||0(t; x, x)|| o ®ays
then we suppose that

(10) Vi >0, M(t) < Cyt~ 4/ + Cpt—4/m

2.2. We make some comments: assumptions (1), (3) and (5) are the classical as-
sumptions of hypoellipticity, but (3) must be verified for &l 0, not only for|¢| > 1
as usual; (6), (7), (8) specify the behaviour ofc, ) nearé =0 and are rather restric-
tive (ellipticity near¢ = 0); the casen is different fromm occurs for instance for the
relativistic Schodinger operator (see 2.5); (4) is a technical assumption, see Lemma
7; lastly, the estimate (10) is well known for sufficiently small; but in our case, this
estimate must be verified for all > 0, especially near = ; using only the as-
sumptions (1) to (9), we are able to prove a weaker estimate:

M(l) < (Cltfd/l + Cztfd/m)ens’

for any § > 0: this can be done by writing='#0 as a Cauchy’s integral and then
constructing a parametrix foly — z (see [14]) but this is not sufficient for us, as we
shall see later.

2.3. Let now V be a positive potential; we assume that C>(R9), V(x) > 0,
and there isp, 0 < p < 1/m, such that for allg

(11) DV ()| < CaV ()P,
for || =1 we require more precisely
(12) CTHVE)M < |VV(x)| < CV()H;

let ¢(r) = meagx € RY;V(x) > ¢} be the volume function associated with ; we
suppose that there i€ > 0, such that for alk > 0

(13) o(t) < Ct= .
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From this last assumption it results that
(14) Ve LY™RY and vV € LY (RY) :
in fact
/ V(x)mdx = / t1/m =1 (t)dt
and
14/m =1 gy~ 14 A/ m=p),

Let us denote byVy the multiplication operator defined by the potertial V¥ ); is
bounded andHy-compact. Kato-Rellich’'s theorem implies thak — V is selfadjoint

on D (Hp). Sinceoesd Hy) C [0, o), the negative spectrum consists of eigenvalues of
finite multiplicity, possibly accumulating to 0. More precisely, we suppose dhatm.
Under the assumptions (1) to (14), the negative spectruniipf- V is finite and if
N(V) denotes the number of negative eigenvalues, ther@,is- O such that

N(V) < Cq (/ V() ™mdx + / v(x)d/’dx> :

this follows easily from Theorem 2 in [13].

2.4. ReplacingV byAV for A > 0, this theorem asserts that the numben V)
of negative eigenvalues foHy — \V is finite, depending om\. Let No(\V) be the
volume function

No(AV) = (2n)~¢ / / dxde€ .
Plx.E)<AV(x)

We suppose that, as — +co
(15) No(AV) = CAY/L+ o(\4/1=@/m)y
We have the following Weyl asymptotic formula:

Theorem 1. Assume that the assumptio( to (15) are verified then as\ —
+00:

N(AV) = NoAV)[L+ 0O\ Y™)].

2.5. We precise here the particular case ofA + 1)/2 — 1 andd = 3: the non-
homogeneous symbal £)= (1 +|£|?)Y/2 — 1 verifies (1) to (9) with/ =1m =2 and
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also the assumption (15) is verified since
No(AV) = CX3 / V(x)3dx + 0(\%?).

We obtain then asymptotics for the relativistic hamiltonian of a spinless particle of unit
mass:

NOV) = No(AV)[L+ 0\ Y] () — +x) .

2.6. For an homogeneous symmetric differential operator of order 2 with symbol

d
polx. &) = Y ¢* ()¢,

jk=1
satisfying the assumptions
d .
(16) > gt )6 = g
Jok=1
(17) [DIg*(x)] < Cplx) 1P, [Vg/h(x)] < Clx) 47,

the symbol po(x, &) satisfies (1) to (9) with =m = 2, and (10) is verified, see for
instance [5]. If we set

d
tg(x) = (2r)~%vol {5 e RY; Z gjk(x)fjfk < 1}
jk=1
we obtain

No(AV) = \¢/2 / V()" 2, (x)dx,

and we can apply Theorem 1. Whenx, ) = |¢|?, we obtain the asymptotics of [15]
with remainder estimates.

