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Following the terminology of [2], we say that an algebraicface X satisfies )

X is a complete normal rational surfacel is affine ruled and

() rank(PicX;) = 1,

where X; denotes the smooth locus &f, we say thatX satisfies {) if:
() X satisfies {) and every singular point ok is a cyclic quotient singularity.

(Here, and throughout this paper, all algebraic varietiesoaer an algebraically closed
field k of characteristic zero.) As we will see in Section 1, the &g projective
planesP(a, b, c) satisfy ).

Paper [2] investigates the problem of finding all affine rgtinof a given surface
X satisfying ). In particular, it shows that iX satisfies {) then the problem reduces
to that of describing a certain s&y(X) of triples ¢, Ty, T2), wherem is a positive
integer and eacHl; is a 2x h; matrix with entries inN (0 < h; < 2). The aim of the
present paper is to give an explicit description of the BgtX) in the case wher&X
is a weighted projective plane; this is achieved by Corgllarl and Propositions 7.3,
7.4 and 7.7. Thus [2] and this paper solve the above mentipnaidlem for weighted
projective planes.

Let us also point out the following characterization of we&g projective planes,
which we prove in the form of Corollary 6.12, below (see 1.99 the notion ofres-
olution graphof a normal surface):

Theorem. Let X be a complete normal rational surface which is affine ruled
and satisfiesrank(PicX,) = 1. If X has the same resolution graph as the weighted
projective planeP(a, b, ¢), then X is isomorphic toP(a, b, ¢).

Although this paper relies heavily on the results and cotscdpveloped in [2], it
is almost completely self-contained, thanks to Section lBickvis essentially an outline
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of those parts of [2] which are directly needed here. Howeitemay be necessary
to consult [2] in order to fully understand how to recover tiféine rulings from the
description ofT(X) given in this paper. (First, starting froffiy(X), one uses 5.17 and
5.39 of [2] to construct the larger s&YX); then, as explained in 5.3 of [2], one has
a “recipe” for constructing all affine rulings of.)

We also refer to the introduction of [2] for a discussion ofated problems and
applications. For instance, the results of this paper enabk to describe all curves
C on P =1P(a, b, ¢) satisfyingx(P \ C) = —o0o, and all locally nilpotent derivations of
k[X, Y, Z] which are homogeneous with respect to weight#, ¢ for X, Y, Z.

1. Preliminaries on weighted projective planes

Let ag, a1, ax be positive integers and consider the weighted projectigae
P= P(ao, ai, az) = ProjA,

where A = K[Xo, X1, X] is graded by assigning weight; to X;. Note thatP is a
complete normal rational surface and tiag, ai, ax) = P(ao, a1, az), wherea; =
a;/d, d = gcd@o, a1, a). Moreover, if we assume thaty, a;, a, are relatively prime
then:

1.1 ([3], 1.3.1). For distincti, j,k < {0,1,2}, let o; = gcd@;,ar) and a; =
a;/ajo. Thenay, ay, a, are pairwise relatively prime anB(ao, a1, az) = P(ag, a3, a5).

Since our results depend only on the isomorphism typ®,aind not on a specific
projective structure, we will assume throughout:

1.2. aq, a1, ap are pairwise relatively prime.

1.3. By a coordinate systenof P, we mean an ordered triplefd, f1, f») of
homogeneous elements of satisfying A = K[ fo, f1, f2]. (Then @, a1,a2) =
(degfro, degf;1, degf;2) for some permutatiorr of 0, 1, 2, andX; — f;; gives an
automorphism ofA as a gradedk-algebra.)

If F € A is homogeneous, le¥(F) C P denote the zero locus af.

1.4. Given a coordinate systenX{, X, X,) of P, let R, = V(X;) C P (an irre-
ducible rational curve) and lef; € P be the pointR; N R, (where{i, j, k} = {0, 1, 2}).

Lemma 1.5. Given a coordinate systeliXy, X1, X») of P, the rational mapsp; :
P — P! (i =0, 1, 2) defined by

_XP _ X3 _Xg
¢O_X_‘2’1’ ¢>1—X—82, ¢2_X;‘°
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induce three affine rulings dp.

Proof. Note thatgg is the only fundamental point apg in P. The general fibre
of ¢g is C = V(aX7}? — BX3'), «, B € k*, which is irreducible since gcdy, az) = 1.
SinceC \ {go} = Al, ¢ induces an affine ruling oP. ]

Derinimion 1.6. The three affine rulings of 1.5 are said to standard with re-
spect to(Xo, X1, X2). An affine ruling of P is standardif it is standard with respect
to some coordinate system.

Lemma 1.7. Let P, be the smooth locus d&. ThenPicP, = Z.

Proof. We have Pi&;) = CI(P;) = CI(P), where “CI” denotes divisor class group.
Using the fact thatA is anN-graded U.F.D., one obtains a degree functionPCle Z
which is in fact an isomorphism. U

By the above resultsP satisfies {); we will show in 1.20 thatP satisfies a con-
dition stronger thanij. Also recall:

1.8 ([2], 1.16). A surface satisfyingf] cannot have more than 3 singular points.
LINEAR CHAINS.

1.9. We use the standard definitions for blowing-up, contraciod equivalence
of weighted graphs (but note that, in weighted graphs, we atcatiow multiple edges
between a given pair of vertices). Bnear chainis a weighted tree without branch
points; anadmissible chairis a linear chain in which every weight is strictly less than
—1. The empty graph is regarded as an admissible chain.

1.10. Let G be a weighted graphys, ..., v, its vertices andy; the weight ofv;.
Recall that thedeterminantof G is defined by det{) = det(— A), where A denotes the
“intersection matrix” ofgG, i.e., then x n matrix with entriesA;; = w; and, ifi # j,
A;; =1 (resp. 0) ifv;, v; are neighbors (resp. are not neighbors).

1.11. Let G be a weighted treey a vertex of weightQ(v) in G, Gy, ..., G, the

branches ofj at v andv; the vertex ofg; which is a neighbor ob in G. If d; = detg;
andd; = det@; — {v;}), then

detg = —Q(v)dr--d, — Y di---di 1d{dis1---dy .
i=1
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Derinmion 1.12.  Let A be the linear chain

w1y wp Wp—1 Wy

- e TN > (wi€Z,n>0).

We say thatA has discriminant § and subdiscriminantss* and §, to indicate that
det(d) = § and that{det(4 \ {vi}), det(4 \ {v,})} = {§*, &} (equality of sets). IfA
is empty, it has discriminant 1 and subdiscriminants 0 and 0] consists of a single
vertex, its subdiscriminants are 1 and 1.

1.13. If A is a linear chain with discriminant and subdiscriminant8* and é,,
then §*8, = 1 (mod3).

1.14. Let A be anadmissiblechain with discriminant and lets be one of the
subdiscriminants of4. Then 0< s < §; also,Aisempty < §=1 < s =
0. Moreover, A is completely determined by the outer Euclidian algorithm (8, s):
write ro=68, r1=s,ri1=qiri —ri+1 0 <risa<r, i =1,...,n) andr, =0; thenA
is

—q1 —q2 —qn-1 —n

1.15. Let A and A’ be two linear chains.
1. If Aand A are equivalent as weighted graphs, then they have the sasoenti
inant § and, modulos, the same subdiscriminants.
2. Assume thatd and A’ are equivalent to admissible chains.Af and A’ have the
same discriminang and if some subdiscriminants of A ands’ of A’ satisfys = s’
(mod §), then A and A" are equivalent weighted graphs.

1.16. Leta, b, c be pairwise relatively prime positive integers.
1. There is a unique integef = ¢'(a, b) with 0 < ¢’ < ¢ andb = ac’ modc. (Note
that ¢’ =0 if and only if ¢ =1.)
2. Define the integet” = ¢"(a, b) by ¢/(a, b)'(b,a) = 1 +c"c. (Note thatc = 1 =
d"==landc #1=0=<" < <c.)

One also defines integees(b, ¢), a'(c, b), a”’(b, c), b'(a,c), etc. Note that each
one of these is a function of tharee variablesa, b, c.

Derinimion 1.17. Consider an unordered triplég[d1, 2], where &g, 81, 82 are
pairwise relatively prime positive integers. We define theighted graphGs,.s, s,] to
be the disjoint uniondy U A; U A5, where 4; is the unique admissible chain with dis-
criminants; and subdiscriminants;(8;+1, 8;+2) ands;(8;+2, 8;+1) (with indices computed
modulo 3). Note that eacl; is allowed to be empty.
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CYCLIC QUOTIENT SINGULARITIES.
Let w. C k* be the group of-th roots of unity.

Lemma 1.18([4]). Leta, b, c be pairwise relatively prime positive integers. Let
w. act onk][[&, n]] with weightsa, b modc for &, n and let X = Spe[[&, n]]*.
1. The exceptional locus of the minimal resolution of the dimgty of X is an ad-
missible chainE = E; +- .- + E, of rational curves with dual gragh

c'(b,a)
—q1 —q2 —qs-1 —ds
E; E E; s Es
_f_d
c(a,b)

c'(a.b)

where the braces give the determinants of the indicatedresest
2. The proper transform of the image &f(n) (resp. V(¢)) meetsk normally in Eq
(resp. Ey).

1.19. The resolution graphof a normal surfaceX is the dual graph oft in X,
where E is the exceptional locus of the minimal resolution of siragitles  : X—>X
of X. Let x be a cyclic quotient singularity ok and recall that the resolution locus
7~ 1(x) of x is an admissible chaid. We define thediscriminant and subdiscrimi-
nants of the singularityx to be those ofA. A smooth point is regarded as a cyclic
qguotient singularity of discriminant 1. If the singularity is determined byw,. acting
with weightsa and b (wherea, b, ¢ are pairwise relatively prime) then Lemma 1.18
says thatr has discriminant and subdiscriminants’(a, b) and ¢/(b, a).

SINGULARITIES OF P.

Choose a coordinate systemio( X1, X2) of P and consider the open neighbour-
hood D.(X3) of ¢ in P. As noted in the proof of 1.3.3 of [3]D.(X>) is isomorphic
to the quotientA?/w,,, where the action is given by(uo, u1) = (t“ug, t*uy) (With
t € w,, (uo,u1) € A%). So gy is a cyclic quotient singularity of and, by 1.19,g,
has discriminant; and subdiscriminantsj(ao, a1) and as(as, ag); note that the image
in P of the line “u; = 0" is part of R; (i =0, 1). Similar remarks hold foge and g1,
so we obtain:

1.20. 1. For eachi = 0,1,2, P has a cyclic quotient singularity af, of dis-
criminanta; and subdiscriminants;(a;+1, a;+2) and a;(a;+2, a;+1).
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2. SingP C {qo, 91, q2}-
3. g¢; is a smooth point if and only if; = 1.
It follows that P is a surface of typedp, a1, az], according to:

Derinimion 1.21.  Let Po, 81, 82] be an unordered triple of pairwise relatively
prime positive integers. By aurface of typddo, 81, §2], we mean a surface satisfying
(1) and whose resolution graph s, s, s,]-

Remark. A surface X satisfying ¢) may or may not have a type as defined in
1.21. If X has a type, we sometimes say that it hased singularities

Remark.  We will show in 6.12 that every surface of typéy,[s1, 8] is isomor-
phIC to IP((S(), 81, 52).

Let P — P be the minimal resolution of singularities ar@; the exceptional lo-
cus abovey;. By the above,Ry and R; meet the chainQ, normally at opposite ends.
(wWith some abuse of notation, we use the same letter to deRptand its proper
transform in}fl’.) More precisely, we have the first part of the following lemnide
second part will be proved in Section 3 (but will not be nedded

Lemma 1.22. 1. R=Ro+Q01+Ry+Qp+R1+ Q> is a “ring” of rational curves
with dual graph

Qo
N .
aglar,az) R
ay(ag,a
2( 0 l) Q2
Ro

2. —R is a canonical divisor ofP.

2. Graphs, tableaux and rulings

This section gathers some of the definitions and results Joafi@d (we hope) or-
ganizes them in a coherent way. It also includes a few itemighware not found in

[2].
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GRAPHS AND TABLEAUX.

2.1. Given weighted graphg and G, the symbolG « G’ indicates thatg’ is
obtained fromgG by blowing-up once. In that case, ¥ (resp.V’) denotes the set of
vertices ofG (resp.G’) then V can be viewed as a subset Bf and V' \ V contains
a single vertex, say. We call e the vertexcreatedby G <« G’. This e has weight
—1 and has at most two neighbors @; if it has one neighbotw; (resp. two neigh-
bors v1, vp) then, regardingv; (resp. vy, v2) as a vertex ofG, we say thatG < G’
is the blowing-up ofG at the vertexv; (resp.at the edge{vi, vz}). A blowing-up at
a vertex (resp. at an edge) is also calledpaouting (resp. subdivisional blowing-up.
In reverse, we say that is obtained by contracting (or blowing-dowg) at e. Given
a sequencejy < --- < G, of blowings-up, we may also speak of the contraction
“G, > Go" of weighted graphs.

2.2. Let n > 1. By a weightedn-tuple we mean an ordered-tuple S =
(G, v1,...,v,-1) where G is a weighted graph and, ..., v,_1 are distinct vertices
of G.

Whenn =1, § is simply a weighted graph; whem = 2, it is called aweighted
pair. The following is the only weighte@-tuple withn > 2 that we will need:

Notation 2.3. Givenx € Z, let G,y denote the weighted tripleG( v1, v2), where
G is the weighted graph

0 x 0
—————eo—o
V1 v2

2.4. If (G,v) is a weighted pair, we calb its distinguished vertexBy a linear
weighted pair we mean a weighted paig(v) satisfying: (i) G is a linear chain; and
(i) v has at most one neighbor .

