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Let G be a complex reductive group acting algebraically on a complex projective
varietyX. Given a polarization ofX, i.e., an ampleG-line bundleL overX, Mumford
(see [16]) defined the notion of stability: A pointx 2 X is said to be semistable with
respect toL if and only if there existsm 2 N and an invariant sections : X ! Lm
such thats(x) 6= 0. Let X(L) denote the set of semistable points inX, then there is
a projective varietyX(L)==G and aG-invariant surjective algebraic map� : X(L) !X(L)==G such that
(i) � is an affine map and
(ii) OX(L)==G = (��OX(L))G.

In particular, for an open affine subsetU of X(L)==G, it follows that ��1(U ) =
SpecC[U ]G whereC[U ] denotes the coordinate ring of��1(U ) and C[U ]G is the al-
gebra of invariant functions.

There is a completely analogous picture for a holomorphic action of a complex
reductive groupG on a K̈ahlerian spaceX. The role of a polarization is taken over
by a Hamiltonian action of a maximal compact subgroupK of G. Here one considers
a maximal compact subgroupK of G, assumes the K̈ahler structure to beK-invariant
and that there is an equivariant moment map� : X ! k� with respect to!. In this
situationX(�) = fx 2 X; G � x \ ��1(0) 6= ;g is called the set of semistable points ofX with respect to�. HereG � x denotes the topological closure of theG-orbit throughx. The following result has been proved in [11] (c.f. [18]).

The setX(�) is open inX and there is a complex spaceX(�)==G and aG-
invariant surjective holomorphic map� : X(�)! X(�)==G such that
(i) � is a Stein map and
(ii) OX(�)==G = (��OX(�))G.

In fact there is one more analogy between these two constructions. In the case
whereX is projective, the line bundleL induces a line bundlēL on X(L)==G which
turns out to be ample. In the Kähler case! induces a K̈ahlerian structure ¯! onX(�)==G.

A very ampleG-line bundleL over X induces aG-equivariant holomorphic em-
bedding of X into P(V ) where V is the dual vector space of the space of sec-
tions 0(X;L) and theG-action onP(V ) is induced by the natural linearG-action on0(X;L). Now one may assume theK-representation to be unitary and therefore the
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pull back of the Fubini-Study form!P(V ) to X is aK-invariant K̈ahler form! and the
pull back of the natural moment map�P(V ) to X gives a moment map� : X ! k�.
In this case, using a result of Kempf-Ness (see [12]), one checks thatX(�) = X(L),
i.e., the set of Mumford-semistable subsets ofX is a subset of the set of momentum-
semistable sets (see [13], [17] or Sec. 3.).

Of course in general a given invariant Kähler form! on a projectiveG-manifoldX may not be integral. Therefore associated moment maps are not in an obvious way
related toG-line bundles. Nevertheless, our goal here is to prove the following

Semistability Theorem. Let X be a smooth projective variety endowed with a
holomorphic action of a complex reductive groupG = KC, ! a K-invariant Kähler
form and� : X ! k� a K-equivariant moment map. Then there is a very ampleG-
line bundleL over X such that

X(�) = X(L):
Recently there has been some interest in the question of howX(L) andX(L)==G

vary in dependence ofL (see e.g. [4], [19]). The above obviously implies that these
results extend to the case where� is moving.

1. Mumford quotients

Let G be a complex reductive group andV a G-representation, i.e., there is given
a holomorphic homomorphism� : G ! GL(V ). SinceG is reductive, it is in fact a
linear algebraic group and� is an algebraic map (see e.g. [3]). Moreover the algebra
C[V ]G of G-invariant polynomials is finitely generated. The corresponding affine va-
riety is denoted byV ==G. The inclusionC[V ]G ,! C[V ] induces a polynomial map� : V ! V ==G which turns out to be surjective. Explicitly� : V ! V ==G can
be realized as follows. Letq1; : : : ; qk be a set of generators of the algebraC[V ]G andq := (q1; : : : ; qk). ThenY := q(V ) is a Zariski-closed subset ofCk which is isomorphic
with V ==G. Under this isomorphism� : V ! V ==G is given byq.

