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AFFINE RULINGS OF NORMAL RATIONAL SURFACES
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Given an algebraic surfacE satisfying:

X is a complete normal rational surfac& is affine ruled and

(f) rank(PicX;) =1,

where X, denotes the smooth locus &f, consider:

Problem 1. Find all affine rulings ofX.

Problem 2. Find all pairs of curvesC;, C, on X such thatX \ (C1 U Cy) is
isomorphic toP? minus two lines.

Problem 3. Find all curvesC in X such that«(X; \ C) = —oo.

This paper investigates Problem 1 for an arbitréfysatisfying ¢). We define
(Definition 1.14) the notion of a “basic” affine ruling ok and our main results
describe how to construct all affine rulings af, assuming that the basic ones are
known. In the case wher& is a weighted projective plane, the basic affine rulings of
X are given in [6]; the present paper and [6] therefore canstib solution to Prob-
lem 1 in that case.

Problem 3 (withX = P?) has been considered by several authors ([8], [9], [18],
[19], [14]). In his review of [14] (see MR 82k:14013), M. H. Gimdlin mentions
some unpublished examples found by V. I. Danilov and himsatid which seem to
correspond to the list of basic affine rulings Bf. The caseX = P? was finally solved
in [10]. Our generalization to weighted projective planegras to be new, as well as
our method—valid for anyX satisfying ¢)—which reduces the general problem to the
determination of théasic affine rulings.

Let us briefly indicate how problems 1-3 are related to eatterotConsider the
stronger conditioni) on a surfaceX:

X satisfies {) and every singular point ok is a cyclic quotient sin-

() gularity.

As an example, note that the weighted projective planesfgati) (they even satisfy
Pic(X,) = Z; see [6] for these claims). Also note the following by-prodof section 1:
A surface satisfyindf) cannot have more thaB singular points(see Corollary 1.16).
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It is clear that any solution(;, C,) to Problem 2 gives rise to an affine ruling of
X; by Theorem 1.15, the converse holdsXifsatisfies {), so:

For any surfaceX satisfying(i), Problems land 2 are equivalent.

The exact relation between Problem 3 and the other two isndethe following
statement, which will be proved in 1.17, belo®iven X satisfying(f) and a curveC
on X, the following are equivalent
(i) «(X;\C)=—o0;

(i) there exists at least one affine rulihgs of X such thatnC € A for somen > 0.

For instance, ifC c P? is Yoshihara's rational quintic ([19], Proposition 3, case
N = 1), then infinitely many affine rulinga. of P? contain multiples ofC.

By way of motivation, we now explain the connection betweeobfems 1-3 and
locally nilpotent derivations. Consider the polynomiahgiB = k[Xq, X5, X3], where
k is an algebraically closed field of characteristic zeroslkinown ([13], [3]) that de-
scribing the locally nilpotent derivation® : B — B is equivalent to answering/Vhich
pairs of polynomialsf, ¢ € B have the property thak[ f, ¢] is the kernel of a locally
nilpotent derivation ofB? If we restrict ourselves to the case whebeis (or equiva-
lently f and g are) homogeneous with respect to weightsX;) = a;, whereay, ay, as
are relatively prime positive integers, then we can thinkfond g as defining curves
in the weighted projective plan®(a;, as, a3) = ProjB; then [4] gives the following
result:

Theorem. For w-homogeneous elemenfsg € B satisfyinggcdw(f), w(g)) = 1,
the following are equivalent
(1) There exists aw-homogeneous locally nilpotent derivatioP of B such that
kerD =K[f, gl;
(2) f and g are irreducible elements oB and the algebraic surfac®rojB \ V(fg)
is isomorphic toP? minus two lines.

Note that the case where gad(f), w(g)) # 1 turns out to be very special, and is
completely described in [4]. Hence, solving Problem 2 0= P(a1, az, a3) is equiv-
alent to describing homogeneous locally nilpotent deigvest of B. Since that class
of derivations is not well understood, and corresponds téasscof G,-actions onA3
which ought to be understood, there is ample reason to stffithe aulings.

ORGANIZATION OF THE TEXT
Fix a surfaceX satisfying ().
Section 1 contains generalities about affine rulingsXof

1According to the definition of “affine ruling” adopted in 1.below, A is a linear system of,
so it makes sense to writeC € A.
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Section 2 defines a process which is used to modify affinegsliof X (i.e., ap-
plying it to an affine ruling ofX produces a different affine ruling of). The process
makes its first appearance in the proof of Theorem 2.1, whei® shown that every
non-basic affine ruling oX can be “reduced” to a simpler one; this reduction process
is in fact a special case of the modification process.

Some preparation is necessary before defining the modificgirocess: 2.2 de-
fines the notion of an X-immersion”; then 2.3-2.8 show that eaghkimmersion de-
termines an affine ruling ofX, that each affine ruling can be obtained in this way,
and that this can be turned into a bijective correspondemoglulo appropriate adjust-
ments.

Given anX-immersionl, 2.9 defines a sdil(/) and a newX-immersion/ s for
eachn e TI(Z). This operation« is the modification process which was announced; it
acts on X-immersions, so it indirectly modifies affine rulings via therrespondence
mentioned in the preceding paragraph. Discussion 2.14 suires the results of sec-
tion 2. In particular, it states that all affine rulings &f can be constructed from the
basic ones by using the operation; and consequently the solution of Problem 1 con-
sists of two parts:

(1a) Make a list of all basic affine rulings of.
(1b) For eachX-immersion!, describe the sefl([).

Problem (1b) is essentially a problem in the theory of weaidhgraphs, indepen-
dent of the surface, and is completely solved in sections 8 4ansection 3 does the
graph theory and section 4 states the consequence$Ifp). This paper does not
solve Problem (1a), which is highly dependent on the surféc¢6] solves it for the
weighted projective planes.

In contrast with sections 2 and 4, where rulings are destrtipesaying that they
can be constructed from basic ones by using the modificationegs, section 5 gives
direct information on affine rulings. The main result of tisaction is Theorem 5.13; it
is complemented by several other (more practical) state&sneotably 5.17, 5.22, 5.23,
5.25, 5.34, 5.40.

CONVENTIONS

All curves and surfaces considered in this paper are asstméeé algebraic va-
rieties over an algebraically closed fiekdof characteristic zero. In particular, curves
and surfaces are irreducible and reduced.

If f:X — Y is a birational morphism of surfaces then tbenterof f (denoted
center(f)) is the set of pointsy € ¥ such thatf~1(y) contains more than one point.

Let S be a smooth complete surface.if is a divisor of S then, by acomponent
of D, we always mean an irreducible (or prime) componentDoflf D and D’ are
divisors of S then D - D’ denotes their intersection number abd =D -D. If C C S
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is a smooth rational curve and? = r, we call C an r-curvg by an r-componentof
a divisor D, we mean a component d? which is anr-curve. A reduced effective
divisor D of S hasstrong normal crossing#: (i) each component ofD is a smooth
curve; (i) if D; and D; are distinct components ab then D; - D; < 1; and (iii) if
D;, D; and Dy are distinct components d then D; N D; N Dy is empty.

Except for the graphL(X) of 2.14, every graph considered in this paper is a
weighted graph, i.e., a graph in which each vertex is asdigare integer (called its
weight). Every weighted graph in this paper is a finite uretigd graph such that no
edge connects a vertex to itself and at most one edge joingisay pair of vertices.

If S is a smooth complete surface ard a divisor of S with strong normal
crossings, thedual graphof (D, S) is the weighted graply = G(D, S) whose ver-
tices are the components @f; distinct verticesD; and D; are joined by an edge if
D; N D; # @; and the weight of a vertex; is Dl?. We assume familiarity with this
idea, as well as with the basic theory of weighted graphsr(thlewing-up, blowing-
down and equivalence); the relevant definitions can be fauandarious sources, for
instance [17], [16], or the appendix of [2] (see also the bmeigig of section 3, in this
paper). LetDy, ..., D, be the distinct components @&. We say thatD; is a neighbor
of D; if i # j and D, N D; # @ (i.e., if the verticesD;, D; of G are neighbors); the
number of neighbors oD; is called itsbranching numberif this number is greater
than or equal to 3, we say thd); is a branching componendf D (or that the vertex
D; is abranch pointof G). We say thaig is alinear chain (or alinear treg if it is a
tree without branch points; aadmissible chairis a linear chain in which every weight
is strictly less than-1; note that the empty graph is an admissible chain. We say tha
D is a tree (or a linear chain, or an admissible chain, etgj Has the corresponding
property.

Let X and X* be complete normal surfaceg, a birational isomorphism between
them (eitherX Eoxcorx & X*) and A a one-dimensional linear system dh
without fixed components. In this situation, we will ofteneuthe fact thatA and g
determine, in a natural way, a one-dimensional linear syst&¢ on X* without fixed

components. The tacit understanding is that, for suitahlysen rational mapX A pt
and x* 2 Pt determining A and A* respectively,8, A and A* form a commutative
diagram.

The set of nonnegative (resp. positive) integers is denbtddesp.Z*).

1. Preliminaries on affine rulings

1.1. Let X be a complete normal rational surface. An “affine ruling” Xfis
usually defined to be a morphism: U — I whereT is a curve,U is a nonempty
open subset off isomorphic tolI’ x A® and p is the projectionl’ x A' — TI'. Since
I' x Al is normal and rationall" is an open subset d and U is contained in the
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smooth locus ofX. The morphismp extends to a rational mafg — P! which, in
turn, determines a unique linear systexmon X without fixed components. Since we
do not want to distinguish between rulings which determime $ame linear system,
we adopt the viewpoint that itself is the affine ruling

DeriniTion.  Let A be a one-dimensional linear system &nwithout fixed com-
ponents. We say thak is an affine ruling of X if there exist nonempty open subsets
U c X andI' € P? such thatU = I' x Al and such that the projection morphism
I' x A - I' determinesA.

If A is an affine ruling ofX then the general membe&r of A satisfiesCNU =
Al; it follows:
e the general member ok is irreducible and reduced;
e A has at most one base point éh
In the special case wher¥ is smooth and Bg() = ¢, the general membef of A
satisfiesC = P! and C? = 0; so 1.2 applies to this situation.

1.2. Let X be a smooth, complete rational surface @@ curve onX satisfy-
ing C = P! and C? = 0. Then the following facts are well-known (see 2.7.1 of][bi
Lemma 2.2 of [12], p. 115):

(1) The Riemann-Roch Theorem fdf implies that the complete linear system =
|C| has dimension one; since Bs(= @, A gives rise to a morphism : X — PL.

(2) There exists an open subget# ¢ of P! such thatr~(I") = I' x P! and such that
the compositiom.~3(I") = I' x P! — T is the restriction ofs (i.e., A is aP'-ruling of
X).

(3) There exists an irreducible curvé c X such thatH - A = 1; such a curveH is
called asectionof A (or A). If H is a section therd = P! and, givenI" satisfying
(2) andT # P!, we haver (') \ H = I" x A and the composition. }(I") \ H =

I' x Al — T is the restriction ofs (so A is also an affine ruling ofX).

(4) If U is any open subset ot isomorphic toI' x A! for some open subsét # ¢

of P!, and if the composition/ = I' x A — TI' is compatible withA, thenU =
X\ supp#H +Cy+---+C,) for some sectionH of A and for some curvefs,..., C,
where eachC; is contained in some member af.

Let H be a section ofA, let m = —H? and, for each reducidiememberF of A, let
F° be the unique irreducible component Bfwhich meetsH (F° is an integral curve
and occurs inF with multiplicity one).

(5) For each reducible membet of A, if F* denotes the reduced effective divisor
such that sup@() = supp*) then F* has strong normal crossings and is a tree of
projective lines. MoreoverfF* can be shrunk until only¥° remains ¢° itself is not

2Note that if F € A has irreducible support then the conditieh- H# = 1 implies that it is also
reduced (i.e.F is an integral curve).
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shrunk) and, after that contractionf{)> = 0. Note the following consequence: Gf is

an irreducible component of and C is branching in supg{ + H) then C? < —1.

(6) If all reducible members are shrunk as described in {&®ntone obtains the ruled
surfacel,,. This shrinking process is a birational morphism X — F, which maps
the members ofA (resp.H) to the members (resp. the negative section) of the ruling
of F,.

The shrinking processes described in (5) and (6) are uniqdetermined by the
choice of a sectiorH.

Notation 1.3. If X is a complete normal rational surface andis an affine rul-
ing of X, let X; be the smooth locus ok and X’ = X, \ Bs(A). We write ()? X) -
(X, A) to indicate thatX is a smooth and complete surface containiigas an open
subset, the complement & in X is the support of a reduced effective divisor with
strong normal crossings& is a base point free affine ruling of and Aly is equal
to Aly.

Lemma 1.4. Let X be a complete normal rational surface and an affine rul-
ing of X and suppose thatX, A) = (X, A). Let D be the divisor ofX with strong
normal crossings and whose complemeniis Then
(1) Each connected component bfis a tree of projective lines.

(2) At most one irreducible component of is a section ofA.
(3) Every irreducible component ab which is not a section of\ is contained in a
member ofA.

Proof. Consider an open subsét C X isomorphic toI" x A! (for some open
subsetl’ # @ of P) and such that the compositidii = I' x A — I' is compatible
with A; note thatU < X’. Since the complement df x A! in P! x P! is a tree of
projective lines, and since sugp) is contained inX \ U, it easily follows that asser-
tion (1) holds. By part (4) of 1.2 we havi \ U = supp@ + C1 +--- + C,), for some
sectionH of A and for some curve€s, ..., C,, where eachC; is contained in some
member ofA; since suppl) € suppH +C1 +---+C,), (2) and (3) hold. ]

Proposition 1.5. Let X be a complete normal rational surface and an affine
ruling of X. Let X’ = X, \ Bs(A).
(1) There exists a unique paitX, A)~ = (X, A) satisfying(X, A) = (X, A) and the
following condition
(*) Every irreducible component of X \ X’ satisfiesC? < —1, and if equality
holds thenC is a section ofA.
(2) Every irreducible component of \ X’ which is not a section ofp is contained
in somereduciblemember ofA.
(3) Every member ofA meetsX’.
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4 If (X, A) is any pair satisfying(X, A) > (X, A), then there exists a birational
morphismX — X which restricts to an isomorphism froti’ C X to X’ C X.

Proof. We begin by proving (4): assume thaX,(A) is any pair satisfying
(X, A) > (X, A) and condition (*), and letX, A) be as in assertion (4). There exists a
smooth complete surfacg and two birational morphisms; 'S — X and= : § — X,
such that if we regardr {resp.z) as a composition of monoidal transformations then
each one of these is centered at a point infinitely nearx’ (resp.}?\X’). We also
assume that$, 7, 7) is minimal, i.e., that the total number of monoidal tramsfe-
tions in 7 and 7 is minimal. It suffices to show that is an isomorphism.