2.7. We can give a semi-classical version of Theorem 1 in the case of an homo-
geneous differential operator: lgt x,(D ) be an homogeneous differential operator of
order! =m; let us denote bW_( 0)(?) the (finite) number of negative eigenvalues
for the perturbed hamiltonia#/ x(%D) = p(x, hD) — V; with the preceding notations
of 2.4, it results from Theorem 1 that &s— O0:

N—oso.0(h) = N(h""V) = No(h™" V))[1 + O(R)].
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Setting H &, &) = p(x, £) — V(x), we obtain a semi-classical Weyl formula
(18) N oo0)(h) = (2h)~“meas (o0, 0))[1+ 0 (1)] .

It should be noted that the technics of Hellfer and Robert [8] cannot be used here
since H (-0, 0)) has finite volume in the phase space but is not bounded.

2.8. Denote bye §;x, y) the integral kernel of the spectral projectfy corre-
sponding toHy. We suppose that there & > 0 such that

(19) YA > 0, e(\;x, x) < COY/™ + X4/,

then the operatofdy verifies the assumption (10): this follows immediately from the
relation

Q(t;x,x)=/ C>Cef')‘de(/\;x,x).
0

Estimations about X, ; x, x) as above are well known for large but here it must be
assumed for allh > 0, and this is more restrictive.

3. Birman-Schwinger technics

3.1. Let V be a potential satisfying the assumptions stated in 2.3. We suppose
furthermore thatV X )< 1; this assumption is not essential but will simplify some
technical proofs. We will see that by means of a powerVof , it is possible to define
a convenient pair of weight functions. Letx ( )¥=x ¢ with 0 < 3 < p; then there is
C > 0 such that

(20) IVg(x)| < Cq(x)**,
with § = 371p > 1; of course: 0< ¢(x) < 1. We now define
(21) o(x, &) = (€7 + g2, p(x) =q(x) ° = V(x) .

Following the terminology of [9], we have to verify that the Riemannian megric  de-
fined onR% by (¢, ©):

P, P
9= L0 T o

will satisfy the conditions required for a global pseudodifferential calculus. First we
note that

o, &) Xo(x) "L < ()" Ly (x)P6D
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therefore by (14), there i8/; > 0 such that
(22) (@)™ € LYRY) .
Now it is easy to verify thajop/0¢;| < 1, |0¢/0x;| < Cop~?, and |0¢p/0x;| < C,

which proves thatg is slowly varying. In order to prove that oisg-temperate, we
need the auxiliary result

Lemma 1. There isC > 0 and N > 0 such that for allx, y € R?:

q(x) L a() W
q(y)+q(x)§C(l+q(y)lx b1

Proof. As in [12], letyp(t) be defined by

t(y — x)
ly — x|

by (12), there isy > 0 such thaty’(r) > —v(t)}**; therefore

<p(t):V<x+ >,for0§z§|y—x|;

warpSwwrp+%u

in particular fors =[x — y|:
V)P <V L — vy
p

but, since 0< 5 < p and 0< V(x) < 1, we remark thatV x ” < ¢(x), and conse-
qguently
V() < CVE) T +|x — ylg ()Y,
and finally
q(x) = V(x)" < Cq(n)(L+|x — ylg(x))*/*,
that is, by permuttinge ang

a0)

< C(L+|x = ylg(y)?/e.
q(x)

Since the metrigg is slowly varying, there exists> 0 andC > 1 such thatix — y| <
eq(y)~% implies C~1¢(y) < g(x) < Cq(y), which proves that

a0)

RESCEIOEEE
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in this case. And whex —y| > eq(y)~°, we remark that, sincé > 1, there isN > 0
such that § — 1)N > 1, and then

gt < (@) HY

and therefore

()< @+ Hx = ylg())Y,

and also
X
90) < c@ e ylg0)".
q(y)
and this ends the proof of the lemma. ]

Let now g be the dual metric associated wigh
87¢(z, Q) = (€ + q)A)zl* + g (x) 2 |¢ I ;
Lemma 2. The metricg isc g-temperatethere isC > 0 and N > 0 such that
876(2.Q) < CgY (2. QUL+ g7, (x —y. E—m]™ .

Proof. From Lemma 1 it results that

2
o < Crab Pl — PP,
and this implies
(23) P(x)? < Co(y)’[1 + g7, (x — y. & —mI°V .

