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0. Introduction.

DEFINITION 0.1. Let be a normal Gorenstein projective variety of dimension 3
over C which has only terminal singularities.
(1) If − is ample, we call a Fano 3-fold.
(2) If − is nef and big, we call a weak Fano 3-fold.

DEFINITION 0.2. Let be a normal Gorenstein projective variety of dimension 3
with only terminal singularities. Let ( 0) be a germ of the 1-parameter unit disk. Let
f : X → ( 0) be a small deformation of over ( 0). We callf a smoothing of
when the fiberX = f−1( ) is smooth for each ∈ ( 0) \ {0}.

We treat the following problem in this paper:

Problem. Let be a weak Fano 3-fold with only terminal singularities.
When does have a smoothing ?

For the case of Fano 3-fold , has a smoothing by the result of Namikawa and
Mukai ([12], [9]). Moreover by the method of Namikawa, we can show the following
theorem:

Theorem 0.3 (Namikawa, Takagi) (cf. [12], [25]). Let be a weak Fano3-fold
with only terminal singularities. Assume that there exists a birational projective mor-
phismπ : → ¯ from to a Fano3-fold with only canonical singularities̄ such
that dim(π−1( )) ≤ 1 for any ∈ ¯. Then has a smoothing.

In this paper, we will show the following theorem:

Main Theorem. Let be a weak Fano3-fold with only terminal singularities.
(1) The Kuranishi space ( ) of is smooth.
(2) There existsf : X → ( 0) a small deformation of over( 0) such that the
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fiber X = f−1( ) has only ordinary double points for any∈ ( 0) \ {0}.
(3) If is Q-factorial, then has a smoothing.

We remark that if the condition of (3) “Q-factorial” is dropped, then there is an
example that remains singular under any small deformation (see Example 3.7).

ACKNOWLEDGEMENT. I would like to thank Professor Y. Namikawa for helpful
discussion on the necessity of the condition “Q-factorial”.

I also express my gratitude to Professor K. Oguiso and H. Takagi for helpful con-
versation.

I would like to thank Professor Y. Kawamata for useful discussion, giving me use-
ful suggestions, and encouraging me during the preparation of this paper.

NOTATION. C : the complex number field.
∼ : linear equivalence.

: canonical divisor of .
Let be a group acting on a set . We set

:= { ∈ | = for any ∈ }

In this paper, ( 0) means a germ of a 1-parameter unit disk.
Let be a compact complex space or a good representative for a germ, andg :

X → ( 0) a 1-parameter small deformation of . We denote the fiberg−1( ) for
∈ ( 0) by X .

(Ens): the category of sets.
Let be a field. We set (Art ): the category of Artin local -algebras with residue

field .
Let be aZ-module. The symbol C means ⊗Z C.

1. Proof of (1) of Main theorem.

We use the following theorem of Takagi:

Theorem 1.1 (cf. [25]). Let be a weak Fano3-fold with only terminal singu-
larities, then there exists a divisor ∈ |−2 | such that is smooth.(In this paper,
we call such a smooth member of| − 2 |.)

Lemma 1.2. Let be a weak Fano3-fold with only terminal singularities,
a smooth member of| − 2 |, → a surjection in (ArtC), an infinitesimal
deformation of over , and := ×Spec( )Spec( ). Set ∈ | − 2 /Spec( )

such that | = . Then there exists ∈ | − 2 /Spec( )| such that | = .
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Proof. Since by the Kawamata-Viehweg vanishing theorem we have (−2 )
= 0 for all > 0, we can show above lemma as in [16, page 63, proof of (iii)].