2.5. Let (G, v) be a weighted pair ang > G’ a contraction of weighted graphs
such thatv is not contracted (i.e.y is still a vertex ofG’). Then we write G, v) >
(G',v) and call this acontraction of weighted pairsThe equivalence relation (on the
set of weighted pairs) generated byis denoted %", and is called “equivalence of
weighted pairs”.

2.6. Let (G,v) and @', v') be weighted pairs. Suppose th@t is a blowing-up
of G (i.e., G < G') and that the following hold: (i) The blowing-ug < G’ is either
at v or at an edge incident to; and (ii) v" is the vertex ofG’" which is created by
the blowing-upG < G’. Then we say thatd, v) is a blowing-upof (G, v) and write
(G.v) < (¢".v).
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RemARK. A blowing-up of weighted pairsd, v) < (G’, v') cannot be undone by
contracting ¢’,v') as in 2.5.

2.7. A tableauis a matrixT = (511 o ’C’f) whose entries are integers satisfying
¢i > pi >1and gedp;,c;))=1foralli=1,..., k. We allowk =0, in which case we
say thatT is the empty tableawand write T = 1. The set of all tableaux is denotéq.
We define a binary operation on the setby:

pP1 - Pk Pk+1 - D¢ — P1 - Pk Pk+1 - Pt

€1 ock) \Cr o €Lt Ck Ot ocp)
Thus T is the free monoid on the set of colum(®) where p < ¢ are relatively prime
positive integers.

2.8. Let (Go, e0) be a weighted pair and”) € 7. By blowing-up (Go, eo) ac-
cording to (f) we mean producing the sequenég, (o) < --- < (G, e,) defined as
follows.

1. Let Gy < Gy be the blowing-up aty and lete; be the vertex ofG; so created.
Define (11 3%) = (e c2p)-
2. If i =1 is such thatg;,¢;) and (% }/ ) have been defined, then:

(&) If y; =0 then we sek =i and stop.

(b) If y; #0 then letG;.1 be the blowing-up ofj; at the edg€u;, v;}, let e;+1 be

the vertex ofG;+; so created and define

(e,-+1 i ) if x; <,
(u,'+1 x,'+1> _ Vi Yi—Xi
(ui N yi) if x; > yi.
Ci+1 )i

2.9. Let (Go, eo) be a weighted pair an@ = (?: 1 %) € T a tableau.
1. We definethe sequencéGo, eg) < - - - < (G,, e,) obtained by blowing-ugGo, eq)
according to7 by induction onk:
e |If k=0 (i.e., T is the empty tableau), them = 0 (no blowing-up is per-
formed).
o If k=1, then (g, eq) < --- < (G,, e,) is defined in 2.8.
e |If k>1,then Go,eq) < -+ < (Gy,e,) IS

Ui+l Yi+1

(gOs 60) D (gma em) <~ (gm+1a em+1) D (gns en),

where Go, eo) < --- < (Gu, en) IS the sequence obtained by blowing-ugy,(eo)
according to(’c’ll) and Gn,en) < --- < (Gu,e,) is obtained by blowing-up
(G em) according to( 22 7 2¢).
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2. Consider the sequencéo(eg) < -+ < (G,, e,) obtained by blowing-up o, eo)
according to7T, as defined in part (1). Then we writ€o eg)T = (G, e,). Hence,
blowing-up is a right action of the monoi@ on the set of weighted pairs.

2.10. Let S be a weightedi-tuple, withn > 2, and letT € 7 be a tableau.

Write § = (G, v1,...,v,-1) and let ¢, ¢) denote the weighted paiG(v,)T, as
defined in part (2) of 2.9. Note that, ..., v,_; can be regarded as vertices @ {e}.
1. DefineST =(G', e, v, ..., v,-1), @ Weightedn-tuple.
2. DefineSoT=(G \{e},vy...,v,-1), a weighted g — 1)-tuple.
3. Let S@ T denote the unique connected componentSad 7 which contains no
vertex of G. We regardS ® T as a weighted graph; actuall§,® 7 is a (possibly
empty) admissible chain. Note th&t® 7' is empty whenT is the empty tableau.
4. Let SOT be the complement o8 ® T in S & T. We regardS ® T as a
weighted  — 1)-tuple.

Note thatS © T is the disjoint union ofS ® 7 and S ® T.

2.11. Given relatively prime positive integets and b, define (7)* = (*), wherex
and y are the unigue nonnegative integers which satisfy )

X a

b =—1 and x <aory<b.

2.12([2], 3.23). Letc > p > Obe relatively prime integers, l&f be the weighted
graph which consists of a single vertexof weight zero, and le(g’, v') = (G, v)(?).
Theng’ has two branches at’, with determinants of subtrees as follows

(G'.v):

c=p=p'+p”

p c=p

where we define{’;/,') = (”)". Note that these two branches a€, v) D () (left part

of the picturg and (G, v) ® () (right).
Moreover, if we let(G”, v") = (G, v’)(lﬁ) (with N > 1) then the connected compo-
nent of G” \ {v”} containingv and v’ is as follows
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Nc(e—p)+1

Np(c—p)+1

Ncp+l

Nc¢?
(This connected component is the same thindgisv') ® (3) = (G.v) ® (7 1))

2.13. Consider a weighted pair

. 0 -1 w1 Wy
L . o . .. .
v \—/_J

ri

where v is the distinguished vertex; > 0, w; < —2, and whererg and r; denote the
determinants of the indicated subtrees#iE 1 thenr; = 1; if n = 0 thenrg = 1 and
r1 = 0). Then£ determines the % 2 matrix M(L) = (3 ", ), where(}) = (",)".

For eachv > 0, let (%) = M(L) - (1) (matrix product). Then define a subsE(L) of

T hy:
ro-{(2)(3)
1

if w; < —2 for somei (resp.w; = —2 for all i), and where(’c"'y')(l)U is a product in
the monoid7. We also define

v>0 (resp.v> 0)}

G
T(L) = {TeT‘T(J e’T(E)}

for eachk € N.

2.14. Given £ as in 2.13, definel’:

0 -1 @y 1

Also define £° = £ and, for eachs > 0, £ = (£"7). By 3.24 of [2], M(L') =
ML)
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2.15([2], 3.32). Given£ as in2.13and (¥) € 7 such that(?) # (7),

£<p> contracts to a linear weighted pair<— <p> € T;(L) for somek € N.
C C

Moreover, if (?) € Tu(£) then £(?) (i)k ~ L.

2.16. We will sometimes refer to the following conditions on a &l 7T € 7
1. T =1 (the empty tableau);

2. T =(7), where(?) # (3);
3. T=("}), where(?) #(}) andN > 1. )
Given T e T satisfying one of the above conditions (1-3), defihe 7 by:!
1, if T satisfies 2.16.1;
T=1("), if T satisfies 2.16.2, wherg’ is given by (ﬁ) = (") (see 2.11);
(“.7 %), if T satisfies 2.16.3

Note that if 7' satisfies condition 2.16.(wherei € {1, 2, 3}) then so doeq. If s is a
positive integer, write ™" = (7% where7¢? = 7. Note thatr®? = 7.
Let Z* denote the set of positive integers.

2.17. Let T(f) be the set of triplesn{, T1, T>) € Z* x T x T such that (i)Ty
satisfies one of the conditions (1-3) of 2.16; () ¢ (})7 (i.e., if T> is nonempty
then its first column is no(i)); and (iii) each connected component of the weighted
graph G © T1) © T» shrinks to an admissible chain.

2.18. Define an order relation- on the setT () by declaring that«, Ty, 75) >
(m, T{, T;) if n =1 and the following holds (le€ = Gy ® Ty):

There exist an integer > 1 and tableauxX’l, ..., X, such thatry =
@)™, T = X, - X,T} and X; € T, (L"), whereky, = m — 1 and
k; =0 for all i > 1.

2.19. Considert = (1, T1, T) € T(}) and let £ = G_y) ® 71. Then the following
are equivalent
1. <t is non-minimal inT(});
2. T, is nonempty and its first column belongsZg L") for somek € N.

2.20. Given @, Ty, To), (m,T{, T;) € T(1), write (n, T1, T2) = (m, T{, T,;) to in-
dicate that G,y © T1)T> ~ (G—m) © T;)T, (equivalence of weighted pairs). Note that

1In the second part of the definition af, we could also defing’ by 0 < p’ < ¢ and pp’ = 1
(modc).
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“="is an equivalence relation on the sg&({). We have

t>17 = =1 (al 7,1 €T())

by 5.18 of [2], but =" is not the equivalence relation generated by”:
AFFINE RULINGS.

2.21. Let X be a complete normal rational surface. By affine ruling of X
we mean a one-dimensional linear syst&mon X (without fixed components) which
arise$ from a morphismp : U — T whereT is a curve,U is a nonempty open
subset ofX isomorphic tol' x A and p is the projectionl’ x A — T.

2.22. Let A be an affine ruling of a surfac& satisfying (). By “resolving”
(X, A), we mean constructing a paik(A) = (X, A)™ as follows ([2], 1.5):
1. Minimally resolve the singularities of (write X — X). Let A be the strict trans-
form of A on X.
2. Minimally resolve the base point of (write X — X). Let A be the strict trans-
form of A on X.

Let p : X — X be the compositionX — X — X. The center ofp is SingX U
BsA and p~1(SingX UBsA) is the support of a divisoD of X with strong normal
crossings.

2.22.1([2], 1.14). We say that\ is basicif each connected component &f is
a linear chain.
Then Theorem 2.1 of [2] implies (in particular):

2.22.2. Every surface satisfyin€t) admits a basic affine ruling.

Clearly, A is base-point-free and its general membePisi.e., A is a “P-ruling”
of X. Using thatX satisfies ), one shows ([2], 1.8 and 1.15):
1. Exactly one irreducible componeif of D is a section ofA.
2. Each reducibleG € A has exactly onéd—1)-componentCg. Moreover, H - Cg = 0
and D = H+Z,.(G?—CG,.), where theG; are the reducible members @f and where
Gj* is the reduced effective divisor 6f with same support a§;.
3. A has at most two reducible members.
Definem > 0 by H? = —m and consider the Nagata ruled surfdgg; let A,, be the
standard ruling off,, and &,, the negative section af,,. Then well-known properties
of PY-rulings imply:
4. By shrinking eachG; to a O-curve, we getr : X — F,, where the exceptional
locus ofz is disjoint from H, n(H) = £,, and 7(G;) € A,,.

°Note that" must be an open subset Bt, so p extends to a rational map’ : X — P! and p’
determines a linear syster on X without fixed components.
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It follows from (2) that each member ok is irreducible (but not necessarely re-
duced). Via the isomorphisn¥ \supp@) = X\(SingXUBsA), eachF € A determines
an F € A; moreover,F — F is a bijectionA — A.

2.22.3([2], 2.4 and 2.5). Define aonemptysubsetA, of A by declaring that it
contains allF € A satisfying: (i) At most one element of \ {F} is not reduced; and
(i) all branching components ab are components of.

Note that if P, € FF,, is a point of the center ofr then—1(P;) contains exactly
one (-1)-curve (hamelyCg,). Because of this property; can be described by using
a pair of Hamburger-Noether tableaux (one for each poinhefdenter), say HNand
HN.,. Let T; be the tableau obtained from Ky deleting the third row and dividing
each column by its gcdZf = HN; € 7, see 3.6 of [2]). The triplen, Ty, T») is then
a partial description ofr.

2.23([2], 5.1 and 5.2). Given a tripleX| A, F), where X is a surface satisfy-
ing (), A is an affine ruling ofX and F is an element ofA,, let us now define an
elementr of T(f), called thediscrete partof (X, A, F) (notation: disck, A, F) = 1).
Consider the triple 4, Ty, T>) constructed at the end of 2.22, but make 3ina the
P;’'s and G;’s have been labeled in such a way that the bijection> A sendsF to
G,. Then we define dis&(, A, F) = (m, Ty, T>). It satisfies:

(m, Tr, T») € T(}) and (Q(fm) o Tl) © T» is the dual graph o in X,

S0 (g(,m) < T1) © T, shrinks to the resolution graph of (D and X are as in 2.22
and T(}) was defined in 2.17).

2.24 ([2], 5.25). Two triples as in 2.23 arequivalent (X, A, F) ~ (X', A, F'),
when there exists an isomorphisi — X’ which transformsA into A” and F into
F'. If this is the case thenX(, A, F) and (X', A’, F') have the same discrete part; so
we may speak of the discrete part of the equivalence cléisa [ F] of (X, A, F), and
we have a set map

disc :S(f) —» T(}) [X, A, F] — discrete part of X, A, F]

where S(3) is the set of equivalence classes, [A, F]. This map is in fact surjective
and restricts to a bijection

disc ZSo(i) — To(i)

3This can always be arranged; it may involsleoosingsome of thep,’s and G,’s when A has less
than two reducible members. See [2] for details.
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where

To(t) = {(m, T1, T) € T(}) | T» satisfies one of conditions (1-3) of 2}16
So() = {[X, A, F] € S(}) | A is basi¢ = disc }(To()).

2.25. Given X satisfying (), define subset¥o(X) c T(X) of T(f) by:

T(X) = {disc(X, A, F) | A is an affine ruling ofX and F € A,},
To(X) = T(X) N To(f)
= {disc(X, A, F) | A is a basic affine ruling ofX and F € A,}.