Similarly it follows from Lemma 1 that

q(x)* < Cq(* L +q(¥lx = y[)",
therefore
(24) ¢(x, ) < Coly, L +gy ,(x =y, E =) .
Now, if we seté =¢'g(y) andn =n'q(y):

€2 +q () = g(r)*(€)? < 2q (v (0 )2(€ — )2,
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but 1+|¢/ — /| =1+q(y) %€ —n|? and, sinces > 1, ¢(v ¥ < ¢(y)? consequently

(25) By, € < Coply, )L +g7,(x =y, & =" .

Lemma 2 follows from (23), (24) and (25). ]

Lemma 3. There isC > 0 such that for allx € R¢:

(x)7t < Cop(x) 7t

Proof. Letw € §"~% andr > 0; for x = tw, we sety(r) = V(x); since () =
w.VV(tw), the assumption (12) on V implies

—¢'(t) < Co1)*,
which in turn leads to
()" < ¢(0)"" + Cot,
or equivalently
V(x)"? < V()" +Cdlx| < C{x),
and therefore
(X) < V() =Colx) . O

3.2. Let p(x, &), V(x), g(x) be defined as in 3.1, and x,(\) € C>®(R?) such
that

(26) [DPq(x, N)| < Cpq(x)™1Pl, 0 < g(x, N) < g(x)",
(27) q(x, A\) =0 for \V(x) < g(x)"/2,
(28) q(x, A) =q(x)" for AV(x) > g(x)",

and V (, A\) defined by

(29) AV(x) +q(x, N) =AV(x, \)

which verifies in particular

(30) V,\)eC®MRY), 0<V(x) < V(x,\) <CV(x).

We can then rewriteHy — AV as Hy + g(x, A) — AV(x, ). For k > 0 let N.(\V) be
the number of eigenvalues less tham for the operatorHy — AV. By the Birman-
Schwinger principle N,(\V) is equal to the number of eigenvalues less thafor

Ak, \) = V(x, )" Y2(Hg + K+ q(x, )V (x, \) Y2 .
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This operator is selfadjoint positive with compact resolvent. het= p;(x, A) and
uj =uj(k,A) € S be respectively the eigenvalues and eigenfunctiong ef, \), and
let us denote by the symbol

(31) ao = ao(x, &k, A) = V (e, A) " Hp(x, ) + k +q(x, \) -

The accuracy of the weightg, ¢ is proved by the following lemma; its conclusion is
no longer true for classical weight):

Lemma 4. For all multindices « and 3, there is C,g independent ofs, such
that

108 DY p(x, §)] < Cap(plx, &) +k +q(x)")o(x, O 1*lp(x) 171
Proof. For|¢| > g(x), then¢(x, &) ~ |¢| and the inequality follows from (3) and

Lemma 3. And if|¢] < ¢g(x), then in particulai¢| < 1; therefore forla| < m, (6), (7)
and Lemma 3 imply

102 D2 p(x, )| < Cap(€] +q()y" 1 p(x) 17!
< Cop(E" + q())B(x, €)1 p(x) 17!
< Cop(plx, &) + K +q(x)")p(x, €)1 p(x) 7171,

now for |a| > m, then by (8) and Lemma 3:
108 DY p(x, )] < Capp(x) 171 Capq )" 1*p(x) 171,
but when|¢| < ¢(x), then(x, £) = ¢g(x), and therefore

108D2 plx, &) < Capg(x)"d(x, €)1 p(x) 17,
< Cap(px, &) + K+ q(x)")(x, &)1 p(x) 7171 0O

Lemma 5. For all multindicesa and 3, there isC,zs such that for(x, £) € R
such that\V(x) > g(x)™:
|08 DYao(x, & k, N)| < Capaolx, &k, N(x, €)1
Proof. Settinggo = qo(x, &; &, \) = p(x, &) + k +g(x, A), we first prove that
(32) 108 D2 qo| < Capgod™' I~ 171