Since the groupG and the actionG � V ! V , (g; v) ! g � v, are algebraic,
everyG-orbit is Zariski-open in its closure. In particular, for every x 2 G � v n G � v
we have dimG � x < dimG � v. This implies that the closure of everyG-orbit contains
a closedG-orbit which may be defined as aG-orbit of smallest dimension inG � v.
Now G-invariant polynomials separateG-invariant Zariski-closed subsets. This can be
seen by using integration over a maximal compact subgroupK of G. Thus the closedG-orbit in G � v is unique. Moreover forv;w 2 V we have�(v) = �(w) if and only ifG � v \G � w 6= ; and this is the case if and only ifG � v andG � w contain the same
closed orbit. Consequently, ifG � v0 is the closed orbit inG � v, then ��1(�(v)) =fw 2 V ;G � v0 � G � wg. This is often expressed by the phrase that the quotientV ==G
parametrises the closedG-orbits in V .
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Assume now thatX is a projectiveG-variety which is realized as aG-stable
Zariski-closed subset ofP(V ). In general there is no way to associate toX a quo-
tient X==G which has reasonable properties. For example ifV is irreducible, then
P(V ) contains a uniqueG-orbit which is compact. This orbit is the image of aG-
orbit through a maximal weight-vector inV . Since everyG-orbit in P(V ) contains a
closedG-orbit in its closure, the unique compact orbit is containedin the closure of
every otherG-orbit in P(V ). If one were to try to define a Hausdorff quotient, then
every point would have to be identified with the points in the unique compact orbit.
The resulting quotient would be a point.

In order to resolve this difficulty Mumford introduced the following procedure
(see [16]). LetN be the Null-cone inV , i.e., the fiber through the origin of the quo-
tient map� : V ! V ==G and letp : V n f0g ! P(V ) denote theC�-principal bundle
which defines the projective spaceP(V ). For a subsetY of P(V ) let Ŷ := p�1(Y ). A
point x 2 X is said to be semistable with respect toV if x̂ = p�1(x) � X̂ n N . LetX(V ) := p(X̂ n N) denote the set of semistable points inX with respect to the rep-
resentationV . ThusX(V ) is obtained by removing the image of the Null-cone fromX.

The coneC(X) := X̂ [ f0g in V over X is a G-stable closed affine subset ofV
andN is saturated with respect to�V : V ! V ==G. Thus X̂(V ) := X̂ n N = C(X) n N
is saturated with respect to�X̂ : X̂ ! X̂==G. In particular there is a quotient ˆ� :X̂(V ) ! X̂(V )==G which is given by restricting�V : V ! V ==G to X̂(V ). The
C
�-action onV defined by multiplication commutes with theG-action and stabilizesX̂(V ). Thus there is an inducedC�-action on X̂(V )==G which can be described ex-

plicitly as follows. Let q1; : : : ; qk be a set of homogeneous generators ofC[V ]G with
degqj = dj . The mapq : V ! C

k is equivariant with respect toC�. More pre-
cisely we haveq(t � v) = (td1q1(v); : : : ; tdkqk(v)). Moreoverq(V n N) = q(V ) n f0g �
C
k n f0g. Note thatC� acts properly onCk n f0g. In particular there is a geometri-

cal quotientCk n f0g=C� =: P(d1; : : : ; dk) which is a projective variety. This implies
thatX(V )==G := (X̂(V )==G)=C� is also a projective variety, since it is a Zariski-closed
subspace ofP(d1; : : : ; dk). The mapX̂(V ) ! X(V )==G is C

�-invariant and induces
therefore an algebraic map� : X(V ) ! X(V )==G which is the quotient map for theG-action onX(V ).

There is a standard procedure to realize a givenG-variety X as aG-stable sub-
variety of some projective spaceP(V ) where V is a G-representation. For this as-
sume thatL is a very ample line bundle overX and let 0(X;L) denote the space
of holomorphic sections ofL. Thus the natural map{L : X ! P(V ) which is
given by evaluation whereV := 0(X;L)� is the dual of0(X;L) is an embedding.
Now if the G-action onX lifts to a G-action onL, then V is a G-representation
in a natural way and{L is G-equivariant. The setX(L) := fx 2 X; s(x) 6= 0
for some invariant sections 2 0(X;Lm); m 2 Ng coincides withX(V ) after identify-
ing X with {L(X) � P(V ) and is called the set of semistable points ofX with respect
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to the G-line bundleL. Note thatX(L) depends onL and on the lifting of theG-
action toL. The following two elementary facts concerningG-actions on line bundles
are often useful (see [16]).

Lemma. Let X be a smooth projectiveG-variety.
(i) If L is ample, then there is a lifting of theG-action to some positive powerLm
of L.
(ii) Two liftings of theG-action toL differ by a character ofG.

Proof. The last statement follows sinceX is compact and therefore aG-action
on the trivial bundleX � C = L 
 L�1 is given by g � (x; z) = (g � x; �(g)z) where� : G! C

� is a character ofG.
For the first statement one may assume thatG acts effectively. SinceG is con-

nected the induced action on Pic(X) is trivial. This implies that there is a subgroup̃G
of the automorphism group ofL and an exact sequence of the form

1! C
� ! G̃! G �! 1

where � is given by restrictingg̃ 2 G̃ to the zero sectionX ,! L. This sequence
splits after replacingG by a finite covering. Hence theG-action onX lifts to Lm for
some positivem.