Proof of (1) of Main theorem. Set =C[ ]/( +1), α : +1 → , =
Spec( ). Let be a smooth member of| − 2 |, and +1 an infinitesimal de-
formation of X over +1, and = +1 × +1 . By Lemma 1.2, there exists

+1 ∈ | − 2
+1/ +1

| such that +1| = . Set = +1| , π +1 : +1 =
Spec(O +1 ⊕ O +1( +1/ +1

)) → +1 a double cover ramified along +1, and π :
= Spec(O ⊕ O ( / )) → a double cover ramified along . We remark

that = 0 is a Calabi-Yau 3-fold with only terminal singularities. Let =Z/2Z. We
have the following commutative diagram:

Ext1O +1
( 1

+1/ +1
O +1)

1(α )−−−−−→ Ext1O ( 1
/ O )

β +1

y
yβ

Ext1O +1
( 1

+1/ +1
O +1) −−−−→1(α )

Ext1O ( 1
/ O )

We remark thatβ +1 andβ are defined becauseπ +1 andπ are finite morphisms. (cf.
[10, Proposition 4.1]). By [10, Proof of Theorem 1, page 431],1(α ) is surjective.
Thus 1(α ) is a surjection because is finite.β is a surjection by Lemma 1.2
and we have that 1(α ) is also surjective. ByT1-lifting criterion (cf. [4], [5]), we
proved (1) of Main theorem.

2. Proof of (2) of Main theorem.

We use the result of Namikawa and Steenbrink on deformations of Calabi-Yau 3-
folds to prove (2) of Main theorem. Let be a Calabi-Yau 3-fold with only terminal
singularities,{ 1 2 . . . } = Sing( ), ν : ˜ → be a good resolution of , and

= ν−1( ). (“good” means the restriction ofν : ν−1( )→ is an isomorphism and
its exceptional divisor is simple normal crossings for each .)

Proposition 2.1 (cf. [15]). If ( ) is not the ordinary double point, then the
homomorphismι : 2 ( ˜ 2

˜ )→ 2( ˜ 2
˜ ) is not injective.

Proof of (2) of Main theorem. By Theorem 1.1, there exists a smooth member
of | − 2 |. We remark that ∩ Sing( ) = ∅. Let { 1 2 . . . } = Sing( ),

and π : = Spec(O ⊕ O ( )) → be a double cover ramified along . Then
is a Calabi-Yau 3-fold with only terminal singularities. Let =Z/2Z = {id σ},

π−1( ) = { 1 2}. Then we have that Sing( ) ={ | = 1 2 . . . = 1 2}
because is smooth. Let be a sufficiently small open neighborhood of , =
\ { }, = \ Sing( ), and = \ Sing( ). Let ν : ˜ → be a -equivariant

good resolution of , and =π−1( ). Let ω ∈ 0(ω ) be a nowhere vanishing
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section. We remark thatσ(ω) = −ω. We consider the following commutative diagram:

[ 1( 2 )][−1] α′

−−−−→ [⊕ 2 ( ˜ 2
˜ )][−1] ι−−−−→ [ 2( ˜ 2

˜ )][−1]

x≀ τ
x⊕ τ

1( )
α−−−−→ ⊕ 1( )

where [−1] = { ∈ | σ( ) = − } for a C-vector space with a -action.
By Proposition 2.1,ι is not injective if ( ) ≃ ( ) is not the ordinary

double point. So there exists an elementη′ ∈ [ 1( )][−1] such thatα′(η) 6= 0
for any , where ( )≃ ( ) is not the ordinary double point. Letη ∈

1( ) such thatτ (η) = η′. Let β : [ 1( )] = Ext1O ( 1 O ) →
Ext1O ( 1 O ) = 1( ) be the homomorphism defined in the proof of (1) of
Main theorem. By (1) of Main theorem, there exists a small deformation of over
( 0)f : X → ( 0) which is a realization ofβ(η). Using the method of Namikawa
(cf. [11, Theorem 5], [15, Theorem (2.4)]), we can reach a smooth 3-fold by small
deformations by continuing the process above.

DEFINITION 2.2. Let be a normalQ-Gorenstein projective variety of dimension
3 over C which has only terminal singularities.
(1) The index of a singular point ∈ is defined by

:= min{ ∈ N | is a Cartier divisor near }

(2) The sigular index ( ) of is defined by

( ) := min{ ∈ N | is a Cartier divisor}

(3) If − is ample, we call aQ-Fano 3-fold.
(4) If − is nef and big, we call a weakQ-Fano 3-fold.

We considered deformations ofQ-Fano 3-folds in [7]. The method of (2) of Main
theorem is also useful for weakQ-Fano 3-folds of singular index 2.