For o different from 0:9¢ DY qo = ¢ DY p; therefore, by Lemma 4 and (27), the in-
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equality (32) follows immediately. Now fow = 0, by (27):
DL qo(x, & 5, N)| < Cagolx, &k, Ap(x) 11+ Cag ()" p(x) 7171
Finally, sinceV &, \) = V(x) + A1g(x)™, the potentialV £, \) verifies
DIV N < CaV(x, ()7L,
which implies (32) by use of Leibniz formula. Ul
Lemma 6. The symbolig verifies (¢p) < ag < ()Y =5,
Proof. SinceV £, \) > V(x) > 0, assumption (1) onp x( &) implies
0 <a(x, &k, A) < CV(x)HE™ = Cqx) 7 ()"
On the other hand:
¢(x, O)p(x) > ()gx)*~°,
but§ — 1= (p — 3)/8, therefore, since & 8 < p < 1/m,
o(x, p(x) > ([g(x) 17y~ P(e)my—°
or equivalently
¢p > Caf ™",

and this proves the right hand side of the lemma. For the left hand side, it suffices to
remark that by (5) and (6):

ao(x, &, ) = p(x)Pp(x, )" for [¢ < 1,
and similarly
ao(x, &k, N) > p(x)P¢(x, €)' for [¢| > 1.
Sincep(x) > 1 and ¥p > m > [, these inequalities imply
ao(x, & k. A) > (6(x, ()

in all the cases. ([l

3.3. The next lemma will be essential in Section 7.1 to solve locally the charac-
teristic equation relative to the symbaj.
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Lemma 7. There exist positive constants; and C, such that whem\V(x) >
g(x)™ and ag > Cq

P(x, )| Veao| + o(x)|Vrao| > Caap .
Proof. Recall that by definition, whelRV (x) > ¢(x)"
ao(x, & £, \) = V(x) H(p(x, &) +r +gq(x)"),
such that by (2)
(33) ¢(x, ) Veaol > Veao& > V(x)'p(x. €) .
Now
Viao = V(V Y (p+r)+ VIV p+V(VITY,
which can be rewritten
Viao = —(VIVVIIV Hp + 1) + (1= AV T+ VIV, p;

we remark now that by (12)
(34) . (VHVVNIV Hp+r)+(L— BV > (L — )|V 'V V]aop > (Caa;
on the other hand, by (4)
(35) )|V (x) Ve p(x, )] < CaV (x) T plx, ) (x) F .
Then, by (33), (34) and (35)

¢(x, )| Veaol + p(x)| Va0l > V(x) " p(x, €)(L — Calx) %) + Caaolx, & 5, N);

but there isR > 0 such thatlx| > R > 0 implies 1— C4(x)~¢ > 0, which proves the
lemma in this case. Now, whelx| < R, V(x)~! < Cs and forag > 3Cs

2Cs < ao(x, &, A) < Csp(x, §) + 2Cs
therefore
p(x, &) > Cs > V(x)™* > q(x)"
and by (33)
o(x, O Veaol = V() THp(x, &) + 1+ q(x)") = aolx. & 5, N),

and the lemma is proved. O
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4. Localization in the phase space

In this section we prove that a direct study &f.(A\V) can be replaced by esti-
mations on localized counting functions (see the precise definition below). This idea is
not new, see [15], [11], [1], but the presence of various parameters leads to be very
careful.

4.1. Let 0 be a positive real number, which will be fixed later on, and V=x ()
be a potential as in Section 4. We define a covering of the phase space by

U={(xN\NVE) <2}, V={xNVk) >1}
Vi = {(x,f);/\gV(x) > 1 andag(x, & K, A) ¢ <%2A>}

Vo = {(x,ﬁ);AQV(x) > 1 andag(x, &k, \) € (%,4)\)} )

Lemma 8. There isw = w(x; A), 8 = 0(x; \) € S(1; ¢, ¢), uniformly with respect
to x such thatSuppw C U, Suppd C V, and w(x; \) = 1 on {(x, £); \?V(x) < 1} and
such thatw? + 62 = 1.

Proof. Letx € C3°((—1, 2)), x(#) = 1 when 0< ¢t < 1 and 0< x(¢) < 1; we
define

&= 00N = XAV
@ € S(1; 9, ¢), uniformly with respect ta\. Now let
Y=+ (1-0)
then: ¢ € S(1;¢, ) andy > 1/2. Therefore, if we set
0=Q0—o) Y2 w=5p Y2
the pair (v, ) will satisfy the conditions required in the lemma. ]

4.2. We consider now a partition of unity as in [9]: let be the Riemannian met-
ric associated with the weights, ¢ defined in Section 4; fon =x(¢) € R* and
e >0, we set

U:(v) ={w = (2, Q); go(w —v) <e}.

