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1. Introduction

Let ∈ 2
loc(R ) be a non negative potential; the now classical Cwikel-Lieb-

Rozenblum (CLR) inequality asserts that the number ( ) of negative eigenvalues for
the Schr̈odinger operator− − verifies

( ) ≤
∫

( ) /2

when > 2. More generally Egorov [7] proved that if the Laplacian is replaced by
an elliptic positive differential operator of order 2 , the CLR inequality remains valid
when > 2 with /2 replaced by /(2 ). Recently Rozenblum and Solomiak [13] ob-
tained a general result for a wide class of perturbed hamiltonians0 − .
When the RHS in the CLR inequality is finite we can define the number (λ ) of
negative eigenvalues for 0 − λ . The principal term of the asymptotic for (λ )
when λ → +∞ was found independently by Birman and Borzov [3] and Martin [10]
in the case ≥ 3:

(λ ) ∼ λ /2
∫

( ) /2

Tamura [15] obtained later on a sharp remainder estimate for = 3:

(λ ) = λ3/2
∫

( )3/2 + (λ) whenλ→ +∞

for very regular potential like〈 〉− with > 2. More recently Birman and Solomiak
[4] obtained asymptotics for 0 = (− ) and > 2 (and also for < 2 but we do
not consider this case here).

The aim of this paper is to obtain similar Weyl asymptotics when0 is a pseu-
dodifferential operator. Global ellipticity is not required; roughly speaking, we suppose
that the complete symbol of 0 is hypoelliptic and satisfy a condition which looks
like ellipticity near ξ = 0, see the complete assumptions in 2.1. A typical example is
for instance the relativistic Laplacian0 = (− + 1)1/2 − 1. The class of potentials
considered here is less restrictive than those considered in [15].
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Here is the plan of our work: in Section 2 we specify the different assumptions
on the unperturbed hamiltonian0 and on the potential and we state the main the-
orem. In Section 3, following [15], we use Birman-Schwinger principle: this leads to
estimate the number of eigenvalues less thanλ for a selfadjoint operator (κ λ) de-
pending on the parametersκ λ with 0 < κ ≤ 1 andλ ≥ 1. For exploiting this idea
Tamura has showed that it is essential to provide adapted weight functions, in the ter-
minology of Beals, and corresponding classes of symbols in which (κ λ) admits a
principal symbol satisfying uniform estimates with respect toκ λ. In Section 4 we lo-
calize the spectral problem and decompose the phase space in three regions; each of
these regions requires a different method. These methods are explicited respectively in
Sections 5, 6, 7. In particular the results of [13] are used in Section 5. Sections 6 and
7 are an adaptation of [1] and the proofs are only sketched.

2. Assumptions and main results

2.1. Let ( ξ) ∈ ∞(R2 ) be a non negative symbol satisfying the following
assumptions: there is positive real numbers , 1≤ ≤ such that for all ( ξ):

0 ≤ ( ξ) ≤ |ξ|(1)

ξ ∇ξ ( ξ) ≥ ( ξ)(2)

and for ξ 6= 0,

(3) |∂α
ξ

β ( ξ)| ≤ α β ( ξ)|ξ|−|α|〈 〉−|β|;

here we have used the standard notation〈 〉 = (1 + | |2)1/2; when |β| = 1 we require
more precisely that for someε > 0:

(4) |∇ ( ξ)| ≤ ( ξ)〈 〉−1−ε;

we suppose that for|ξ| ≥ 1

(5) ( ξ) ≥ −1|ξ|

and for |ξ| ≤ 1, we assume that

(6) ( ξ) ≥ −1|ξ|

and furthermore that when|α| ≤ ,

(7) |∂α
ξ

β ( ξ)| ≤ α β |ξ| −|α|〈 〉−|β|

and when|α| ≥ ,

(8) |∂α
ξ

β ( ξ)| ≤ α β〈 〉−|β|;
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lastly we suppose that the operator ( ) with classical symbol (ξ) is symmetric
positive onS:

(9) ∀ ∈ S ( ( ) ) ≥ 0

where ( ) denotes
∫

¯ as usual. With the assumptions (1) to (9), the operator
( ) defined onS is essentially selfadjoint; let 0 be its selfadjoint realization;

then 0 ≥ 0. For each > 0, − 0 is an integral operator with ∞ bounded ker-
nel ( ; ). Let

( ) = || ( ; )|| ∞(R )

then we suppose that

(10) ∀ > 0 ( ) ≤ 1
− / + 2

− /

2.2. We make some comments: assumptions (1), (3) and (5) are the classical as-
sumptions of hypoellipticity, but (3) must be verified for allξ 6= 0, not only for |ξ| ≥ 1
as usual; (6), (7), (8) specify the behaviour of (ξ) nearξ = 0 and are rather restric-
tive (ellipticity near ξ = 0); the case is different from occurs for instance for the
relativistic Schr̈odinger operator (see 2.5); (4) is a technical assumption, see Lemma
7; lastly, the estimate (10) is well known for sufficiently small; but in our case, this
estimate must be verified for all > 0, especially near = +∞; using only the as-
sumptions (1) to (9), we are able to prove a weaker estimate:

( ) ≤ ( 1
− / + 2

− / ) δ

for any δ > 0: this can be done by writing− 0 as a Cauchy’s integral and then
constructing a parametrix for 0 − (see [14]) but this is not sufficient for us, as we
shall see later.