Assume thatr is not an isomorphism and consider a cuivec S which is first
to shrink, in the contraction process going frahto X. By minimality of (S, 7,7), I’
is not in the exceptional locus of; thus it is the strict transform of some component
C of X \ X/, whereC2 > —1. Since Q( A) satisfies (*),C must be a section of
A. Sincer (') is a point, it follows thatA has a base point, contradmtmg (A) -
(X, A). Hence,n is an isomorphism and (4) is proved.

Note that (4) implies, in particular, that ifX( A) exists then it is unique (up to
isomorphism). So, to finish the proof, there remains to coosta pair &, A) satisfy-
ing (1-3).

Consider the minimal resolution of singularitiés — X of X and letE be the
inverse image of the singular points. Th&nis a smooth complete surfacg, is a re-
duced effective divisor oft with strong normal crossings antl \ suppE) — X, is
an isomorphism. Arguing as in the proof of 1.4, we see thaheamnected compo-
nent of £ is a tree of projective lines. Moreover, every irreduciblenponentE of E
satisfiesE2 < —1, and if E2= —1 thenE is branching inE.

Then A determines an affine ruling of X. Let p : X — X be the minimal res-
olution of the base points ok and A the corresponding base point free linear system
on X. It is clear that &, A) > (X, A); we shall now argue that (*) holds. Led be
the divisor of X with strong normal crossings such th&f X’ = supp{) and consider
a componeniC of D.

Since D is the union of the strict transform of and of the exceptional locus of
p, it is clear thatC? < —1.

Assume thalC is not a section ofz. Then Lemma 1.4 implies that is contained
in some membel of A; since F2 =0 andC? < 0, F must have reducible support,
which proves assertion (2) of the Proposition. There remainshow thatC? < —1.
Assume the contrary; the@? = —1 and, by 1.2,C is not branching in supg{ + F)
for any sectionH of A.

Suppose thaC is the strict transform of some componehtof E. Then E2 >
—1 in X; by the properties ofz, E2 = —1 and E is branching inE. Consider three
distinct neighborse; (i = 1,2,3) of E in E. Since E2 = C?, we see that the strict
transform C; of E; meetsC in X (for all i = 1,2,3). SinceC; is a component of
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X\ X', Lemma 1.4 implies tha€; is a section ofA or is contained in some member
F; of A; in the latter caseC; N C Z# () implies thatF; = F. Since at most on€; can
be a section ofA it follows that, for a suitable sectiod, Cy, C», C3 and C are all
contained in sup@{ +F). This contradicts the fact thaf is not branching in supp{+
F), so C is not the strict transform of a component bt

Thus C is in the exceptional locus op (and A has a base point). Writp =
pro--+-0p1, Wherep; : X; — X, ; is a monoidal transformation- (> 1, Xg = X,
X, = X), and note that the exceptional curéé c X of p, is a section ofA. By
(1.1), there is a unique base point 8 1 (1 < i < r); it follows that the center of
p: lies on the exceptional curve qf,_; for eachi > 1, and consequently? = —1
implies C = H. This contradicts our assumption thétis not a section ofA, so we
proved thatC? < —1.

To prove (3), suppose that € A satisfies supg() € supp@). Then each com-
ponentC of F satisfiesC? < —1 becauseC C supp@) and C is not a section. This
contradicts the fact (1.2) thal contracts to a O-curve (or is a 0-curve). O

Derinimion 1.6. Suppose thaX is a complete normal rational surface and that
is an affine ruling ofX. Let X’ = X, \ Bs(A) and consider X, A)~ = (X, A).

For each membeF of A, let F be the unique element of such thatF N X' =
F N X'; then F — F defines a bijectionA — A (becauseA|x = Aly and, by 1.5,
each member oA meetsX’).

1.7. Let X be a complete normal rational surface andan affine ruling ofX.
In this paragraph, we relate the rank of Rig[ to some numbers determined by the
pair (X, A) of Proposition 1.5.

Let D be the divisor of X with strong normal crossings such that\ X' =
supp(). Proposition 1.5 implies that, for a suitable choice of etise H of A, every
componentC of D satisfies

(i) c?2<-1
and one of
(i) c=H
(iii) C is contained in some reducible member dfand €2 < —1.
Let m = —H? and letFy, ..., F, be the reducible members @f. For eachi, we

can write F; = F® + F where F? is an integral curvef;? - H =1, F} is effective and
Fr-H =0. By 1.2, F' can be shrunk to a point and, if we do this for ak¥ 1, ...,s,
we obtain the ruled surfacg,. Since PicF,,) is freely generated by a section and a
fibre, it follows that

Pic(X) is freely generated by{, a general membeF of A and all
components ofFy, ..., F}.

1)

We write F* = F/+ F/, where F/ and F;" are effective,F/ contains the components of
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F} which meetX’ and F/" contains those included iX \ X'. We claim thatF; # 0.
In fact, consider a componeit of F* satisfying C? = —1 (such aC exists, sinceF;
is nonzero and shrinks to a point). Sin€e satisfies neither (ii) nor (iii), it is not a
component ofD, so C is contained inF;. Hence, F/ # 0 for all i.

Observe that

(2) X\ X = supp(&H + Z(Fi” + 8,-Fio)> ,

i=1

where

1, if HNX =0, 1, if F°PNnX =0,
) and §; = !
0, if HNX #0, 0, if FFNX #0.

In view of (1), (2) and the fact that, for each F is linearly equivalent toF; =
F? + F/ + F/', we obtain that Pic{') is the abelian group generated B, F and all
components off, ..., F,, with relations:

3) F=F (for each i such thas; = 1) and
H=0 (if § =1).

Note that Pick,) = Pic(X’) and letk; > 1 be the number of components #f. We

conclude that

(4) rank(PicX;) = (2 —6) + i(k,‘ — &),
i=1

where 1<2—-§ <2 and, for alli, k; —§; > 0.

SURFACES SATISFYING THE CONDITION(Y)
From now-on, we restrict ourselves to the case whergatisfies the conditiont)
defined in the introduction.

Proposition 1.8. Suppose thaX satisfies(}), let A be an affine ruling ofX and
consider the pair(X, A) = (X, A)™.
(1) A has one base point o and exactly one irreducible component of X \ X’
is a section ofA.
(2) Every memberF of A has a unique irreducible component; which meetsx’.
Consequentlyevery member of\ has irreducible support.
(3) If F is reducible thenC2 = —1 and Cr is the only component of with this
property. Moreover Cr does not meef, is not branching insupp§ + H) and the
multiplicity of Cr in F is strictly greater thanl.
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(4) Under the bijectionA — A defined in1.6, the multiple members of correspond
to the reducible members df. If M = vC € A, whereC C X is a curve andv € N,
thenv is equal to the multiplicity ofC;; in M.

(5) Let M; = v;C; (1 <i < s) be the multiple members of, whereC; C X is a
curve andv; > 1 is an integer and let M be any member of\. ThenPic(X;) is the
abelian group given by + 1 generatorsM, C4, ..., Cy; and relationsy;C; = M for
i=1,...,s. In particular, Pic(X;) =Z if and only ifs <2 or vy, ..., v, are pairwise
relatively prime.

Proof. LetH be a section ofA satisfying conditions (i—iii) of 1.7; let the nota-
tions F;, F°, F*, F/ and F' be as in 1.7.

We have 1 = (2-8)+) ;_,(k;—§;) by equation (4), where 2§ > 1 andk; —§; > 0
for all i; thusd =1 andk; =1=6; foralli=1,...,s. Sinceé =1, HN X' =% and
assertion (1) is proved.

Let F € A. If F is irreducible thenF2 = 0 implies thatF N X’ # @, by condition
(i) of 1.7. If F = F; for somei, then F? N X’ = @ (becauses; = 1) and F/ has
irreducible support (becauge = 1). Assertion (2) follows.

We haveF} = v;Cf, for somev; > 1. In 1.7, when we proved that/ # 0, we
actually showed that at least one componénbf F/ satisfiesC? = —1; thus C,%I_ =
—1. Conversely, ifC is any component of; such thatC? = —1, thenC N X' # @
(otherwise conditions (i—iii) of 1.7 would be violated), $b= Cf,. Since F/ does not
meet H, Cr, does not mee#; Cy, is not branching in supp{+ H) because, in the
contraction of F; to a O-curve,Cp, is the first component to shrink. By part (6) of
Lemma 2.2 of [12],Cr, must be a multiple component &;. So (3) holds.

In part (4), the assertion aboutis trivial and the correspondence between mul-
tiple members ofA and reducible members of is essentially the fact thaCr, is a
multiple component ofF; (preceding paragraph).

Sinced =1 and§; =1 for all i, and in view of (3) of 1.7, PicX,) is generated
by F, Cg, ..., Cr, with relationsv;Cr, = F for i =1,...,s. This, together with (4),
implies (5). O

1.9. Suppose thatX satisfies {), let A be an affine ruling ofX and consider
the pair , A) = (X, A)~. By 1.2, each reducible member &f can be shrunk to a O-
curve and the shrinking is uniquely determined by the choita section ofA. From
now-on, whenever we shrink reducible membersiofo O-curves, we tacitely assume
that the shrinking is the one which is determined by the umisection ofA contained
in X\ X’ (see Proposition 1.8).

1.10. The following notations and remarks are useful. Suppost Xhaatisfies
(1), let A be an affine ruling ofX, consider &, A) = (X, A)~ and letD be the divisor
of X with strong normal crossings such th¥t\ X’ = supp®).
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By Proposition 1.8,A has a unique sectiodl contained inD and, if F is a re-
ducible member ofA, F has a unique componeit, which meetsX’ and the multi-
plicity v of Cr in F is strictly greater than 1, moreover, supptvCr) has either one
or two connected components and exactly one of those comtomeeetsH. Let us
denote those connected componentsA¥yand F¢, where F* is the one which meets
H and F* is allowed to be empty. We regaml* and F* either as sets or as reduced
effective divisors; we have™ # ¢ and, recalling how the morphisti — F,, contracts
F (see 1.2, 1.9), we see that is either empty or an admissible chaiRinally, let Dg
denote the connected component®@fwhich containsH; thus Do = H+ F}' +- - -+ F,
where Fy, ..., F, are the reducible members of, and D = Dg + Ff +...+ FL

As explained in 1.1, our definition of “affine ruling” is sligh different from the
standard one. The following gives the exact relation bebtnbe two definitions:

Proposition 1.11. Suppose thaX satisfies({) and that A is an affine ruling of
X. For an open subsel/ of X, the following are equivalent
(1) There exists an isomorphisth = I" x A%, for some open subsét # ¥ of P, such
that the compositioV = T x Al — I' is compatible withA.
(2) U=X\supp(My+---+M,), for some nonempty subsg¥fs,..., M,} of A con-
taining in particular all multiple members.
Moreover if these conditions holdand My, ..., M, are distinc) thenU is isomorphic
to (P! — p pointg x Al (or equivalently toP?> minus p lines meeting at a poit

Some graph theory is needed for proving the above resulerGjve N, let S,
be the weighted tree consisting @f+ 1 verticesug, v4, ..., v,, all of weight 0, and of
the g edges{vo, v;}, i = 1,...,¢. Note that det§;) = —1 and that det,) = O for all
g 71 (see 3.15 for the determinant of a weighted graph). Noa¢ ithg > 1 and S
is identical toS, except for the weight ofp, thenS is equivalent toS,. Note, also,
that if S, and S, are equivalent thep = q.

Lemma 1.12. Let p > 1 andr > 0 be integersG a weighted tregv a vertex of
G, A1,..., A,, By, ..., B, the branches ofj at v, where each4; consists of a single
vertex of weighO and in each;, every weight is strictly less than 1.
(1) If G is equivalent taS, for someg € N, thenr =0 and p =gq.
(2) If G is equivalent to a linear chaif® of the form

—e (g =0, 0 <—-2andx € 7Z),

()

then G itself has the form(x).
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Proof. Let us say, temporarily, that a weighted tréesatisfies the condition
(NN) if it has a branch poin® such that: (i) at least one branch @f at » has all
its weights strictly less thar-1; and (ii) every branch off at b containing a weight
> —1 contains a nonnegative weight. Then we leave it to the retdeerify the fol-
lowing fact:

If a weighted tree7 satisfies (NN) then so does every minimal
weighted tree equivalent t@.

(%)

Note thatS, is minimal and does not satisfy (NN); alsB, contracts to a minimal
chain which does not satisfy (NN). Sin¢gis equivalent toS, or T, it follows from
(5) that G does not satisfy (NN). We claim:

(6) If r #0 theng is of the form &) and detG) < —2.

Indeed, suppose that # O; if either v or some vertex of somé; is a branch
point of G, theng satisfies (NN), a contradiction. S is a linear chain. In particular,
p+tr<2,sop=1=r andg is of the form &). We have det{) = — det(3;) by 3.18,
and detB;) > 2 by 3.19; so (6) holds.

To prove assertion (1), suppose th@tis equivalent t0S,. Then detg) =
det(S,;) > —1, sor = 0 by (6). Sincer = 0 andp > 0, G is equivalent toS,, so
P=q.

To prove (2), suppose th& is equivalent tol". By (6), we may assume that=
0. ThengG is equivalent toS,, so det§,) = det(") = —det(™) < —1 by 3.18 and 3.19,
whereI" is the admissible chain with weights,, ..., »,. So p =1 (andr = 0) and
consequenthyg is of the form &) (with g = 0). O

Proof of Proposition 1.11. We shall prove that (1) implie} é&d leave the rest
to the reader. Suppose thét satisfies condition (1) and let € N be such that" =
P! — ¢ points. Regard/ as an open subset @' x P!; then the complement of/
is a divisor W with strong normal crossings and whose dual grapl$,is Note that
U is connected at infinity. We also observe thatc X', where X’ = X, \ Bs(A);
the inclusion is strict because the complementoin X has pure dimension one (the
intersection matrix ofW is not negative definite, s& cannot be shrunk to a normal
point).

Consider &, A) = (X, A)~ and recall that the open subskt of X can be embed-
ded in X as the complement of a divisdd of X with strong normal crossings. Since
U C X’ (strictly) and X \ U has pure dimension one,

(@) X\U=suppp+Ci+---+C,)  (p>0)

for some distinct curves’y, ..., C, not contained inD. By Proposition 1.8, some
componentH of D is a section ofA; thus part 4 of 1.2 implies that eaaf is con-
tained in a member ofA. Since every membeF of A has a unique componeidty
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which meetsX’ (Proposition 1.8), we hav€; = Cg, (1 < i < p) for some distinct
Gi1,...,G, € A. Using (7), we have (inX) U = X'\ suppMy + --- + M,) where
M; € A corresponds taG; € A under the bijectionA — A defined in 1.6. Since
X \ U has pure dimension one,

(8) U=X\suppMy+:--+M,).