2. Moment map quotients

Let G be a complex reductive group which acts holomorphically on acomplex
manifold X. Now choose a maximal compact subgroupK of G and let! be aK-
invariant K̈ahler form onX. By definition theK-action onX is said to be Hamiltonian
with moment map� if there is given an equivariant smooth map� from X into the
dual k� of the Lie algebrak of K such that

d�� = {�X!(�)
for all � 2 k. Here �X denotes the vector field onX associated with� , �� = �(� )
and {�X! is the one form� ! !(�X; �). Note that for a connected manifoldX an
equivariant moment map is uniquely defined by (�) up to a constant ink� which lies in
the set of fixed points. In particular, if the groupK is semisimple then an equivariant
moment map is unique. Moreover in the semisimple case it can beshown that� exists
for a givenK-invariant K̈ahler form! (see e.g. [6])

EXAMPLE. Let � : X ! R be a smoothK-invariant function,! := 2i��̄� and let� : X ! k� be the associatedK-equivariant map which is defined by�� = d�(J�X).
Here J denotes the complex structure tensor onX. A direct calculation shows thatd�� = {�X! holds for every� 2 k. In particular, if � is strictly plurisubharmonic, i.e.,
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! is Kähler, then� is a moment map. We refer to� =: �� as the moment map given
by �.

Similar to the case of an ampleG-line bundle there is a notion of semistability
with respect to�. A point x 2 X is said to be semistable with respect to� if G � x \��1(0) 6= ;. Let X(�) denote the set of semistable points with respect to�.

The following is proved in [11] (see also [18]).

Theorem 1. The set of semistable pointsX(�) is open inX and the semistable
quotient� : X(�)! X(�)==G exists. The inclusion��1(0) ,! X(�) induces a home-
omorphism��1(0)=K �= X(�)==G.

By a semistable quotient of a complex spaceZ (see [10] for more details) en-
dowed with a holomorphic action ofG we mean a complex spaceZ==G together with
a G-invariant surjective map� : Z! Z==G such that:
(i) The structure sheafOZ==G is given by (��OZ)G, i.e., the holomorphic functions on
an open subset ofZ==G are exactly the invariant holomorphic functions on its inverse
image inZ.
(ii) The map� : Z ! Z==G is a Stein map, i.e., the inverse image of a Stein sub-
space ofZ==G is a Stein subspace ofZ.
In [9] it is shown that each pointq 2 X(�)==G has an open neighborhoodQ such
that ! = 2i��̄� on ��1(Q) for someK-invariant smooth function�. Furthermore, the
moment map� restricted to��1(Q) is given by �, i.e., � = �� . A result of Azad
and Loeb (see [2]) asserts that, ifx 2 ��1(0), then� is an exhaustion onG � x i.e.,
is bounded from below and proper. In particularG � x is closed inX(�) for everyx 2 ��1(0). The converse is also true in the following sense. IfG � x is closed inX(�), then �(g � x) = 0 for someg 2 G. Furthermore in [8] it is shown that the
restriction of� to each fiber overQ is an exhaustion, i.e., is bounded from below and
proper. This Exhaustion Lemma and also a refinement of it (seeSec. 6) will be used
several times in the remainder of this paper. For example, itimplies the following (see
[8]).

Theorem 2. Let X be a compact complex manifold with a holomorphicG-action
and let� : X ! k� be a moment map with respect to aK-invariant Kähler form !.
Let !̃ be aK-invariant Kähler form onX which lies in the cohomology class of!.
Then there exists a moment map�̃ : X! k� with respect to!̃ such that

X(�) = X(�̃):
Proof. We recall the argument given in [8]. Since ˜! is cohomologous to! andX is a compact K̈ahler manifold, there exists a differentiableK-invariant functionf :X ! R so that!̃ = ! + 2i��̄f . Define�f : X ! k� by �f� = J�X(f ) for � 2 LieK
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and set ˜� = � + �f . Then �̃ is a moment map with respect to ˜!. For everyx 2X(�) there exists a strictly plurisubharmonicK-invariant function� : Z ! R, whereZ := G � x \ X(�), so that�jZ = �� , where�� is the moment map associated to�
(see [9]). SinceZ \ ��1(0) 6= ;, the above mentioned Exhaustion Lemma implies that� : Z ! R is an exhaustion. Nowf attains its minimum and maximum onX and �
is an exhaustion. Hence the strictly plurisubharmonicK-invariant function ˜� := �+f is
also an exhaustion onZ. This shows thatZ � X(�̃), i.e.,X(�) � X(�̃). By symmetry
we haveX(�) = X(�̃).

If G is a connected semisimple Lie group, then a moment map with respect to aK-invariant K̈ahler form! always exists and is unique. Thus in this case Theorem 2
shows thatX(�) depends only on the cohomology class of!.