2.3. Let now be a positive potential; we assume that∈ ∞(R ), ( ) > 0,
and there isρ, 0< ρ < 1/ , such that for allβ

(11) | β ( )| ≤ β ( )1+ρ|β|;

for |β| = 1 we require more precisely

(12) −1 ( )1+ρ ≤ |∇ ( )| ≤ ( )1+ρ;

let φ( ) = meas{ ∈ R ; ( ) > } be the volume function associated with ; we
suppose that there is > 0, such that for all > 0

(13) φ( ) ≤ − ρ
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From this last assumption it results that

(14) ∈ / (R ) and ∈ / (R ) :

in fact
∫

( ) / =
∫

/ −1φ( )

and

/ −1φ( ) −1+ (1/ −ρ)

Let us denote by the multiplication operator defined by the potential ( ); is
bounded and 0-compact. Kato-Rellich’s theorem implies that0 − is selfadjoint
on ( 0). Sinceσess( 0) ⊆ [0 ∞), the negative spectrum consists of eigenvalues of
finite multiplicity, possibly accumulating to 0. More precisely, we suppose that> .
Under the assumptions (1) to (14), the negative spectrum of0 − is finite and if

( ) denotes the number of negative eigenvalues, there is> 0 such that

( ) ≤
(∫

( ) / +
∫

( ) /

)
;

this follows easily from Theorem 2 in [13].

2.4. Replacing byλ for λ > 0, this theorem asserts that the number (λ )
of negative eigenvalues for 0 − λ is finite, depending onλ. Let 0(λ ) be the
volume function

0(λ ) = (2π)−
∫∫

( ξ)<λ ( )
ξ

We suppose that, asλ→ +∞

(15) 0(λ ) = λ / + (λ / −(1/ ))

We have the following Weyl asymptotic formula:

Theorem 1. Assume that the assumptions(1) to (15) are verified; then asλ →
+∞:

(λ ) = 0(λ )[1 + (λ−1/ )]

2.5. We precise here the particular case of (− + 1)1/2 − 1 and = 3: the non-
homogeneous symbol (ξ) = (1 + |ξ|2)1/2 − 1 verifies (1) to (9) with = 1 = 2 and
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also the assumption (15) is verified since

0(λ ) = λ3
∫

( )3 + (λ3/2)

We obtain then asymptotics for the relativistic hamiltonian of a spinless particle of unit
mass:

(λ ) = 0(λ )[1 + (λ−1/2)] (λ→ +∞)

2.6. For an homogeneous symmetric differential operator of order 2 with symbol

0( ξ) =
∑

=1

( )ξ ξ

satisfying the assumptions

∑

=1

( )ξ ξ ≥ −1|ξ|2(16)

| β ( )| ≤ β〈 〉−|β| |∇ ( )| ≤ 〈 〉−1−ε(17)

the symbol 0( ξ) satisfies (1) to (9) with = = 2, and (10) is verified, see for
instance [5]. If we set

µ ( ) = (2π)− vol



ξ ∈ R ;

∑

=1

( )ξ ξ < 1





we obtain

0(λ ) = λ /2
∫

( ) /2µ ( )

and we can apply Theorem 1. When (ξ) = |ξ|2, we obtain the asymptotics of [15]
with remainder estimates.

2.7. We can give a semi-classical version of Theorem 1 in the case of an homo-
geneous differential operator: let ( ) be an homogeneous differential operator of
order = ; let us denote by −(∞ 0)(~) the (finite) number of negative eigenvalues
for the perturbed hamiltonian (~ ) = ( ~ ) − ; with the preceding notations
of 2.4, it results from Theorem 1 that as~ → 0:

(−∞ 0)(~) = (~− ) = 0(~− ))[1 + (~)]
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Setting ( ξ) = ( ξ) − ( ), we obtain a semi-classical Weyl formula

(18) (−∞ 0)(~) = (2~)− meas ( −1(−∞ 0))[1 + (~)]

It should be noted that the technics of Hellfer and Robert [8] cannot be used here
since −1(−∞ 0)) has finite volume in the phase space but is not bounded.

2.8. Denote by (λ; ) the integral kernel of the spectral projectorλ corre-
sponding to 0. We suppose that there is> 0 such that

(19) ∀λ ≥ 0 (λ; ) ≤ (λ / + λ / );

then the operator 0 verifies the assumption (10): this follows immediately from the
relation

( ; ) =
∫ +∞

0

− λ (λ; )

Estimations about (λ ; ) as above are well known for largeλ; but here it must be
assumed for allλ ≥ 0, and this is more restrictive.

3. Birman-Schwinger technics

3.1. Let be a potential satisfying the assumptions stated in 2.3. We suppose
furthermore that ( )≤ 1; this assumption is not essential but will simplify some
technical proofs. We will see that by means of a power of , it is possible to define
a convenient pair of weight functions. Let ( ) = ( )β with 0< β < ρ; then there is
> 0 such that

(20) |∇ ( )| ≤ ( )1+δ

with δ = β−1ρ > 1; of course: 0< ( ) ≤ 1. We now define

(21) φ( ξ) = (|ξ|2 + ( )2)1/2 ϕ( ) = ( )−δ = ( )−ρ

Following the terminology of [9], we have to verify that the Riemannian metric de-
fined onR2 by (φ ϕ):

ξ( ζ) =
| |2
ϕ( )2

+
|ζ|2

φ( ξ)2

will satisfy the conditions required for a global pseudodifferential calculus. First we
note that