Suppose that the reducible membéts. .., F; of A have been labeled in such a
way that

{F1, ..., EI\{G1, ..., Gy} ={F1, ..., F} (where 0<r <s).
Since U is connected at infinity, we may write (using (7) and 1.10):
(9) X\U=suppl + Fl' +---+ F" + Gy +---+G)).

Lety : X — S (where S is smooth) be the shrinking o+, . .., G, to O-curves (see
1.2 and 1.9). Thetw R y(U) is an isomorphism and \ y(U) = supp{@’), where D’
is a divisor of S with strong normal crossings. By (9), the dual graphof (S, D’) is
a tree with p + r branches at/(H): p branchesy(G;) consisting of a single vertex
of weight zero and- branchesy (F}*) in which every weight is strictly less than1.
Thus G satisfies the hypothesis of Lemma 1.12 and part 1 of thattrgseds r = O,
SO0 {Fy, ..., F;} € {G1,...,G,}. From this and (8), it follows thal/ satisfies condi-
tion (2). ]

1.13. Let X be a complete normal rational surface.

Given an affine rulingA of X, consider &, A) = (X, A)™~ and the divisorD of
X with strong normal crossings such that supg X \ X'; let G(A) = G(D, X) (the
dual graph ofD in X).

Then the equivalence class of the weighted grgghh) depends only onX and
has a unique minimal element, sd&y. Indeed, letX and £ be as in the proof of
Proposition 1.5, and lefx be the dual graph of: in X; then the weighted grapfy
is the only minimal element of its equivalence class &tfd) contracts tofy.

Derinimion 1.14. Let X be a complete normal rational surface andan affine
ruling of X. Define B(A) € N by:

B(A) = number of branch points df(A) — number of branch points ofy,

whereG(A) and Ex are as in 1.13. If8(A) = 0, we say thatA is basic

Remark. In 1.13 and 1.14, ifX satisfies ) (which includes the case wheré
is smooth), ther€x has no branch point and, consequently,is basic if and only if
the divisor D has no branching component.



50 D. DaiGLE AND P. RUSSELL

Theorem 1.15. Suppose thak satisfies(t). Then
(1) at most one singular point ok is not a cyclic quotient singularity. LeA be an
affine ruling of X and assume that at least one of the following conditions siold
() X satisfies(); or
(i) B(A) > 0.
Let (X, A) = (X, A)~. Then the following hotd
(2) A has at most two reducible members and one of them containbrafiching
components of \ X'.
(3) Sing(X) UBs(A) contains at most three points.
(4) A has at most two multiple members. MoreqQuiér{Fi, F»} is a subset ofA con-
taining all multiple membergwhere F; # F»), and if F; = v;C; (whereC; is a curve
andv; >1,i=1,2), then
(5) X\ (CpU Cy) is isomorphic toP? minus two lines.
(6) Pic(X;) =Z @ Z/dZ, whered = gcdq, v).

Proof. LetX, E, A andp : X — X be as in the proof of Proposition 1.5; let
the notation be as in 1.10.

First, it is clear that the connected componentsafx’ are Dy and the nonempty
Ff; in particular, there are at most+ 1 such components and, taking images under
X - X — X, we get that Sing{) UBs(A) contains at most + 1 points.

If A has a base point, denote it By ¢ X and observe thap(P) is connected
and thatH < p~(P) < supp); thus p~(P) € Dy and consequently the restriction
of p to the open se \ Dy is an isomorphism. Of course, this is also the casa if
does not have a base point {s the identity map). Sincé is contained in that open
set, 1.10 implies:

p(F}) is either empty or an admissible chain (for edchl,...,s).

On the other hand, the connected components: adre among those ok \ X/,
and these are(Dg) and the nonempt)o(Ff). So at most one connected component
of E is not ap(Ff); consequently, at most one connected component @& not an
admissible chain, i.e., (1) holds.

Recall thatF}* meetsH for all i =1,...,s, so the branching number @& in Do
is preciselys. Assuming that (i) or (ii) holds, we will now show that< 2 and that
assertion (2) of the Theorem holds. For this, we may assuredth(or equivalently
Dg) has a branching component.

Note thatp(Do) is either a point or a connected componentff Thus, under
assumption (i),Dp contracts to an admissible chain or to a single point; sineeas-
sumed thatDy has a branching component, it follows thatA) > 0. Hence, we may
assume that (ii) holds.

Then D is not minimal, i.e., it has a componeft which is not branching inD
and which satisfie€? = —1; sinceC # H implies C?> < —1, we must haveC = H, so
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H is not branching inD ands < 2. In particular, suppfy + F») contains every branch-
ing component ofD. If each of F;, F, contains a branching component of then
(since C? < —1 for all componentsC of Fy + F») no contraction ofD can decrease
the number of branching components—contradicting the mpsan that 3(A) > 0.
This proves assertion (2) of the Theorem. The other asssréasily follow from (2)
and results 1.8 and 1.11. ]

Corollary 1.16. If X satisfies(f) then at most one singular point & is not a
cyclic quotient singularity. IfX satisfies(t) then X has at most three singular points.

1.17. We prove the following statement, which was claimed withpobof in
the introduction:Given X satisfying() and a curveC on X, the following are equiv-
alent
(i) «(X;\C)=—o0;

(i) there exists at least one affine ruling of X such thatnC € A for somen > 0.

Condition (ii) clearly implies (i). If (i) is satisfied then evhave to show that/ =
X, \ C is affine-ruled (then 1.11 implies (ii)). Considér > X — X, whereX — X
is the minimal resolution of singularities of and X — X is further blowing-up so
that the inverse imag€ of C has normal crossings. Then the complementloin
X is a divisor D with normal crossings and every connected componenb afther
than C is a linear chain. Since the divisor class groupf(= PicX,) has rank 1,
any two curves onX meet. Hence, ifE C X is a curve meeting/ which is shrunk
in making (X, D) almost minimal,E meetsC. Hence, on the almost minimal model,
the boundary divisor again has at most one non-linear comgorsince the connected
component of the boundary containin@ is not contractible, [15] implies that/ is
affine-ruled.

2. Madification of affine rulings

In the proof of the following theorem, we consider an arbitraffine ruling A
satisfying B(A) > 0 and “reduce” it to an affine ruling\” such thatg(A’) < B(A)
(see Definition 1.14 foB). We will see later that this reduction process is an insanc
of a more general modification process.

Theorem 2.1. If X satisfies(t) then it admits a basic affine ruling.

Proof. Suppose thah is an affine ruling ofX satisfying 8(A) > 0. Consider
X' = X, \ Bs(A), (X,A) = (X,A)”, let D be the reduced effective divisor of such
that X \ X’ = supp@), H the unique section ofp contained inD and X > X — X
as in the proof of Proposition 1.5.
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Since 8(A) > 0, at least one component of D satisfies:

C is branching inD and p(C) is either a point ofX or a curve not

10
(10) branching inp(D).

By Theorem 1.15,A has at most two reducible members and one of them, Bay
contains all branching components &f; in particular, C c supp{). Recall from
Proposition 1.8 tha# has a unique component; which meetsX’. Consider the con-
nected components; and I'; of supp@ +Cj), wherel'; containsH and T, is either
empty or an admissible chain of projective lines. Expligitéf F is the only reducible
member ofA thenT; = supp@ + F) andI'; = #; if A has two reducible members,
say G; = F and G, thenT'; = suppH + G + G4) and ', = G5 (see 1.10 for the
notationsG4 and G5 and note thatG5 may be empty).

Consider the birational morphism : X — § which shrinksF to a O-curve (see
1.2, 1.9) and regard it as a compositian= S, —> --- —> So = S of monoidal trans-
formations. Since the exceptional locus maf has only one €1)-component (namely,
Cj), the center ofim; is on the exceptional curve of;_; for eachi > 1. It follows,
in particular, that the unique component Bf which meetsH is not branching inD,
so C is not that component ana(C) is a point. Another consequence is that has
precisely three branches &, say B, B* and B¢, where B containsCy, B* contains
H and every component a8’ has self-intersection strictly less tharl.

Sincem(C) is a point, we may factom as X — S — S, where the image o€
in S is a (—1)-curve and is the first curve to be shrunk By— S. Then it is easy to
see thatX — S is the shrinking ofB3.

On the other hand, our choice @f (condition (10), above) allows us to facter
asX % U — X, whereC = «(C) is a curve, but is not branching i = «(D); then
one sees that is the shrinking of3%. So we may consider a commutative diagram of
smooth complete surfaces and birational morphisms:

¥ s U <L
B
(11) (B)l l(s) l‘B’
I 14 , o %
S = s, S

where the labels " or “B"") indicate what set is shrunk by each morphism—only
the left square is being defined at this time. het X — S, be the composition of
these maps.

Let x be the self-intersection number ofC) in S.. Since the image of in §
has self-intersection-1 and § - S, increases that number by at least one, we have
x > 0. The dual graph ob(I'y) in S} is:

X o1 ®q
. . i — o
(12) v(C) ——
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whereqg > 0, w; < —2 andx > 0.

Let P] € S, be the unique point of(C) which also belongs to another component
of v(I';) and consider the birational morphisfii —— S, obtained by blowing-upx
times atP}, in such a way that the dual graph ef'(v(I'1)) is:

0 -1 -2 T @,
(13) c’

where the O-curvel’ is the strict transform ob(C). Since the morphisny — S, is
isomorphic in a neighborhood af;, the same sequence efblowings-up can be per-

formed at the level oU; this defines a birational morphisf . U and completes
the definition of the above commutative diagram (11).

Note that each surfacE considered in this argument comes equipped with a bira-
tional transformation, sayy : ' — Y; consequently, the complete linear syst@mi|
on S’ (a P-ruling of ', by 1.2) determines a linear system (without fixed compo-
nents) on each one of these surfaces. In particular, we watikider the linear systems
A’ on X and A* on Q defined in this way. ClearlyA* is a P-ruling of €.

We claim thatA’ is an affine ruling ofX. Fori = 1,2, letI"} = o ~(u(I)) C S
Then the birational transformatiory : S — X restricts to an isomorphism’ going
from the open subsel’ = 5"\ (I'; UT,) of S’ to the open subseX; \ supp) of X
(Where F is the member ofA which corresponds t&F under the bijectionA — A
defined in Definition 1.6). Them\’ is the affine ruling ofX determined by theX-
immersion §’, u’) (see 2.3 for details).

We now argue that\ and A’ have the same base point 6h Let D* = B=1(D)
and letC* be the strict transform of with respect tog. Note thata(H) is a point
of C and that the image of underU — X — X is a point (because the image
of D underX — X — X is a finite set of points); thus the base point ofis the
image of C underU — X — X. On the other hand, consider the compongHtof
I} which is a section ofC’| (if x > 0 (resp.x = 0) then H' is the neighbor of the
vertex of weight O in the graph (13) (resp. (12))); then thdécstransform H* of H'
(with respect toQ2 — §’) is a section ofA* and satisfiesH* N C* # ). Since H* and
C* are components ob* and, underQ — U — X — X, D* is mapped to a finite
set of points, we deduce that the image Bf in X coincides with that ofC; so A
and A’ have the same base point.

The morphismsX - U LAY give an isomorphisnX \supp®) = Q\supp0*);
it follows that the birational morphisng2 P, U - X = X restricts to an isomor-
phism from Q\ suppD*) to X,\Bs(A), which is equal toX,\Bs(A") by the preceding
paragraph. Sinc®* is a reduced effective divisor with s.n.cQ,(A*) > (X, A’). Not-
ing that the number of branching componentsZif is strictly less than that oD, and

taking into account assertion (4) of Proposition 1.5, wechate thatg(A’) < B(A).
O
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FORMALIZATION OF THE REDUCTION PROCESS

DeriNniTion 2.2, Suppose thak is a complete normal rational surface. Af-
immersionis a pair , 1) where:
(1) S is a smooth complete surface apdis an isomorphism from an open sub3gt
of S to an open subset of.
(2) S\ W is nonempty and is the support of a divisor §f with strong normal cross-
ings.
(3) Exactly one of the connected componentsSof W is a linear chain of projective
lines with dual graph:

whereg > 0, w; < —2 andx is any integer. We call this connected component the
main componenbf (S, u) and often denote it by'. We stress thal’ has at least two
irreducible components, corresponding to the vertices eights 0 andx in the above
picture.

(4) If C is an irreducible component of \ W which is not in the main component
I', then C? < —1 and if equality holds thei® is branching inS\ W.

By domp we mean the open sév; by the zero-componenof (S, ), we mean the
component ofl" which corresponds to the pending vertex of weight 0 in3(J)he
neighbor of the zero-component (neighbor in the graph (8)tdlled thesection of

(S, ). If x==1in (3), we say that§, u) is in standard form

Remark. Let the assumptions and notations as in Definition 2.2. T@e®& P*
for every irreducible component of S\ W. This follows from 2.3, below:C c
Supp(Z + Zl +..-F Zn)-

2.3. Let X be a complete normal rational surface. We claim that each
immersion determines an affine ruling &f.

To see this, let{, u) be anX-immersion; letW = domu and letl’, Z and £ be
the main component, zero-component and sectionSoft) respectively. By 1.2, the
complete linear systeZ| is a P'-ruling of S; also, ¥ is a section of|Z|. Every ir-
reducible componen€ of S\ W other thanX satisfiesC - Z = 0, so is contained in
some member ofZ|. Consequently, we can choose a finite sufgat ..., Z,} of |Z|
such that the open set

Wo=S\suppE +Zy+---+2Z,)

is contained inW. Enlarging the se{Z,, ..., Z,} if necessary, we may arrange that

3Note that the pending vertex of weigbtis not unique whery = 0 andx = 0; let us agree that an
X-immersion always comes equipped with a choice of a zeropcorent.
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the morphismS — P! induced by|Z| restricts to a projection mapy =T' x Al — T.
It follows that, if we let A denote the linear system oxi (without fixed components)
determined by Z| via u, then A is an affine ruling ofX.

We will describe the image oft in the case where&X satisfies {); to do it, we
need:

DeriniTioN 2.4, Suppose thak satisfies {), let A be an affine ruling ofX and
consider the pairX, A) = (X, A)~. Let A, be the set of members of A which
satisfy:

(1) at most one member ok \ {F} is reducible; and

(2) all branching components of \ X’ are in F.

We also defineA, = {F € A | F € A,}, where F ~ F is the bijectionA — A of
Definition 1.6.

2.5. Note that, in Definition 2.4A, # @ if and only if A, # ¢, if and only if
A has at most two reducible members and some member conthibsaathing com-
ponents ofX \ X'. In particular, Theorem 1.15 implies:
(1) If X satisfies ) then A, is nonempty.
(2) If B(A) > 0, thenA, has exactly one element.