Then 5.13 of [2] impliesFor any 7, v’ € T(}) satisfyingr = ¢/, we have
(1) 1 e T(X) < 1’ e T(X).

Moreover, ift = disc(X, A, F) then there exists an affine ruling’ of X and an ele-
ment F’ of A/, such thatsupp) = supp’) and 7’ = disc(X, A’, F’). Note that these
facts still hold if we replace the assumptian= 1’ by t > t’/ (see 2.20). We also
point out that 5.17 of [2] implies:

(2) Givent € T(X) \ To(X), there existst’ € To(X) such thatr > 7’.

2.26. Noting that each elementn( Ty, T) of To(}) satisfies exactly one of:
I:  Each of Ty, T, has at most one column;
I.L1: 71 has at most one column b has two;
I1.2: 71 has two columns buf, has at most one;
lll: each of T;, T» has two columns,
we give the following two definitions:
1. GivenP e {l, Il.1, 1.2, Il }* and pairwise relatively prime positive integers ai,
ay, let T'p(ao,al, az) be the set

{(m, T1, T5) € To(3) | (m, T1, T>) satisfiesP and G; ~ A; for i =0, 1, 2},

where " is equivalence of weighted graphsio = (G m P T)D T, G1 =
GmyDTi, G2 = (Grmy®T1) ® T, and whereA; is the unique admissible chain
with discriminanta; and subdiscriminants;(a;+1, a;+2) and a;(a;+2, a;+1) (with indices
computed modulo 3). Note thaty, Gi1 and G, are the connected components of
(G(=m) © T1) © T», with the understanding tha¥,; and G, are allowed to be empty
(Go is never empty).

“We mean thatP is one of the four symbols I, 11.1, 1.2, Il
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2. Let A be a basic affine ruling of a surfaceé satisfying ¢). Then it is easy to see
that

{(disc(X, A, F) | F € A,} = {(m, T1, T2), (m, T», T1)} C To(X)

for some tableauxy; and 7, and somemn € Z*. We say thatA is a basic affine rul-
ing of typel (resp. Il, Ill) if, for F € A,, the discrete partnf, T1, 7o) of (X, A, F)
satisfies the above condition | (resp. 1.1 or 11.2, III).

2.27. Let X be a surface of typéa, b, c], wherea, b, ¢ are pairwise relatively
prime positive integergseel1.21) If A is a basic affine ruling ofX and F € A, then
t = disc(X, A, F) belongs toTp(ag, a1, ax) for someP e {LIL.1,11.2,lll} and some
permutationao, a1, a; of a, b, c. (Indeed, if we writet = (m, T1, T») then G,y ©
T:) © T» is equivalent to the resolution graph &f, which is G4 .)

2.28. Let P e {l, Il.1, I1.2, 11} and let ag, a1, a, be pairwise relatively prime
positive integers. I{m, Ty, T>) € Tp(ao, a1, az) then the entry in the lower right corner
of 7; is a;. (Fori € {1,2} we may writeG, = Z® T, = Z® (%), whereG; is as in
2.26, Z is the weighted pair consisting of a single vertex of weigatozand(”) is
the rightmost column off;; then 2.12 gives det{;) =¢;, SO¢; = a;.)

Note that 2.28 holds even wheh is empty, in which case we use the following
convention:

2.29. When a tablea’ has at most one column, we sometimes abuse notation
and write 7 = (”) in all cases, withp =0 andc =1 whenT is empty.

2.30. Suppose that = (mn,Ti, T2), ©' = (n',T{,T,;) € T(}) satisfy r = ¢’ and
considerGo, G1, G2 determined byr as in 2.26 and5, G}, G, determined byr’ in
a similar way. Then it is immediate th&i, ~ G’ and that, for some permutatian j
of 0,2, Go ~ G; and G, ~ G’j. In the special case where> t’, we have:

If T, is nonempty(resp. empty thenG; ~ G (resp.G; ~ G,_;) for all i =0, 1, 2.
If T is a non-minimal element dff'(1) then ([2], 5.21) there exists a unique €
T(1) satisfying: (i)t > t~ and (ii) not’ € T(}) is such thatt > ¢/ > 7—. We call t~

the immediate predecessaf .

Lemma 2.30. Let T be a nonminimal element &f(f), let = be its immediate
predecessor and suppose that Tp(ag, a1, az) for someP e {I,11.1,11.2,1ll } and some
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pairwise relatively prime positive integers, ai, a,. Then

Ty 2(ao0, a1, az), it P=1I,
T € T|(a0, as, az), if P=11.1,
Tp(az, as, ao), if Pe {|, Il 2}

Proof. Writet = (1, T1, 7o) and t~ = (m, 7], T,) and recall thaty and 7] have
the same number of columns, and the number of column%,of strictly less than
that of 7,. If P is | or 1.2 thenT; must be the empty tableau, so the assertion follows
from 2.30.

Suppose tha® = Il (resp. P = Il.1). If T, is not empty then, again, the asser-
tion follows from 2.30. Assume thaf; is empty and note that™ € Ty 2(a, a1, ao)
(resp.t~ € Ti(az, a1, ap)) by 2.30. Sincer > v~ and T; = 1, we havel; € 7, _1(L")
by definition of “>” (where £ = G(,l)(DTl’); since T, has two columns, its right-
most column is thereforﬁ) and we geta, = 1 by 2.28. Applying 2.28 tar~ gives
ap = 1, sO @y, a1, a0) = (ao,a1,az) and consequentlyt~ e Ty 2(ag, a1, az) (resp.
T~ € ’]T|(a0, as, az)). Ol

3. Basic affine rulings of type |

The following uses the convention of 2.29:

Lemma 3.1. Let Ag, A1, A, be the standard affine rulings & = P(ag, a1, az)
with respect to a coordinate systefWy, X3, X2) (where A; corresponds to thep; of
1.5). Leti, j, k be a permutation o0, 1, 2.

(1) For someF € (A;)., SUPPF = R;.
(2) The discrete part ofP, A;, F) is (z, (a”]) (1)), where(x, y, z) is the unique inte-

gral solution ofa; =a;axz —ajy —apx With 0 <x <a; and0 <y < a.

Proof. It's enough to prove the casé (k) = (0,1,2). ConsiderA = Ay.
Clearly, there existFy, F, € A, such that supp; = R;. Consider B, A) = (P, A)™
and the morphism® — P — P. Consider the divisoR of P as in Lemma 1.22.

Since Bs{\) = {¢o}, and since the strict transforms &, R, on P belong to dis-
tinct members ofA, we have:

(i) If P— P is the identity map, then some component@§ is a section ofA;

(i) if P — P is not the identity map, then it is centered at a point@f and is
subdivisional forR — Rp.

Hence, the divisord + ", G¥ of P (notation as in 2.22) is a linear chain; it fol-
lows that A is basic of type | and that the discrete part &f {, F1) has the form
(z. (C‘l) (jz)) with 2.29 in effect. Moreover, the connected componentthefweighted
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(s00(2))2 ()

have determinants,, ¢, and zcico — c1y — cox, and are respectively equal 04, Q>
and to a chain which contracts 18g. SO ¢y = as, ¢ = a andag = zaiay — a1y — asx.
O

graph

Proof of Lemma 1.22. Let the notation be as in the above praef;show that
—R is a canonical divisor of®.

Consider the inverse imagfé of RinP; letn: P — F,, be the contraction of the
reducible members of to O-curves and leR be the image of® underz (we regard
R and R as reduced effective divisors—note that they have stromghabcrossings).
Since R has the shape of a ring, so do&sby (i) and (ii); thusR has the shape of a
ring as well, and its dual graph is:

pa

G1 Gz

Ro

where G1, G, are distinct members of the standard ruling, of F,, and %, is the
negative section of\,,. Since§o-G1 =1, ﬁo is a section ofA,,, disjoint from Z,,. It
follows that —R is a canonical divisor off,,. Since R is obtained fromR (resp.ﬁ)
by subdivisional blowing-up, the assertion follows. ]

Proposition 3.2. (1) The basic affine rulings of type | @& are precisely the
standard affine rulings.
(2) Suppose thakX satisfies(f) and that the discriminantsg, a, ay of its singularities
are pairwise relatively prime. I1fX admits a basic affine ruling of typke then X =
P(ao, as, az).

Proof. Let A be a basic affine ruling of type | (oK), let G € A, and let
T = (z,(2), (0)) be the discrete part ofx( A, G). The connected components of the

Cc1 Cc2
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have determinants;, c; and zcico — c1y — c2x; So these must be equal &g, a; and
a; respectively, for some permutatianj, k of 0,1,2. Thent = (z, (;,) (1)), where
(x,y,z) is the unique integral solution @f; = ajarz —a;y —arx with 0 <x < a; and
0<y < a. By Lemma 3.1,r is also the discrete part o(ag, a1, az), A;, F), where
A; is one of the standard rulings d(ag, a1, a2) and F is some element of A;)..
Thus [X, A, G] and [P(ag, a1, a2), A;, F] have the same image under the bijection
So(1) — To(t) of 2.24. This proves both assertions of the proposition. ]

ReEmARk. Let A be an affine ruling ofP. Then the morphism&,, <« P —
P — P defined in 2.22 induce a rational mdp — TF,,. Let us make this rational
map explicit in the case whera = Aq (notation as in 3.1). Recall that the discrete
part of (2, Ao, F) is (xo, (). (%)) where o, x1, x2) is the unique integral solution of
ap = agazxg—azxy —agxz With 0 < x; < a3 and 0< x, < ap (in particularm = xg). Let
the notationss,,, G1, G», Ro have the same meaning as before in this section. The
divisors mG, + £,,, mG, + %,, and §0 are members of the linear systegmF + X,
on F,,. It is not difficult to see that the transform ¢z F + X,,| on P is the linear
systemO(masyay) of curves of degreenaia;. Now U = XoX?X5', Vi = X7 and
Vo = X5 define curves inO(mayaz). Also, uy = U/V;, andv = X3'/X7? are ratio-
nal functions onP that give equations respectively fd% and G, (at their intersection
point) in F,, \ (Z,, UG») = A?,

4. Some results on weighted pairs

Lemma 4.1. Consider a linear weighted paif = (0, -1, ws, ..., ®,), Where
n>1andw; < -2 for all j and where the distinguished vertex is the one of weight
0. Leti €{1,...,n} and letx, y € Z be such thatt +y = w; and x < —2. Then there
exists a unique colum(?’) € 7 such that the weighted paif(”) contracts to

(3) (a)l""7a)iflax7Ovyawi+1"'7a)l1)a

where the distinguished vertex is the one of welht ® () = (o, . .., ®i—1, x) and
£ ® (?) contracts to(y, wi+1, .. .. @y).

Remark.  We will refer to (”) as “the column determined bg, i, x andy, as in
41",

Notation 4.2. The following conventions are used in the proof of Lemdnh

1. WriteC =(c,...,cy) to indicate thatC is the linear chain
C1 Cm
— - — (¢ €7).
To indicate that we have a string aef consecutive—2, sayci+1 = -+ = ¢4y = —2,

we may writeC = (ca, ..., ¢, [n], cim+1, - - .). Note that each admissible chain has a
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unique representation of the formafl, z1, [n1], ..., zn, [#4]), With &~ > 0, n; > 0 and

z; < —3.

2. Consider a blowing-ug < C’ of weighted pairs, where the underlying weighted
graph ofC is (c1, ..., cn). The notationC = (¢, ..., ¢i—1, ¢}, Cis1, . . ., C), Wherex is

one of the three symbolg, r, s, means:
(@) The distinguished vertex @f is the one of weight;.
(b) If x=2¢ (resp.x =r, x =) thenC is blown-up at the edge

- (resp. the edge Co—col the vertex s ).

Note that¢, r ands remind us of “left”, “right” and “sprouting” respectively.
(When x is not one of¢, r, s, but is really just %", we mean only (a).)
3. Suppose that we blow-up a weighted p&jraccording to some tableau, thus pro-
ducing a sequencéy < --- < Gy of blowings-up. Suppose that for sonke< N the
graph

gk = ( . ,C,'_]_,C;-k,C,'+1, . ) (* S {Z,V,S})

has a weight; = —1 (wherej Z i), and letG, be the contraction ofj; at the vertex
of weight c;. If one of the following holds:

(@ 1j—il>1;
(b) j=i+1andx #r;
(c) j=i—1landx* #¢,

we say that the contractiofi; > G, is “allowed”. In that case, the blowings-uf <«
. < Gy can be performed o6, giving G < --- < Gy, and we have a contraction
of weighted pairsGy > Gy.

Proof of Lemma 4.1. We use the conventions of 4.2(10’9‘ exists then

L <f> = (01, ..., 01, x, =1%,..),

so 2.12 implies that det{,...,w;_1,x) = ¢ and detfy,...,w;—1) = ¢ — p’, where
p €{l,...,c—1} is the inverse ofp moduloc. Thus (?) is unique, if it exists.

To show that(”) exists, it suffices to construct a sequentg < --- < L; of
blowings-up of weighted pairs satisfying (whesg is the distinguished vertex of ;):
(i) Lo=L;

(i) Lo < Ly is the blowing-up akg and, for eachj > 0, £; < £;+1 is a blowing-up
at an edge incident te;;

(i) £, contracts to (3) in such a way that the following holds:Af and B are the
branches off; at ¢, where B contains the vertices of, then A = (w1, ..., w;_1, x)
and B contracts to ¥, w;+1, ..., @y).
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Consider the natural numbe&¥ = N(£,i)=|{j <i|w; < =3}|. If N =0 then
(4) L=, -1, [m],w,...,w),

wherem =i — 1 > 0, and this contracts to(+ 1), w; + 1, ..., w,). Performing a
blow-up of type %" followed by m + 1 blows-up of type /" gives:

(Im], =2, -1 L, ; + 1, ..., wy).

