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1. Introduction

In this paper, we shall discuss the problem to find sufficient conditions under
which the probability law of the solution to the stochastic differential equation has a
smooth transition density. There are many approaches to this problem in the theory of
partial differential equations. It is well known that Hörmander ([2]) showed the rela-
tion between the hypoellipticity of second order elliptic differential operators and the
dimension of the Lie algebra generated by vector fields associated with coefficients of
the differential operator. Malliavin ([6], [7]) introduced the new differential calculus on
the Wiener space, and applied its calculus to the probabilistic proof of the Hörmander
theorem. He introduced the Ornstein-Uhlenbeck operator which is an unbounded self-
adjoint non-negative operator on the2-space over the Wiener space, and obtained the
integration by parts formula on this space ([3], [9]). On the other hand, Bismut ([1])
gave the different approach from Malliavin’s work. He showed the integration by parts
formula by using the Girsanov transformation. For the integration by parts formula,
the integrability of the inverse of so called Malliavin covariance matrix is essential.
Kusuoka and Stroock ([5]) presented a key lemma for the proof of the integrability.
Norris ([8]) gave a simplified proof of the key lemma. His proof of it is still consid-
erably long and complicated.

Instead of the Kusuoka-Stroock-Norris key lemma, we shall present a new lemma
that plays an important role in the Malliavin calculus for SDE’s. This can be proved
easily and directly only by using simple stochastic calculations, that is, the Ito formula
and the Fubini type theorem for stochastic integrals. In order to show the integrability
of the inverse of the Malliavin covariance matrix, it suffices to prove the exponential
decay of the Laplace transform of the quadratic form of the covariance matrix. It is
possible to prove the exponential decay by an iterative application of the new lemma.
Therefore, by using the new key lemma, we can easily show the Hörmander theorem.

The organization of this paper is as follows: in Section 2, we give some prelimi-
naries that need in our argument, and introduce well-known results on the integrability
of the inverse of the Malliavin covariance matrix. In Section 3, our main results are
stated. In the final section, the Hörmander theorem is proved.
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2. Preliminaries

Let ( 0 F ; {F }) be the -dimensional Wiener space, that is,0 =
(R+; R | 0 = 0), F = σ[ | ≤ ], F =

∨ F and is the Wiener measure
on ( 0 F). Let = ( ) · ∂ ( = 0 1 . . . ) be smooth vector fields onR such
that derivatives of all orders of∂ are bounded.

We consider the -dimensional SDE

(1) = 0 +
∫

0
0( ) +

∫

0

∑

=1

( ) ◦

for 0 ∈ R . This equation is equivalent to

φ( ) = φ( 0) +
∫

0
0φ( ) +

∫

0

∑
φ( ) ◦

for φ ∈ ∞(R ; R). From the assumption for coefficients of (1), there exists
the unique solution = (0 ) in the pathwise sense. Moreover the mapping

defines a stochastic flow of diffeomorphisms onR . The Jacobi matrix =
((∂/∂ 0) ( 0 ))1≤ ≤ of the diffeomorphism satisfies the linear SDE

(2) = +
∫

0

′
0( ) +

∫

0

∑
′( ) ◦

where = (δ )1≤ ≤ . The symbolϕ′ denotes the matrix ((∂/∂ )ϕ ( ))1≤ ≤ for
any ϕ ∈ 1(R ; R ). Let be the solution to the linear SDE

(3) = −
∫

0

′
0( ) −

∫

0

∑
′( ) ◦

It is easily checked that = = . Since coefficients of (1), (2), and (3) satisfy
the linear growth condition, we have

(4)
[

sup
≤

(| | + ‖ ‖ + ‖ ‖ )
]
<∞

for all > 1. For a matrix , its transposed matrix is denoted by∗. Define

=
∫

0

∑
( ) ( )∗ ∗ = ∗

The matrix is called the Malliavin covariance matrix. The following result is well
known in the Malliavin calculus (cf. [3], [9]).
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Proposition 1. For > 0, if (det )−1 ∈ ⋂ >1 ( 0 ), then the probability
law of has a smooth density.

Throughout this paper, ’s denote certain positive absolute constants, which may
change every lines. It is sufficient for the assumption of the above proposition that

[{inf| |=1( · )}− ] is bounded for all > 1, because

[(det )− ] = [(det ) (det )− ]

≤
[
{ inf
| |=1

( · )}−2
]1/2

Lemma 1. If the condition

sup
| |=1

[( · )− ] <∞

is satisfied for all > 1, then the following one is also satisfied for all> 1.