Lemma and definition 2.6. Suppose thatX satisfies(t), let (S, n) be an X-
immersion and leZ and " be the zero-component and the main componer{ts oft)
respectively.

(1) The complete linear systef@Z| on S determinegqvia x) an affine rulingA of X.

Moreover there is a uniqueF € A, such thatim u = X, \ supp{). In this contextwe
say that(S, 1) determines 4, F).

(2) S\ dom(u) has at most two connected components,ahd has twq the compo-
nent other thanl" is an admissible chain.

Proof. In view of 2.3, the proof of assertion (1) will be coretd if we can show
that imu = X \ supp) for someF € A,.

Let W = domp and X' = X, \ Bs(A); since W is smooth andZ| is base point
free, u(W) < X'. If (W) = X’ then §,1Z]) > (X, A) and, by part (4) of Proposi-
tion 1.5, there exists a birational morphissn— X which restricts to an isomorphism
W — X'. Let C C X be the image ofZ underS — X; then C is a component ofD
satisfying C? > 0, which is absurd. Hence(W) c X’ (strictly).

Consider §, A) = (X, A)~ and let the notations of 1.10 be in effect (in particular
D, H and, givenF € A, Cr, F* and F'). Regardu(W) and X’ as open subsets of
X. Observe that, inS, no connected component 6f\ W can be shrunk to a smooth
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point; thusX \ «(W) has pure dimension one, so

X\ w(W)=suppQ +Cy+---+C,)  (p>0)

where theC; are distinct curves not contained i.

In 2.3 we noted that the morphis — P! determined by Z| restricts to a pro-
jection mapWy =T x Al — I', where Wy € W. Then, as in the proof of 1.11, 1.2
implies thatC; = Cg, (1 <i < p) for some distinctGs,...,G, € A. Let Fy, ..., F,

(r > 0) denote the reducible members &f\ {G1, ..., G,}. Define

(14) G° = SUPPE + Gy +---+ G+ Fil + .-+ FY),
(15) G =X\ (W) =suppG® + Ff{ +---+F')

and note thaiG° and the nonemptyr are the connected components @f

Let G be the dual graph of; and G° the dual graph ofG° in X (so G° is a
connected component &f); let Q be the dual graph of \ W in § and letQ° be the
dual graph ofl" (so Q° is a connected component &f). Clearly, Q@ andG are equiva-
lent weighted graphs. Because no connected componefitarfQ is equivalent to the
empty graph, the connected componentstotorrespond bijectively to those df, in
such a way that each component@fis equivalent to the corresponding component of
G. We claim thatQ° corresponds td;° under that bijection. Indeed?°® corresponds
(and so is equivalent) to some connected compogérdf G; if G’ # G° then G’ must
be the dual graph of?’ for somei, so every weight ing’ is strictly less than-1 and
G’ is the uniqgue minimal element of its equivalence class; equsntly, Q° contracts
to G’. This is absurd, because any contraction@f contains a nonnegative weight.
So G° is equivalent toQ°, which is of the form ) described in Lemma 1.12.

By 1.2 (and 1.9), eacls; can be contracted to a O-curve. L@t be the weighted
graph obtained frong;° by contracting allG; to O-curves; in view of (14)G° has p+r
branches af{: p branches consisting of a single vertex of weight zero artmanches
in which every vertex has weight strictly less thati. Thus part (2) of Lemma 1.12
implies thatGe is of the form &). Sop=1,r <1 and, ifr =1, H + F}' is a linear
chain. So (15) simplifies to:

~ suppH + G1), if r=0;
(16) X\ pu(w) = ' "
suppH + G+ F/' + Fy), if r=1
Sincer is the number of reducible members &f\ (Gy,...,G,} = A\ {G1}, we
have:

a7 At most one member of\ \ {G1} is reducible.

Regarding (16), we observéi is not branching inX \ w(W); if F{ is nonempty, then
it is an admissible chain and a connected component gfiu(W); if » = 1 thenH +
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F}' is a linear chain. Thus all branching componentsXof, x(W) are in G; and in
particular:

(18) All branching components of \ X’ are inG;.

By (17) and (18), we obtaiiG; € A, and consequently/; € A.,.

In X we haveu(W) = X \ supp@ + C1) = X \ supp@ + G1) = X’ \ suppG1) so,
in X, u(W) = X"\ suppM1) = X, \ supp{/,). This proves assertion (1). Assertion (2)
follows from (16) and the argument concerning the connec@mponents ofG and
Q. O

DerinimioN 2.7.  Let X be a complete normal rational surface.
(1) Let (S, ) be an X-immersion, with zero-componerif and sectionX, and let
W = dompu. If P is a point of Z, we define anX-immersion §’, ©') = elmp(S, ©)
as follows: letz : § — S be the blowing-up ofS at P, Z the strict transform ofZ
on S andn’ : § — S the contraction ofZ. Let W' = /(= ~}(W)), consider the iso-
morphismé : W — W obtained by restrictingr o (=)~ and definew’ = uo6. We say
that (§’, 1) is obtained from §, ) by anelementary transformationWe distinguish
two types of elementary transformations: elris of sprouting type(resp. of subdivi-
sional typ@ if P € Z\ X (resp.{P} =ZNX). Note that, if §', u') =elmp(S, 1), then
(S, n) = elmy(S’, w') for a suitable choice of a poin®; here, elm and elm, are of
distinct types.
(2) Two X-immersions areequivalentif one can be obtained from the other by a se-
guence of elementary transformations.
(3) Given X-immersions §, 1) and (8, 1'), we write (§’, ') < (S, 1) to indicate that
(8, 1) is produced by performing onS(u) a sequence of elementary transformations
of subdivisional type.

Proposition 2.8. Suppose thai satisfies(t).
(1) If A is an affine ruling ofX and F € A, then there exists aiX-immersion(s, )
which determinegA, F) (as in 2.6).
(2) Let(S, 1) and (S, 1') be X-immersions determining paif&\, F) and (A’, F’) re-
spectively. Then

(A, F)=(A', F') if and only if (S, u) is equivalent to(S’, u').

Proof. LetA be an affine rul|ng ofX and F € A,; let V = X; \supp(F) Con-
sider X, A) = (X, A)~ and F € A, (recall the bijectionA — A, F ~ F, defined in
1.6). SinceV C X’ = X,\Bs(A) and X’ can be viewed as a subset ¥f we may write
vV = X'\ suppf). Let S be the surface obtained frodi by shrinking F to a 0-curve
(see 1.2, 1.9) and let : X — S be the corresponding morphism. L&t = m(V)
and letu : W — V be the restriction ofn=1. Then §, 1) is an X-immersion and
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determines the pairA, F); so (1) is proved.

The fact that equivalenX-immersions determine the same paix, ) is quite
clear. Conversely, suppose tha, (1) and (', 1) are X-immersions determining the
same pair 4, F); we will show that §, «) and (&, 1') are equivalent.

For (S, u), we use the notation®, Z and X as in 2.7; for §', 1), we useW’,
Z' and ¥'. Sincep and ' have the same imag¥; \ supp{), they determine a bi-
rational isomorphismS — S’ which restricts to an isomorphisiW — W’. So there
exists a smooth complete surfa€e and two birational morphismsy : @ — S and
7’ . Q — 8, such that if we regardr (resp.n’) as a composition of monoidal
transformations then each one of these is centered at a pdinitely near S \ W
(resp. S" \ W'). We also assume thaf2(m, ') is minimal, i.e., that the total num-
ber of monoidal transformations in and =’ is minimal. We denote this number by
N((S, n), (S, 1)). Since we assumed tha$,(u) and (', u') determine the samd,
it follows that & = 3/, where ¥ (resp.>’) is the strict transform oft (resp.X’) on
Q.

If 7= is an isomorphism thef§’ is obtained fromS by contracting some irreducible
components ofS \ W; since no component aof \ W is a (—1)-curve except possibly
¥, and sincer’ does not shrinke (for £ = ¥’), =’ must then be an isomorphism and
we are done in this case.

Suppose thatr is not an isomorphism; by the above paragraph (wittand =’
interchanged)s’ is not an isomorphism and we may consider a cutve Q which
is first to be shrunk byr’. By minimality of (2, z, '), C is the strict transform of
some component of S\ W satisfying C2 > —1. Sincex’ does not shrink:, we
must haveC = Z. Thus exactly one of the monoidal transformations makipgeuhas
a centerP which is a point ofZ. It follows that

N(eImP(Sv /J“)7 (S/7 H'/)) < N((S’ /‘l‘)v (S/v ,LL/))

and we are done by induction. ]

Derinimion 2.9.  Suppose thaX is a complete normal rational surface and that
(S, w) is an X-immersion. In this paragraph, we define a $&tS, 1) of birational
morphisms and, givemr € TI(S, 1), an X-immersion §, 1) * = determined by §, u)
and .

Let W =dompu and letl’, Z and £ be the main component, zero-component and
section of §, 1) respectively.

Let I1(S, 1) be the set of birational morphisms : § — S, with $ smooth and
complete, satisfying:
(1) the exceptional locus of has a unique-{1)-component, which we denotg;
(2) n(E) is a point of Z \ X;
(3) #7(I) is a linear chain andz has two neighbors in it;
(4) one of the two branches of X(I') at £ can be shrunk to a smooth point (this
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must be the branch containing the strict transformsZoind ; moreover, the first
curve to shrink is eitheZ or X).
Given a pointP of Z \ =, we also define

Mp(S, n) = {7 € TI(S, u) | = is centered at (i.e., 7(E) = P)}.

Given 7 € II(S, w), let y : S — S, be the birational morphism (witls, smooth)
whose exceptional locus is the branchmof}(I") at E containing the strict transforms
of Z and . Note thaty is uniquely determined byr and that its exceptional locus
has exactly one -{1)-component. Moreovery(E) is a curve whose self-intersection
number is nonnegativey(Z) is a point of y(E) and y(E) is the only irreducible
component ofy (x ~1(I")) containing that pointy (z 1(I")) is a linear chain with dual
graph

x w1 ®q

(E) °  wherew; < —2,x >0 andg > 0.

Consider the birational morphism : S — S, defined as follows:
(@ Ifx=0,lets =8, and leto be the identity map.
(b) If x >0, let P/ € S, be the unique point of/(E) which also belongs to another
irreducible component of (= —(I")); defines by blowing-upx times atP,, in such a
way that the dual graph af 1(y(z~1(I"))) in §' is:

0 -1 -2 2 w1 w o,

where the 0-curve is the strict transform pE).
Then letW’ = o~ Y(y(z~1(W))) and letyu’ be the composite

W sy YW)) L W) 2 W s (W),

Then &', 1) is an X-immersion, determined byS(u) and 7. We write (§', u') =
(S, w)* 7 and, informally, think of §’, u') as the result ofr “acting” on (S, ). Note
that © and i/ have the same image.

DerinimioN 2.10.  Suppose thaX satisfies f).

(1) LetC be an equivalence class af-immersions. Ther determines a pairA, F)
which, in turn, determinesX, A) = (X, A)~ and F € A,. As shown in the first para-
graph of the proof of Proposition 2.8, contractifgto a O-curve gives rise to ai-
immersion §, u) which determines A, F). We call (S, 1) the distinguished element
of C.

(2) Suppose that\ is an affine ruling ofX such thatg(A) > 0. Then (by 2.5)A,
has exactly one element, s&y and we may consider the distinguished elemeniul
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of the equivalence class df-immersions which determineA( F). We call (S, 1) the
standard X-immersion associated ta (it is an X-immersion in standard form). Note
that (S, ) comes equipped with a birational morphism: X — S (the contraction of
F to a O-curve).

Corollary 2.11 (Reduction Theorem). Suppose tha¥ satisfies(t) and thatA is
an affine ruling of X such thatg(A) > 0. Consider the unique elemert of A,,
the standardX-immersion(S, 1) associated toA and the centerP € S of the bi-
rational morphismm : X — S (the contraction ofF to a O-curve. Then for some
7 € p(S, n), the pair (A’, F’) determined by the-immersion(S, u) * = satisfies

B(A")=p(A)—1 and supp’) = suppf).

Remark. In the conclusion of Corollary 2.11, we can replace “for som e
p(S, w)" by “for every = € I1p(S, n)". This is because of part (4) of Lemma 4.4,
which also implies thatA’, F’) is uniquely determined b, i.e., is independent of
the choice ofr € I1p(S, w).

Proof of 2.11. LetC be the branching component @& which is closest toH
(notationsD, H, etc as in the proof of 2.1); then it is easy to see thasatisfies the
condition (10) of the proof. As in the proof of 2.1, facter as X — S — S and
considerS <— § -5 5. <2 §'. Then it is quite clear that e I1p(S, 1) and that
the X-immersion §’, u') constructed in the proof is exacths,(u) x =. Then ¢, 1)
determines a pairA’, F’) and the proof of 2.1 shows th#{(A’) < B(A). Actually, we
have B(A’) = B(A) — 1 because of how we chose. ]

Lemma 2.12. Let X be a complete normal rational surface. Suppose thas
an X-immersion that 7 € Tp(/) and letJ = I « = (where P is a point of theO-
component but not of the section 6f. Let I~ (resp. J~) denote theX-immersion
obtained fromI (resp.J) by performing one subdivisional elementary transformatio
(1) I~ xn’ =J for somen’ € Mp-(I~), where P~ is the poinf on the O-component
of 1=, which is the image of the strict transform of tBecomponent of.

(2) I xx'=J~, for somen’ € Ip(I).
(3) If I’ < I and J’ < J then there exists’ € T1(I") satisfyingl’ xx’ = J'.
(4) There existl’ <1, J' < J, n' e [I(I') and 7" € T1(J') satisfying

I'sn’'=J and J xn" =1
Proof. Write I = (S, 1) and letZ and £ be the 0-component and section &f

write J = (S, /) =1 = and considers & § % s, < &', as in Definition 2.9.
To prove (1), consider the poifiQ} = Z N X, write (7, v) = I~ = elmy(S, u) and
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consider the commutative diagram

S/

T Y S

where« is the blowing-up atQ and g contracts the strict transform &f. Thenn’ =
Bomy e lp-(I7) and I~ x ' = J (where P~ is the center off).

To prove (2), letZ’ and £’ be the 0-component and section §f consider the
point {Q} = Z' N Y, write elmy(J) =J~ =(T,v), leta : Y — S’ be the blowing-up
of " at 0 andpB : Y — T the contraction of the strict transform &'. Consider the
commutative diagram

~N o &
—
—— W
<

T S

Thenn' =mwouou e Mp(l) andl x 7' = J".