This contracts to (h], —2, 0%, w; +2, ..., w,), which is the desired tree (3) if = —2.
If x < —2 then performing—2 — x > 0 blows-up of type ¢” gives:

([m]’ X, _1*7 [_3 - x]v _17 w; + 2v Wi+1y « ooy a)ﬂ)v
which contracts to
([m], x, 0%, w; — x, wi+1, - . ., Wy).
This proves the cas#&/ = 0.
If N > 0 then we may writel = (0°, =1, w1, ..., ®;,[m], w;, ..., w,), where
wj < -3 andm =i —j—1> 0. SinceN(L, j) = N — 1, there exists (by induc-
tion, with y = —1) a column(?!) such thatZ(?!) contracts to

4 w1, ... w1, w; +1,0° =1, [m], wi, ..., wp).
j j

Note how (4) is similar to (4) and let us apply the above argument t9. (We may
contract (4 to

(wl,...,a)j,l,a)j+1,(m+1)é,a)[+1,...,a)n)

and perform a blow-up of type¢" followed by m + 1 blows-up of type #”:

(wla st C()j, [m]7 _2’ _167 _17 Wi + 17 ttto C()11)'
This contracts tody, ..., w;, [m], =2, 0% w; +2,...,w,), which is the desired tree if
x =-2.If x < =2, perform—2— x > 0 blows-up of type £". O
Derinimion 4.3.  Consider a linear weighted pafr = (0, —1, wy, ..., w,), Where

n >0, w; < —2 for all j and where the distinguished vertex is the one of weight
0. We define tableaux comi(v;x, y) € 7 for certain values ofv, x, y € Z. The first
case is:

cont(Z, 0;x, —1) =1 (the empty tableau) for alt € Z.
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Write {i |1<i<nandw; <=3} = {i1,...,is} 1 < i1 < - < iy < n). Given
(v;x,y) € Z® satisfying

(5) l<v<h x<-2 y=<-1 and x+y=o,,

let (f) be the unigue column determined By i =i,, x andy as in Lemma 4.1. Then
define

cont(Z,v;x,y) = <i)

We also define a subset Cogj(of 7 by
Cont(£) = {1} U {cont(C, v; x, y) | (v;x, y) satisfies (5)

and a map Conff) — Cont((') (C — C) by:
&= cont(Z', h — v; x’, —1)(for suitablex’), if C =cont(, v;x, —1);
cont(',h —v+1;y,x), if C=contlC,v;x,y)andy < -2.

This makes sense because, giverand C € Cont(£) \ {1}, there is a unique triple
(v; x, y) satisfying contC, v;x, y) = C. Note thatl — cont(l’, h;x’, —1) (for suitable
x") and cont(, h;x, —1) — 1.

We call C the £-dual of C. It is easily verified that Cont{) — Cont((’) is bijec-
tive and that its inverse i€ — L’-dual of C.

Lemma 4.4. Consider a linear weighted pai = (0, —m, ws, ..., w,), Where
m € Z, n > 0, wj < —2 and where the distinguished vertex is the one of weight
0. Let 7 = (%) be a tableau with at least two columns and such tfgt # (D
Suppose that the weighted graph= £ ® 7' contracts to an admissible chaid sat-
isfying |A| < |£|. Thenm =1 and one of the following holds
1. (%) € Tu(L), for somek > O;
2. (7) e Cont(C).

Proof. Consider the sequence of blowing-ups of linear chain

l::go<—gl<—"'<—gN:£(p>

c

produced by blowing-upC according to(?). Note that|T'| > |Gy| > |£| > |A], soT
contains a vertex of weight-1. Since(?) # (3), this implies thatm = 1. Using the
conventions of 4.2, we may write

(6) L=60=(0, -1 [nd, z1,[n4l, - .-, zn, [n4]),
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whereh > 0, z; < —3 andn; > 0; also, it is allowed (4.2.3) to contract (6) to:
(7) ((no + 1).v’ z1+1, [nl], .. )

Since I' contracts to an admissible chain, the numbgr+ 1 must be decreased by
blowing-up until it becomes negative, i.e., the naxt+ 2 trees must be:

(8) (_1"’ no, 21 + 17 [nl]a .- ')7 L) ([n()], _23 _1*7 _1’ 71 + 17 [nl]v . ')7

where x € {¢, r,s}. Since the last chain in (8) containg| + 1 vertices, the condition
|A| < |£] implies thatx # r. Then we may contract the last chain to

(9) (o], =2, 0%, 21+ 2, [n1], ...) (with * € {¢, s}).

In the special case where= 0, the chains (7) and (9) are simply:¢(+ 1)) and
([no], —2, 0%) (with % € {£, s}) respectively, and the latter implies thé& IC’) shrinks to

([no], x, 0%) for somex < —2; letk = —1 — x > 0 then L(’C’)(i)k ~ [!, so condition
(1) holds. So we may assume that- 0. Then, by (9), there existg < N such that
G; contracts to a chain of the form:

(20) ([nol, - .., [mica], x, 0%, y, [ni], ..., [ma])  (with % € {£, s})

where 1<i <h, x < -2 andx+y = z;. Let us assume that is maximal with respect
to this property. Note thay < 0, becausex # r andI" shrinks to an admissible chain.
It suffices to prove:

Ciam. j =N or L(?) = ([no]. z1, [n1l, ..., zs. [n4], x, O%) for somex < —2.

Indeed, if j = N then (?) = cont(C, i; x, y) and if

k
ﬁ(f) > ([nol, z1, [n1], - - -z, [10], x, OF)  then E(f) <1) ~ L

with k= —-1—x > 0.

To prove the claim, we may assume thak N; thenx # s in (10), sox =¢ and
the tree which immediately follows (10) is:
(11) ([n0]7~~-7[nl'71]’x _1’ _1*7_13 Y, [nf]a-~~7[nh]) (Wlth * € {Zarvs})'

Note thatx = r, otherwise it would be allowed to shrink (11) to

([nol, ..., [mic1l,x — 1,0 y+21,[n],...,[n:]) (with x € {¢£, s}),
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contradicting the assumption thgtis maximal. Since the chain (11) containg| + 1
vertices andx = r, it follows thaty = —1 (andx =z; + 1), so (10) is:

(12) ([nol, -, [nial 2 + 1,0 =1, [ni], ..., [na]).

Note the similarity between (12) and (6); the above arguregpplied to (12)
shows that one of the following two conditions holds:
(i) i=~h, in which case (12) contracts tonf], ..., [ny—1], z» + 1, (n, + 1)°); as in the
caseh = 0, this implies that condition (1) is satisfied and we areedomthis case.
(i) SomeG; (with j* > j) contracts to

([nol, - .., [nil, X', 0%, ¥, [mieal, ..., [m2])  (with % € {£, 5})

wherei +1 < h, x’ < -2 andx’ +y’ = z;:1. By maximality of j, this is impossible.
This proves the claim and hence the lemma. U

5. Basic affine rulings of type Il

Proposition 5.1. Let ag, a1, a be pairwise relatively prime positive integers and
let t € Ty.1(ao, a1, az). Thent is not minimal inT(f) and its immediate predecessor
belongs toT)(ao, ai, az).

We have to establish two lemmas before proving this, but $efingt give:

Corollary 5.2. Let X be a surface of typéa, b, c], wherea, b, ¢ are pairwise
relatively prime positive integers. Then every basic affinkng of type Il of X re-
duces to one of type I. In particular, X admits a basic affine ruling of type Il then
X = P(a, b, ¢).

Proof. The last assertion follows from Proposition 3.2. letbe a basic affine
ruling of type Il of X. Then, for someF € A,, T = disc(X, A, F) belongs to
Tyi.1(ao, a1, ap) for some permutationig, ay, a, of a,b,c (see 2.27). By Proposition
5.1, there existst’ € T(ao, a1,a2) such thattr > 1. We havetr’ € T(X) by
2.25, so there exists an affine ruling’ of X and an element’ of A/ such that
' = disc(X, A’, F'); note thatA’ is of type I. (In the language of [2]A’ is obtained
from A by “reduction”.) ]

Lemma 5.3. Let

€1 €m X o y f1 S
A/ . r—— 1 ———&————— 06— 0—— =+ —@
o
and
o B €1 €m x+y f1 S




124 D. DAIGLE AND P. RUSSELL

be two linear chains, where:, n > 0. If A" and A” are equivalent to the same
admissible chainA, then one of the linear chainX = (e1,...,e,,x) and ¥ =
(v, f1, ..., fn) shrinks to the empty graph.

Proof. If somee; or f; is —1, then we may blow-dowmd” and A" at the cor-
responding vertex; this produces linear chai'sand .A” which still satisfy the hy-
pothesis of the lemma (with possibly different valuesmofn, x, y, 8) and where the
new X andY are obtained from the old ones by blowing-down. We may tloeecfis-
sume thate; < —1 and f; < —1 for all i. Since A’ contracts to an admissible chain,
x,y < 0 and consequently + y < —2; since A” contracts to an admissible chaiam,
and g are negative and at most one of them-i&. Thus at most one weight id” is
-1.

Given a linear chairC, let w(C) denote the sum of the weights ¢h Note that if
we blow-down(C at a vertexv of weight —1 thenw(C) increases by:(v) + 1 where
n(v) € {0, 1, 2} is the number of neighbors af in C.

Since A’ and A” have the same number of vertices and contract to the same chai
A, there exist two sequences of linear chains:

S A=A, A=A and S A=Al A=A

(of the same length) where eachA! (resp..A’) is obtained fromA; ; (resp.A! ;)
by blowing-down one vertex; , (resp.v; ;). Note thatS” is unique andn(v; ;)};_;
is nonincreasing; also, we may choosé in such a way that{zn(v,_,)}i_; is nonin-
creasing.

Note that8 < 0 implies thatw(A”) < w(A’), so

w(A) — w(Ag) < w(A)) — w(Ag).

So there existsj € {1,...,s} such thatn(v;_;) = 1 andn(vj_;) = 2. In particular
n(vg) =2, sop = -1 anda < —1. Note that the vertex” is still present inA’ and
that its weight there is + j, which implies thate + j < 0. Consequentlyy’ is still
present inA’; sincen(v;_;) = 1, this implies that one ok, Y contracts to the empty
graph. O

Lemma 5.4. Let £ = (0,—m, wq,...,w,) be a linear weighted pair such that
m>1 n>0, w; <—2 and the distinguished vertex is the one of weighConsider
a tableau? = (71) where (?) # (}) anda > 1. Suppose that the weighted graph

I = £® T is equivalent to an admissible chain and that, for sofne 0, T is also
equivalent to one of

C:(_asﬂswlv"',wn)s C/:(_asﬁﬂwns"'iwl)‘

Thenm =1 and (?) € T(£) for somek > 0.
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Proof. Consider the admissible chaih which is equivalent toI". Since A is
equivalent toC or C’, we have|A| < |£|; so Lemma 4.4 implies thatz = 1 and
that (f) belongs to either7;(£) (somek > 0) or Cont{C). So we may assume that
(?) € Cont(C); then £(?) contracts to

(a)la ey a)i—laxv 07 y’ C()['+]_, ey a)n)
andI" contracts to
(wla teey a)i—laxv _a, yv a)i+la teey a)n)a

where 1 < i < n, x < -2 andx +y = w;. Using Lemma 5.3 and again
the fact thatA is equivalent toC or C’, we conclude that one ofwf, ..., w;_1, x),
(v, wi+1, - .., w,) shrinks to the empty graph. Since and all w; are strictly less
than -1, (v, wi+1,--.,w,) shrinks to the empty graph. Sincé(fc’) contracts to
(w1, ..., wi—1,x,0,y, w41, ..., w,), Where the distinguished vertex is the one of
weight 0, we conclude thaf(”) contracts to a linear weighted pair, $6) € 7:(£)
for somexk. O

Proof of Proposition 5.1. Write = (m, T1, T5) with 71 = (/) and I> = (£2 })
(see 2.28). Foii = 0,1, 2, defineA; and G; as in 2.26; then def{y) = ap because
t € T\i.1(ao0, a1, az); also, a calculation using 2.12 and 1.11 gives @glE= axc2 A —as,

where we defineA = mcoa; —cop—aip,. In particular,a, dividesag+a;. Let us record

(13) le(”>, T2:<p21> and a|b+c,
b c2 a

where we defines, b, ¢ by (c, b, a) = (ag, a1, a2). Note thatm > 1, ¢ > pr > 1,

a>1andb> p=>0 are integers and gcgf, cz) = 1 = gcdpp, b). Also, (7) is subject

to 2.29. We may writeGo = £ D T, where £ is the weighted paiG_,., ® (?):

L 0 —m w1 Wy

(14) _

where the leftmost vertex is the distinguished one, and evkex used 2.12 for com-
puting the determinants.

Ciav. There exists a linear chaiff* and an integery > 0 satisfying
(15) C* contracts toAg
and

(16) C*=(—a,-y,w1,...,w,) or C*=(—a,—y,w,,...,w1).
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The proof of the Claim splits into two cases.

CAsE b > 1. By 2.12, the subdiscriminants @, = Z® (?) are b — p and
b—p', wherep' is defined by(’;’,’) = (¥)" (z denotes the weighted pair consisting of a
single vertex of weight zero). On the other hands T) 1(c, b, @) implies thatG; has
subdiscriminantsy’(a, ¢) and b'(c, a), so{b — p,b — p'} = {b'(a, c), b'(c, a)}; for later
use, we record:

a7) b—b e{p,p'}, whereb =b'(a,c).