[
{ inf
| |=1

( · )}−
]
<∞

Proof. For any ′ ∈ −1, we have| · − ′ · ′| ≤ 2 ‖ ‖ | − ′|. Hence
it is possible to choose a sequence{ } of points on −1 such that, for any > 0,
if · ≥ 2 (1≤ ≤ (‖ ‖/ ) −1), then inf| |=1( · ) ≥ . Therefore we
have

[
{ inf
| |=1

( · )}−
]

= ( )−1
∫ ∞

0
λ −1

[
exp{−λ inf

| |=1
( · )}

]
λ

≤
∫ ∞

0
λ −1

{ [
exp{−λ inf

| |=1
( · )} ; ‖ ‖ ≤ λ

]
+ [‖ ‖ > λ]

}
λ

=
∫ ∞

0
λ −1

{∫ ∞

0
λ −λ

[
inf
| |=1

( · ) ≤ ‖ ‖ ≤ λ
]

+ [‖ ‖ > λ]
}
λ

≤
∫ ∞

0
λ −1

{∫ ∞

0
λ −λ

(λ/ ) −1∑

=1

[ · ≤ 2 ]

+
( [‖ ‖ +1]

λ +1

)
∧ 1
}
λ

≤
∫ ∞

0
λ2 + −2

{∫ ∞

0

−λ
∑

≥1

2−2

2
[ · ≤ 2 ]

}
λ +

=
∑

≥1

1
2

∫ ∞

0

3−4 − [ · ≤ ] +
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=
∑

≥1

1
2

[( · )4−4 − ] +

≤ sup
| |=1

[( · )4−4 − ] +

< ∞

The proof is complete.

From Lemma 1 and the equality

[( · )− ] = ( )−1
∫ ∞

0
λ −1 [exp{−λ( · )}] λ

our main purpose is to find a sufficient condition under which

(5) sup [exp{−λ( · )}] = (λ− ) (λ→∞)

is satisfied for all > 1.

3. Lower bounds of functionals of semimartingales

Let ( ) be a continuous semimartingale. Then

∫

0
( )2 ≥

{∫

δ

−
∫ −δ

0

}
( )2(6)

=
∫

δ

∫

−δ
( )2 =

∫

0
δ ( ) ( )2

whereδ ( ) = ( + δ) ∧ − ∨ δ for δ > 0. This inequality is very simple, but it will
turn out that the new key lemma is a consequence of this inequality.

For the sake of simlicity, set

M [(ζ )] = exp
{
−
∫

0

∑

=1

ζ ( ) − 1
2

∫

0

∑

=1

ζ ( )2
}

for an R -valued continuous semimartingaleζ( ) = {ζ ( )} =1. Let the symbol‖ξ‖ de-
note the value sup|ξ( )| for a given processξ( ).

Consider semimartingales

( ) = 0( ) +
∑

=1

( ) 0( ) = 00( ) +
∑

=1

0 ( )
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and define

(λ) =
{
∈ 0 |

∑

=0

‖ 2‖ +
∑

=0

‖ 2
0 ‖ > λ1/4

}

Theorem 1. Let λ > 1. There exist positive constants0 1 2 independent of
(·) and λ, and a positive random variable (λ) with [ (λ)] ≤ 1 such that the

inequality

(7) 0

∫

0
λ4 ( )2 + λ−1/8 log (λ) ≥ 1

∫

0
λ1/4

∑

=0

( )2 − 2

holds on the complement of the set(λ) for sufficiently largeλ.

Proof. STEP 1. By using inequality (6) and the Ito formula, we have

∫

0
λ4 2 ≥

∫

0
λ4δ 2

=
∫

0
λ4δ

{(∑
2 + 2 0

)
+ 2

∑ }

= − 1

1
log ˜ (1) +

∫

0
λ4δ

∑
2 +

∫

0
2λ4δ 0

−
∫

0
2 1λ

8δ2 2
∑

2

= − 1

1
log ˜ (1) + 1 + 2 + 3

where 3λ1/8 < 1 ≤ 3λ7/4 and ˜ (1) = M [(2 1λ
4δ )]. We consider lower esti-

mates of 1 2 3 on (λ) . Set δ = λ−3. Sinceλ3δ = 1 on [δ − δ],

1 =
∫

0
λ
∑

2 −
∫

0
λ(1− λ3δ )

∑
2 ≥

∫

0
λ
∑

2 − 2λ−7/4

Since 0≤ δ ≤ δ = λ−3, we see that

2 ≥ −
∫

0
λ4 2 −

∫

0
λ−2 2

0 ≥ −
∫

0
λ4 2 − λ−7/4

3 ≥ −2 1λ
2
∫

0

2
∑

2 ≥ −2 1λ
−7/4

∫

0
λ4 2
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Therefore we obtain the inequality