Assertion (3) follows immediately from (1) and (2). To proy4), consider the
sectionsX and X’ of I and J respectively. In view of (3), we may assume that
¥2 < —1 and )2 < —1. Then, in the diagrans < § 5 5. < &', the mapo
is the identity map,y € I1(J) and J x y = I. Ul

Proposition 2.13. Let X be a complete normal rational surface and suppose that
(S, n) and (T, v) are X-immersions. Then the conditidm u = imv is equivalent to
the existence of a sequenf?, M_T')}'}:o of X-immersions satisfying
(1) (Sg» mo) < (S, w) and (Sy, uy) < (T, v);

(2) forall j=1,...,n, we have
(87_1, u5_4) * 7 is equivalent to(S}, u%), for somen € T(S7_;, uf_y).

For the proof, we will need the following notations. Giveftrimmersions/; =
(Sj, ;) (j = 1,2) such that imuy = imuy, let D(I, I;) denote the set of triples
(2, 71, o) satisfying:

(1) 2 is a smooth complete surface ang : 2 — S; andw, : Q2 — S, are birational
morphisms;

(2) n; is centered at points of; \domu; (j =1,2) andx; 2(S1\ dompus) = 75 (82 \
dompuy);

(3) the birational transformation;sznl‘l and Mglul, from S; to S, are equal.

Note that D(I3, I,) is nonempty (because immy = imuy) and that, given any
(2, 1, m2) € D(I4, 1), if one of 1, > is an isomorphism then both,, 7, are.
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Given a birational morphisnf : U — V of smooth complete surfaces, I8% f) >
0 be the number of monoidal transformations fin
Given D = (R, 1, m2) € D(I1, 1), let N(D) = N(mr1) + N(2). Also, let N(I, I5) =

min  N(D).
DeD(11,1)

Proof of Proposition 2.13. Clearly, the existence of theusege implies inu =
imv.

For the converse, let = (S, ) and J = (T, v) be X-immersions such that im =
imv and consider the set

Tun={U1. L) | L < (S, ), L<(T,v), 22 < -1, B3 < -1},

where I; is an X-immersion andX; is its section. We proceed by induction on the
natural numbew(Z, J) defined by

d(1,J) =min{N(I1, I) | (I1, L) € Z(1.p)}-

If d(1,J) =0 thenl andJ are equivalent; then it is easy to see that there exists
an X-immersion 63, ug) satisfying both §5, ug) < (S, w) and S, ug) < (T, v), so
we are done in this case. From now-on, we assumedtigt/) > O.

Choose [1,15) € Zy. gy such thatN(Iy, L) = d(I,J), write I; = (S;, u;),
D; = S;\domu; and letZ; and X; be the O-component and section Hf Choose
(Q, T, 7T2) € D(]]_, [2) such thatN(Q, T, 7T2) = N([l, 12).

S1<-Q 758,

We claim that

(i) Neither of w1, 7, is an isomorphism.

(if) For eachj = 1,2, the exceptional locus of; has a unique-{1)-component, say
E; C Q, andr; is centered at a point of;; also,mo(E1) = Z, and m1(E2) = Z3.
Moreover, we claim that/g, I) and €, 71, m2) can be chosen in such a way that
the following conditions hold:

(iii) ; is centered at a point of; \ X; (for j =1, 2);

(V) E; has two neighbors imr;~1(I";) (for eachj =1, 2), whereI'; € D; is the main
component of §;, i ;).

If (i) is false then, as pointed out just before the proof,tbat, 7, are isomor-
phisms; this contradictd(/, /) > 0, so (i) holds.

By (i), the exceptional locus of; has at least one—<1)-component; lett; C @
be such a component. Sineé(2, 1, m2) = N(I1, I2), m, does not contrack;. So,
m2(E1) is a non-branching component &k, satisfyingm»(E1)? > —1 and consequently
mo2(E1) = Z,. In particular, E; is unique.

If the center ofr; is not on Z; then the strict transforn¥, C Q of Z; satisfies
Zf = 0. Thusm,(Z,) is a component of?, with nonnegative self-intersection number
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and, consequentlyr,(Z1) = Z,. This is impossible, because(E:) = Z, and E; # Z;.
Thus the center ofr; is on Z;. Then (ii) follows by symmetry inr; and .

For eachj = 1,2, let P; € Z; be the center ofr;; define anX-immersion/; =
(87, 1)) < 1; and a morphisnr; : @ — S’ as follows:
o IfPieZ;\E; letl;=1; andr} =m;;
o if PjeZ;NE;, letl]=elmp(I;) and consider

where «; is the blowing-up ofS; at P;, B; is the contraction of the strict transform
of Z; relative toa; andx; is defined byr; =, ox;. Then setr; =g, ox; .

Then (1, 1) € Zy.n, (R, 71, 75) € D17, 1) and N(, j, m5) = N(RQ, w1, m2) =
d(1, J). Moreover, the center of’ is a point of 2’ \ &, (for eachj =1, 2), whereZ,
and E’ are the 0-component and section lc;f respectlvely In other words, we may
S|mply assume thatl{, I;) and €, m1, 72) have been chosen in such a way that (iii)
holds. Finally, (iv) follows immediately from (i—iii).

We proved that there existdi( I2) € Z; ;) and @, w1, m2) € D(I1, I7) satisfying
N(R, 1, m2) = N(Ih, I) =d(I, J) and conditions (i—iv). We will now show thai(7; *

w, I) < d(I,J) for somen e I(I1), which will complete the proof.

If n{l(Fl) is a linear chain thenr; € T1(/1) and I; x 1 = I, SO we are done in
this case.

Assume thavr{l(rl) is not a linear chain and consider the branching component
C of n{l(l“l) which is closest to the strict transfor@;, C © of Z;. Note thatC is
contained in the exceptional locus of, for otherwise we would have = Z1, but Z;
is not branching iz, *(I'1) (becauseZ; has one neighbor iif; and the center ofr
is one pomt) Alsogr; }(r,) has exactly three branches @t say 5, B* and B¢, where
B“ containsZ; and B containsE;. Note thatZ; and E; are the only {1)-components
of m; ~1(y) and that all other components have self-intersectiomthtrless than—1.

Since my(; (1)) is the linear chainl',, we know thatB* can be shrunk to a

point, i.e., we may factor, as Q2 SvUu A S>, wherea is the contraction of3*. We
may also factorr; as 2 = S; = Sy, in such a way that1(C) is a (—1)-curve onSy;
then «; is the contraction of3 to a point andx(C) is the only (1)-component of
the exceptional locus of. This gives the first of the following commutative diagrams
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of smooth complete surfaces and birational morphisms:

o 2y — 5
Q' U So
(B)lal ®) l o 8
(19) 5, B ¢ (B)lﬂi (B)l
l Y s — S,
T o

S1

where the labels/) and 3*) indicate which set is contracted by each morphism.

Note thatz € TI(/1), so we may consider th&-immersion/; = (S, ') = Iy * 7.
Recall, from Definition 2.9, that the construction bf* 7 involves a birational mor-
phismo : 8 — S, which is the composition ok monoidal transformations, where
x > 0 is the self-intersection number of the curyeda1)(C) C S,. Leta’ : Q' — U
consist of the “same’* monoidal transformations as, but performed at the level of
U. This gives the second diagram in (19).

Llet 7, = Boa' : Q — Sy, then €', 77, my) belongs toD(/], I) but not nec-
essarely taZ; ). Note that the sectioik] of I] satisfies £;)> < —1 and let/; be
the X-immersion obtained frond; by performing one subdivisional elementary trans-
formation. Then [, I2) € Z; 1,), SO

(20) d(I{,I) < N({, L) < N(Ij, ) +2 < N(/, ], 5) + 2.
We haved(l, J) = N(2, mq, m2) = |B] + N() + |B*| + N(B) and N(/, 1, r5) =

N(mp) + N(') + N(B) = |B] + x + N(B), where |B| and |B“| denote the numbers of
irreducible components of and B*. So

d(I,J)— N(Q', my, m5) = N() + |B*| — x.

Note that the self-intersection numbers@f(C) c $; and y(x1(C)) C S, are —1 and
x respectively, so/ increases that number by+ 1. SinceN(y) = |B*|, we must have
x+1<|B", so

d(l,J) — N(Q', 7y, 5) > N(m)
and, by (20),
d(I{, L) <d(I,J)— N(w)+ 2

It is easy to see thaW () > 3, sod(I;, I,) < d(I,J) and we are done. ]
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CONCLUSION

2.14. Given a surfaceX satisfying ), consider the directed gragh(X) whose
vertices are the affine rulings of and where, given verticed and A’, we draw an
arrow A — A’ if the following condition holds: There exists arX-immersion/ and
an elementr of I1(7) such that(i) I determines(A, F) for someF € A, and (ii)
I + v determines(A’, F') for someF’ € A,.

Part (4) of Lemma 2.12 implies that if there is an arraw— A’ then there is
also an arrowA < A’. Corollary 2.11 implies that each connected componerit (af)
contains a basic affine ruling. Thus, if we want to describeafiine rulings of X, we
have to solve the following two problems:

(1) Make a list of all basic rulings oX.
(2) Describe the seflI(S, w), for eachX-immersion §, w).*

Each one of these problems is nontrivial. The first one is lisiglependent on
the surfaceX; [6] solves it for the weighted projective planes (so in atar for
IP?). The second problem turns out to be independent of the cudiad is completely
solved in sections 3 and 4 (see in particular Corollary 4.4).

Remarks. Let X be a surface satisfyingr):
(1) One can shofvthat an affine rulingA is an isolated vertex oL(X) if and only
if A, = @. Thus, if we make the additional assumption thatsatisfies f), then no
vertex of L(X) is isolated (see 2.5).
(2) Let us temporarily agree that, given affine rulingsand A’ of X, the phrase A
and A’ have a common member” means that there exists a airgeX and positive
integersn and n’ satisfyingnC € A, andn’C’ € A/,. Then Proposition 2.13 implies:
Two affine rulingsA and A’ of X are in the same connected componentl¢X) if
and only if there exists a sequen¢a;}, of affine rulings ofX such thatAg = A,
A, = A’ and, for eachi < n, A; and A;+; have a common member.

3. Contraction of weighted trees

We assume familiarity with weighted graphs, their blowing-and blowing-down.
We stress that, in weighted graphs, we do not allow multiplges between a given
pair of vertices. The empty weighted graph is deno#dA weighted tree without
branch points is called Bnear weighted treeor alinear chain

3.1. Given weighted graphg and G’, the symbolG < G’ indicates thatg’ is
obtained fromG by blowing-up once. In that case, ¥ (resp.V’) denotes the set of

4The point would be in particular to describe explicitely htwincreaseg(A). Section 5 includes
a complete answer to this question, as the valugg aé easily determined by inspecting the data
contained in the “discrete part”.

5By part (1) of Proposition 2.8 and part (1) of Corollary 4.4.
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vertices ofG (resp.G’) then V can be viewed as a subset Bf and V' \ V contains
a single vertex, say. We call e the vertexcreatedby G < §G'; we also say that/

is the blowing-down ofG’ at e. If e has one neighboo in G’, thenv can be viewed
as a vertex ofG andG < G’ is called the blowing-up ofj at the vertexv. If ¢ has
two neighborsu and v in G, then {u, v} is an edge ofG and G < G’ is called the
blowing-up of G at the edge{u, v}.% Also, if G is any weighted graph an@’ is the

weighted graph obtained frori by adding an isolated vertex of weightl, then we
regardGg’ as a blowing-up olG.

3.2. Two weighted graphs arequivalentif one can be obtained from the
other by means of a finite sequence of blowings-up and blowitgyvn. We will use
the symbol “~" for equivalence of weighted graphs (and~" for equivalence of
weighted pairs, Definition 3.9).

BLOWING-UP ACCORDING TO A TABLEAU

3.3. Let Gy be a weighted graphy, a vertex ofGy andc > p > 0 integers. By
blowing-up Gy at ¢y according to (f) we mean producing the sequengg < --- <«
G, defined as follows.

(1) Let Gy < G; be the blowing-up aty and lete; be the vertex ofG; so created.
Define (1 31) = (5.7, ).
(2) If i =1 is such thaiG;, ¢; and (3! /) have been defined, then:

(@) If y; =0 then we set =i and stop.

(b) If y; #0 then letG;,; be the blowing-up oG; at the edg€u;, v;}, let ¢;+1 be

the vertex ofG;+; so created and define

€i+1 X .
if x; <,
(Mf+1 xi+1) _ Vi Vi i

Vi+1 Yi+l up XxXj—yi )
if x; > y;.
€i+1 Vi

RemARk. In 3.3 we haven > 1, with equality if and only ifp = ¢. Of then
blowings-up inGg < -+ < G,, only Gg < G; is a blowing-up at a vertex.

Derinimion 3.4, LetGy be a weighted graphgy a vertex ofGy and
T = (pl s Pk)
c1L -+ Ck

6In [7] and [11], a blowing-up at a vertex (resp. at an edge)alted “sprouting” (resp. “subdivi-
sional”).




NORMAL RATIONAL SURFACES 67

a matrix such thap; < ¢; are positive integers for all.

We definethe sequencgy < --- < G, obtained by blowing-ugjy at ¢g accord-
ing to 7 by induction onk:
e If k=0 (i.e., T is the empty matrix), them = 0 (no blowing-up is performed).
o If k=1, thenGy < - - < G, is defined in 3.3.
o Ifk>1 thenGyg<«---<G,is

g0<_"'<_gm—l<_gm <_gm+1<_"'(_gna

whereGy < --- < G, is the sequence obtained by blowing-gp at ¢g according to
(10’;) and G, < --- < G, is obtained by blowing-ug,, at e, according to(?2:: 2)

(wheree,, is the vertex ofG,, created byG,,_1 < G,.).

Derinimion 3.5. A tableauis a matrix7 = (%2 2*) whose entries are integers
satisfyingc; > p; > 1 and gcdp;,¢;) = 1 for alli = 1,...,k. We allow k = 0O,
in which case we say thdf is the empty tableavand write T = 1. The set of all
tableaux is denoted. Given T € 7, let h(T) denote the number of columns Gf
which are different from(3).

3.6. Let7T’' = ”:1 pf and 7”7 = <1’ - be two 2x k matrices as in 3.4.

cy o ] e
We say that?T’ and 7”7 are equivalentif there exists ak- tuple (1, ..., ry) of positive
rational numbers sat|sfy|ng’ ) =r(" ) foralli =1,. . If this is the case then,

given a weighted grapb and a verte>@o of Go, blowmg upgo at ¢g according to7T’
or T” gives the same sequengg < --- < G,.