Observe thab+c—ab’ = c—ab’ =0 (modb) by definition ofb’, andb+c—ab’ =
b+c¢ = 0 (moda) by (13); sincea, b are relatively primep +c¢ —ab’ = (y — 1)ab
(somey € Z), soc =(y — L)ab +ab’ — b. Sincec > 1, we havey > 1. Let us define

c=yb—(b—10)

thenc > 0 and we have equations (i) and (ii) in:

@ c=ac—b
(i) c=yb—(b-")
(iii) b=qgib=b)—ry

b—b/:qy’z—r;g

(IV) Is—1 = {gsrs — I's+1

where equations (iii)—(iv) are the outer euclidean al¢ponitonro = b andr, =b — b’
(ri,qi €N, ri_1 =qir; — ri+1, 0 <ris1 < ri, rs+1 = 0). The integerg;; are now used to
define a linear chain

C* - —a -y —q1 —4qs

(18) —_—

o

with determinants as indicated. Note that,dh, all weights are negative and at most
one is—1 (g; > 2 for all i and ifa =1 =y then equations (i) and (ii) give=b'—b <
0, a contradiction); this and dét{() > 0 imply thatC* shrinks to an admissible chain.
SinceC* and Ag have the same discriminantand, moduloc, have a subdiscriminant
in common (Equation (i) gives = ¢/(a, b) (modc¢)), 1.15 implies that (15) holds. By
(14), (18) and (17), we have that-§1,..., —q;) is (w1, ..., ®,) Of (W, .., ®1), SO
(16) holds.

CAse b = 1. Definey = (b +c)/a then, by (13),y is a positive integer. Let*
be the linear chain<{a, —y), then det(*) = ya—1=ya—b=c > 0 and it is easy to



WEIGHTED PROJECTIVE PLANES 127

see thatC* shrinks to an admissible chain. Sinéé and Ay have the same discrimi-
nantc and, moduloc, have a subdiscriminant in common & ¢’(a, b) (modc)), 1.15
implies that (15) holds. We have = 0 in (14), so (16) holds and the above Claim is
proved.

Now (15), (16) and Lemma 5.4 imply that = 1 and that(*?) € 7;(£) for some
k > 0. By 2.19,7 is non-minimal inT(f) and we may consider its immediate prede-
cessorr—. By 2.30,1~ € T\(ao, ai, az). O

6. Basic affine rulings of type llI

Lemma 6.1. Consider a linear weighted pai = (0, —1, wy,...,®,), where
n >0, wj < —2forall j and where the distinguished vertex is the one of weight
0. Consider an element of Cont(£) and its £-dual C € Cont(l").
(1) £C ~ £'C (equivalence of weighted pajrs
@ LOC~L@®CandL®C ~ £ DC (equivalences of weighted graphs
(3) Write € = (*) and C = (%), using the convention .29 if necessary. Them =
det ® C) and ¢ = det ® ).

Proof. We prove assertions (1) and (2) simultaneously.ilet --- < i, be as
in 4.3 and writez; =w;, for j =1,..., h. Then

‘C = (07 _l’ [”0], 21, [nl]a <5 Zhs [nh]) and £f = (O’ _17 [nh]a Zhsy---5 21, [nO])
for some integers;; > 0. If h=0thenL =L andC =1= C, so (1) is trivial in this
case; alsoL ® C = (—1,[n]) ~ £' ® C, sinceL' @ C is the empty graph; similarly,
£r®Cc~L®c, so (1) and (2) hold in this case. Assurhe- 0.
If C =contC, v;x,—1) then

EC Z ([n()], M [l’l,},]_], 2y + 15 0*7 _1’ [nvlv Zv+1, [nv+l]7 R [nh])
(19) > ([no]v s [nv—l]v 2y + l’ (nv + 1)*’ Zy+l + 17 [nv+l]a ey [i’lh]),

since C = cont(C’, h — v;x', —1), we also have:

(20) L'C > ([nnl, - - -, [nv+1], Zos2 + 1, 0%, =1, [n,], 20, [m0_1], - - -, [10])
(21) > ([nh]’ RN [nv+1]’ Tv+l + 17 (nv + 1)*7 Y + 17 [nl)—l]’ cee [l’l()])

Since the weighted pairs (19) and (21) are the safi@~ £'C. This also shows that
LD C > (-1,[n], zoss [nosals - []) = @osr + 1 [naa]s -, [ma]) = £ @D C
and

LOC=1Ln]z vl o)) = @+ Lnal, . [na) = LB C,
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so (2) holds as well.
If C =cont,v;x,y) with y < -2, then

LC = ([no], ... [ny-1]. x, 0% y, [m]s 2osas [nvaal. - [ma]);

sinceC = cont£',h —v+1;y,x), we also have:
£C =, .... ]y, 0% x, [n,-1). zo-1. ..., [n0]).
So we havelC ~ L'C,
LO®C = (v, ] 2o, [l - [m]) = £ ©C
and
£LLO®C=(x [n-1l.zv-1.....[n]) = LD C,

so (1) and (2) hold in all cases.

We already know that = det(C ® C): this follows from 2.12 and was observed
at the beginning of the proof of Lemma 4.1 (def(..., w;—1, x) = ¢). Applying this
fact to £' gives¢ = det(C’ @ C), and this is equal to det((D C) by part (2). O

Lemma 6.2. Let t = (m, Th, T>) be a minimal element off({), where 7; =
(7 1) eT (i =1, 2). Suppose that the weighted graff_,,, ® 71) ® 7, shrinks to a
graph with at mostiG._,,y ® 71| vertices. Thenn = 1 and if we write£ = G_1y D 73
then
(1) () € Cont(£) and its £-dual is not the empty tableau.
From now-on, let(2?) € Cont(C') denote thel-dual of (2), defineT> = (2 1) e T
and 7 = (1, T1, T5). Then
(2) T=17 and 7 is a minimal element off'(1).
B) Gy®r)®n~Gy®n) DD,
(4) ca2+c2=aic1A(r), where A(t) =meicz — c1p2 — c2p1 = €162 — c1p2 — €2P1.
(5) p2=—c2+ p2+ra1p1A(r).
(6) A(r) = A(7).
(7) If © € Ty(ao, a1, az), for some pairwise relatively prime positive integeis as,
az, thent e Ty (ao, a1, az).

Proof. Sincer e T(), the intersection matrix of' = £ ® T, is negative defi-
nite; thusT" contracts to an admissible chai, and | A| < |£| by the assumption. By
Lemma 4.4,m = 1 and (”?) belongs to either7;(L) (for somek > 0) or Cont().
By 2.19 and minimality ofz, we have in fact(??) ¢ 7.(L) (for all k € N), so
(72) € Cont(L). If the L-dual of (%) is empty thenL(”?) ~ L' by Lemma 6.1, so
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L("?) contracts to a linear weighted pair, $&%) € 7:(£) for somek € N (by 2.15)
and this contradicts an earlier observation. So asserfipinglds.

If T is non-minimal then (2.191’;22) e Tu(L") for somek, so (2.15)0(’;’;) con-
tracts to a linear weighted pair, so (6.L(??) has the same property, so (2.18}) €
7 (L£) for somek, a contradiction. Hence; iS minimal. Lemma 6.1 implies

(22) Gy ®m) <p2> = ﬁ(p2> ~ L (1?2) =Gy D 1) (1:)2>
C2 C2 C2 C2

and G1)© T1)(") ~ (G © Th)(2?) easily follows; “multiplying” both sides by(; )
gives G_1y © T\) Tz ~ (G(-1y © T1)T», i.e., assertion (2) holds.

If P ~ P’ are equivalent weighted pairs arfl is a tableau, theP DT ~
P’ ® 1. Applying this to (22) (withT = (alz)) gives assertion (3).

To prove assertion (4), note thét= G, ® 13 is as follows:

E . 0 -1 1 Wp

u v ———
aiciprtl
[ —
a1€%

and Lemma 2.12 gives:

p2\ - -1 -1 w1 w2 Wy
—_—————— v [ —
P2 aicip1+l
[
Cc2 alcf
p2
£® (%)

We havec; = detc ® (7?)) by Lemma 6.1, so 1.11 gives

. 2 2_
C2 = cpaic] — ca(arcipr + 1) — poaici = —ca2 + arca(cicr — c1pa2 — c2p1)

and assertion (4) holds.

Observe that “satisfies the hypothesis of the Lemma and that assertioniyd} g
Gy + G2 = a1c1A(F); sinceé, = ¢p, We obtainaiciA(r) = aic1A(F), so assertion (6)
holds. Then (6) gives:

€162 — C1p2 — C2p1 = €182 — c1P2 — Co(c1 — p1)
= piCa — c1P2

= pi(—c2 + aic1A(z)) — c1pa2,
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SO c1c2 — c1p2 = praiciA(r) — c1p2 and (5) follows from this. In view of 2.30, (7)
follows from (2) and (3). L]

THE SETE.

We will now define a subsef of T(f) and show that its elements can be constructed
from those which are not minimal ifl'(}), <).

Derinimion 6.3.  Let& be the set of triples = (m, T1, Tz) € T(f) satisfying:
1. For eachi = 1,2, T; satisfies condition 2.16.3f; = (# 1);
2. the weighted graphg(_,, ® 71) ® T, shrinks to an admissible chain containing
at most four vertices;

3. A(‘L’) ;é 1 or min@l, 612) ;é 1, WhEI'EA(‘L’) =mcicy — c1p2 — pica.

6.4. Lett = (m, T1, Tz) ef.
1. m = 1, because ., ® 11) D 7, contains at least 7 vertices and hence must
contain a vertex of weight-1.
2. If ¢ is minimal in T(f) then r satisfies the hypothesis of 6.2. In particularjs™
defined and minimal, and we also have= € by parts (3) and (6) of 6.2.

6.5. Lett = (L T1, T2) € &, with notationT; = (# 1) as before. Foi = 1,2,

consider the vertex; of I' = (G ® 1) ® 7, which is the last vertex created by
the blowing-up according t¢”"):

—ap—1 —ai;—1

(23) T:

€2 €1

>

G-y @ (7)

LD (%) £® )
where £ =Gy D71, A =(Gyy D (7)) D () and detd) = A(2).

We claim that at least one af;, e; disappears in the shrinking process which
transformsT" into an admissible chaimd such that|A4| < 4. Indeed, the subtrees
Bi =Gy @ (™) and B, = L ® (™) are nonempty (becaugé’) # (1)) and at least
one of them contains more than one vertex (otherwise ¢; — 1 for eachi = 1, 2,

S0 A(1) = cic2 — ci(c2 — 1) — (c1 — L)e2 < 0, which is absurd); since the shrinking
is initiated in A, if no e; disappears thefid| > |B1| + |B2| + 2 > 5, a contradiction.

Note, also, that the shrinking process is unique, i.e., tlteroin which the vertices
disappear is well-defined. This allows us to give:

DeriniTioN 6.6. We denote b¥™ the set oft € £ for which e; disappears before
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ey (or ey disappears bué, does not). Giverr = (1, 71, T2) € &, let t = (1, T, Th).
Thent* € £ and exactly one of, t* is in £*.

Lemma and definition 6.7. Lett = (1, T1, %) € £, with notation7; = (2 1).
(1) If = is non-minimal in(T(}), <), thent € £*.
(2) T e&"ifand only ifc; < co.
Givent € & minimal in (T(}), <), definet* = (£)*. By 6.4,7* is defined and belongs
to £.
(3) If T € £ is minimal in(T(}), <) thent € £* <= 1* € £*. Moreover, ift € £*
thenci < ¢5 = c1 < c2, where we write

. _ pi 1 p5 1
£ <1’ <C3; a*> ’ (Cf a* ’
1 1 2 Y2

4) If © € £ is minimal in (T(}), <), and if t € Ty (ao, a1, az) for some pairwise
relatively prime positive integeragy, ai, ap, thent* € Ty (ao, az, a1).

Givent € &*, definet* = (¢*)™.

(5) If T € £ thent* is defined, belongs t6* and is minimal in(T(}), <).

(6) If T € £ then(z*)* =7 and, if t is minimal, (z*)* = t.

Proof. Letl =G 1y ® 1.

Suppose that is non-minimal. Then, by 2.19(f22) € Ti(L) for somek € N,
S0 (2.15) the weighted paﬁ(’c’j) contracts to a linear weighted pair. Equivalently, the
tree A U {e1} U G ® (’C’ll)) is equivalent to the empty graph (see the picture (23) in
6.5). In particulare; disappears before;, sot € £, which proves assertion (1). Let
us continue and show thai < c; in this case. By 5.38 of [2] we have

ML) = aipi(c1 — p1) — 1 axcf —arcrpr — 1
aicipyr —1 alcf ’

so (%) € Tu(L) implies:

1 —p)—1 2_ ~1
(24) p2\ _ ML) _ (@pilea = p1) o™l a1€21P1 .
o k ajcipr—1 acs

Consequently, ifc; > ¢, thenk =0 and

p2\ _ (a1pilci —p1) —1
(@) <02> - < aicipr —1 )

SO c1 = ¢ = ajc1p1 — 1, so (11]71 — 1)61 <1, s0a;=1= P1. Hence, T = (C]i ]]_')

and 7> = (23 1) and it follows thatA(r) = ci(ey — 1) — ca(er — 2) — (e — 1)1 = 1.

c1—1ap

So, by assuming that; > c¢,, we derived thatA(r) = 1 = a;, which contradicts the
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assumption that € £. We conclude that; < ¢, wheneverr € £ is non-minimal in

(T(%), <)
Assume thatr € £* is minimal in (I(f), <). Then (6.4, 6.2)("?) € Cont(() and

we may consider itsC-dual (’C’ZZ) € Cont(£"). We claim that
(26) E‘z < C1.