(8)
∫

0
λ4 ( )2 +

1

1
log ˜ (1) ≥

∫

0
λ
∑

=1

( )2 −

STEP 2. For the sake of simplicity, setε = λ−1 and µ = λ1/4. From the Fubini
type theorem for stochastic integrals, we obtain the equality

µ9
∫

ε

(∫

−ε
0( )

)2
= 2µ9

∫

ε

∫

−ε

(∫
0( )

)
0( )

= 2µ9
∫

ε

∫

−ε

{
( )− ( )−

∫ ∑
( )

}
0( )

= 2µ9
∫

ε

∫

−ε
{ ( )− ( )} 0( ) − µ4

∫

0
λ( )

∑
( )

=
1

2
log ˜ (2) + 2µ9

∫

ε

∫

−ε
{ ( )− ( )} 0( )

+ 2

2

∫

0
µ8 2

λ

∑
2

=
1

2
log ˜ (2) + 4 + 5

where 3µ1/2 < 2 ≤ 3µ,

λ( ) = 2µ5
∫ ( +ε)∧

∨ε

∫

−ε
0( ) ˜ (2) = M [( 2µ

4
λ )]

We see that

| λ( )| ≤ 2µ5‖ 0‖
∫ +ε

( − + ε) ≤ µ−5/2

on (λ) . To estimate of 4, 5 on (λ) are routine works.

4 ≤
∫

ε

∫

−ε
2µ‖ 0‖µ8| ( )− ( )|

≤ µ2‖ 2
0 ‖ε( − ε) +

∫

ε

∫

−ε
µ16| ( )− ( )|2

≤ µ−2‖ 2
0 ‖ +

∫

ε

∫

−ε
2µ16{ ( )2 + ( )2}

≤ µ−1 + 4
∫

0
µ12 2
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5 ≤ 2

2

∫

0

∑
µ3 2

Therefore we obtain the estimate

µ9
∫

ε

(∫

−ε
0( )

)2
− 1

2
log ˜ (2)(9)

≤
∫

0
µ16 2 +

∫

0
µ4
∑

2 +

STEP 3. Next we consider the lower estimate of the left-hand side of (9). Define
a new process

ξλ( ; ) = ( − ) 0( ) +
∫

−ε
0( ) = ε 0( − ε) +

∫

−ε
( − ) 0( )

Then |ξλ( ; )| ≤ ε‖ 0‖ for − ε ≤ ≤ . By using the Ito formula, we have

ξλ( ; )2

= ε2
0( − ε)2 +

∫

−ε
2( − )ξλ( ; ) 0( ) +

∫

−ε
( − )2

∑
0 ( )2

≥ ε2
0( − ε)2 +

∫

−ε
2( − )ξλ( ; ) 0( )

Hence

µ9
∫

ε

(∫

−ε
0( )

)2

≥ µ

∫

ε
0( − ε)2 + 2µ9

∫

ε

∫

−ε
( − )ξλ( ; ) 0( )

= µ

∫ −ε

0

2
0 +

∫

0
ηλ 0

where

ηλ( ) = 2µ9
∫ ( +ε)∧

∨ε
( − )ξλ( ; )

Since it holds that

|ηλ( )| ≤ 2µ9
∫ +ε

( − ) |ξλ( ; )| ≤ µ−5/2
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on (λ) , we have

µ9
∫

ε

(∫

−ε
0( )

)2
≥
∫

0
µ 2

0 − µ−2 +
∫

0
ηλ 0

=
∫

0
µ 2

0 − µ−2 +
∫

0
ηλ 00 +

∫

0
ηλ
∑

0

≥
∫

0
µ 2

0 − µ−2− 1

3
log ˜ (3)− 3

2

∫

0
|ηλ|2

∑
2
0

≥
∫

0
µ 2

0 − µ−2− 1

3
log ˜ (3)− 3µ

−4

where 3µ1/2 < 3 ≤ 3µ4 and ˜ (3) = M [( 3ηλ 0 )]. Therefore we obtain the estimate

(10) µ9
∫

ε

(∫

−ε
0( )

)2
≥ − 1

3
log ˜ (3) +

∫

0
µ 2

0 −

on (λ) . Set (λ) = ( ˜ (1))
√
µ/ 1 ( ˜ (2))

√
µ/ 2 ( ˜ (3))

√
µ/ 3. Then

[ (λ)] ≤ [ ˜ (1)]
√
µ/ 1 [ ˜ (2)]

√
µ/ 2 [ ˜ (3)]

√
µ/ 3 ≤ 1

From (8), (9) and (10), we obtain inequality (7).