Clearly, each matrixT’ as above is equivalent to a unique tableBue 7 (see
3.5). Also, every Hamburger-Noether tableau

b1 Dk-1 Pk
HN=1|c1 - 1 (as in the appendix of [11])
a1 - Qg1 O

determines a unique tableau

N 2R pk 1 Pk pi Ci
HN = 7 wh .
(01 v Cret Ck) € where  p;, ¢) = <ng(p,-,c,-)’ ng(pf,Ci)>

3.7. Consider an arbitrary sequense: Go < --- < G, of blowings-up of
weighted graphs and, far=1,...n, let ¢; be the vertex ofj; created byg;, _; < G;.
Suppose that satisfies the two conditions:

(1) If n>1 thenGy < G; is the blowing-upat a vertexep; and
(2) if n > 2 then, for each =1,...,n—1, G; < G+ is the blowing-up at the vertex
e;, Or at an edge incident te.
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Then there exists a unique table@ue 7 such thatS is the blowing-up ofGg at eg
according toT. Moreover, those two conditions are necessary for the exdstefT.

WEIGHTED PAIRS

Derinimion 3.8.  If G is a nonempty weighted graph amda vertex ofG then we
say that @, v) is aweighted pair

Derinimion 3.9.  Let G, v) and @', V') be weighted pairs.

Let us say, provisionally, thatg(, v') is an elementary contractiorf (G, v) if G
is the blowing-down ofG at some vertex # v and if the canonical inclusiof’ — V
mapsv’ to v (whereV and V' are the sets of vertices ¢f and G’ respectively).

We say that @, v) is equivalentto (G', V'), written G, v) =~ (G, V'), if there ex-
ists a sequencegGg, vo), - - -, (Gn, v,) Of weighted pairs satisfyingGe, vo) = (G, v),
(G, vy) = (@', V') and such that, for each=1, ..., n, one of the following holds:
(1) (Gi,v;) is an elementary contraction of;(1, v;—1); or
(2) (Gi—1,v;—1) is an elementary contraction of( v;).
In the special case where condition (1) holds foria# 1,...,n, we say that ¢, v)
contractsto (G', v’) and we write G, v) > (G', V).

When @G, v) = (G, V"), we sometimes identify with v'.

Derinimion 3.10. A weighted pair @, v) is called alinear pair if G is a linear
weighted tree and has at most one neighbor .

Derinimion 3.11. A weighted pair £, w) satisfies the conditiof0) if £ is a tree
of the form

0 -1 w1 W

(m=>0,w €Z, w; <-2)

and if w is the vertex of weight 0. (RemariBecausew is uniquely determined by
L, we will often use the symbd to represent the pai(L, w). For instance we will
write (G, v) ~ L, or we will say that theé'weighted pair(G, v) is equivalent to a tree
L satisfying the conditior{0)”, when we mean thag, v) ~ (L, w)).

If £ satisfies the condition (0), with notation as above, we defiegransposeof
L by

0 -1 (oM w1

L

We also definel”” (i > 0) the obvious way£”’ = £ and £ = (£")'.

In the special case where either = 0 or w; = —2 for all i, we say that( is
degenerate
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We now state one of the main results of this paper. In comti{®) of the theo-
rem, M(L) - (}) is the product of the & 2 matrix M(£) (defined in 3.21, below) with

V

the column(}). For the proof, see Theorem 3.32.

Theorem 3.12. Let (Go, e0) be a weighted pair and?) € 7, (*) # (3). Consider
the blowing-upGo < -+ < G, of Gy at ¢o according to(?) and lete, be the vertex
of G, created byG,_; < G,. Then the following are equivalent
(1) (G,, e,) is equivalent to a linear pajr
(2) (Go. eo) is equivalent to a treeC satisfying the conditiorf0) and (”) = M(L) - (1)
for some integen > 0.

Moreover suppose that these conditions are satisfied G, < --- < G,+, be the
blowing-up ofG, at e, according to the2 x v tableau (%;;; %) and lete,+, be the
vertex created byj,+,—1 < Gu+r. Then(G,+,, e,+,) IS equivalent toL’.

PRELIMINARIES TO THE PROOF OFTHEOREM 3.12

Notation 3.13 (Blowing-up as an action). Define a binary operationtmn det7
of tableaux (see 3.5) byt, [ 0v) (Bt k) = (0w ey o). ThenT is actually
the free monoid on the set of columlﬁ‘g) where p < ¢ are relatively prime positive
integers.

Let (Go, e0) be a weighted pair and” € 7 a tableau, consider the blowing-up
Go < --- <« G, of Gy at ¢g according toT and lete, be the vertex ofG, created
by G, 1 < G,. Then we will write Go, e0)T = (G, e,). Hence, blowing-up is a right

action of 7 on the set of weighted pairs.

3.14. Let (G,v) and @', v') be weighted pairs an@ € 7 a tableau. If ¢, v) =
(g',v), then G, v)T ~ (G, v')T. Hence, blowing-up is also a right action @f on the
set of equivalence classes of weighted pairs.

3.15. Let G be a weighted graphy, ..., v, its vertices andy; the weight ofv;.
Recall that one defines the determinantéty det(G) = det(—A), where A denotes
the “intersection matrix” ofG, i.e., then x n matrix with entriesA;; = w; and, if
i #j, Ajj =1 (resp. 0) ifv;, v; are neighbors (resp. are not neighbors). Thendet(
is independent of the ordering of the vertices andy iind G’ are equivalent weighted
graphs, detf) = det@).

3.16 ([11], A.14). LetG be a weighted treey a vertex of weightQ(v) in G,
Gi,...,G, the branches of at v andv; the vertex ofG; which is a neighbor ob in
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G. If d; = detG; andd; = det(G; — {v;}), then

detG = —Qv) dy--dy — Y _dy--diad{divy -+ d, .
i=1

Notarion 3.17. LetG be a linear weighted treq)'l— I and v = vg.
Then the following abbreviation is very convenient:

detg, if i=0,

det@ — ), f0<i ,
det(G. v) = etG — {vy, vi}) | .<z<n

, if i =n,

0, if i >n.

3.18. Let the notation be as in 3.17 and I2(v;) be the weight ofv;. Then,
by 3.16,

det (G, v) = —Q(vi+1) det+1(G, v) — deti2(G,v)  (0<i <n).
In particular, if Q(v,) =0 then dei(G, v) = — detG.

3.19. Recall that anadmissible chainis a linear tree in which every weight is
at most—2. Using 3.18, it is easy to see that every admissible cham ehatrictly
positive determinant; note, also, th@t is the only admissible chain with determinant
1. We also recall the following fact, which follows easilyofn 3.16 and 3.18:

Let G be a linear weighted tree and a vertex ofG. Suppose that all weights in
G are strictly negativeand thate is the only vertex of weight1. Then
e If e has two neighbors and both of them have weiglt then det@G) < 0.

e If det@) > 0 then G contracts to an admissible chain.
e |If det@) =1 thenG contracts tod.

Notation 3.20 ([11], A.16). Given relatively prime positive integar and b, de-
fine (§) = (;) wherex and y are the unique nonnegative integers which satisfy

X a

yb:_l and x<a or y<b.

Derinimion 3.21.  Given a weighted tre€ satisfying the condition (0), we shall
now define a 2x 2 matrix M(£), and a subsef (£) of 7. Let v denote the vertex
of weight 0 in £ and consider the relatively prime integers > r; > 0 given by
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ro = deb(L, v) andr; = deg(L, v) (see 3.17 and 3.20 for notations). Then define

M(L) = (x o rl) where (x> = (ro - r1>*
y rn )’ y ro '
Note thatL is completely determined by the second columnM{L).
If £ is nondegenerate (resp. degenerate) then, for each integd) (resp.v > 0),

let 7, temporarily denote the 2(v+1) matrix (? 1 - 1), where(?) = M(£)-(}). Then
T, € T and the first column of}, is not (i) Define

T(L)={T,|v=0 (resp.v > 0)}.

Givenk € N, we also defineZi(£) = {T ¢ T | T()"

Here, T(i)k is a product in the monoid".

€ T(L)} (s0 To(£) = T(L)).

(27

In the following statement, we abbreviate d@t(— ...——%") by detfoy, ..., o).
Lemma 3.22. Letwy,...,w, < —2 be integers(wherem > 1) and define

b =dets, ..., w,),
a =detw,,...,w,), a =dety,...,w,_1) (@a=1=d if m=1)
a’ =dety,...,wu_1) (@ =0if m=1).

Then
@) () = () () = (75 and () = (), *
(2) det@s, ..., w, 1)=b—y anddet@y,...,w, 1) =a+x —y, where () = 9"

Proof. Lemma 3.6 of [7] givesia’ — ba” = 1, 0 < a” < min(a,ad’) and
max@, a’) < b; this gives(¢)” = (“) and it also follows that?~¢ %" b a| = —1,
Sinceb, b—a andb—a’ are positive integerspa—a’+a”)b = (b—a)(b—a’)—1 > 0,
sob—a—ad +ad” >0 and we obtain the second equality of assertion (1). Thel thir
equality follows from the second by symmetry, i.e., by iot&nginga anda’. Asser-

tion (2) follows from (1). ]

Lemma 3.23. Letc > p > 0 be relatively prime integerdet G be the weighted
graph which consists of a single vertexof weight zerp and let (G, v') = (G, v)(IC’).
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Thendg’ has two branches at’, with determinants of subtrees as follows

P c—p
roary - -1
(G, v) : . . .
[ — —_———
r c—p—p'+p”
P c=p
c [

where we define{’;,/) = (")~
Moreover if we let (G”, v") = (¢', v')(y) (with N > 1) then the connected compo-
nent of G” \ {v”} containingv and v’ is as follows

Nce(e—p)+l

—1-N

v v

Np(c—p)+l

Ncp+l

Nc?

Proof. This follows from Lemma 3.22 and from A.18.2 and A3l&f [11].
U

Lemma 3.24. If L is a tree satisfying the conditio(0) then M (L") = M(L)".

Proof. Use the notation of 3.11 fof. If m > 1, the result follows from
Lemma 3.22; ifm = 0, it is trivial. Ol

We recall two properties of weigthed graphand state them in the language of
weighted pairs. First, if a weighted graph is equivalent tonaar weighted graph, then
it contracts to a linear weighted graph. For weighted paire has:

3.25. If a weighted pair is equivalent to a linear pair, then it caots to a lin-
ear pair.

For the second property, consider a sequefige— --- < G, of blowings-up of
weighted graphs satisfying the two conditions of 3.7 andhstmat G,, e,) contracts
to a linear pair; then(;, e;) contracts to a linear pair, for every < n satisfying:

"The first of these two facts is proved in [1], 1.4.13. We dorrtolv a reference for the second
one.
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G; < Gj+1 is a blowing-upat a vertex.This can be conveniently expressed as part (1)
of:

3.26. Let (G, v) be a weighted pair.
(1) If there existsT € 7 such that G, v)T contracts to a linear pair, theid (v) con-
tracts to a linear pair.
(2) (G, v) contracts to a linear pair if and only ifj( v)(i) contracts to a linear pair.

DerinimioN 3.27. A weighted pair £, w) satisfies the conditioif+) if £ is a tree
of the form

o w1 W
— o - — (¢>0,m=>0,w; €Z, w; <—2)

and if w is the vertex of positive weight.

3.28. If (G,v) ~ (£, w) are weighted pairs and(w) satisfies the condition
(+), then G, v) > (£, w).

The (straightforward) proof of 3.28 is left to the readerat€ment 3.29 follows
immediately from 3.28:

3.29. Let C be an equivalence class of weighted pairs. Then:
(1) The classC contains a pair satisfying the condition (0) if and only ifcibntains
one satisfying the condition (+).
(2) The clas<C contains at most one pair satisfying the condition (0) anthast one
pair satisfying the condition (+).

Derinimion 3.30. A weighted pair(, v) is contractibleif it is equivalent to some
pair (£, w) which satisfies the condition (0). Thef is unique (by 3.29) and we say
that @, v) is of typeL.

Lemma 3.31. If (G, ¢) is any weighted pair then at most one integer O is
such that(g, e)(;)" is contractible.

Proof. It suffices to show that, if > 0 and (, w) satisfies (+), thend’, w’) =
(Z, w)(i)' does not contract to a pair which satisfies the condition Bti}. this is triv-
ial. ]

MAIN RESULT
Except for notation, the following is exactly the same asorken 3.12.
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Theorem 3.32. Let (G, ¢) be a weighted pair and?) € 7, (?) # (1) Then the
following are equivalent
(1) G.e)(?) contracts to some linear pair
(2) (. e) is contractible and (?) = M(L) - (i) for some integen > 0, where £ is the
type of (G, e).

Moreover if these conditions are satisfied théd, ¢)(?)(;

)" is equivalent toL'.

Proof. If condition (1) holds then, by 3.26G(e) contracts to a linear pair
(M, e) which has no vertex of weight-1, except possibly :

o1 (0773

(M, e): . . o k>0, a; #—1).

We claim that (M, ¢) satisfies the condition (+). Indeed, let(, ¢’) = (M, €)(?):

-1 o o1 o

(M, e): G G
! e

Becausep # ¢, we know thatM’ has two branche€ andC’ at ¢’; let C be the one
which containse. Since (M’,¢’) contracts to a linear pair (by 3.14 and 3.25), and
since every vertex o€’ has weight at most-2, C must be equivalent to the empty
graph. This implies that alk; are negative, se; < —2 for all i. Another consequence
is thato’ = —1, because all vertices @ other thane have weight at most-2. We
also havex’ < o —2, because(’c’) produces at least two blowings-up, the first blowing-
up is at the vertex and the second one is at an edge incident.t¥We conclude that
a > 0, so M satisfies the condition (+).

In view of 3.29, condition (1) implies thaig( ¢) is equivalent to a pair4, ¢) sat-
isfying the condition (0); thus, in order to prove that cdiais (1) and (2) are equiv-
alent, we may assume that,() ~ (L, e):

-1 w1 (27

(G,e) = (L,e) = . (m >0 andw; < —2).

Consider the integers = deb(L, e) andry = deg(L, ¢) used in the definition oM (L).
Write (£, ¢) = (L, €)("), then:

(21) (L, e): = o e Lo e e
€ N—, £ e e - ¢
—~— o —
¢ (Y A — N i S—
c o

where the numbers under the braces represent the detetmiofathe indicated sub-
trees of £’ (in particular, thep andc in the left part of the picture are obtained from
3.23). Note that the extra assumptions made for drawing ghiture (e.g.,m > 1)
have no effect on the following argument.
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Let B and B’ be the two branches of’ at ¢’, where B is the one containing ;
then, by 3.16, ddf = crg — pro — cr;. Now condition (1) of the Theorem is equivalent
to det3 = 1, hence to

pro—n

(22) C ro

=-1

This holds if and only if(?) —v("") = ("";’1)* for somev > 0, and this is equivalent
to condition (2) of the Theorem. Hence, conditions (1) anyl R the Theorem are
equivalent.

Assume that conditions (1) and (2) hold; continuing with Hzeme notation, there
remains to prove that{(, ¢)(})" is equivalent toL'.