For this argument, refer to the picture (23) in 6.5, but let theights inG_q) ® ()
be as follows:

—a;—1 Wy wy

€1

The shrinking ofI" = £® 7, to an admissible chaitd can be broken into two
parts,I’ > I'" > A, wheree; is still present in["" and either (i)e, has weight—1 in
I or (i) I'" = A.

Since (#2) € Cont(£), we also have a contraction of weighted pairs

27) c(’c’z) > (.. [ieal, 6,0, v, [l - )
2

(for somei, x, y) wheree; is the vertex of weight 0 in the right hand side. Thus the
contraction (27) increases the weight@f consequently, the weight @ is increased
by the contraction™ > I". It follows that all vertices ofA U {e1} (see (23)) disappear
in the contraction” > A, because we know that disappearsd € £¥). Thus

£® <p2> > (W), Wi—1, ..., W)
2

for somei > 1, wherew, > w; (note thatZ ® (’C’j) cannot contract to the empty graph
becauser is assumed to be minimal). Then 6.1 gives

o
N
1

“ det<£ ® (”2>) = det@!, wi_1, . .., wy) < det@w;, wi_1, ..., wi)

2

detw;, ws_1,..., w1) = det(Q(l) ® (p1)> = ¢y,
c1

IA

the last equality by 2.12. This proves (26).
Note thatt € £ implies thata;A(r) > 2 so, by 6.2 and (26),

c2 =a1c1A(t) — ¢2 > 2¢1 — ¢ > cy.

This shows that; < ¢, wheneverr € £* is minimal in T(). In view of the first part
of the proof, we obtain the “only if” part of assertion (2)ei.t € ¥ = c¢1 < ca.
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The converse is much easier: dfe £\ £*, applying the “only if” part of (2) tor* €
E* givescy < c1; thus (givent € £) ¢1 <c; = 7 € £ and (2) holds.

If ¢ € £ is minimal in T(}) then (6.4)7"is defined and belongs t6; thus t* =
(7)* is defined and belongs 8. Observe thatc, c3) = (¢2, c1).

Suppose that € £ is minimal in T(f). If r € £ then (26) reads} < ¢}, so
t* € £ by part (2). Conversely, it* € £* then part (2) gives] < c5, or equivalently
Cp < c1; Sincecy +¢ = ajciA(r) > 2c1, We getey < ¢p, SO0t € £F by part (2). Hence,
t1eét < t*e & and (3) is proved.

Assertion (4) follows immediately from 6.2.

If t € £ thent™ € £\ &Y, sot* is minimal in T(f) by part (1), so (6.4)* =
(z*)~ is defined, minimal and belongs . Clearly, ¢*)* =1 € £*, sot* € £* by
part (3). This shows that (5) holds and (6) is obvious. ]

Corollary 6.8. For each element of Eyy = {t € £ | 7 is not minimal in
(T(t), <)}, define[t] = {r, *, (z*)*,...}. Then{[t] | T € Eyu} is a partition of £*.

6.9. Suppose that € £* is minimal in (T(}), <) and that, for some surfack
satisfying (), r € T(X). Thent* € T(X). Indeed,t"= t by part (2) of 6.2, sore
T(X) by 2.25, and consequently* = (7)* € T(X).

Corollary 6.10. If X is a surface satisfyingf) and such thafl(X)NE& # @, then
X admits a basic affine ruling of type Il

Proof. Chooser; € T(X) N&; replacingz; by 7, if necessary, we may arrange
that 1y € £. Then (6.8)t; € [7] for somet € Eyy and, by iterating 6.9, we obtain
t € T(X). Sincetr is non-minimal, we may considetr’ € T(f) such thatr > t’;
note that7] has two columns buf; has at most one, wher€ = (m, T;, T,). We have
' € T(X) by 2.25, sot’ = disc(X, A, F) for some affine rulingA of X and some
F € A,. SinceT] (resp.T;) has two (resp. at most one) columns,is basic and of
type II. ]

Lemma 6.11. If ao, ay, a, are pairwise relatively prime positive integers then
T (a0, a1, az) C €.

Proof. Lett = (m, T1, T5) € Ty (a0, a1, az); by 2.28, we may writel; = (7 )

(1 =1, 2). DefineGg, G1, G, as in 2.26 and let us also write = Go; then detG;) = g;

(all i =0,1,2) and a calculation using 2.12 and 1.11 gives @gX= A(r)aiaxcico —
2 2
aycy — azcs.

By 2.12, G; has discriminant; and subdiscriminants; —1 anda; —1. Sincer €

T (ao, a1, az), this implies that £1)a; = ag (Moday), SOag+a; +az; = 0 (Moday).
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Similarly, ag + a1 +a, = 0 (moday). Since gcdds, az) = 1, this implies
(28) agtay +a; =yaiap,, forsomey eZ, y > 1.

Note thatG, shrinks to an admissible chain and has discrimingntSince §a,—
1)a; = ap and (ay — 1)ap = a1 (Mod agp), the fact thatr belongs toTy (ao, a1, az)
implies that the subdiscriminants ¢fy are congruent tgza; — 1 andya; — 1 modulo
ag. On the other hand, the linear chain

' —ay -V —az

shrinks to an admissible chain, has discriminagptand subdiscriminantga; — 1 and
yaz — 1. So, by 1.15,

(29) Gy is equivalent tol’.

In order to show that € £, there remains to show that(z) # 1 or min@, a) #
1. Assume the contraryA(r) = 1 and mingy, a2) = 1. Replacingr by * if necessary,
we will assume from now-on:

6.11.1. e; disappears before,.

(By 6.5, at least one o0&, e, disappears in the shrinking process which trans-
forms I' = G into an admissible chain—note that 6.5 is valid whenevesatisfies
conditions (1) and (2) of 6.3, which is the case here.) Inipalar we havem = 1,
since Go is not a minimal weighted tree.

We will obtain a contradiction only after having establidhgeveral facts. We be-
gin with:

6.11.2. a1=1,a, > 5, c1 > ¢, and the contraction ofA increases the weight of
e by more thanl.
To see this, consider the result of shrinkingin (23) (wherell = Go):

y X
(30) e e
Since e; disappears before,, we must haver = —1 andy < x; thus -1 —a, <

y < —1, soa, > 2 and consequently; = 1. Let us be more precise. Since, in (23),
A contains at least 3 vertices, we may consider the situatioarevthere remains two
vertices inA:

wy X2 X1 w1

€2 €1

(wherew; > —2, sincea; = 1). Since this contracts to (30), we must have, ) =
(-1, -2) or (-2, —1); in fact we must havex(, x,) = (-2, —1) because the other
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possibility would givex > 0 in (30), which is absurd. So the contraction Afin-
creases the weight af, by more than 1. Recall thaty = A(t)arazcicz — arcs — axcs
is strictly positive; withA(r) = 1 =ay, this implies thatazca(cr — ¢2) > ¢2, S0 c1 > 2
anda, > 5, which proves 6.11.2.

6.11.3. Gg is equivalent to a tree with two vertices, one of which hasghtei
—ay. Moreover, ifT'” is any tree with two vertices and equivalent @, then one of
the weights inf” is —ax.

The first assertion is (29) with; = 1; the second sentence follows easily from the
first one. We also claim:

6.11.4. 7 is minimal in T(3).

Assume the contrary then, arguing as in the proof of 6.7 (2@ &nd (25)),
we obtain7y = (1) and 7> = (827 1). ThenGo = (—c1 + 1, —1 — ap,[c1 —
2], -1, —c1,[c1]) = (—c1 + 1, —ap + c1 + 1); since—ay +c1 +1 # —ay, 6.11.3 implies
that —c; + 1 = —ay, so the other weight is-a, +¢; + 1 = 2> 0, which is absurd.

Recall thatm = 1 and let us use the notation:

(31) L=6y®D 1= -1 [nol,z1, - [mh-1l, z4, [1a])
wheren; > 0, z; < —3 and where the distinguished vertex is the one of weight 0.
Note that the hypothesis of 6.2 is satisfied, (§6) € Cont() and ¢ is defined. In
particular, Cont() contains a nonempty tableau, 80> 1.

6.11.5. > 2 and, for some € {1,...,h — 1},

(32) Go=LDOT>(..,zi1,[mial,z+1 —az —1 [, zis1, - - ).

Moreover,n; > 2 and e; is either the leftmost or the rightmost vertex[ig].

We have(fzz) =cont(,i;x, y) for somei € {1,..., h} (for suitablex, y); then
p2 "
(33) C(q) > (..., zi—1, [nizals x, 0%, y, [mi], zivas -2 ),

or equivalently:
(34) Go=L D> (.. zi1,[ni1l.x, —az, v, [, zis1, .. ),

wheree; is the vertex of weight-a,. Since the contraction (34) increases the weight
of e, by only 1, 6.11.2 implies that some vertex Afis still present in the right hand
side of (34). It follows that the vertex of weight belongs toA, sox =z;+1, y = —1
and (32) holds. Since; disappears before,, ¢; is in [n;]. If i =k then the right hand
side of (33) shrinks to a linear weighted pair, which conttd6.11.4 (2.15, 2.19); so
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i < h and consequently > 2. Sincec; > ¢, we have in particular; > 2; soe; has
two neighbors inZ, one of them has weight2 and the other has weight strictly less
than —2. This proves 6.11.5.

Obseve thatr “is defined and satisfies the hypothesis of the Lemma as well as
A(F) = 1 = a;. We claim thatr™also satisfies 6.11.1: if not, ther){" does, so
6.11.2 applied tod)* gives<c, > c1, which is not the case because we haye ¢, =
aic1A(t) = ¢1, SOc; > C2. SO we may, if we want, replace by 7. Note, however,
that if (in 6.11.5)e¢; is the leftmost vertex ofr;], then the contrary claim holds for
7. In other words, we may arrange that:

6.11.6. e is the rightmost vertex dfn;].

Consider the weighted paif consisting of a single vertex of weight 0; then we
may write Z(?!) in one of the following forms:
@ (Bl yn-1, - -+, ya, [xa], y2, [x1], =17, y1, [x2], y3, [xa] - - ., [xn—1], ya),
©) Ons [xn—als - -+, ya, [x3], y2, [x1], =17, ya, [x2], y3, [xa] - . ., yu—1, [x4]),
where y; < -3, x; > 0 andx, > O0; e; is the vertex of weight—1 and
the unique vertex ofZ is the leftmost vertex in (a) or (b). Note that, because of
6.11.6, we don't need to consider more cases than (a) and.¢b) dases of the type
(..., y1, =1%,[x1], . . .)); note, also, that is odd in case (a) and even in case (b). The
fact that (a) (resp. (b)) shrinks to a single vertex of weighgives:

(35) N -3, ifl<j<h,
X s =
U -2, if j=1orj=h.

Note thatz; = y,, n; =x1 +1, z;+41 = y1, etc., and rewrite (32) as

([xh]v Yh—1s++s [x3]7 )’2"'1, —dap, _17 [xl]’ _27 Y1, [x2]7 et [thl]’ yl‘l)vor

(36) Go=
(yh’ [thl]a RN [x3]’ y2+1’ —day, _17 [xl]a _2’ Y1, [XZ], <o Y1, [-xh])v

in cases (a) and (b) respectively. Next we show:

6.11.7. Case(a) is impossible
Assume that we are in case (a). By (36),

(37) Go= ([xn], yh—1,-- -, [x3], yo+ 1, —ap + x1+ 2, y1 + 1, [x2], . . ., [xn=1], u),

where the right hand side contains at least 5 vertiées @ by 6.11.5, soh > 3 since
it is odd; also recall thak;, > 0). By 6.11.3,—ay + x3 +2 = -1, so:

(38) ar=x1+3;
together with (37), this gives

(39) Go = ([xn], yn—1, - -, [x3], yo + 2, y1 + 2, [x2], - . -, [xn—1], yn),
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which has at least 4 vertices. Sel € {y, +2,y; +2}. If y; +2 =—1 then the right
hand side of (39) shrinks ta .., [x3],y2+2+x2+1,...)=(...,[x3],0,...) by (35);
since there can't be a nonnegative weight in a tree equivébet,, we conclude that
y2+2=-—1 and, by (39),

(40) Go = ([xn], yn—1, - -» ya+ L xa+y1 + 3, [x2], ..., [xn—1], yu).

Note that if 2 = 3 then (40) read€;o > (x3 + y1 + 3, [x2], y3). More generally, we
claim:

(4)  Go= (i +yu o+ p.Ludl ) wh > =S
> (xp - ,[xn_al, yr), wherep = )

0= Xn T Y27 P, [Xn-1], ) p 2 if h>3
Indeed, if2 > 3 then we can continue contracting (40) as long as we have thare
2 vertices. At each stage of the process, the next vertexs@pgear is clearly identi-
fied and the contraction process inescapably leads to the mand side of (41), unless
contraction stops before that point; since the right hadé sif (41) has at least 2 ver-
tices, contraction doesn't stop before that point and (4d3idr Now (41) implies that,
if h >3,

x3+y1 = —4, x2+y4 = =3,
X5+ y3 = =3, x4+ ye = =3,

(42)
Xp—2 * Yp—4 = =3, Xp—3t yp—1 = —3.