There is () et ) satisfying:
(i) (xx) is bounded inS (19, ¢);
(i) 0 <xx <1 and Supp € Ue(vi);
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(iii) there is N > 0 such that each point iR* lies in at mostN ballsU; ;

(iv) > xk = 1.
From now on we denote by, the ball.(V;). Let J be a subset oN, finite or
infinite, and

XJ:ZXk-

keJ

By (iii), xs is well defined and ;) is bounded inS (1¢, ¢). Let v € R%: there is
k such thaty(v) > 1/N: otherwise (iii) implies that) ", x«(v) < 1. Let us definey,
by

2
Y=Y NG+ (Zm) ;
keJ kgJ

the family @,) is bounded inS (1¢, ¢) andv; N~2. Finally we set7 = JU{c} and

oy =0, for k€ J and poo ) = %_1/22)(;( .
keJ

The family (px.;) for J C N andk € J is bounded inS (1¢, ¢) and

Zcpf:L

keJg

From this partition of unity, we construct a (reduced) pseudodifferential partition of
unity. For this, we need an auxiliary and well known result, the proof of which we
omit:

Lemma 9. Leta € S(1;¢,¢) be a symbol such that > 1. For eachN € N
there isb € S(1;¢, ¢) andt € S((¢¢)~"; ¢, ) such that

op"a=10p"b)?+0p"r.
Now we can state

Lemma 10. For all N € N, there is(w),k € J and p, wi € S(1;¢, ¢) and
p € S((pp)~"; ¢, ¢) such that

> 1opYwl=1+0p"p;
keJg

furthermore the symbolsw;, and p are in bounded sets ofS(1;¢,¢) and
S((pp)~N; 6, @) respectively.
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4.3. We apply these general results to our particular case; let us set

J:J(/ﬁ,)\):{kEN;%<ao(vk;KJ,)\)<)\} .

We can reformulate Lemma 10:

Lemma 11. Let w = w(x;\) be the symbol defined ihemma 8; there ex-
ists symbolswy(x, \) and p(k, A) respectively in bounded sets of(1;¢, ¢) and

S((pp)~"; ¢, ¢) such that

[0p"w)?+ > [0pYw]*=1+0p"p
keJ

and
Suppw C U, Suppwy C U C Vp for k € J , Suppus € Vi .
In Section 3 we considered the operator
Ak, N) = V(x, \)Y2(Ho + 5+ q(x, )V (x, )2,
let ;= pj(x, A) andu; =u; &, \) € S be respectively the eigenvalues and eigenfunc-

tions of A (x, \); for a bounded symbal, which may depends on various parameters,
we define

(36) N, w)= Z [|op" w.u||?.

Hj<p
For further reference, we remark that whénp"w is an Hilbert-Schmidt operator
(37) N (. w) < [|0p" wllfs -

Let us recall the definition oV, (AV) stated at the beginning of the Section 3.2; from
the preceding remark and from Lemma 11 it follows that (see [11]):

Proposition 1. With the notations of.emma 10,there isC > 0, such that

Ne(AV) = N\, w) = > N\ w)|C .
keJ
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5. Bounds for N(A, ) with CLR inequality

5.1. Preliminary estimates.
Lemma 12. Let p € S((¢p)~L; ¢, ) uniformly with respect tdx, \); then
N\, p) < CX/1=0
Proof. Fork € N sufficiently large
THA(AO. 0 +X) T = [ () Hane )
0
Since
A [eS)
VO < [aN@p <2 [ ey an ),
0 0
it is sufficient to prove that
| tani. = 004, 3 - oo
0
By a standard construction of parametrix, we are led to evaluate the integral

[ @by oy tavag

with ag = ao(x, &k, A) = V(x, \) " Xp(x, &) + k + q(x, \)) > V(x)p(x, \). Cutting the

integral into the integrals on the regiond < 1 and|¢| > 1, using respectively the
assumptions (5) and (6) op x,(€), the inequality¢(x, &) > |¢| and the definition of
©(x), we have to estimate the integral