4. Existence of the smooth density

In this section, we prove the Ḧormander theorem by using Theorem 1. For =
= φ( ) · ∂ (φ ∈ ∞(R ; R )), let [ ] = − , and set

̺[ 0 ] = [ 0 ] +
1
2

∑

=1

[ [ ]] ̺[ ] = [ ] ( = 1 . . . )

By using the Ito formula,

( ) = ̺[ 0 ] +
∑

̺[ ]

We shall introduce sets of vector fields:

A0 = { 1 . . . }
A = {̺[ ] | ∈ A −1 = 0 1 . . . } ( ≥ 1)

Theorem 2. Assume that Ḧormander’s condition is satisfied, that is, the linear
space generated by

⋃ A at 0 is R . Then for > 0, the probability law of has
a smooth density.



SIMPLIFIED APPROACH TOHÖRMANDER THEOREM 689

Proof. By the Ḧormander condition, there exist an integer≥ 0 and constants
γ, η > 0 such that

(11)
∑

∈
S

=0 A
( · φ( ))2 ≥ η

for all ∈ −1 and with | − 0| < γ. Consider the following stopping time:

= inf
{

> 0 | sup
≤
| − 0| ≥ γ or sup

≤
‖ − ‖ ≥ 1/2

}
∧

From the Chebyshev inequality, the Burkholder inequality and (4), we see that

[ < λ−β ] ≤
[

sup
≤λ−β

| − 0| ≥ γ
]

+
[

sup
≤λ−β

‖ − ‖ ≥ 1
2

]
(12)

≤
[

sup
≤λ−β

| − 0|
]

+
[

sup
≤λ−β

‖ − ‖
]

=
(
λ− β/2

)

for all ≥ 4/β, whereβ = 2−1−4 . Remark that| ∗ | ≥ 1− ‖ − ‖ ≥ 1/2 under
≤ . Setα = 2−1−4 ( = 0 1 . . . ). Consider a functionalQ (λα A ) defined

by

Q (λα A ) =
∫

0

∑

φ·∂ ∈A
(λα · φ( ))2

for ∈ −1. For a given vector field =φ( ) · ∂ , let ‖ ‖ denote the value
sup0≤ ≤ | φ( )|. Define subsets (λ) of 0 by 0(λ) = ∅ and

(λ) =
⋃

∈A −1

{
∈ 0 |

∑

=0

‖̺[ ]‖2 +
∑

=0

‖̺[ ̺[ 0 ]]‖2 > λ2α
}

for ≥ 1. From (4), [ (λ)] = (λ− ) asλ→∞ for > 1. For ≥ 1, by Theorem
1, there exists a positive random variable( λ) with [ ( λ)] ≤ 1 such that the
inequality

(13) Q (λα −1 A −1) ≥ −λ−α log ( λ) + Q (λα A )−

holds on (λ) . SetA′ =
⋃

=0A . By the iterative application of (13),

Q (λα0 A0) ≥ −λ−α1 log (1 λ) + Q (λα1 A′
1)−(14)

≥ · · · · · ·
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≥ −
∑

=1

λ−α log ( λ) + Q (λα A′ )−

on
⋂

=0 (λ) . By the Jensen inequality, we see

[∏

=1

( ( λ))2λ−α ]
≤
∏

=1

[( ( λ))2 λ−α ]1/
≤ 1

for sufficiently largeλ. From (11), (12) and (14), we have

[
exp{−λ( · )}

]

≤
[

exp{−λ( · )} { ≥λ−β}
]

+
[
< λ−β

]

≤
[∏

=1

( ( λ))λ−α

exp
{
− Q (λα A′ )

}
{ ≥λ−β}

]

+
[⋃

=0

(λ)
]

+
[
< λ−β

]

≤
[
exp
{
− Qλ−β

(
λα A′ )}

{ ≥λ−β}

]1/2
+
(
λ−

)

≤ exp
{
− λ2α −β inf

| |=1
inf
| − 0|<γ

∑

∈A′

( · φ( ))2
}

+
(
λ−

)

=
(
λ−

)

Since property (5) is satisfied, the transition density of is smooth.

REMARK. The new key lemma can be extended to the general semimartingale
with the jump term. Hence we can discuss the regularity on the transition density asso-
ciated with the jump type SDE. This will be discussed in the forthcoming paper ([4]).
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