3. Moment maps associated to representations

Let V be aG-representation whose restriction to the maximal compact subgroupK of G is unitary with Hermitian inner producth ; i. Then � : V ! R, �(z) =
(1=2)kzk2 = (1=2)hz; zi, is a K-invariant strictly plurisubharmonic exhaustion function
on V and consequentlyV = V (�) where the moment map� : V ! k� is given by�� (z) = d�(J�z) = (1=2)(hJ�z; zi + hz; J �zi) = (1=i)h�z; zi. The Kähler form!V =
2i��̄� is given by!V (v;w) = � Imhv;wi. Since in this case the restriction of� to
every �-fibre is an exhaustion, we haveV (�) = V and the inclusion��1(0) ,! V
induces a homeomorphism��1(0)�= V ==G (see Sec. 2 Theorem 1). The essential part
of this statement has already been proved in [12].

Let S := S(V ) := fz 2 V ; kzk = 1g denote the unit sphere inV . Note thatS is a co-
isotropic submanifold ofV with respect to!V , i.e., (TzS)?!V = Tz(S1 � z) � TzS where
the circle groupS1 = f� 2 C; j�j = 1g acts onV by multiplication. This is easily seen
by using the orthogonal decompositionTzV = Tz(C�z) � W whereW := TzS \ iTzS
denotes the complex tangent space ofS at z. The complex structure onW induces
the standard complex structure onP(V ) = S(V )=S1. Moreover sinceS is co-isotropic,
there is a unique symplectic structure!P(V ) on P(V ) such that{�Sp�!P(V ) = {�S!V . Herep : (V n f0g) ! (V n f0g)=C� = P(V ) denotes the quotient map and{S : S ,! V
is the inclusion. Furthermore, the definition of the complexstructure and of!P(V ) are
compatible so that!P(V ) is in fact a K̈ahler form onP(V ). Up to a positive constant
it is the unique K̈ahler form onP(V ) which is invariant with respect to the unitary
group U(V ). Note that!P(V ) is determined by

p�!P(V ) = 2i��̄ log� = 2i �� 1�2
�� ^ �̄� +

1� ��̄�
� :

The inducedK-action onP(V ) is again Hamiltonian. The moment map is given
by (�P(V ))� ([z]) = (2=i)(h�z; zi=kzk2) = d log�(z)(J�z). In particular we haveG � [z] \��1

P(V )(0) 6= ; if and only if G � z \ ��1(0) 6= ; and this is the case if and only if
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f (z) 6= 0 for someG-invariant homogeneous polynomialf on V .
Now let X be aG-stable subvariety ofP(V ). The pull back of!P(V ) to X induces

a Kählerian structure! on X and theK-action is Hamiltonian with moment map� :X! k�, � = �P(V )jX. We call� the standard moment map induced by the embedding
into P(V ). The above construction shows the following well known

Lemma. Let L be a very ampleG-line bundle overX and considerX as aG-stable subvariety onP(V ) where the embedding is given by0(X;L) and V =0(X;L)�. Then

X(�) = X(L);
i.e., the semistable points with respect to the standard moment map onP(V ) are the
semistable points with respect toL.

4. The main result

Let G be a connected complex reductive group andK a maximal compact sub-
group of G, i.e., G = KC. By a G-variety we mean in the following an algebraic
variety together with an algebraic action ofG.

Let X be a smooth projectiveG-variety and! a K-invariant K̈ahler form onX. Assume that theK-action is Hamiltonian with respect to!, i.e., there is aK-
equivariant moment map� : X! k�, and denote byX(�) := fx 2 X;G � x \��1(0) 6=;g the set of semistable points with respect to�.

Semistability Theorem. There is a very ampleG-line bundleL over X such
that

X(�) = X(L):
Here X(L) denotes the set of semistable points inX in the sense of Mumford,

i.e., X(L) = fx 2 X; s(x) 6= 0 for someG-invariant holomorphic sections of Lm; m 2
Ng.

The case where! is assumed to be integral is well known and follows rather di-
rectly from the definitions using standard Kempf-Ness type arguments. In fact it is a
consequence of Theorem 2 of Sec. 2 and the Lemma in Sec. 3.

The proof in the general case is divided into two steps. In thefirst part we con-
sider forms! whose cohomology class [!] is contained in theR-linear span of the
ample cone inH 1;1(X). The second part of the proof is more involved. It is a reduc-
tion procedure to the first case.

At least implicitly (see e.g. [4], [13], [17]) the ample conecase seems to be
known. In order to be complete we include a proof in the next paragraph.
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5. The ample cone case

In this sectionG is a connected complex reductive group with a fixed maximal
compact subgroupK andX is a smooth projectiveG-variety. Let! be aK-invariant
Kähler form and let� : X ! k� be aK-equivariant moment map. In this section we
prove the following

Proposition. Assume that the cohomology class of! lies in the real linear span
of the ample cone inH 1;1(X). Then there exists a very ampleG-line bundleL overX such that

X(�) = X(L):
Proof. SinceX(�) essentially depends only on the cohomology class of! (see

Sec. 2 Theorem 2), we may assume that there are equivariant holomorphic embeddings{k : X! P(Vk), k = 1; : : : ; m, so that