/ / €V )™ + N He| 2V (x)Pdxde
[€1<1

and the similar integral witi replaced by . Using the change of variables defined
by

&= V)i

the preceding integral is bounded by
AZkHa=am / V(x) WD/ gy / (¢ + 1)~ rd¢

with

/ V ()~ WeHd /D g
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finite, and similarly for the other integral. ]

Lemma 13. Let # be a real numberfor 6 > 1/(md(1/l — p)), there isC > 0
such that

/ V() dx < cxTYm
AV(x)<2

Proof. Let us denote by(s) the volume function associated with the potential
V; then

22—?
/ V() dx = — / 1 dp(r):;
AV (x)<2 0

and since¢ verifies (13), we deduce

/ V@) dx < CAZ0/1=0) O
AV (x)<2

Lemma 14. For 6 < 1/(m(1/m—(3)), the condition\?V (x) > 1 implies AV (x) >
g(x)".

Proof. Recall thaty X ) =V A3. Since A > V(x)~¥? implies A\V(x) >
V(x)¥-1/9 it is sufficient to require

0ot <mp,
which proves the lemma. ]
5.2. Bound for N @\, w).
Proposition 2. Letw € S(1;¢, ¢) such thatSuppw C {x; \?V(x) < 6}; then
N\, w) < CA/1=@/m)

Proof. As above we denote Qy; = pj(x, A) andu; =u; &, \) € S respectively
the eigenvalues and eigenfunctions o&f A=, X). Then

A(wuj)=w Au; +[A, wlu;
consequently

wuj = ujAfl.(wuj) +A7YA, wl.uj;
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then, multiplying byw:
wzuj = uj(wA_lw).uj +wATYA, wluj.
This implies
[|w?u [P < 203 ]| (WA W) ]| + 2 [wATHA, W]y,
and summing with respect tp  such that < A:

(38) N w?) <23 [[(W2wA T wAY2)up] 2+ 2N (\, wA A, w]) .
<A

We remark now that, setting/ x()\) = A\w?(x, )V (x, \):
M2OATTOAY2 = W(x, )Y [Ho + k + g (x, )] W(x, \)Y?
and therefore
A2 A2 < W (x, NYP(Ho + k)W (x, W)Y
let us denote byI" F «, A\) this last operator, we have to estimate

> NTal?=N(T. ).

i<

In the particular casd =3 m =2 this operator is Hilbert-Schmidt and the conclu-
sion is easy; but this property remains no longer true in the general case, which leads
to some difficulties. First we note that

> TP =TT EAT],
i<

where E)) is the spectral family associated with x,(\); so, if (v;) denotes the sys-
tem of eigenfunctions corresponding To , ang)(the corresponding eigenvalues:

TATEAT] = Y (TExT.v;,v;)
J

_ 2 .

= ZVJ-<E,\UJ', Uj) y
J

we apply now the Klder inequality: the last sum is majorized by

1/p 1/q

lejz-p Z<E)\Uj,vj>q s
J

J
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where ¥ p+1/q =1; but sincekE is a projector and|v;|| = 1:
0 < (Exvj,v;) <1,
therefore

Z<E)\Uj, Uj>q < Z<E)\Uj, Uj> = TI’[E)\],

J J
but Tr[E,] is equal to the number of eigenvalues less thafor A = A(k, A); conse-
quently, by the CLR inequality:

TrEN] < Cy <)\d/1/v(x)d/ldx +>\d/m/V()C)d/mdx)

and
1/q

J

1/q
(o) scom |

On the other hand

, 1/p - 1p
S| =R, = [— [ anc T>] ,
J

(heren ¢, T ) denotes the number of eigenvalues’of  greater than Y bu?” x3\) (
is the Birman-Schwinger operator associated wHp — W(x, \); consequently the
Birman-Schwinger principle and the CLR inequality imply that

n(t, T) < N~ *W(x, V)
< Cy <td/[/W(x, )\)d/ldx +t7d/"’/W(x, /\)d/'"dx) .