The pair ', ¢’) contracts to a linear pair(, e'):

—-q o

(23) L, ée): e — (@>0,qg>2)

>
where £” — {¢'} is identical to the brancls’ of £’ at ¢'. Since B’ is honempty and
every weight in it is at most-2, we have

(24) c=det (L, ¢) > deb(L”, ¢') > deg(L",€') > 0,

where the equality comes from the fact that Bet ¢ (see the picture at line (21)).
By 3.18, det = —det(L, ¢) = —rg, SO

(25) detH = —ro, for each weighted grapt equivalent toL.
So we have—ry = detl” = —a det(L”, ¢') — deb(L", ¢'), i.e.,
(26) ro = ac +deb(L”, ).

We have to separate two cases.

Case a > 0. Since dei{(L”, ¢') > 0, we havec < ro by equation (26). From this
and equation (22), we deduce th@) = ("0;0’1)* and hence that = 0. So we have to
show that £”, ¢’) is equivalent tol'.

Observe that£”, ¢') ~ (£®, ¢'), where

—q-1 -2 -2 -1 0
(£(3)’e/): . - . - .

u /

satisfies the condition (0)2(®) is obtained from£” by blowing-upa times). We have
deb(£®, ¢’) = — det£® by 3.18, and since d&¥® = —ry by equation (25),

(27) det(L®, ¢') = ro.
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We have daf(£®,¢') = 1. deb(L£®, ¢') — det(LD), ¢') = rp — dei(L®), ¢). Since the
weighted treesC® — {¢'} and £” — {¢/} are equivalent, we also have dg®,¢’) =
det(£”, ¢) = c. Thus

(28) des(£®, ¢') =rg —c.

From equations (27) and (28), we obtain that the second aolafM (L) is (1),
which is identical to the second column o1 (L) = M(L') (by 3.24). Hence£L® =
L, ie, G ")) is equivalent toc' in this case.

Case @ = 0. This time we have dgi”, ¢’) = ro by (26), andc = det(L", ¢’) =
g deb(L”, ') —deg(L”, ¢); so, if we write p = deg(L”, ¢),

c=qro—p (=2, 0<p <ro).

In particular we have: > rp, sov > 0. Sincea = 0 andv > 0, the pair £, ¢") =
(", ¢)(3)" looks like this:

—q -1 -2 -2 -1
(29)  (£®en: s .

and €C®, ") > (LW, ¢"), where

(£(4)’ e//) : i o o

On the other hand, if we writdZ(£) = (; "%, ) then by definition ofv we havec =
vigty=(w+Lrg—(ro—y) withv+1>2and 0<rg—y <rg. Sog =v+1 and
p =rg—y. In particular, £?, ¢”) satisfies the condition (0).

Since £L® — {e”, u} is identical toL” — {¢’, u}, we have

det(£W, ¢”) = det(L”, ¢') (ali>2)
S0, in particular,
deb(L®,e”)=ro and def(L?,e")=p=ro—y.

So the second column of/(£®) is (), which is identical to the second column of

y
ro

M(L) = M(L'). Hence,£® = £, i.e., G, e)(lc’)(i)U is equivalent toL’. O

We now give some corollaries to Theorem 3.32. See Definiti@i 3or 7(£) and
Ti(£).

Corollary 3.33. Let (G, ¢) be a weighted pair and” = (°)(;) € 7, wherer > 0
and (?) # (1) Then the following are equivalent
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(1) (G, )T is contractible
(2) (G, e) is contractible of typel and T € 7(L).
Moreover if these conditions hold the(@, ¢)T is equivalent toL’.

RemARk. By definition of 7(£) (3.21),r = 0 can occur if and only if is non-
degenerate.

Proof. Suppose that condition (1) holds. Then, in particu(g, ¢)(”)(})" con-
tracts to a linear pair, sai( ¢)(”) contracts to a linear pair by 3.26. By Theorem 3.32,
we obtain that @, ¢) is equivalent to a treeC which satisfies the condition (0), that
(") = M(L) - (%) for somev > 0 and that ¢, ¢)(")(;)" is equivalent toL'. By
Lemma 3.31 we get =v; hence,T € 7(£) and G, ¢)T is equivalent toL’.

The proof that (2) implies (1) is left to the reader. U

Notation 3.34. T#=1T \ (i)T

Hence,7* contains the empty tableau, and all nonempty tableaux wfitsecol-
umn is not(b. This is a submonoid of” with the property that eaclf € 7# has a
unique factorization into irreducibles: = 7, --- Ty, T; € 7%, h(T;) = 1. Note also that
T(L) c T#, for anyk € N and £ satisfying the condition (0).

Iterating Corollary 3.33 gives:

Corollary 3.35. Let A be a weighted pair and’ € 7#. If T = T,---T; is the
irreducible factorization off’ in 7%, then the following are equivalent
(1) AT is contractible of typeL,
(2) A is contractible of typeC”", and T; € T(£") for all i =1,...,r.

Derinimion 3.36. A weighted pairP = (G, v) is pseudo-linearif v has exactly
one neighbon’ in G and the connected compondntof G containingv has the form:

0 X w1 Wy
r: o = o o n>0,x,w€Z, x <-1, w <-2).

We also say tha® is pseudo-linear of typé—1—x, £), where £ is the weighted pair
(satisfying the condition (0)) obtained from the above ymietby replacing the x” by
a “—1". If P is pseudo-linear, witl" as in the above picture, le&®’ be the weighted

pair obtained fromP by changing the weights ifr, so as to obtain

0 x Wy w1

’

v v

and by leaving the other connected components unchanged. that if P is pseudo-
linear of type k, £), then P’ is pseudo-linear of typek(L').
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If P is pseudo-linear of typek( L) then any weighted pair equivalent @ is said
to be pseudo-contractiblepr pseudo-contractible of typé, £) (note that the type is
well-defined). If a weighted paiP is pseudo-contractible of type,(£), thenk € N;
if k> 0, thenP(}) is pseudo-contractible of type ¢ 1, £).

As an immediate consequence of Corollary 3.35, we have:

Corollary 3.37. Let P be a weighted pair and” € 7#\ {1}. f T =T,-.- Ty is
the irreducible factorization of" in 7%, then the following are equivalent
(1) PT is pseudo-contractible of typ&, £),
(2) P is pseudo-contractible of typ@, £) and

T T(L7), ifi=1,
! T(£"), foralli=2...,r.

4. Description of the setTI(S, n)

4.1. Let f : X — Y be a birational morphism of smooth complete surfaces
and D a nonzero divisor off with strong normal crossings. We say thaiN(f, D) is
definedif the following condition holds:

If center(f) N supp@) is nonempty then it is a single poim, P belongs to ex-
actly one componenZ of D and f~1(P) contains exactly one<1)-curve.

If this condition holds, then we defindN(f, D) € 7 as follows.

e If center(f) Nsupp@) = @, defineHN(f, D) = 1 (the empty tableau).

e If center(f) Nsupp@) = {P}, let E C X denote the unique—<1)-curve in f~1(P)
and choose local coordinates, §) of Y at P such that¢ is a local equation oZ.
Consider the finite Hamburger-Noether tableau

P1 Pk-1 Pk
HN =HN(E; &, n) =HN(f;&,n)=| c1 -+ k-1 &
o1t Og—1 O

as defined in the appendix of [11]. Then HN uniquely detersiiaetableatHN € T
(3.6) andHN is independent of the choice of,(). We defineHN(f, D) = HN. Note
that HN(f, D) = HN(/, Z).

We state two important properties 6fN(f, D). Recall thatG(D, Y) denotes the
dual graph ofD in Y.
(1) Consider the weighted pai®® = (G(D, Y), Z) and R’ = (G(f (D), X), E), where
we regardf (D) as a reduced effective divisor (with strong normal cragsjrof X,
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and where

. Y2, if center(f) N supp®) =9,
~ | the (~1)-curve in f~X(P), if center(f) N supp®) = {P}.

Then R’ = RHN(f, D).
(2) (a) Suppose thaff factors asX —% S —s v and that cente) N S~1(D), if
nonempty, belongs to a unique componentgof (D). Then

HN(B o a, D) = HN(B, D) HN(a, B~(D)).

(b) Conversely, given any factorizatidAN(f, D) = BA with A, B € 7, there is

an essentially unique way to factgf as X —*> S —s ¥ such that centes) N
B~1(D), if nonempty, belongs to a unique componentgof (D), HN(8, D) = B
and HN(«, 871(D)) = A.

DeriniTioN 4.2, Suppose thak is a complete normal rational surface and that
I = (S, n) is an X-immersion. Letl', Z and £ be the main component, 0-component
and section of/, respectively, and leD be the divisor ofS, with strong normal cross-
ings, with supportS \ domu. We define two weighted pairs determined by

P(I1) = (G(D, 5), Z) and L(I) = (4(T, S), Z).

Note that£(I) is the connected component &f(/) containing the distinguished ver-
tex; also, if £2 < 0 thenP(I) and £(I) are pseudo-linear of type-(L — X2, £) (Defi-
nition 3.36), wherel is the weighted pair obtained frofi(/) by replacing the weight
of & by “—1".

4.3. Suppose thak is a complete normal rational surface and that (S, u) is
an X-immersion. Letl’, Z and ¥ be the main component, 0-component and section
of I, respectively.

Given any morphismr : § — S satisfying conditions (1) and (2) of 2.9, the
tableauHN(, T') (see 4.1) contains enough information to decide whethedso sat-
isfies conditions (3) and (4) of 2.9. Indeed,

L(I)AN(z, T) = (G X(T), 5), E),

and we immediately see that conditions (3) and (4) are elprivdo
(3) HN(z, ') = (3) (%), for somer > 0 and (?) # (3);
@) L) (1)r(’c’) contracts to some linear pair.

Hence, Theorem 3.32 allows us to give a complete descrigifoli (S, 1) (see
2.9). In particular, if condition (3 holds then£([I) (b' is contractible. Note that this
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implies r = —1 — X?; it also follows that there exists aX-immersion o, o) in
standard form, obtained fromS{(u) via a sequence of elementary transformations
of sprouting type, and there existg € I1(So, o), such that §, u) x 7 = (So, o) * mo.

Corollary 4.4. Suppose thatX is a complete normal rational surface and that
(S, n) is an X-immersion let I', Z and £ be the main componen@component and
section of(S, u) respectively. LetP € Z \ X.
(1) Mp(S, u) #9 if and only if £2 < 0.
(2) If = € I0(S, ) then there exists ark-immersion(So, o) > (S, 1) in standard
form satisfying(S, u) * = = (So, o) * mo for someng € I1(Sp, 1o).
(3) Suppose that = (S, u) is in standard form. If£(1) is non-degeneratéresp. de-
generat¢ then

Mp(S, u) ={m, | veN (resp.v e N\ {0})},

wherern, : S, — S is the unique birational morphism which is centered &t whose
exceptional locus has a unigue-1)-componentand which satisfies

NG 1) = 2 ()

Moreoves (i) the sectionz, of the X-immersion(S, u) x, satisfiesz? = —1—v; and
(i) if I’ is an X-immersion equivalent t@S, u) x 7, and in standard form thewf (")
is the transpose of([).

(4) Suppose thats, u) is in standard form. Given anyr,n’ € IIp(S, 1), the X-
immersions(S, i) * 7 and (S, n) * 7’ are equivalent.

Proof. Assertion (3) is a direct consequence of Theorem. 3A3Rertion (2) was
pointed out in 4.3 and the “only if” part of (1) follows from X2Observe that (3)
implies, in particular, thaflp (/) is nonempty whenever is in standard form; the “if”
part of (1) easily follows from this and part (1) of Lemma 2.12

In view of (3), it suffices to prove (4) in the special case veher = m, and
7w’ = m+1. Write J = [ x , and consider theX-immersion J~ obtained fromJ
by performing one elementary transformation of subdiviaiotype. By part (2) of
Lemma 2.12, there exists” € I1p(/) such that/ x 7z” = J~. By (3), the section
of J has self-intersectior-1 — v, so that of /= has self-intersection-1 — (v + 1).
Again by part (3), we haver” = 7, for somen and the section off ~ = I x 7" has
self-intersection—1 — n. Hence,n = v + 1. Consequently] x w41 = [ x 7" = J~ is
equivalent toJ =1 * m,. Ol

5. Description of affine rulings by discrete data

See 5.3, below, for an introduction to this section.
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5.1. Let X be a surface satisfyingf and A an affine ruling ofX.

Let (X, A) = (X, A)~ be as in Proposition 1.5 and recall that= X,\Bs(A) C X
is embedded inX as the complement of a divisd with strong normal crossings, and
that exactly one componerif of D is a section ofA (see 1.8). Letn = —H? > 1.
In view of 1.2 and convention 1.9, there is a unique birationarphism : X — F,,
which contracts each reducible member/ofto a 0-curve and whose exceptional locus
is disjoint from H.

Assume thatA, is nonempty. Each choice of an elemefte A, determines a
factorization

> T2 1
X — S —F,,

of , where:

e 1, is the contraction ofF to a O-curve, whereF € A, is the image of F e
A, under the bijectionA — A of 1.6. (Note thatr, is the identity map wherF is
irreducible, or equivalently whet is a reduced member of.)

e If some member ofA \ {F} is reducible then it is unique (by definition df*)
and we denote it byG; if there is no such member, 1€ be any member ofz \ {F}.
Let 1 be the contraction of; (or rather, ofr,(G)) to a O-curve. (This gives; = id
when every member oft \ {F} is irreducible.)

We will sometimes refer tar; and 7, asthe pair of morphisms determined ¥, F).

Regard D, = m,(supp + D)) as a reduced effective divisor f (with strong nor-
mal crossings) and observe that it has no branching compdbegauseF € A,);
note thatZ, = m(suppF) and £, = m,(H) are respectively a 0-component and a
(—m)-component ofD,. The curveX; = m1(X,) = mi(m2(H)) C F,, is the negative
section of the standard ruling d,; also, Z; = w1 (m2(suppG)) and m1(Z,) are dis-
tinct members of that ruling anéd; = Z1 + X3 + m1(Z>) is a divisor ofF,, with strong
normal crossings.

For eachi € {1, 2}, the exceptional locus of; contains at most one—(1)-curve
and, if 7; #id, the centerP; of x; is a single point and belongs t6; \ supp®; — Z;).
Thus we may considef; = HN(w;, D;) € 7, as defined in 4.1. In this wayA( F)
determines a unique triplen( 71, T») € Z* x T x T, which we call thediscrete part
of (A, F) (or of (X, A, F)).