DEFINITION 2.3. Let ( ) be a germ of a 3-dimensional terminal singularity and
= Z/2Z.

(1) We call ( ) a quotient singularity of type (1/2)(1 1 1) if ( ) is isomorphic
to the singularity of the following type: Let 1, 2, 3, be coordinates of the germ
(C3 0). We define a -action on (C3 0) by 1 7→ − 1, 2 7→ − 2, 3 7→ − 3.
( ) ≃ (C3/ 0).
(2) We call ( ) a quotient of the ordinary double point if ( ) is isomorphic to
the singularity of the following type: Let 1 2 3 4 be coordinates of the germ
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(C4 0). We define a -action on (C4 0) by 1 7→ − 1, 2 7→ − 2, 3 7→ 3, 4 7→
− 4. ( ) ≃ { 2

1 + 2
2 + 2

3 + 2
4 = 0 | (C4 0)}/ .

Theorem 2.4. Let be a weakQ-Fano 3-fold with only terminal singularities
of singular index ( ) = 2, and assume that there exists a smooth member of|−2 |.
Then there exists a small deformation of over( 0) f : X → ( 0) such that the
fiber X = f−1( ) has only quotient singularities of type(1/2)(1 1 1), ordinary double
points or quotients of ordinary double points for any∈ ( 0) \ {0}.

To prove this theorem, we use an analogous proposition of Proposition 2.1. Let
be a weakQ-Fano 3-fold with only terminal singularities of singular index ( ) =

2, and assume that there exists a smooth member of| − 2 |. Let be a smooth
member of|−2 |. Let π : = Spec(O ⊕O ( ))→ be a double cover ramified
along . Then is a Calabi-Yau 3-fold with only terminal singularities. Let∈
be a singularity of index = 2, andπ−1( ) = . We remark thatπ|( ) : ( ) →
( ) is a canonical cover of ( ). Let =Z/2Z. ν : ˜ → be a -equivariant
good resolution of , and =ν−1( ). We know the following proposition which is
analogous to Proposition 2.1 and is a result of Namikawa.

Proposition 2.5 (cf. [13]). If ( ) is a singular point of index = 2, and if
( ) is not the ordinary double point, then the homomorphismι[−1] : 2( ˜ 2

˜ )[−1]

→ 2( ˜ 2
˜ )[−1] is not injective.

This proposition leads us to Theorem 2.4 by the same method of the proof of (2)
of Main theorem.

3. Proof of (3) of Main theorem.

We first prove the following theorem to prove (3) of Main theorem.

Theorem 3.1. Let be a weak Fano3-fold with only terminal singularities. As-
sume that isQ-factorial, then there exists a divisor ∈ | − | such that is
smooth.

To prove Theorem 3.1, we use some known results as follows.

DEFINITION 3.2. Let be a weak Fano 3-fold with only terminal singularities.
Fano index of is defined by

( ) = max{ ∈ N | there exists a Cartier divisor such that− ∼ }
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Theorem 3.3 (Reid, Shin) (cf. [20], [24]). Let be a Fano3-fold with only
canonical singularities. Then we have,
(1) dim | − | ≤ 1,
(2) if ( ) > 1 then | − | = ∅,
(3) if dim | − | = 1 then a general member of| − | is smooth at base points
of | − |, and
(4) if dim |− | = 0 then |− | = { } one point, a general member of|− |
has the ordinary double point at , and∈ Sing( ).

Theorem 3.4 (Mella) (cf. [6, Theorem (2.4)]). In the case of(4) of theorem
(3.3), if ∈ Sing( ) is a terminal singularity, then ∼= 2 6 ⊂ P(1 1 1 1 2 3).
Moreover for any Zariski open set containing , is notQ-factorial.

Theorem 3.5 (Reid, Ambro) (cf. [20], [1]). Let be a weak Fano3-fold with
only canonical singularities, then a general member of| − | has only canonical
singularities.

Proof of Theorem 3.1. Letπ : → ¯ be a multi-anti-canonical morphism, then
¯ is a Fano 3-fold with only canonical singularities, andπ is crepant ( =π∗( ¯)).