φ( ξ)−1ϕ( )−1 ≤ 〈ξ〉−1 ( )β(δ−1)
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therefore by (14), there is 1 > 0 such that

(22) (φϕ)− 1 ∈ 1(R2 )

Now it is easy to verify that|∂φ/∂ξ | ≤ 1, |∂φ/∂ | ≤ φϕ−1, and |∂ϕ/∂ | ≤ ,
which proves that is slowly varying. In order to prove that isσ -temperate, we
need the auxiliary result

Lemma 1. There is > 0 and > 0 such that for all ∈ R :

( )
( )

+
( )
( )

≤ (1 + ( )| − |)

Proof. As in [12], letϕ( ) be defined by

ϕ( ) =

(
+

( − )
| − |

)
for 0 ≤ ≤ | − | ;

by (12), there isγ > 0 such thatϕ′( ) ≥ −γϕ( )1+ρ; therefore

ϕ( )−ρ ≤ ϕ(0)−ρ +
γ

ρ
;

in particular for =| − |:

( )−ρ ≤ ( )−ρ

[
1 +

γ

ρ
| − | ( )ρ

]
;

but, since 0< β < ρ and 0< ( ) ≤ 1, we remark that ( )ρ ≤ ( ), and conse-
quently

( )−1 ≤ ( )−1(1 + | − | ( ))1/ρ

and finally

( ) = ( )β ≤ ( )(1 + | − | ( ))β/ρ

that is, by permutting and :

( )
( )

≤ (1 + | − | ( ))β/ρ

Since the metric is slowly varying, there existsε > 0 and > 1 such that| − | <
ε ( )−δ implies −1 ( ) ≤ ( ) ≤ ( ), which proves that

( )
( )

≤ (1 + ( )| − |)
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in this case. And when| − | ≥ ε ( )−δ, we remark that, sinceδ > 1, there is > 0
such that (δ − 1) ≥ 1, and then

( )−1 ≤ ( ( )−δ+1)

and therefore

( )−1 ≤ (1 + ε−1| − | ( ))

and also

( )
( )

≤ (1 + | − | ( ))

and this ends the proof of the lemma.

Let now σ be the dual metric associated with :

σ
ξ( ζ) = (|ξ|2 + ( )2)| |2 + ( )−2δ|ζ|2 ;

Lemma 2. The metric isσ -temperate: there is > 0 and > 0 such that

σ
ξ( ζ) ≤ σ

η( ζ)[1 + σ
η( − ξ − η)]

Proof. From Lemma 1 it results that

ϕ( )2

ϕ( )2
≤ (1 + ( )2| − |2)δ

and this implies

(23) ϕ( )2 ≤ ϕ( )2[1 + σ
η( − ξ − η)]δ

Similarly it follows from Lemma 1 that

( )2 ≤ ( )2(1 + ( )2| − |2)

therefore

(24) φ( ξ)2 ≤ φ( ξ)2[1 + σ
η( − ξ − η))

Now, if we setξ = ξ′ ( ) and η = η′ ( ):

|ξ|2 + ( )2 = ( )2〈ξ′〉2 ≤ 2 ( )2〈η′〉2〈ξ′ − η′〉2
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but 1 +|ξ′ − η′|2 = 1 + ( )−2|ξ − η|2 and, sinceδ > 1, ( )2 ≤ ϕ( )2; consequently

(25) φ( ξ)2 ≤ φ( η)2[1 + σ
η( − ξ − η)]

Lemma 2 follows from (23), (24) and (25).

Lemma 3. There is > 0 such that for all ∈ R :

〈 〉−1 ≤ ϕ( )−1

Proof. Let ω ∈ −1 and ≥ 0; for = ω, we setϕ( ) = ( ); sinceϕ′( ) =
ω ∇ ( ω), the assumption (12) on V implies

−ϕ′( ) ≤ ϕ( )1+ρ

which in turn leads to

ϕ( )−ρ ≤ ϕ(0)−ρ + δ

or equivalently

( )−ρ ≤ (0)−ρ + δ| | ≤ 〈 〉

and therefore

〈 〉−1 ≤ ( )ρ = ϕ( )−1

3.2. Let ( ξ) ( ) ( ) be defined as in 3.1, and (λ) ∈ ∞(R ) such
that

| β ( λ)| ≤ β ( ) +δ|β| 0 ≤ ( λ) ≤ ( )(26)

( λ) = 0 for λ ( ) < ( ) /2(27)

( λ) = ( ) for λ ( ) > ( )(28)

and ( λ) defined by

(29) λ ( ) + ( λ) = λ ( λ)

which verifies in particular

(30) ( λ) ∈ ∞(R ) 0< ( ) ≤ ( λ) ≤ ( )

We can then rewrite 0 − λ as 0 + ( λ) − λ ( λ). For κ > 0 let κ(λ ) be
the number of eigenvalues less than−κ for the operator 0 − λ . By the Birman-
Schwinger principle, κ(λ ) is equal to the number of eigenvalues less thanλ for

(κ λ) = ( λ)−1/2( 0 + κ + ( λ)) ( λ)−1/2
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This operator is selfadjoint positive with compact resolvent. Letµ = µ (κ λ) and
= (κ λ) ∈ S be respectively the eigenvalues and eigenfunctions of (κ λ), and

let us denote by 0 the symbol

(31) 0 = 0( ξ;κ λ) = ( λ)−1( ( ξ) + κ + ( λ))