By definition W (x, \) = Aw(x, \)?V(x, \), and by (29) and the assumption on Supp
n(t’ T) S Ca',p (tid/l + tid/m) Ad/l/ V(x)d/mdx
A0V (x)<2

for 2p — (d/1) > 0, and then

1/p
(Z VJZ_P) <C \4/p)—(6d/p)1/m—p)
J
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We fix now the values fof and then forp : let

0o = ! ;
" m(@jm —p)’
we remark that for
0o 1
— <= 0
d — m(1/m — 3) <%

the conclusion of Lemmas 13 and 14 remains valid, and that

1 d d 1
W%a‘0‘5>z;
sincel > 1; therefore there exist$ = 1/(m(1/m — 3)) such thatfy/d < 6 < 6y and
d 1 1 1
LAEI (__p> <eod<__p>
2l m m m

and lastly there i > d/2/ such that
m m

N(A, T) < CAd/l_(l/m).

<

which implies

Finally the operatotwA—Y[A, w] in the right side of (37) verifies
wA A, w]l=0pp

with p € S((pp)~1; ) sincew =1 when\?V(x) < 1, and we can apply Lemma 12
for estimatingN 4, p). ]

Proposition 3. Letw € S(1;¢, ¢) such thatSuppw C {x; \?V(x) < 6}; then
‘N()\, W) — () / / dexd5’ < eat-a/m
ag<\

Proof. By the preceding lemma, it suffices to verify that

// dexdE < CAd/[_(l/m) :
ag<\

but this inequality results from the inequalities

// wdxdé < Cq // dxdé + Cs // dxd¢ . [
a0<A l€1>1, /' <CAV(x) l€1<1, ¢ <CAV(x)
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6. Functional calculus

6.1. The aim of this section is to estimat®¥ \,(v) when the support ofv is
such that Supp C U.(v) C Vi, with V; defined at the beginning of Section 4.1. Let
us denote byd = 0(x, &; k, A) the symbol inS (1p, ) given by the composition of
pseudodifferential operators:

(39) [0p"w)?=0p"o+ 0p"p

with p € S((¢p)~V; ¢p) for N sufficiently large. Let £,) be the spectral family asso-
ciated withA =A &, \); since N Q,w) = TrlwE w], we will approximateN &, w) by
Trlw f(A)w] for suitable f € S. This leads first to develop a functional calculus for
A = A(k, \) in the spirit of [8].

6.2. We do not go into the details of the proofs because this procedure is well
known and we content ourselves to indicate the different steps. The first step is the
construction of a local right parametrig”, for A — z, that is a pseudodifferential
operator satisfying '

(A - z)B:N = 0pr + Ry,
with R¥, of trace-class. Let us set
BYy = Z op"b,,
=0
where the symbol$, ; are defined inductively by
b o(ar — 2) = w,
and forj > 1 by
b..j(ao —2) + Y _ T(a, B)O¢ DY agdg Db, s = 0,

with 0 < k < j andk +|a| +|3| = j. Since Supp.; € Suppw for all j € N, the
symbol ag verifies the estimation explicited in Lemma 5. Consequently

(A—z2)"tw= BYy — (A - z)flR;”N .
By composition withw:
w(A - Z)ilw = BZ,N + Rz,N

with R, y of trace class.
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6.3. This enable us to defineA*w for s € C and thenw f(A)w for f € S via
the Mellin transform; more precisely (see [6]):

N

wf(Aw = Z OpWaf_j + Ry.
j=0

On the remainder we have the following estimate

Lemma 15. There isN1, N, > 0 and C1, C, > 0 such that forN sufficiently
large and f € S such thatf®)(0) = 0 for k > 1 and f(0) = 1:

2N +N,
<@) £

dt+Co.
ot 2

oo
HRNHTrSCl/ AN
0

Proof. We have only to follow [6] and to use in particular Lemma 6 above.
]

Lemma 16. Let f € Cg° such thatf = 1 on [0, 2)], f(r) = 0 whenr > 2A.
Then

il £(AN] = 20)" [ [ 005, P, 5 Mtnae| < €
Proof. See [1], Proposition 3 for the details. L]

Proposition 4. Letw be a bounded symbol such thauppw C Vj; then
’N()\, w)—(2n)™" // 0(x, & K, A)dxdf’ <C.
ap(x,&;k,A) <A

Proof. Letf be a real number such that<06 < 3/2 and

A= A0/2, 0+ A0]
5 :