In the case of | − ¯| = ∅ or dim | − ¯| = 1, then a general member of
| − ¯| is smooth at its base point by Theorem 3.3, and there exists a divisor∈
| − | such that is smooth by Theorem 3.5.

In the case of dim | − ¯| = 0 (in this case | − | = { } by Theorem
(3.3.4)), there exists a divisor̄ ∈ | − ¯| which has the ordinary double point at
such that =π∗( )̄ has only canonical singularities. If we can not take a smooth ,
then π| : → ¯ is an isomorphism near because is the ordinary double point.
Then there exists a Zariski open set containingπ−1( ) such thatπ| : → ¯ is
an open immersion. So ∈ ¯ is terminal. By Theorem 3.4,π( ) is not Q-factorial.
Thus is notQ-factorial and is notQ-factorial which is a contradiction.

By (2) of Main theorem, the following theorem is enough to prove (3) of Main
theorem.

Theorem 3.6. Let be a weak Fano3-fold with only ordinary double points.
Assume that isQ-factorial. Then has a smoothing.

Proof. Let ν : ˜ → be a small resolution of ,{ 1 2 . . . } = Sing( ),
= − Sing( ), a sufficiently small open neighborhood of , = \ { },

and =ν−1( ). Since 1( 1 ) ≃ 1( ν∗ 1
˜ ) (cf. [10, Lemma 2.2]), We have
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the following commutative diagram of exact sequences:

0 −−−−→ 1( 1 )
α1−−−−→ 1( ˜ 1

˜ )
α2−−−−→ 0( 1ν∗ 1

˜ )
xλ1

xλ2

xλ3

0 −−−−→ 1( O∗ )C
β1−−−−→ 1( ˜ O∗

˜ )C
β2−−−−→ 0( 1ν∗O∗

˜ )C

λ2 is surjective because 2( ˜ O ˜ ) = 0, and β1 is also surjective because is
Q-factorial and ν is small. Thus we have thatα2 is the zero map, and its dual
⊕ =1

2 ( ˜ 2
˜ ) → 2( ˜ 2

˜ ) is also the zero map. By Theorem 3.1, there exists
∈ | − | a smooth member of| − |. Then ∩ Sing( ) =φ. We consider the

following commutative diagram defined byν∗ :

⊕ =1
2 ( ˜ 2

˜ )
⊕ δ−−−−→ ⊕ =1

2 ( ˜ ˜ )
y

y⊕ ι

2( ˜ 2
˜ ) −−−−→ 2( ˜ ˜ )

δ is an isomorphism for any , and we have thatι is the zero map for any . We
consider the following exact commutative diagram:

1( )
γ′

−−−−→ ⊕ =1
2 ( ˜ ˜ )

⊕ ι−−−−→ 2( ˜ ˜ )
∥∥∥

x
1( ) −−−−→

γ
⊕ =0

1( )

Then there exists an elementη ∈ 1( ) such thatγ′(η) 6= 0 for any =
1 2 . . . . Thus γ(η) 6= 0 for any = 1 2 . . . . By (1) of Main theorem, there
exists a small deformation of over ( 0)f : X→ ( 0) which is a realization ofη.
Then f is a smoothing of .

EXAMPLE 3.7. Let ¯ be the projective cone over the smooth del Pezzo surface
of degree 8. Then¯ is a Gorenstein Fano 3-fold withρ = 1 which has only one

Gorenstein rational singularitȳ at its vertex. Let : → ¯ be the blowing-up at̄ ,
then is a crepant resolution of̄ and ≃ Proj(O ⊕ω−1). Let be an exceptional
divisor of which is isomorphic toF1, and be the (−1)-curve on . Then is a
weak Fano 3-fold with (−1 −1)-curve . Letν : → be a birational contraction
which contracts . Then is a weak Fano 3-fold which has only one ordinary double
point ν( ) = . Let = ν( ), then ≃ P2 passing through . So is notQ-
factorial. We have that is not smoothable, in fact there exists a sufficiently small
open neighborhood of ( ⊂ ) which is not smoothable by [14, Proposition
1.3].
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