The accuracy of the weightsφ ϕ is proved by the following lemma; its conclusion is
no longer true for classical weight〈ξ〉:

Lemma 4. For all multiindices α and β, there is αβ independent ofκ, such
that

|∂α
ξ

β ( ξ)| ≤ αβ( ( ξ) + κ + ( ) )φ( ξ)−|α|ϕ( )−|β|

Proof. For |ξ| ≥ ( ), thenφ( ξ) ≈ |ξ| and the inequality follows from (3) and
Lemma 3. And if |ξ| ≤ ( ), then in particular|ξ| ≤ 1; therefore for|α| ≤ , (6), (7)
and Lemma 3 imply

|∂α
ξ

β ( ξ)| ≤ αβ(|ξ| + ( )) −|α|ϕ( )−|β|

≤ αβ(|ξ| + ( ) )φ( ξ)−|α|ϕ( )−|β|

≤ αβ( ( ξ) + κ + ( ) )φ( ξ)−|α|ϕ( )−|β|;

now for |α| ≥ , then by (8) and Lemma 3:

|∂α
ξ

β ( ξ)| ≤ αβϕ( )−|β|
αβ ( ) −|α|ϕ( )−|β|;

but when|ξ| ≤ ( ), thenφ( ξ) ≈ ( ), and therefore

|∂α
ξ

β ( ξ)| ≤ αβ ( ) φ( ξ)−|α|ϕ( )−|β|

≤ αβ( ( ξ) + κ + ( ) )φ( ξ)−|α|ϕ( )−|β|

Lemma 5. For all multiindicesα and β, there is αβ such that for( ξ) ∈ R2

such thatλ ( ) > ( ) :

|∂α
ξ

β
0( ξ;κ λ)| ≤ αβ 0( ξ;κ λ)φ( ξ)−|α|ϕ( )−|β|

Proof. Setting 0 = 0( ξ;κ λ) = ( ξ) + κ + ( λ), we first prove that

(32) |∂α
ξ

β
0| ≤ αβ 0φ

−|α|ϕ−|β|

For α different from 0:∂α
ξ

β
0 = ∂α

ξ
β ; therefore, by Lemma 4 and (27), the in-
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equality (32) follows immediately. Now forα = 0, by (27):

| β
0( ξ;κ λ)| ≤ 1 0( ξ;κ λ)ϕ( )−|β| + 2 ( ) ϕ( )−|β|

Finally, since ( λ) = ( ) + λ−1 ( ) , the potential ( λ) verifies

| β ( λ)| ≤ β ( λ)ϕ( )−|β|

which implies (32) by use of Leibniz formula.

Lemma 6. The symbol 0 verifies (φϕ) ≤ 0 ≤ (φϕ)1/(ρ−β).

Proof. Since ( λ) ≥ ( ) > 0, assumption (1) on ( ξ) implies

0< 0( ξ;κ λ) ≤ ( )−1〈ξ〉 = ( )−1/β〈ξ〉

On the other hand:

φ( ξ)ϕ( ) ≥ 〈ξ〉 ( )1−δ

but δ − 1 = (ρ− β)/β, therefore, since 0< β < ρ < 1/ ,

φ( ξ)ϕ( ) ≥ ([ ( )−1]1/β)ρ−β(〈ξ〉 )ρ−β

or equivalently

φϕ ≥ ρ−β
0

and this proves the right hand side of the lemma. For the left hand side, it suffices to
remark that by (5) and (6):

0( ξ;κ λ) ≥ ϕ( )1/ρφ( ξ) for |ξ| ≤ 1

and similarly

0( ξ;κ λ) ≥ ϕ( )1/ρφ( ξ) for |ξ| ≥ 1

Sinceϕ( ) ≥ 1 and 1/ρ > ≥ , these inequalities imply

0( ξ;κ λ) ≥ (φ( ξ)ϕ( ))

in all the cases.

3.3. The next lemma will be essential in Section 7.1 to solve locally the charac-
teristic equation relative to the symbol0.
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Lemma 7. There exist positive constants1 and 2 such that whenλ ( ) >
( ) and 0 > 1

φ( ξ)|∇ξ 0| + ϕ( )|∇ 0| ≥ 2 0

Proof. Recall that by definition, whenλ ( ) > ( )

0( ξ;κ λ) = ( )−1( ( ξ) + κ + ( ) )

such that by (2)

(33) φ( ξ)|∇ξ 0| ≥ ∇ξ 0 ξ ≥ ( )−1 ( ξ)

Now

∇ 0 = ∇( −1)( + κ) + −1∇ + ∇( β−1)

which can be rewritten

∇ 0 = −( −1∇ )[ −1( + κ) + (1− β) β−1] + −1∇ ;

we remark now that by (12)

(34) ϕ ( −1|∇ |)[ −1( + κ) + (1− β) β−1] ≥ (1− β)| −1∇ | 0ϕ ≥ ( 3) 0;

on the other hand, by (4)

(35) ϕ( )| ( )−1∇ ( ξ)| ≤ 4 ( )−1 ( ξ)〈 〉−ε

Then, by (33), (34) and (35)

φ( ξ)|∇ξ 0| + ϕ( )|∇ 0| ≥ ( )−1 ( ξ)(1− 4〈 〉−ε) + 3 0( ξ;κ λ);

but there is > 0 such that| | ≥ > 0 implies 1− 4〈 〉−ε ≥ 0, which proves the
lemma in this case. Now, when| | ≤ , ( )−1 ≤ 5 and for 0 > 3 5

2 5 < 0( ξ;κ λ) ≤ 5 ( ξ) + 2 5

therefore

( ξ) ≥ 5 ≥ ( )−1 ≥ ( )

and by (33)

φ( ξ)|∇ξ 0| ≥ ( )−1( ( ξ) + κ + ( ) ) = 0( ξ;κ λ)

and the lemma is proved.
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4. Localization in the phase space

In this section we prove that a direct study ofκ(λ ) can be replaced by esti-
mations on localized counting functions (see the precise definition below). This idea is
not new, see [15], [11], [1], but the presence of various parameters leads to be very
careful.