(These are obtained by writing down, at each stage of theracidn process, the
equation which corresponds to the fact that the next verexlisappear has weight
—1.) SinceGy contracts to an admissible chain, (41) implies thatr y, >+ p < —1,
SO xj, + y,_2 < —3; together with the first column of (42), this gives:

(43) xj+yj—» <=3, forall odd j such that 3< j <h.

(Note that, although the notation in (42) assumes that 3, (43) is valid whem =3
as well.) We claim that:

(44) y;j > —ay for all odd j such that 1< j < h.

Indeed,y; = —2—x1 > —3—x1 = —ap, by (35) and (38); ifj > 1 theny; > —3—x; >
yj—2, by (35) and (43), so (44) holds.

We may now obtain a contradiction from 6.11.3, (41) and (48, +y, o+ p =
—1 thenGo > (-1, y,) by (41), soy, = —a, by 6.11.3, and this contradicts (44). If
xp +y,_2+p < —1, then the right hand side of (41) must be an admissible chéhm
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exactly two verticesx;,_1 = 0); sincey, # —ay by (44), we havex, + y, o+ p = —az
by 6.11.3, but this is absurd becauge, > —a, andx, + p > 0. This proves 6.11.7.

6.11.8. Case(b) is impossible
This is very similar to 6.11.7 and we only sketch the arguméssume that we

are in case (b) (sa is even). By (36),

B7)  Go=(yn, [xn=al-... [x3l,yo+ 1, —ax+x1+ 2, y1 + 1, [x2], ..., yu-1, [x4])

and we deduce that, = x; +3 andy, + 2 =—1 (as before); we also find:

(a1) Go= (i-v+p. [, where p={ 3072
and if h > 2:
xz+y1 = —4, X2 +ys = =3,
42) x5 +y3 = =3, xa+ye = =3,
Xp—1+ Yn-3 - =3, xp2ty - =3

Then (42) implies (43), and (44) follows; together with 6.11.3 and'J4this gives a
contradiction. So 6.11.8 holds and the Lemma is proved. O

Corollary 6.12. Let X be a surface of typéa, b, c] for some pairwise relatively
prime integersa, b, ¢ > 1. ThenX is isomorphic toP(a, b, c).

Proof. By 2.22.2,X admits a basic affine ruling; if A is of type | or Il then
the assertion follows from 3.2 and 5.2.

Suppose that\ is of type Ill, chooseF € A, and lett = disc(X, A, F); by 2.27,
t© € Ty (ao, a1, az) for some permutatiomg, ai, a, of a,b,c. Then 6.11 gives € £
and, by 6.10,X admits a basic affine ruling of type II. O

REMARK. SupposeX satisfies f). Then X has at most three singular points (1.8)
and X admits a basic affine ruling (2.22.2). ¥ admits a basic ruling of type Il
(resp. 1), thenX has at most one (resp. two) singular points not a rationabléou
point. Hence in cas& has three singularities that are not rational double ppiBi®
gives a stronger statement than 6.12, namely:

Let X be a surface satisfyingt). If the discriminantsag, a1, a, of its singular

points are pairwise relatively prime, and K has three singularities that are not

rational double points, therX = P(ag, a1, a2) and nogq; divides the sum of the
other two.
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Corollary 6.13. Let ag, a1, ap be pairwise relatively prime positive integers.
Then the sefly (ag, a1, a2) UTy; (ao, az, a1) is nonempty if and only ifiia, | ag+ai+a.
Moreover, Ty (ao, a1, az) U Ty (ag, az, a1) is equal to

U e @ @) U @ @ (@)
T€E

where E denotes the set of elementsTf (ag, a1, a2) U Ty, (ao, az, a1) which are non-
minimal in T(%).

Proof. Follows from 6.11 and 6.8. O

7. Explicit description of the set To(P)

Let P = P(a, b, c), Wwherea, b, ¢ are pairwise relatively prime positive integers.
By [2], it is clear that the problem of describing all affindings of P reduces to that
of describing the seflo(P). Now we have:

Corollary 7.1. To(P) is the union of the setd'p(ao, a1,a), for all P €
{I,1n.1,11.2, 111} and all permutationgao, a1, az) of (a, b, c).

Proof. By 2.27,To(P) € | Tp(ao, a1, az). For the reverse inclusion, consider
T = (m, T1, Tz) € Tp(ao, a1, az); then v = disc[X, A, F] for some [X, A, F] € So(1),
because disc So(1) — To(}) is surjective (2.24). Then (2.23) the resolution graph of
X is equivalent to G, ©T1)ST>, which is equivalent t&u, 4,,a,) = Gla.p.c] DY defini-
tion of Tp(ag, a1, az). SO X is a surface of typed], b, c] and 6.12 implies tha = P.
Consequentlyz € To(P). ]

So our task is to describe the SBp(ag, a1, a) explicitely, for each permutation
(ao, a1, ap) of (a, b, c) and eachP € {I,11.1,11.2,1ll }. We begin with an observation:

7.2. Given pairwise relatively prime positive integets, a;, ay, it is clear that
Edq(ao, a1, a2): ag = aiazxp — azX1 — A1x2
has a unique solutionxg, x1, x») € N satisfying 0< x; < a; and 0< x, < a,. Then
xo>0and fori =1, 2we havex;, =0 < ¢; =1 andx; € {0,1} < a; |
(ao + a1 +ayp). For eachi = 1,2, there is a unique; satisfyingx;x; =1 (moda;) and

0 <x! < a;; and a uniquex/ € Z satisfyingx;x; — x/a; = 1.

Proposition 7.3. Given pairwise relatively prime positive integets, a1, az, the
set T\(ag, a1, az) has exactly one element, namely
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< <X1> <x2>>
xO’ b 9

ag ar
where (xg, x1, x2) is the unique solution oEq(ao, a1, az).

Proof. Clear from the proof of 3.2. ]

Proposition 7.4. Given pairwise relatively prime positive integets, ai, ay, the
set Ty .1(ao, a1, a2) has at most one element, and is nonempty if and onlugf+
ai + ap)/az is a natural number strictly greater tha@. Moreover, if Ty 1(ao, a1, a2)
is nonempty then letxo, x1, x2) be the unique solution t&aq(ao, a1, az), let x3, x{' be
as in 7.2 and define

_ _ !’ + 4 _ !/
(45) (pz) _ <a1 X1 — X} xl) + (o x2) (al x1>;
C2 a; — X1 ax

then the unique element @, 1(ag, a1, a2) is

(46) (1’ (Zi) <f§ alz)) '

RemaARk. Sincer — t* is a bijectionT) 1(ao, az, a1) — Ty 2(ao, a1, az), a de-
scription of T 2(«ao, a1, a2) is easily obtained from the above statement.

Proof. Suppose that = (1, 71, T2) € Ty .1(ao, a1, az) and write 71 = () and
T, = (% L) (see 2.28). We saw, at the beginning of the proof of 5.1, #hatao + as;
SO (ag+ai+ay)/ay is a natural number at least 2 (we will see, below, that it satgr
than 2). In particular, we have, € {0, 1} by 7.2.

By 5.1, t is not minimal and its immediate predecessbbelongs toT(ag, a1, az2),
so (by 7.3)7" = (xo, (;1) (:é)) where fo, x1, x) is the unique solution of Eqg, a1, a»).
This implies thatr = (1, (2) T(;?)), wherex; is defined in 7.2 and’ € T, 1(L"),
with £ = G1)® (I*). Note that the first column of must be(’2) and that we may
write 7 = (%2) (%) (recall thatx; € (0, 1)). So (%) ()" ™ € T,,—1(£"), which implies
(72) € Tup-x,(L); thus (%) is the matrix productM (£')( ' ), which is the same as

c2 X0—X2

M(L) (') by 2.14. By 5.38 of [2] we have

Moy = (HT IR ),
ap — Xy ag
so (45) and (46) hold.
If (ap+a1+az)/az =2 thenag + ay = ap; feeding this in Eqdp, a1, a2) and manip-
ulating givesx; = a; — 1 =x7, x{ =ax —2 andxg = x2; then (45) givesp, = 0, which
is absurd. Henceaf + ay + az)/a, > 2.
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Conversely, suppose thatig(+ a; + az)/az is a natural number greater than 2;
in order to show thafT 1(ao, a1, az) is nonempty, consider the unique element=
(o (1)) () of Ti(ao, a1, a2), let £ = Gy (%) and define(”2) = M(L)(, 2, )-

Note thatxg > 0 andx; € {0, 1} imply xo — x, > 0. We claim:

(47) (”2) € T (L)
2

If this is the case then it is easy to see that we may constmcelementr of
Ty 1(ao, a1, az) by reading the above argument backward. Observe that, figitan
of T,—, (L"), if (47) is false then we must havey—x, = 0, so (i)xo = 1 =x; and (ii)
L must satisfy the conditionu); = —2 for all i” (see 2.13). Now (i) and Ea, a1, ay)
give ag + a; = az(a; — x1) and (i) givesxy = a3 — 1, SOag +a; = ap, a contradiction.
So (47) holds and the proof is complete. ]

Proposition 7.5. Let ag, a1, a» be pairwise relatively prime positive integers.
Then at most one element @ (ag, a1, a2) is non-minimal inT(i) and such an el-
ement exists if and only #ia, | ag + a1 + a; and ag > a; — ap. Moreover, if such an
elementr exists thenr = (1, (22 1), (%2 })), where

€1 az €2 az

@ ()e(,1) ()

o () )

c2 aicipr—1 ayc]

and where(xg, x1, x2) is the solution toEq(ag, a1, az).

Proof. Suppose that € Ty (ag, a1,a2) is a non-minimal element ofT(}).
By 2.30, the immediate predecessor of r belongs toT) 2(ao,a1,az), SO 1;° €
T 1(ao, az, a1). Now 7.4 describeg,* as follows: Let o, x2, x1) be the unique so-
lution to Eq@o, a2, a1) (equivalently, §o, x1, x2) solves Eofo, a1, a2)) and definexs,
x5 as in 7.2. By (28),a1a, divides ag + ay + ap; thus x1, x» € {0,1}, x; = xo and
x5 =xp — 1. (Note, also, thally 1(ao, a2, a1) # @ implies that go + a1 + az)/ay > 2, so
ag > a1 — ay.) Define

’ _ _ / + 17 _ i
(50) <p1> = (az 2T x2> + (xo — x1) (az x2>
Cc1 ap; — X2 az
o —1 _
= (az 2 ) + (xo — x1) (az xg)’
az; — X2 a

= (1 () () = (2 (2 (2 .):

then (7.4)
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soT = (1, (7a) Cz))

Let £ =G yy® (2 ). Thent = (1, (1 1), T (%)), whereT e To(L'). Let

c1 ay (SR

(*) be the first column off, then (’;;)(i)l_x2 =T € To(L'), s0 () € T (L"), so

(") = M(£)(, 1) = M(LY (). Now 5.38 of [2] gives

17.?(2

M(L) = <a1[7/1(61 —py) — 1 arc? —arerph — l) |

ajcip; —1 alcf
SO
p2 aipycr — py) —1 aicipy — 1
(51) = 5 v +(1—xp) L)
c2 aycf —aicip; —1 aicy
Now

(1 (= Pr LY (P2 LN\ oy (Pr 1) (P21
’ C1 a ’ Co dp ’ C1 ag ’ Co dy ’
where p1 = ¢; — p}. Formulas (48) and (49) are obtained from (50), (51) and=
c1— pi.
We leave it to the reader to verify that, dia, | (agtai+az) andag > a;—ay, then

T (ao, a1, az) contains a non-minimal element @f(i) (there is a similar argument in
the proof of 7.4). ]

Our next task is to make 6.13 more explicit; this is done in B&low.

DeriNiTIoN 7.6.  Letag, a1, ax be pairwise relatively prime positive integers satis-
fying ayay | ag+ay+ap, and writey = (ag+ay+ay)/(araz). Then o, a1, a;) determines
two Sets,W.ar.ap) @nd W@-@42) which we now proceed to define.

7.6.1. Each 2x 2 matrix M (with entries inZ) determines a pair of sequences

S(M) = (So,S]_, 52, ), t(M) = (to, 1, l‘2,...)

defined by

So S Sp—1 1t Su+1 = agyt,
( 0 1) =M and { n—1 l1+1_ 2V 1y )
o 11 In—1Ftth+1 = 1Y Sy

7.6.2. Let M = (11) and defineu, = s,(M) and v, = 7,(M). Note that the be-
ginning terms of these two sequences are:
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n|l0 1 2 3 4
up, |11 axy—1 azxy(lary —1)—1 axylary(ay —1)—1] —(a2y — 1)
v, |1 1 a1y -1 awy(ay —1)—1 arylazy(ary —1)—1] — (a1y — 1)

7.6.3. Let M’ = :;jﬁ;i jgj , Where fy, x1, x») is the solution to Eql, a1, az),
and define, = s,(M’) and n, =1,(M’). Note that, in each of the following cases:
() a1 >1anda, > 1,

(i) 1=a1 < ay;

(III) ay > az =1

(iv) a1 =1 =ay,

the beginning terms of§,}52, and {n,}52, are as follows:

n 0 1 2 3 4
() n —y 0 v ay? arazy® =y
T —y 0 y  ay? apazy® —y
(i) n -y -1 vy ay+l  ayi-y
Mn -y -1 0 1 y2 y(ay+1)—1
(i) n -y-1 0 1 y(ay +1)-1
M —y -1y ay+1l ay®—y
(iv) & =N -y -1 -1 1 y+1 yiy+1) -1

7.6.4. For everyn € N, define

fn - (1, (é:n l) , <Un+l — Nn+l 1)) and gn = (1’ (M,,+1 - En+1 1) , (nn l))
U, ai Un+1 a Up+1 ay Up az
(we are not claiming that these always belondl{d)). Then define

W { {f2, 83, fa, 85, ...}, f ag>ay—ao,
(ag.a1.az) —

@, else
and

W a.aras) — {82, f3. 84, f5. ...}, if ap > az —ay,
@, else

Proposition 7.7. Let ag, a1, ap; be pairwise relatively prime positive integers.
Then Ty (ao, a1, a2) is nonempty if and only ifiyas | ag + ag + ap, in which case we
have

Ty (a0, a1, a2) = Wiagag,a) U W12,
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RemARK. If aias | ag+ a1 +a andag > |a1 — az|, then

Tlll (aO’ as, 612) = {fz’ f37 f47 .. } U {g27 83, 84 .- }

Observe, also, thaly (ao, az, a1) = {t* | T € T (ao, a1, az)} holds in all cases.