JOL0) = A= AN+ N0 TN 0) = [
let f.0.8x0 € C§° such that
Suppgr.e € J(A, 0), gro(t) =1 forz e I(),0),

)\170
Suppfire € <0, A+ 2) s

and

He@)=1forr ¢ I(N0), 1 <\
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and we suppose the following assumptions on the derivatives: fot allN, there is

Cr > 0 such that
t0\*
+‘<5) gxo(t)

to\" 0
(40) Fro(t) < A
It results of the definition offy ¢, gx.¢ that

ot

(41) Ixo.n — el < gne < Xuno) -

But for \ sufficiently large:7 4, ) C [\/2, 2)\]; therefore, using (39) and Lemma 15:
2X
|RN()\, 0)| < C/ t*ﬁN+N1+(2N+N2)9dt < C}\*ﬂN+N1+(2N+N2)0 :
0

the exponent can be rewrittedN 62 ) + éo and since 0< 6 < (3/2, it will be
negative forN sufficiently large. So

IRv(A\, 0) < C.

Now

A\, w) — (27)™" 0(x, &k, Ndxd
‘N( w) - (2r) //ao(_mm (v, &5, Ndx f‘
< | Trw?EL] — Tr{w? fr.e(A)]|

Trlew fro(A)e] — (27) " / / 0(x, & 1, N) flaolx. € K, N)dxd€

+

+

@2m)™" / 0(x, &k, A) fao(x, & K, N))dxd&

—(2r)~" // 0(x, & K, )\)dxdg‘ .
ag(x,&;k,A)<A

But, by (40), the first term of the right side is bounded by
Trw?g(A)] < C .

For the second term, we use Lemma 16; finally we remark that

// 0(x, & K, \) f(ao(x, & k, N))dxd€ = / 0(x, & K, Ndxd§ . L

ao(x,&;k,A) <A
7. Tauberian technics

In this section we estimat& A\(w) when Supp C U.(v) C V,, whereV; is
defined in 4.1. For this region of the phase space, we use a tauberian method: more
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precisely we adapt the ddmander-Levitan method to our case. This have been made
in [15], [11], and in our paper [1].

7.1. Approximation of the unitary group.
Using convenient classes of Fourier integral operator we can prove

Proposition 5. There isp > 0 such that setting p, = p(¢p)(v), then for N € N
sufficiently large and € (—p,, p.)

(42) we "w = FO@: kN + FO(; 5, N,

wher FI(VO)(t; k, A) is a Fourier integral operator an(F,(vl)(t; K, M) is a trace class oper-
ator such thatthere isC > 0 such that forj =0, 1, 2

(43) | 8/ FP(; 1, 2) 1< Clo) ()

Proof. We follow the proof of Proposition 9 in [1], which is rather long and
technical; we need in particular the result of Lemma 7. O

7.2. Estimation of N §, w).
For a bounded symbal, let § be the symbol defined as in (38).

Proposition 6. Let w be a bounded symbol such th8uppy C U.(v) C Vo
there isCq, C»> > 0 and é§ > 0 such that

‘N()\,w)—(Zﬁ)_d//( o )\H(x,g;ff, ANdxdé| <
ap(x,&;r.N)<

-1 -N
e [ /{ o (09 e + Colo))
(x.€) €U (3e)
Proof. We follow the proof of Proposition 11 in [1]. O

8. Proof of Theorem 1

Let N sufficiently large such that
(60 () <o and [ (60) " (r. axdg < oo
k

From the definitions of the functions,(\) and 6,()\) it results that

T—w— Y O, &N)| < Clop) M (x, ) .

keJ (M)
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The conclusion is obtained by summation with respect to by using the property that
each point inR* belongs to at mosV  ballgl, £

zk://{élKuo(-\'-&:N-AKM (sto)il(x’ Qdxd¢ <

(x.€) €U (3¢)

c Y, Odxde .
/~/61)\<ao(x,§;m,)\)<6)\(¢<p) (x g) * 5

Then

]NK(AV)—(Zw)d // Adxds]sclwz //5 et
ap< —1x<ap<

Now we letx tend to 0, and we apply the Lebesgue dominated convergence theorem
and the estimation used in the proof of Lemma 12.
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