4.1. Let θ be a positive real number, which will be fixed later on, and = ( )
be a potential as in Section 4. We define a covering of the phase space by

= {( ξ);λθ ( ) < 2} = {( ξ);λθ ( ) > 1}

1 =

{
( ξ);λθ ( ) > 1 and 0( ξ;κ λ) /∈

(
λ

2
2λ

)}

2 =

{
( ξ);λθ ( ) > 1 and 0( ξ;κ λ) ∈

(
λ

4
4λ

)}

Lemma 8. There isω = ω( ;λ) θ = θ( ;λ) ∈ (1;φ ϕ), uniformly with respect
to κ such thatSuppω ⊆ Suppθ ⊆ , and ω( ;λ) = 1 on {( ξ);λθ ( ) ≤ 1} and
such thatω2 + θ2 = 1.

Proof. Let χ ∈ ∞
0 ((−1 2)) χ( ) = 1 when 0≤ ≤ 1 and 0≤ χ( ) ≤ 1; we

define

ω̃ = ω̃( ;λ) = [χ(λθ ( ))]2;

ω̃ ∈ (1;φ ϕ), uniformly with respect toλ. Now let

ψ = ω̃2 + (1− ω̃)2 :

then:ψ ∈ (1;φ ϕ) andψ ≥ 1/2. Therefore, if we set

θ = (1− ω̃)ψ−1/2 ω = ω̃ψ−1/2

the pair (ω θ) will satisfy the conditions required in the lemma.

4.2. We consider now a partition of unity as in [9]: let be the Riemannian met-
ric associated with the weightsφ ϕ defined in Section 4; for = ( ξ) ∈ R2 and
ε > 0, we set

ε( ) = { = ( ζ); ( − ) < ε}

There is ( ) et (χ ) satisfying:
(i) (χ ) is bounded in (1;φ ϕ);
(ii) 0 ≤ χ ≤ 1 and Suppχ ⊆ ε( );
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(iii) there is > 0 such that each point inR2 lies in at most balls ;
(iv)

∑
χ = 1.

From now on we denote by the ballε( ). Let be a subset ofN, finite or
infinite, and

χ =
∑

∈

χ

By (iii), χ is well defined and (χ ) is bounded in (1;φ ϕ). Let ∈ R2 : there is
such thatχ ( ) ≥ 1/ : otherwise (iii) implies that

∑
χ ( ) < 1. Let us defineψ

by

ψ =
∑

∈

χ2 +

(
∑

/∈

χ

)2

;

the family (ψ ) is bounded in (1;φ ϕ) andψ −2. Finally we setJ = ∪{∞} and

ϕ = ψ−1/2
χ for ∈ andϕ∞ = ψ−1/2

∑

/∈

χ

The family (ϕ ) for ⊆ N and ∈ J is bounded in (1;φ ϕ) and

∑

∈J

ϕ2 = 1

From this partition of unity, we construct a (reduced) pseudodifferential partition of
unity. For this, we need an auxiliary and well known result, the proof of which we
omit:

Lemma 9. Let ∈ (1;φ ϕ) be a symbol such that ≥ 1. For each ∈ N
there is ∈ (1;φ ϕ) and ∈ ((φϕ)− ;φ ϕ) such that

= [ ]2 +

Now we can state

Lemma 10. For all ∈ N, there is (ω ) ∈ J and ρ, ω ∈ (1;φ ϕ) and
ρ ∈ ((φϕ)− ;φ ϕ) such that

∑

∈J

[ ω ]2 = + ρ;

furthermore the symbolsω and ρ are in bounded sets of (1;φ ϕ) and
((φϕ)− ;φ ϕ) respectively.
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4.3. We apply these general results to our particular case; let us set

= (κ λ) =

{
∈ N;

λ

4
< 0( ;κ λ) < λ

}

We can reformulate Lemma 10:

Lemma 11. Let ω = ω( ;λ) be the symbol defined inLemma 8; there ex-
ists symbolsω (κ λ) and ρ(κ λ) respectively in bounded sets of(1;φ ϕ) and

((φϕ)− ;φ ϕ) such that

[ ω]2 +
∑

∈J

[ ω ]2 = + ρ

and:

Suppω ⊆ Suppω ⊆ ⊆ 2 for ∈ Suppω∞ ⊆ 1

In Section 3 we considered the operator

(κ λ) = ( λ)−1/2( 0 + κ + ( λ)) ( λ)−1/2 ;

let µ = µ (κ λ) and = (κ λ) ∈ S be respectively the eigenvalues and eigenfunc-
tions of (κ λ); for a bounded symbolω, which may depends on various parameters,
we define