! =
X ak{�k!P(Vk )

whereak are positive real numbers.
Let { : X! P(V1)� � � � � P(Vm) be the diagonal embedding. Then

! = {� �X ak��k!P(Vk )� ;
where�k : P(V1) � � � � � P(Vm) ! P(Vk) denotes the projection. Hence the moment
map � is the restriction of a moment map onP(V1) � � � � � P(Vm) with respect toP ak��k!P(Vk ) which also will be denoted by�. SinceX is closed inP(V1) � � � � �
P(Vm), we have

X(�) = (P(V1)� � � � � P(Vm))(�) \X:
Thus for the proof of the proposition we may assume thatX = P(V1) � � � � � P(Vm),! =

P ak��k!P(Vk) and theG-action is given by a representationG! GL(V1)� � � � �
GL(Vm).

Let T be a maximal compact torus inK. ThenT C is a maximal algebraic torus inG. We now reduce the proof of the proposition to the case whereG = T C as follows.
Let �T : X! t� be the moment map for theT -action which is induced by� and

the embeddingt ,! k. Then it follows that

X(�) =
\
k2K k �X(�T )

by the Hilbert Lemma version in [13] (Sec. 8.8.). Thus it is sufficient to show the fol-
lowing
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CLAIM . There exists a very ampleG-line bundleL overX = P(V1)� � � � �P(Vm)
such that

X(�T ) = X(LT )

whereX(LT ) denotes the set of semistable points with respect toL if one considersL as aT C-bundle.

The proposition follows from the above claim, since

X(�) =
\
k2K k �X(�T ) =

\
k2K k �X(LT ) = X(L):

In order to prove the claim one may proceed as follows.
Let S = S1 � � � � � Sm be the maximal torus in GL(V1) � � � � � GL(Vm) which

contains the image ofT and�k : P(Vk)! s�k the standard moment map onP(Vk). We
will consider�k as a moment map with respect toS = S1�� � ��Sm where the factors
of S different from Sk act trivially onX = P(V1)� � � � � P(Vm). Since! =

P ak!P(Vk ),
the moment map� : X! t� is given by

� = a1�1 + � � � + am�m + 

where
 2 t� and�k now denotes the map fromX to t� which is given by�k : X!
s� composed with the dual oft ! s. Now if ãk are positive rational numbers and
̃
is rational, then ˜� := ã1�1 + � � � + ãm�k + 
̃ is a moment map with respect to ˜! :=P ãk��k!P(Vk). Since ãk and 
̃ are rational, it follows that there is a very ampleG-line
bundleL over X such thatX(L) = X(�̃). Thus we have to show the following

There exists̃ak and 
̃ such thatX(�) = X(�̃).
This statement follows from convexity properties of� as follows. SinceT is com-

pact, the setXT of T -fixed points inX is smooth. LetXT = [j2JFj be the decom-
position into connected components. Note that� is constant on everyFj , j 2 J .
For the setJ let P(J ) be the set of subsets ofJ . We say thatL 2 P(J ) is �-
semistable if 02 Convf�(Fj ); j 2 Lg where Conv denotes the convex hull opera-
tion in t�. Let XL := fx 2 X; T C � x \ Fj 6= ; for all j 2 Lg. Since�(T C � x) =
Convf�(Fj ); T C � x \ Fj 6= ;g (see [1]), it follows that

X(�) =
[XL:

Here the union is taken over the elementsL of P(J ) which are�-semistable. For a
given � denote byI (�) the set of�-semistable subsets ofJ . We show now that if a
collection of subsets is of the formI (�), then I (�) = I (�̃) for some positive rationalãk and rational
̃.

In order to see this, let3kj := �k(Fj ) 2 t�. Note that3kj are integral points int�.
A subsetI � P(J ) is of the formI (�) if and only if there exist positive real numbers
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ak and 
 2 t� such that for allL 2 P(J ) the following holds.

0 2 Conv

(X
k ak3kj + 
; j 2 L

)
if and only if L 2 I:

This condition is equivalent to a collection of linear inequalities with integral coeffi-
cients in the unknownsak ’s and 
 which have a real solution if and only if they have
a rational one.

6. Cohomologous K̈ahler forms on orbits

In this section letG be a connected complex reductive group with maximal com-
pact subgroupK and letX = G � x0 be aG-homogeneous manifold. We assume that
there are givenK-invariant K̈ahler forms!j , j = 0;1, onX which are cohomologous
and set

!t = (1� t)!0 + t!1; t 2 [0;1]:
Moreover, assume that there areK-equivariant moment maps

�t : X! k�; t 2 [0;1]

with respect to!t such that the dependence ont is continuous.

REMARK. We have�t = (1� t)�0 + t�1 + 
t where 
t 2 z�. Here z is the Lie
algebra of the center ofK. The goal of this section is to obtain some control about
the semistable setM tK := (�t )�1(0) if t varies.