Proof of 7.7. The fact thal (ao, a1, az) is nonempty if and only itz1a, divides
ap +ay +ay is an immediate consequence of 6.13. Assume dhad | ao + a1 + ap. If
ap > a; — ap then, by 7.5,T, (ao, a1, a2) has a unigue element which is non-minimal
in T(}), and a direct calculation shows that this elementfis(one verifies that, in
each of the cases (i—iv) of 7.6.3, the elemergiven by 7.5 is equal tg>). Similarly,
if ap > az — a; then the unique element &F (ao, a2, a;) which is non-minimal in
T(f) can be seen to bgy. Again by calculation, one checks thgk, 15, (f3)*, ...} =
{f2. 83, fa. g5, ...} and that{g;, (g5)*, ((¢2))*. ...} = (g5, f3. 84 f5,--.} (one can
use parts (4) and (5) of 6.2 to compute—~ t* explicitely). The desired result follows
from this and 6.13. O

ExavpLE 7.8. The following is a description ofg(P?). First, 7.3 and 7.4 give:
e Ti(1,1,1)={(1, 1,1} (wherel is the empty tableau);
o Tya(l,1,1)={(1,1(3})}
o T2l 1,1)={(1(31).1)}

We haveT, (1, 1, 1) = {f2, f3, fa, .. .}U{gz, 83, 84, .. N by 7.7, by 7.6.3 (case (iV),
with y = 3), we find thatu, = v, and§, =n, for all n, and:

Uy =3Up_1 — Up_2, ug = 1, wu =1,
Sn = 3én—l - En—Zv éO = _4’ él =-1
So,

aesn= [ GIEDEEDED CEIED )
AEEP G () E) () ()

ExampLE 7.9. We now describ&y(P(2, 3,5)). By 7.3 and 7.4,

s (o) ()]
 eso-{00)(3)]
 wzo- (o). ()]
 esa-{0)-()
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+ wzo-|(e(2) ()}
+ msa-{(e(0) ()}

1 3
o Tiui(352)= (1, (5>,(4 )) ;
31 1
o Tiu23,25)= (1, (4 2) , <5>> ;
2 11
o Tyai(532)= (1, (3> , (4 2)) :
_ 11\ (2
o T||.2(57 27 3) - (17 <4 2) 5 (3>> .
We haveTy, (3,5, 2) ={g2, f3, g4, f5,...} by 7.7; by 7.6.3 (case (i), witly = 1),
Up—2+u, = 2U,,_1, ug = 17 ui = 11
Up—2t Uy = 5“;1—1, Vo = 1, v = 1;
Sn—Z +%-n = 277;1—1, SO = _1, él = 01
Mp—2tF N, = 5%‘11717 No = _17 m = 07
SO
_ 51 11 21 221 391 91
(G EDEEIED CEIED )
Also,

Tlll(B’ 27 5) = {ggv fng gZ’ f5xv }
_ 1 11 51 1 22 1\ (21 1 91 391
A GG (o) () (5 9)-

8. Further remarks

Corollary 8.1. Letag, a1, a, be pairwise relatively prime positive integers. Then

A(T) = m, for all T € Ty (ao, a1, a2) U Ty (ao, az, az).
aiaz
Proof. By 6.11, 6.7 and 6.8, there exist§ € Eyy N T (ao, ai, a;) such that
A(t") = A(r) (for a suitable permutation, j of 1, 2); thus we may assume thate
Ty (a0, a1, az) is non-minimal inT(}). Write = = (1, (2 &), (% 4)), where (%*) and
(fzz) are given by 7.5. Then (by (49))

C1— P11 P2
C1 C2

A(t) =c1ca —cipr — cop1 = =A+(1-x2)B,
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where
- — -1 - - -1

A= |t P apiles— pa) —ps and B=[1T P aci(cy 2171) .
c1 ajcipr—1 1 aci

Thus

A(r) = p1+ (1 —x2)c1
= 1+ (xo — x1)x2 + (1 — x2)(az — x2 + (xo — x1)az)
= Xg— X1 —Xp+ 2,

where the second equality follows from (48) and the thirdadity can be verified in
each of the cases; =0, xo = 1. On the other hand, Egy, a1, ay) gives

aptaita 1—x 1—x
otax 2=xo+ 1, 2
aiaz ay az

=x0+ (1 —x1) +(1—x2) = A(7). 0

Corollary 8.2. Let ag, a1, a, be pairwise relatively prime positive integers sat-
isfying ayay | ag + a1 + ap, and write y = (ag + a1 + a2)/(a1a2). Then the elements
of Ty (ao, a1, az) are the triplest = (1, (2 1), (7 L)) such thatci, ¢z, p1, p2 are
positive integers satisfying

2 2 _
(52) Ya1ac1c2 — a1€y — azcs = do,

(53) cico—cipp—ca2p1=y (O<pi<c, i=12).

Proof. Ift = (1, (1(111 all) y ([C’Zz alg)) e Ty (ao, ai, az) U Ty ((lo, as, a]_) then, as noted
at the beginning of the proof of 6.11, we hawg = A(t)aiazcico — aics — azxe3; by
8.1, we get that (52) and (53) hold.

For the converse, we use the notations of 7.6. ObserveTh@ set of positive
solutions (c1, ¢) to (52) is {(u,, vu+1) | 7 € N} U {(1n+1, v,) | n € N}; it follows that
gcdie1, c2) = 1 and consequently: (ii)f we give ourselves a solutiofry, ¢) of (52),
then (53) has at most one solutiofp1, p2). (We leave (i) as an exercise for the reader;
(i) is obvious.)

Let = (1, (20 1).(%2)) be such that (52) and (53) hold; by observation (i),

(54) (c1, €2) = (Un, Vys1) OF (U1, )

for somen > 0. Let n be minimal such that (54) holds and note that 2 because
(53) impliesc; > 1 andc, > 1. Definet’ = f, if (c1,¢2) = (U, v+1) @nd t’ = g,
otherwise. Note that if

(55) = Wiao,a1,a2) Y W (@0-a1.a2)
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holds thent’ € Ty (ao, a1, az) by 7.7, so (52) and (53) hold for’ by the first part of
the proof, so observation (ii) implies that=t’ € Ty (ao, a1, a2) and we are done.
Sincet’ is f, or g, with n > 2, (55) is obvious ifag > |a; — az|; SO we may
assume thaty = @y — ap > az — a; (the other casegg = a; — a;, has a similar proof).
Now ag = a; — ap implies thata,y = 2, which implies thatu,, = u,,+1 andv,,_1 = v,
for every oddm > 0. Sincen is minimal such that (54) holds, we havé= f, if n is
odd andt’ = g, if n is even. Sot’ € {go, f3, g4, f5, ...} = W@a@) gnd (55) holds.
O

SPECIAL PAIRS
In the following, Al denotes the affine line minus one point.

8.3. Let X be a surface satisfyingf and letA be an affine ruling ofX.
1. An ordered pair ¥, G) of members ofA (F,G € A) is called aspecial pair of
A if () F #G, (i) F € A, and (iii) {F, G} contains all multiple members of.
Note the following facts (3 and 4 follow from 1.11 of [2]):
2. A admits a special pairA, is nonempty and, givel € A,, the definition ofA,
guarantees that there exiss € A such that(F, G) is a special pair.
3. If (F,G) is a special pair ofA then X \ supp{ + G) is isomorphic toA® x Al
in such a way that the projectioa® x Al — Al extends to a rational max — P!
which is compatible with the linear system (i.e., the fibres of the map are members
of A).
4. Suppose that/ is an open subset of isomorphic to the product ofi! with some
open subset oP?, in such a way that the so obtained rational map— P! is com-
patible with A. If X \ U contains at least two curves, then there exists a special pai
(F, G) of A and members\y, ..., M, (n > 0) of A such thatU = X \ suppF +G +
My+-.. Mn)_

Given a tableaul’ = (222 &) e 7, we define (as in 5.35 of [2]u(T) =
c1---c (Whereu(T) =1 if T is the empty tableau). The following is a special case
of Corollary 5.37 of [2]:

8.4. Let X be a surface satisfyingi), let A be an affine ruling ofX and let
(F, G) be a special pair ofA. If (m, Ty, T,) is the discrete part ofX, A, F), then

F=u(T2)C2 and G = u(T1)Cy,
where C1, C, C X are irreducible curves. MoreoveRic(X,) = 7Z & Z/dZ, where
d = ged@(Ty), n(12)).

Part (1) of the following result was also obtained in [1]:

Corollary 8.5. Let the notation be as i8.4 and suppose thaX = P(aq, a1, as)
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whereag, a;, a; are pairwise relatively prime. Then
(1) gcd(deg(y), deg(Cz)) = 1;
(2) n(Ty) =deg(C2) and u(T2) = degCy).

Proof. We haveu(T:) deg(C,) = u(T1) deg(C1) and gcd(Ty), u(72)) =1 by 8.4,
so assertions (1) and (2) are equivalent. By part (2) of 2afether with the results
of sections 5 and 6, there exists a sequenge. (., 7,) in T(}) satisfying:

(@) t, =(n, T1, Ty) is the discrete part ofX, A, F);

(b) o € T\(a, b, ¢), for some permutatiom, b, ¢ of ag, a1, az;

(c) for eachi such that 1< i < n, the pair ¢;_1, 7;) satisfies one of the following
conditions:

() @ > 7,

(i) 7 €& is minimal inT(}) and t;—1 = 7,

(i) ; € £ and 7;_1 = 7%,

(iv) ©; € Ty 2(a, b, c) andt;_1 = 7, (Some permutatiom, b, ¢ of ag, a1, az).

We proceed by induction on. If » = 0 then A is basic of type |, soC; = R;
and C, = R; for some distinct, j € {0, 1, 2} (notations as in sections 1 and 3). Since
gcd@;, a;) = 1, (1) is clear in this case. Suppose that- 0 and that (1) (or equiva-
lently (2)) holds for smaller values of.

If (t,_1, T,) satisfies (iii) or (iv) thenA is basic, so @, F) is also a special pair
of A and t, ; = disc(X, A, G); by the inductive hypothesis, (1) holds fax and
(G, F); it follows immediately that (1) holds foA and ¢, G).

If (7,_1, ,) satisfies (i) or (ii) thenr = 7, 1 (by 2.20 or 6.2), so, by 2.25, there
exists an affine rulingA’ of X and F’ € A such that supg() = supp¢’) and
1,1 = disc(X, A’, F’). Let G’ be such that £’, G’) is a special pair ofA’, write
T,-1 = (m’, T/, T;) and note that 8.4 gives

F' = (T;)C;, and G’ =p(T))Cy,
where C; and C; are irreducible curves. Then

deg(C2) = deg(C3) = u(Ty) = u(Tw),

where the middle equality is the inductive hypothesis ,(i) holds for A’ and
(F’, G"), the first equality isC, = supp) = suppf’) = C; and the last equality
follows from 7| = Tl(vs) for somes > 1. Consequently, (1) and (2) hold fax and
(F, G). [

RemaARk.  Given P = P(ag, a1, az), Where ag, a1, ap are pairwise relatively prime
positive integers, one may asWhat are all pairs of irreducible curve€;, C, C P
with the property thatP \ (Cy U C») is isomorphic to the product of! with a curve?
As mentioned in 8.3, above, these are exactly the specied pasociated to affine rul-
ings of P; consequently, a description of these curves can be defiesd this paper.
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In particular, one can give all pairs of integers (deg(deg(C2)) by following these
steps:

1. Give all elements ofly(P) (7.8 and 7.9 are two examples of this);

2. for each ', T{, T;) € To(P), give all elements of

{((T), w(T2)) | (L. T, T2) € T(P) and (1 T1, T2) > (m', Ty, T)}

(this step is computed explicitely in 5.40 of [2]). By 8.5jdlset of pairs is the desired
one.

For instance, if X = P2 = P(1,1,1) then one finds that the set of pairs
(deg(C1), deg(C2)) is the union of the following four sets (where the sequereg}o2,
and {£,}°2, are defined in 7.8):

1. (Ln), withn > 1,

2. (24n+1), withn > 0;

3. (un,un+1P), wheren > 3 and (forn fixed) P is any finite product of the form
P =[[izy(c; + u?v;) wheres > 0, v; > 0 and

o = u,(u, — &) — 1, if i is odd
’ unp — 1, if i is even;

4. (un+1,u,Q), wheren > 2 and (forn fixed) Q is any finite product of the form
0 =[Ti-y(ei + u,fﬂv;) wheres > 0, v; > 0 and

= Up+16p+1 — 1, if i is odd
l Up+1(Up+1 — Epe1) — 1, if 1 is even
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