(36) (µ ω) =
∑

µ <µ

|| ω ||2

For further reference, we remark that when ω is an Hilbert-Schmidt operator

(37) (µ ω) ≤ || ω||2

Let us recall the definition of κ(λ ) stated at the beginning of the Section 3.2; from
the preceding remark and from Lemma 11 it follows that (see [11]):

Proposition 1. With the notations ofLemma 10,there is > 0, such that

∣∣∣∣∣ κ(λ ) − (λ ω) −
∑

∈J

(λ ω )

∣∣∣∣∣
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5. Bounds for N( ) with CLR inequality

5.1. Preliminary estimates.

Lemma 12. Let ρ ∈ ((φϕ)−1;φ ϕ) uniformly with respect to(κ λ); then

(λ ρ) ≤ λ / −(1/ )

Proof. For ∈ N sufficiently large

Tr[ρ( (λ κ) + λ )−1ρ] =
∫ ∞

0
(ζ + λ )−1 (ζ ρ)

Since

(λ ρ) ≤
∫ λ

0
(ζ ρ) ≤ 2λ

∫ ∞

0
(ζ + λ )−1 (ζ ρ)

it is sufficient to prove that
∫ ∞

0
(ζ + λ )−1 (ζ ρ) = (λ / −(1/ )) λ→ ∞

By a standard construction of parametrix, we are led to evaluate the integral
∫∫

( 0 + λ )−1(φϕ)−1 ξ

with 0 = 0( ξ;κ λ) = ( λ)−1( ( ξ) + κ + ( λ)) ≥ ( ) ( λ). Cutting the
integral into the integrals on the regions|ξ| ≤ 1 and |ξ| ≥ 1, using respectively the
assumptions (5) and (6) on (ξ), the inequalityφ( ξ) ≥ |ξ| and the definition of
ϕ( ), we have to estimate the integral

∫∫

|ξ|≤1
((|ξ| ( )−1) + λ )−1|ξ|−1 ( )ρ ξ

and the similar integral with replaced by . Using the change of variables defined
by

ξ = ( )1/ λ1/ ζ

the preceding integral is bounded by

λ− +( / )−(1/ )
∫

( )−(1/ )+ρ+( / )
∫

(|ζ| + 1)−1|ζ|−1 ζ

with
∫

( )−(1/ )+ρ+( / )
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finite, and similarly for the other integral.

Lemma 13. Let θ be a real number; for θ ≥ 1/( (1/ − ρ)), there is > 0
such that

∫

λθ ( )<2
( ) / ≤ λ−1/

Proof. Let us denote byφ( ) the volume function associated with the potential
; then

∫

λθ ( )<2
( ) / = −

∫ 2λ−θ

0

/ φ( );

and sinceφ verifies (13), we deduce

∫

λθ ( )<2
( ) / ≤ λ−θ (1/ −ρ)

Lemma 14. For θ ≤ 1/( (1/ −β)), the conditionλθ ( ) > 1 impliesλ ( ) >
( ) .

Proof. Recall that ( ) = ( )β. Since λ > ( )−1/θ implies λ ( ) >

( )1−1/θ, it is sufficient to require

θ − 1
θ

≤ β

which proves the lemma.

5.2. Bound for (λ ω).

Proposition 2. Let ω ∈ (1;φ ϕ) such thatSuppω ⊆ { ;λθ ( ) < δ}; then

(λ ω) ≤ λ / −(1/ )

Proof. As above we denote byµ = µ (κ λ) and = (κ λ) ∈ S respectively
the eigenvalues and eigenfunctions of = (κ λ). Then

(ω ) = ω + [ ω]

consequently

ω = µ −1 (ω ) + −1[ ω] ;
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then, multiplying byω:

ω2 = µ (ω −1ω) + ω −1[ ω]

This implies

||ω2 ||2 ≤ 2µ2||(ω −1ω) ||2 + 2||ω −1[ ω] ||2

and summing with respect to such thatµ < λ:

(38) (λ ω2) ≤ 2
∑

µ <λ

||(λ1/2ω −1ωλ1/2) ||2 + 2 (λ ω −1[ ω])

We remark now that, setting (λ) = λω2( λ) ( λ):

λ1/2ω −1ωλ1/2 = ( λ)1/2[ 0 + κ + ( λ)] ( λ)1/2

and therefore

λ1/2ω −1ωλ1/2 ≤ ( λ)1/2( 0 + κ)−1 ( λ)1/2;

let us denote by = (κ λ) this last operator, we have to estimate

∑

µ <λ

|| ||2 = ( λ)

In the particular case = 3 = = 2 this operator is Hilbert-Schmidt and the conclu-
sion is easy; but this property remains no longer true in the general case, which leads
to some difficulties. First we note that

∑

µ <λ

|| ||2 = Tr[ λ ]

where ( λ) is the spectral family associated with (κ λ); so, if ( ) denotes the sys-
tem of eigenfunctions corresponding to , and (ν ) the corresponding eigenvalues:

Tr[ λ ] =
∑

〈 λ 〉

=
∑

ν2〈 λ 〉 ;

we apply now the Ḧolder inequality: the last sum is majorized by



∑

ν2




1/ 

∑

〈 λ 〉




1/



HAMILTONIANS IN STRONG COUPLING 729

where 1/ + 1/ = 1; but since λ is a projector and|| || = 1:

0 ≤ 〈 λ 〉 ≤ 1

therefore
∑

〈 λ 〉 ≤
∑

〈 λ 〉 = Tr[ λ]

but Tr[ λ] is equal to the number of eigenvalues less thanλ for = (κ λ); conse-
quently, by the CLR inequality:

Tr[ λ] ≤
(
λ /

∫
( ) / + λ /

∫
( ) /

)

and



∑

〈 λ 〉




1/

≤ λ /( )

[∫
( ) /

]1/

On the other hand



∑

ν2




1/

= || ||2S2
=

[
−
∫ ∞

0

2 ( )

]1/

(here ( ) denotes the number of eigenvalues of greater than ); but = (κ λ)
is the Birman-Schwinger operator associated with0 − ( λ); consequently the
Birman-Schwinger principle and the CLR inequality imply that

( ) ≤ ( −1 ( λ))

≤
(

− /

∫
( λ) / + − /

∫
( λ) /

)

By definition ( λ) = λω( λ)2 ( λ), and by (29) and the assumption on Suppω:

( ) ≤
(

− / + − /
)
λ /

∫

λθ ( )<2
( ) /

for 2 − ( / ) > 0, and then



∑

ν2




1/

≤ λ /( )−(θ / )(1/ −ρ)
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We fix now the values forθ and then for : let

θ0 =
1

(1/ − ρ)
;

we remark that for

θ0 ≤ θ =
1

(1/ − β)
< θ0

the conclusion of Lemmas 13 and 14 remains valid, and that

θ0

(
1 − ρ

)
= >

2
1

since ≥ 1; therefore there existsθ = 1/( (1/ − β)) such thatθ0/ ≤ θ < θ0 and

2
1
< θ

(
1 − ρ

)
< θ0

(
1 − ρ

)

and lastly there is > /2 such that

θ

(
1 − ρ

)
=

which implies

(λ ) ≤ λ / −(1/ )

Finally the operatorω −1[ ω] in the right side of (37) verifies

ω −1[ ω] = ρ

with ρ ∈ ((φϕ)−1;φϕ) sinceω = 1 whenλθ ( ) < 1, and we can apply Lemma 12
for estimating (λ ρ).

Proposition 3. Let ω ∈ (1;φ ϕ) such thatSuppω ⊆ { ;λθ ( ) < δ}; then
∣∣∣∣ (λ ω) − (2)−

∫∫

0<λ

ω2 ξ

∣∣∣∣ ≤ λ / −(1/ )

Proof. By the preceding lemma, it suffices to verify that
∫∫

0<λ

ω2 ξ ≤ λ / −(1/ ) ;

but this inequality results from the inequalities
∫∫

0<λ

ω2 ξ ≤ 1

∫∫

|ξ|≥1 |ξ| ≤ λ ( )
ξ + 2

∫∫

|ξ|≤1 |ξ| ≤ λ ( )
ξ
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6. Functional calculus

6.1. The aim of this section is to estimate (λ ω) when the support ofω is
such that Suppω ⊆ ε( ) ⊆ 1, with 1 defined at the beginning of Section 4.1. Let
us denote byθ = θ( ξ;κ λ) the symbol in (1;φ ϕ) given by the composition of
pseudodifferential operators:

(39) [ ω]2 = θ + ρ

with ρ ∈ ((φϕ)− ;φϕ) for sufficiently large. Let ( λ) be the spectral family asso-
ciated with = (κ λ); since (λ ω) = Tr[ω λω], we will approximate (λ ω) by
Tr[ω ( )ω] for suitable ∈ S. This leads first to develop a functional calculus for

= (κ λ) in the spirit of [8].

6.2. We do not go into the details of the proofs because this procedure is well
known and we content ourselves to indicate the different steps. The first step is the
construction of a local right parametrix ω for − , that is a pseudodifferential
operator satisfying

( − ) ω = ω + ω

with ω of trace-class. Let us set

ω =
∑

=0

where the symbols are defined inductively by

0( − ) = ω

and for ≥ 1 by

( 0 − ) +
∑

(α β)∂α
ξ

β
0∂

α
ξ

β = 0

with 0 ≤ < and +|α| + |β| = . Since Supp ⊆ Suppω for all ∈ N, the
symbol 0 verifies the estimation explicited in Lemma 5. Consequently

( − )−1ω = ω − ( − )−1 ω

By composition withω:

ω( − )−1ω = +

with of trace class.
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6.3. This enable us to defineω ω for ∈ C and thenω ( )ω for ∈ S via
the Mellin transform; more precisely (see [6]):

ω ( )ω =
∑

=0

+

On the remainder we have the following estimate

Lemma 15. There is 1 2 > 0 and 1 2 > 0 such that for sufficiently
large and ∈ S such that ( )(0) = 0 for ≥ 1 and (0) = 1:

|| ||Tr ≤ 1

∫ ∞

0

−β + 1

∣∣∣∣∣

(
∂

∂

)2 + 2

( )

∣∣∣∣∣ + 2

Proof. We have only to follow [6] and to use in particular Lemma 6 above.

Lemma 16. Let ∈ ∞
0 such that = 1 on [0 2λ], ( ) = 0 when > 2λ.

Then
∣∣∣∣Tr[ω ( )ω] − (2π)−

∫∫
θ( ξ;κ λ) ( 0)( ξ;κ λ) ξ

∣∣∣∣ ≤

Proof. See [1], Proposition 3 for the details.