Lemma. If M t0K 6= ; for somet0 2 [0;1], then!t = 2i��̄� t where� t = (1� t)�0 +t�1 and �j : X! R, j = 0;1, are K-invariant smooth functions.

Proof. SinceM t0K 6= ;, the orbitX = G � x0 is a Stein manifold (see e.g. [7] or
[9]). Now !0 and !1 are assumed to be cohomologous. Thus there is aK-invariant
smooth functionu : X ! R such that!1 � !0 = 2i��̄u. On the other hand!t0 =
2i��̄f for someK-invariant smooth functionf : X ! R (see Sec. 2 and [9]). Thus!t = 2i��̄� t where�0 := f � t0u and �1 := f + (1� t0)u.

Now let Z denote the connected component of the identity of the centerof K and
let S be a semisimple factor ofK. ThusK = S � Z and k = s� z on the level of Lie
algebras. Let�tS (resp.�tZ) be the moment map with respect to theS-action (resp.Z-
action), i.e., the composition of�t with the dual of the inclusions ,! k (resp.z ,! k).
We also setM tK := (�t )�1(0), M tS := (�tS)�1(0) andM tZ = (�tZ)�1(0).
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Proposition 3. If M t0K 6= ; and if the setX(�tZ) of ZC-semistable points is inde-
pendent oft , then there are pluriharmonicK-invariant functionsht : X ! R which
depend continuously ont such that

�t = �� t+ht :
Proof. It follows from the definition of a moment map that it isunique up to a

constant. Thus�� t = �t + 
t where
t is aK-invariant constant, i.e.,
t 2 z�.
The proof of the Proposition will be reduced to the case of a compact Abelian

group T �= (S1)k. In this situation we haveT C �= (C�)k and t = LieT �= R
k. Moreover,

for any 
t 2 t�, 
t = (
t1; : : : ; 
tk), the functionh̃t (z1; : : : ; zk) = 
t1 log jz1j+� � �+
tk log jzkj
is pluriharmonic onT C and satisfies�h̃t = 
t .

Let x0 2 M t0K and setL := Kx0. Then we have the following orthogonal decompo-
sition of the Lie algebrak.

k = t� zL � s

where zL := z \ (s + l); z = t� zL and s + l = s� zL.
Note thatz is the Lie algebra of the groupK=S and s+ l is the Lie algebra of the

subgroupS �L of K. SinceK is connectedK=SL = (K=S)=(SL=S) =: T is a compact
connected Abelian group. Hence we haveT �= (S1)k and LieT �= (k=s)=((s + l)=s) �=
z=zL = t. Now identify k �= k�, i.e., we have the orthogonal splitting

k� = t� � z�L � s�:
CLAIM . 
t 2 t�:
For the proof letx0 2 M t0K be given and note thatZC � x0 is closed inX(�t0Z) =X(�tZ). Thus there arext 2 ZC � x0 such that�tZ(xt ) = 0. In particular we have
t =�� t (xt ). Now let � = � +�+� , where� 2 t, � 2 zL and� 2 s. Then, since the moment

map is unique for a semisimple Lie group, it follows that

0 =�t� (xt ) = �� t� (xt ):
For � 2 zL we have� = �S + �L for some�S 2 s and �L 2 l and [�; �L] = 0. Thus,
using the fact thatxt is anLC-fixed point, we have

expis� � xt = expis�S � expis�L � xt = expis�S � xt :
This implies

0 = �t�S (xt )
= �� t�S (xt )
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=

� dds
�
s=0

� t (expis�S � xt )
=

� dds
�
s=0

� t (expis� � xt )
= �� t� (xt ):

Since

�� t� (xt ) = �� t� (xt ) +�� t� (xt ) +�� t� (xt ) = �� t� (xt );
this implies the claim.

Now, as we already observed, onT C there exists a pluriharmonic functioñht :T C ! R such that�h̃t = 
t := �� t (xt ) 2 t�. Since T C = (KC=SC)=(SCLC=SC) =KC=SCLC, the natural mapq : KC=LC ! T C is KC-equivariant. Thusht := h̃t Æ q
is a K-invariant pluriharmonic function onX = KC=LC such that�ht (xt ) = 
t . There-
fore � t � ht is a smoothK-invariant function such that!t = 2i��̄(� t � ht ) and, since�t (xt ) = �� t�ht (xt ) = 0 andX is connected,�t = �� t�ht .

7. Action of a torus

Let T �= (S1)m be a torus andX a complex projective manifold with an algebraic
action of the complexified torusT C �= (C�)m. Let !j be T -invariant K̈ahler forms onX with moment maps�j : X! t.

We say that!0 and !1 are cohomologous on the closureY of a T C-orbit in X
if there is aT C-equivariant projective desingularizationp : Ỹ ! Y such that the pull
back of the forms toỸ are cohomologous, i.e., such thatp�!1 � p�!0 = 2i��̄f for
someT -invariant smooth functionf : X! R.