Proposition 4. Let ω be a bounded symbol such thatSuppω ⊆ 1; then

∣∣∣∣ (λ ω) − (2π)−
∫∫

0( ξ;κ λ)<λ

θ( ξ;κ λ) ξ

∣∣∣∣ ≤

Proof. Let θ be a real number such that 0< θ < β/2 and

(λ θ) =
[
λ− λ1−θ λ + λ1−θ

]
(λ θ) =

[
λ− λ1−θ/2 λ + λ1−θ

]

2
;

let λ θ λ θ ∈ ∞
0 such that

Supp λ θ ⊆ (λ θ) λ θ( ) = 1 for ∈ (λ θ)

Supp λ θ ⊆
(

0 λ +
λ1−θ

2

)

and

λ θ( ) = 1 for /∈ (λ θ) < λ;
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and we suppose the following assumptions on the derivatives: for all∈ N, there is
> 0 such that

(40)

∣∣∣∣∣

(
∂

∂

)
λ θ( )

∣∣∣∣∣ +

∣∣∣∣∣

(
∂

∂

)
λ θ( )

∣∣∣∣∣ ≤ λ θ

It results of the definition of λ θ λ θ that

(41) |χ(0 λ) − λ θ| ≤ λ θ ≤ χ (λ θ)

But for λ sufficiently large: (λ θ) ⊆ [λ/2 2λ]; therefore, using (39) and Lemma 15:

| (λ θ)| ≤
∫ 2λ

0

−β + 1+(2 + 2)θ ≤ λ−β + 1+(2 + 2)θ ;

the exponent can be rewritten: (2θ − β) + δ0 and since 0< θ < β/2, it will be
negative for sufficiently large. So

| (λ θ)| ≤

Now
∣∣∣∣ (λ ω) − (2π)−

∫∫

0( ξ;κ λ)<λ

θ( ξ;κ λ) ξ

∣∣∣∣

≤ |Tr[ω2
λ] − Tr[ω2

λ θ( )]|

+

∣∣∣∣Tr[ω λ θ( )ω] − (2π)−
∫∫

θ( ξ;κ λ) ( 0( ξ;κ λ)) ξ

∣∣∣∣

+

∣∣∣∣(2π)−
∫∫

θ( ξ;κ λ) ( 0( ξ;κ λ)) ξ

−(2π)−
∫∫

0( ξ;κ λ)<λ

θ( ξ;κ λ) ξ

∣∣∣∣

But, by (40), the first term of the right side is bounded by

Tr[ω2 ( )] ≤

For the second term, we use Lemma 16; finally we remark that
∫∫

θ( ξ;κ λ) ( 0( ξ;κ λ)) ξ =
∫∫

0( ξ;κ λ)<λ

θ( ξ;κ λ) ξ

7. Tauberian technics

In this section we estimate (λ ω) when Suppω ⊆ ε( ) ⊆ 2, where 2 is
defined in 4.1. For this region of the phase space, we use a tauberian method: more
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precisely we adapt the Ḧormander-Levitan method to our case. This have been made
in [15], [11], and in our paper [1].

7.1. Approximation of the unitary group.
Using convenient classes of Fourier integral operator we can prove

Proposition 5. There isρ > 0 such that, settingρ = ρ(φϕ)( ), then for ∈ N
sufficiently large and ∈ (−ρ ρ )

(42) ω − ω = (0)( ;κ λ) + (1)( ;κ λ)

wher (0)( ;κ λ) is a Fourier integral operator and (1)( ;κ λ) is a trace class oper-
ator such that: there is > 0 such that for = 0 1 2

(43) ‖ ∂ (1)( ;κ λ) ‖Tr≤ (φϕ)( )−

Proof. We follow the proof of Proposition 9 in [1], which is rather long and
technical; we need in particular the result of Lemma 7.

7.2. Estimation of (λ ω).
For a bounded symbolω, let θ be the symbol defined as in (38).

Proposition 6. Let ω be a bounded symbol such thatSuppω ⊆ ε( ) ⊆ 2;
there is 1 2 > 0 and δ > 0 such that

∣∣∣∣ (λ ω) − (2π)−
∫∫

0( ξ;κ λ)<λ

θ( ξ;κ λ) ξ

∣∣∣∣ ≤

1

∫∫n
δ−1λ< 0( ξ;κ λ)<δλ

( ξ)∈ (3ε)

(φϕ)( ξ)−1 ξ + 2(φϕ)( )−

Proof. We follow the proof of Proposition 11 in [1].

8. Proof of Theorem 1

Let sufficiently large such that

∑
(φϕ)− ( ) <∞ and

∫∫
(φϕ)− ( ξ) ξ <∞

From the definitions of the functionsω (λ) and θ (λ) it results that
∣∣∣∣∣∣
1− ω −

∑

∈J (λ)

θ ( ξ;λ)

∣∣∣∣∣∣
≤ (φϕ)−2 ( ξ)
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The conclusion is obtained by summation with respect to by using the property that
each point inR2 belongs to at most balls (3ε):

∑∫∫n
δ−1λ< 0( ξ;κ λ)<δλ

( ξ)∈ (3ε)

(φϕ)−1( ξ) ξ ≤
∫∫

δ−1λ< 0( ξ;κ λ)<δλ

(φϕ)−1( ξ) ξ

Then
∣∣∣∣ κ(λ ) − (2π)−

∫∫

0<λ

ξ

∣∣∣∣ ≤ 1 + 2

∫∫

δ−1λ< 0<δλ

(φϕ)−1 ξ

Now we let κ tend to 0, and we apply the Lebesgue dominated convergence theorem
and the estimation used in the proof of Lemma 12.
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