For t 2 [0;1] we set!t := (1� t)!0 + t!1 and �t := (1� t)�0 + t�1. Note that�t is a moment map with respect to!t and that!t and!0 are cohomologous on the
closure of everyT C-orbit in X if this is the case for!0 and!1.

Proposition. If !0 and !1 are cohomologous on the closure of everyT C-orbit
in X, then there is a constant
t 2 t� depending continuously ont such that

X(�0) = X(�t + 
t ):
For the proof of the Proposition we consider first the case where T �= S1, i.e.,

we fix a one dimensional subtorusS1 = fexpz� ; z 2 Rg where � is chosen to be a
generator of the kernel of the one-parameter groupz ! expz� . With respect to thisS1-action letXS1

= [F� be the decomposition of the set ofS1-fixed points ofX into
connected components. The set of these components is endowed with a partial order
relation which is generated byF� < F� . Here we setF� < F� if and only there is a
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point x 2 X such that limz!0 z � x 2 F� and limz!1 z � x 2 F� wherez 2 C
� = (S1)C.

Let �t� : X ! R where�t� = h�t ; �i denote the moment map with respect to the
given S1-action. Sinced�t� = {�X!t , the moment map�t� is constant on everyF�.

Lemma. If F� < F� , then�0� (F�)� �0� (F�) = �t� (F�)� �t� (F�).

Proof. Let x0 2 X be such that limz!0 z � x0 2 F� and limz!1 z � x0 2 F� . We
may assume that the mapC� ! C

� � x0, z! z � x0 is an isomorphism and extends to
a holomorphic mapb : P1(C)! X with b(0) = x� and b(1) = x� .

Now since by assumption the pull back of� := !t � !0 to the desingularization
P1(C) of C� � x0 is cohomologous to zero we have

0 =
Z

C��x0

�
=
Z

C��x0

�
=
Z

R+�x0

{�X�
=
Z

R+�x0

d(�t� � �0� )
= �t� (x�)� �0� (x� )� (�t� (x�)� �0� (x�)):

Here R
+ � x0 denotes theR+ := fz 2 R; z > 0g-orbit throughx0.

REMARK. Implicitly we used that under the above assumption!0 and!1 are co-
homologous on the normalization ofC� � x0.

Proof of the Proposition. The above Lemma implies that thereis a constant
t 2
t� depending continuously ont such that�0 and �̃t := �t + 
t assume the same values
on every component of the setXT of T -fixed points inX. Since �̃t (T C � x) is the
convex hull of the images of ˜�t (F�) whereF� \ T C � x 6= ; (see [1]) it follows thatX(�0) = fx 2 X; 0 2 �0(T C � x)g = fx 2 X; 0 2 �̃t (T C � x)g = X(�̃t ).

8. Action of a semisimple group

Let G be a connected complex semisimple Lie group with maximal compact sub-
groupK andX a projective manifold with an algebraicG-action. As in the last sec-
tion we say that two given closed forms!0 and!1 are cohomologous on the closureY of a G-orbit in X if there is aG-equivariant desingularizationp : Ỹ ! Y such thatp�!0� p�!1 = 2i��̄f for some smooth functionf : Ỹ ! R.
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Proposition. Let !j : X ! k�, j = 0;1, be twoK-invariant Kähler forms onX
which are cohomologous on everyG-orbit closure and let�j be the unique moment
map with respect to!j . Then

X(�0) = X(�1):
Proof. For x 2 (�0)�1(0) set Y := G � x and let p : Ỹ ! Y an equivariant

resolution of singularities such thatp�!1 � p�!0 = 2i��̄f for a smoothK-invariant
function f . In particularf is bounded onG � x.

SinceG � x is closed inX(�0) it follows from the Exhaustion Lemma that�0jG �x = �� for someK-invariant plurisubharmonic exhaustion function� : G � x ! R.
Therefore� + f is likewise an exhaustion and in particular has a minimum onG � x. Since�1 is unique, we have�1 = �0 + �f = ��+f . ThusX(�0) � X(�1) and

the reverse inclusion follows by symmetry.

9. Reduction to Levi factors

Let G be a connected complex reductive group with maximal compactsubgroupK and letX be a compact connected manifold endowed with a holomorphic action ofG. We assume that there are givenK-invariant K̈ahler forms!j , j = 0;1, onX which
are cohomologous on anyG-orbit and set

!t = (1� t)!0 + t!1; t 2 [0;1]:
Moreover, assume that there areK-equivariant moment maps

�t : X! k�; t 2 [0;1]

with respect to!t which depend continuously ont . We setM tK := (�t )�1(0).
Let Z be the center ofK and S the semisimple part ofK, i.e., K = Z � S whereZ \ S is a finite group and assume the following condition:

X(�tZ) is independent oft 2 [0;1]:(�)
Lemma 4. Assume the condition(�) and for x0 2 X let � := G � x0. Then, fort 2 [0;1],

M tK \� 6= ;
is an open condition.

Proof. Let t0 2 [0;1] be such thatM t0K \ � 6= ;. It follows that there exists a
smooth curve� t of K-invariant smooth functions so that!t = 2i��̄� t and�t = �� t on
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�. Furthermore, sinceM t0K \ � 6= ;, it follows that � t0 is an exhaustion of�. For t
near t0 the function� t has the same convexity properties as� t0 and is therefore like-
wise an exhaustion (see [8], proof of Lemma 2 in Sec. 2). The points where it has its
minimum are those inM tK \�.

Lemma 5. Assume the condition(�) and for x0 2 X let � := G � x0. Then, fort 2 [0;1],

M tK \� 6= ;
is a closed condition.

Proof. We have to show thatM tK \� 6= ; for t < t0 impliesM t0K \� 6= ;.
Since �tK depends continuously ont and X is compact, it follows thatM t0K \G � x0 6= ;. Let y0 2 M t0K \ G � x0. If G � y0 6= �, then by Lemma 1 fort near t0

we have thatM tK \G � x0 � G �y0. However the intersection ofM tk with G � x0 consist
of precisely oneK-orbit, which would be contrary toM tK \ � also being non-empty.

Proposition. Assume that condition(�) is fulfilled. ThenX(�tK ) does not depend
on t 2 [0;1].

Proof. Let x 2 M t0K and� := G � x. From the above two Lemma it follows thatM tK \ � 6= ; for all t . Thus, the condition that� is a closedG-orbit in X(�tK ) is
satisfied for somet if and only if this is the case for allt .

10. Proof of the Semistability Theorem

For the proof of the Semistability Theorem we need to associate to a given K̈ahler
form one whose cohomology class lies in the real span of the ample cone. (see [15],
§3). Let X be a smooth projective variety and denote byH 2 H 2(X;R) the cohomol-
ogy class of a hyperplane section.

Let C1 be the subspace of the second homology groupH2(X;R) which is spanned
by the images of closed analytic curves andCn�1 the subspace ofH 2(X;R) spanned
by divisors, or, what is the same, Chern classes of holomorphic line bundles.

The following lemma is well known (see e.g. [15]).

Lemma 1. The pairing C1 � Cn�1 �! R which is induced by associating to a
line bundleL and a curveC the intersection numberL � C := degLC is perfect.
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Lemma 2. Let ! be a K̈ahler form onX. Then there exist a K̈ahler form e!
whose cohomology class[e!] lies in the span of the ample cone such thatZ

C e! =
Z
C !

holds for all one-dimensional analytic cyclesC.

Proof. Consider the linear map� : C1! R, �(C) =
RC !, given by�(C) =

RC !.
By Lemma 1 there is a class̃D in Cn�1 such that�(C) = D̃ � C for all 1-cyclesC.
Since D̃ is a divisor, the cohomology class of̃D lies in the span of the ample cone.
Moreover, it follows that the cohomology class ofD̃ contains a K̈ahler forme! ([15]
§3, see also [14]).

We need the following elementary observation.

Lemma 3. Let Y be a connected smooth projective variety and assume thatG
has an open orbit onY . Then there are no non-zero holomorphicp-forms onY forp � 1.

As a consequence we obtain the following

Corollary. If � is a smooth closed(1;1)-form onY such that
RC � = 0 for every

one-dimensional analytic cycleC, then� = 2i��̄f for some smooth functionf : Y !
R.

For the proof of the semistability Theorem we also need

Lemma 4. If the K-action onX is Hamiltonian with respect to theK-invariant
Kähler form !, then it is also Hamiltonian with respect to any otherK-invariant
Kähler form !̃.

Proof of the Semistability Theorem. Given a smoothK-invariant K̈ahler form!
on a smooth projectiveG-variety X we already know from Lemma 2 that there is a
Kähler form !̃ on X which lies in theR-span of the ample cone ofX such thatZ

C ! =
Z
C !̃(�)

on every analytic curveC in X. SinceK is assumed to be connected the cohomology
class of!̃ is K-invariant. Hence, after integration over the compact group K, we may
assume that ˜! is K invariant and still satisfies (�).

Now it follows from Lemma 4 just above, the Proposition in Sec. 7 and the exis-
tence of a moment map in the semisimple case that there is a moment map�t : X!
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k� with respect to!t where!t = (1� t)!̃ + t! such that the�t depends continuously
on t and such thatX(�tZ) = X(�0Z) for all t 2 [0;1]. HereZ denotes the connected
component of the center ofK.

Moreover (�) implies

Z
C !t =

Z
C !:(��)

Since the closure of everyG-orbit in X has an equivariant algebraic desingularization,
it follows from the above Corollary that the forms are cohomologous on the closure
of everyG-orbit. The statement of the theorem now follows from the Proposition in
Sec. 9 and the Proposition in Sec. 5.
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