DeriniTion 5.2, (1) Given a triple X, A, F), whereX is a surface satisfyingr],
A is an affine ruling ofX and F € A,, the discrete partof (X, A, F) is the triple
(m, Ty, T») defined in 5.1. The notation is diS¢(A, F) = (m, T, T,). We sometimes
call (m, Ty, T») the discrete parof (A, F).
(2) Given a surfaceX satisfying ), T(X) denotes the set of disE( A, F) such
that A is an affine ruling of X and F € A,; To(X) € T(X) denotes the set of
disc(X, A, F) such thatA is a basic affine ruling of X and F € A,.
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5.3. Let X be a surface satisfyingi Can a description of the s&i(X) be re-
garded as a solution to Problem 1 f&f? There are two difficulties:
(D1) X may admit affine rulingsA such thatA, = @, and T(X) contains no informa-
tion about such rulings.
Note that if we assume that all basic affine rulingsXfare known then, in particular,
all A satisfying A, =@ are known (see 2.5); this is why (D1) did not cause problems
in sections 2 and 4. In this section, however, (D1) can onlydsolved by assuming
that X satisfies ), in which case allA satisfy A, #@ (by 2.5 again).
(D2) Givent = (m, T1, T2) € T(X), we need a method for constructing al\,(F) (on
X) such that discX, A, F) = .
Paragraph 5.29, below, describes a method for construetingX’, A’, F’) such that
disc(X’, A’, F') = r, and this is good enough for (D2) if one can prove that all such
X' are isomorphic taX. Thus Corollary 5.32 implies that, K satisfies §), describing
T(X) does solve Problem 1 fak.

Some of the results of this section (5.17, 5.22, 5.23, 5.88cdbeT(X) in terms
of To(X), or in terms of the subset mi(X) of To(X). So, givenX satisfying (),

this section reduceProblem 1to the problem of describin@o(X) or minT(X).

Derinimion 5.4. (1) Letrn > 1. By a weightedn-tuple, we mean an ordered-

tuple S = (G, v1, ..., v,_1) Whereg is a weighted graph andy, ..., v, 1 are distinct
vertices ofG (whenn =1, S is a weighted graph; when = 2, it is a weighted pair
3.8).

(2) Let S be a weighted:-tuple, withn > 2. GivenT € 7, we define a weighted-
tuple ST and a weightedn(—1)-tuple S©T as follows. WriteS = (G, vy, ..., v,_1) and
let (G', ) denote the weighted paiG(v,)T. Note thatv,, ..., v, 1 can be regarded as
vertices ofG’ \ {e}. Then we define

ST=(G",e,va,...,v,_1) and ST =(G" \{e},va, ..., v,_1).

REmARKs. Let S =(G,v1,...,v,-1) be a weightedi-tuple.
(1) Whenn = 2, the definition ofST given in 5.4 agrees with the one given in sec-
tion 3.
(2) The above definition give§1=S andS©1=(G\ {v1}, v2, ..., v,—1) (Wherelis
the empty tableau). So, giveR, 7' € 7, ST =STelandSe (TT)=(ST)e T .
(3) Let P and P’ be weighted pairs and € 7. If P ~ P’ then, by 3.14,PS T ~
P'© T (where =" (resp. “~") means equivalence of weighted pairs (resp. weighted

graphs)).
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Notation 5.5. Givenx € Z, let G,y denote the weighted tripleG( v1, v2), where
g is the weighted graph

0 X 0
o — 9
v1 v2

5.6. Consider the weighted paif consisting of a single vertex of weight zero.
For any T € 7, the condition
S © T has no branch point and every weight in it is strictly lessnthal
holds if and only if one of the following holds
1) T=1
(@) T = (7). where (") # (3);
(3) T=(71), where(”) #(;) and N > 1.

5.7. Letx be a negative integer and@l, 7, € 7.
(1) The condition

Gy © T1 is pseudo-linear

holds if and only ifT; satisfies one of conditiond—3) of 5.6. Moreover if G)&T; is
pseudo-linear then it has at most two connected componerdsttee one which does
not contain the distinguished vertex is an admissible chain
(2) The condition
(Gw) © T1) © T> has no branch point and every weight in éxcept possibly
that of the middle vertex df,), is strictly less than-1,
holds if and only if each of, T, satisfies one of conditiond—3) of 5.6.

Proof. To prove (1), writeGy) = (G, v1,v2) and consider the weighted pair
S = ({v1}, v1) (a single vertex of weight 0). We may regafde T as the graph ob-
tained from the weighted paiP = G) © T by deleting the distinguished vertex (i.e.,
v2), its unique neighbor and all edges incident to these twdices. Note thatP has
at most two connected components, saynd A, where £ contains the distinguished
vertex andA is a (possibly empty) admissible chain. # is pseudo-linearS © T has
no branch point (otherwis€ would have one) and every weight 16 T is strictly
less than—1; thus (by 5.6)T satisfies one of conditions (1-3) of 5.6. The converse is
equally trivial, as is assertion (2). U

Notation 5.8. GivenT € 7 satisfying one of the conditions (1-3) of 5.6, we
defineT € 7 as follows:

1, if T satisfies 5.6.1,
T=1("), if 7 satisfies 5.6.2, wherp’ is given by (7)) = (*)" (see 3.20);

c

(5;1’ L), if T satisfies 5.6.3
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Note that if 7 satisfies condition 5.6.(wherei € {1, 2, 3}) then so doeg . If s is a
positive integer, writel ™) = (T¢¢~D) whereT¢% = T. Note that7t? = T.

Lemma 5.9. Let (m, Ty, T>) be the discrete part ofX, A, F), where X is a sur-
face satisfying(f), A is an affine ruling ofX and F € A,.
(1) The weighted pairP = G(_,,) © T1 is isomorphic toP(I) (see4.2), where is the
distinguished element of the equivalence clasX ainmersions determiningA, F). In
particular, P is pseudo-linear of typén — 1, £) for someL; moreover P has at most
one connected componedt other than the one containing the distinguished vertex
and A is an admissible chain.
(2) There is an isomorphism of weighted graplts_..) © T1) © T» — G(A) which
maps the middle vertex &f_,, to the vertexd of G(A) (seel.13for the definition
of G(A); H denotes the unique componentofy X’ which is a section of?).

Proof. Let the notationy, D,, etc.) be as in 5.1. By definition af (2.10), we
havel = (S, u) for someu and, moreoverS \ domu = suppD,). So we haveP(I) =
(G(D2, S), Zy). For eachi =1, 2, let

& = | the unique £1)-curve inz, Y(P), if m #id,
" z, if 7; =id.

Consider the weighted tripleG(D1, F,,), Z1, 711(Z2)) = G(—m). Sincenl‘l(supppl)) =
supp@2) U E1 and E; is not a component oD, we haveG_,, © T1 = P(I) and (1)
holds. Sincer, (D) = supp@) U E; and E; is not a component oD, P(I) © T =
G(D, X) = G(a). O

Notation 5.10. (1) LetT be the set of triplesm, T1, T2) € Z* x T x T such
that 7, € 7% (Notation 3.34) andl; satisfies one of the conditions (1-3) of 5.6.
(2) Let T(}) be the set of iz, T1, T2) € T such that the intersection matrix (see 3.15)
of the weighted graphd(_.,) © T1) © T> is negative definite.

The following says, in particular, thaf(X) € T(t) for each X satisfying ().

Lemma 5.11. Let (m, T, T2) be the discrete part ofX, A, F), where X is a
surface satisfyindt), A is an affine ruling ofX and F € A,. Then(m, Ty, T2) € T(Y)
and the following are equivalent
(1) X satisfies(f) and A is basig
(2) T, satisfies one of the conditior{¢—3) of 5.6.

Proof. By 5.7 and part (1) of Lemma 5.9; satisfies one of the conditions (1—
3) of 5.6.
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By part (2) of Lemma 5.9, every vertex ofi(.,) © T1) © T, except possibly the
middle vertex ofG_,,, has weight strictly less thar1. Write G_,,) = (G, v1, v2) and
note that the distinguished vertax of the weighted pairG_,,y © T has weight 0.
If 7o ¢ T# then T, # 1 and the first column off; is (]1) so the weight ofv; in
Gm© Tl) © T, is —1, contradicting the above observation. Henf;@g TH,

Let X — X be the minimal resolution of smgulanues af and letE C X be the
exceptional locus; sinc& is normal, the divisorE has a negative definite intersection
matrix; since G ©T1)©T> = G(A) by Lemma 5.9, andj(A) contracts toG(E, X),
we get (n, T1, T») € T(}).

By 5.7, Gm) © T1) © T» (henceG(A)) has no branch point if and only if>»
satisfies one of the conditions (1-3) of 5.6. Hence, (1) anda(@ equivalent. U

Derinimion 5.12. Given &, T, T2), (m, T}, T;) € T, write (n, T1, T2) = (mn, T;, T,)
to indicate that

(Gny© )T~ (G(-my© T)T,

(equivalence of weighted pairs). Note that™is an equivalence relation on the sBt

Theorem 5.13. Let r,7" € T be such thatr = <t’. Suppose thatr =
disc(X, A, F), where X is a surface satisfyindf), A is an affine ruling ofX and
F € A,. Then there exist an affine ruling” of X and F’ € Al such thatt’ =

disc(X, A’, F") and supp”’) = supp).

In view of 2.14, the above result relates the viewpoint ofthection with the
operation %" of sections 2 and 4. See also Proposition 5.23.
The proof requires 5.14 and 5.15:

Lemma 5.14. If P is a pseudo-linear weighted pair then
(1) At most one pail(x, T) € Z x T satisfiesGy,y© T = P.
(2) Suppose thati,)© T = P. ThenT satisfies one of condition§l—3) of 5.6 and
GwoT=GuneT)y="r

Proof. Write P = (G, v). We may assume thaP = G,y © T for some §, T).
Thenv has a unique neighbar in G, and the weight ob’ is x; hence,x is uniquely
determined. By 5.7T satisfies one of conditions (1-3) of 5.6 (which proves part of
assertion (2)). Note also th& has either one or two connected components; we say
that G has two connected components,and A, where £ containsv and A is a (pos-
sibly empty) admissible chain. Moreovet, is as follows:

L: . (n>0,w €2, w; <-2).
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We now show that is unique. Ifn = 0 (resp.n = 1) thenT must bel (resp.(_il)),
SO0 we may assume that> 2. We consider two cases.

If A is nonempty and contains a weight other thaB, thenT = (f) for some
p,c satisfying 1< p < c¢. Then Lemma 3.23 implies that = dets, ..., »,) and

p =detwy,...,w,), SOT is unique (notation as in Lemma 3.22).
Before treating the second case, let us observe that at mest®{1,...,n} can
satisfy detf, ..., w;_1) = detw;+1, . .., w,), because the left-hand-side is a strictly in-

creasing function of, while the right-hand-side is strictly decreasing.

If A'is a chain of N — 1 vertices of weight-2 (whereN > 1), thenT = (? 1),
for some(?) # (i) Consider the vertex (of weight —1) which is deleted fronG )T
in order to defineG,y © T; thene has a unique neighbor among, ..., y.}, sayy;.
By Lemma 3.23 applied to the first colum(f) of 7, we have detfs, ..., w;_1) =
c = det@;+1, ..., w,) and detfs, ..., w;_1) = p. So j must be the uniqué of the
preceding paragraph; singeis uniquely determined, so ake= det;, ..., w;—1) and
p =det@,, ..., w;_1). This proves assertion (1).

Assertion (2) is obtained from the following observatiorhigh is a consequence
of Lemma 3.23: Let @, v) be the weighted pair consisting of a single vertex of weight
0, let (*) € 7, (?) # (), and consider the weighted paig’(v') = (G, v)(?). Use the
following notation for the weights ind’, v'):

w1 Wy -1 ai Qm

@ v)=@u0): e

If we define p’ by (’;) = (%), then:

’ wy [0} -1 am a
G s - 1
On the other hand,
@) e 0

5.15. Let S be a smooth complete surfach, a divisor of S with strong normal
crossings and such that each componentofs rational, andG = G(D, S), the dual
graph of D in S. Let alsoG’ be a weighted graph.

(1) Suppose thag can be contracted tg’. Let vy, ..., v, be the vertices off which
disappear in that process and Bt, ..., D, be the corresponding components f
Then there is an essentially unique birational morphism$S — S’ whose exceptional
locus isD;U---UD, (whereS’ is a smooth complete surface). Then the divigbr=
(D) of §" with strong normal crossings has dual graph

(2) Suppose that;’ can be contracted t@. Then there exists a (not necessarely
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unique) birational morphismr : S — S (where S’ is a smooth complete surface) such
that the divisorD’ = 7~1(D) of §’, with strong normal crossings, satisfi@§D’, S’) =

G'. The exceptional locus ot consists of the components & corresponding to the
vertices ofG’ which disappear in the contraction ¢

In case (1) (resp. (2)), we cail simply “the (resp. a) birational morphism correspond-
ing to G > G’ (resp.G’ > G)"; it is tacitely assumed that the above conditions are
satisfied. Similar remarks hold if botd and G’ are weighted pairs; in this case, we
have the additional information that does not shrink the curve which corresponds to
the distinguished vertex.

Proof of Theorem 5.13. Write = (n, T, T2) and v’ = (m, T/, T;).

Consider &, A) = (X, A)~ and recall thatX \ (SingX U BsA) is embedded in
X as the complement of a divisdd with strong normal crossings. Also, consider the
curve C = Cj in X (notation as in 1.8), wheré € A corresponds taF € A via the
bijection A — A (Definition 1.6). Then we haveg{_,) © T1)T> = (G(D + C, X), C).

Sincet = 1/, we have (D + C, X), C) ~ (G—my © T])T;; this can be written as
(G(D+C, X),C) <P > (GmeT|)T;, whereP is a weighted pair and the inequalities
indicate contractions of weighted pairs. In view of 5.15 wayntonsider a diagram
X £ Q% ¥, whereQ and ¥ are smooth complete surfaces andand o' are bira-
tional morphisms corresponding tG(@ + C, X),C) < P and P > (G m) © T;])T;
respectively. DefineD’ = o'(w1D) and C' = «/(C), whereC C € is the strict
transform of C. Then D’ + C’ is a divisor of ¥ with strong normal crossings and
(Gmy © T))T; = (G(D' + C', ¥), C"). Moreover,X < Q — ¥ gives an isomorphism
Y \ suppD’ — X \ suppD which mapsC’ onto C.

Since G(D' + C',Y),C)) = (G—my © T))T;, the weighted graptG(D’ + C’, Y)
contracts to the underlying weighted graph @f,,y © T/; by 5.15 again, this con-
traction gives a birational morphismy, : Y — S, where S’ is smooth. Consider
the divisor M' = (D’ + C’) of §’ (with strong normal crossings); the@(M’, S’) is
the underlying weighted graph &, © 7, i.e., G(M', S"), Z") = G © T, for
some componeng’ of M'. By 5.7, G, © T is pseudo-linear, has at most two con-
nected componenents, and the connected component whishndbe&ontain the distin-
guished vertex is an admissible chain. Thus we obtairKammersion §’, ©’), where
w S\ suppM’) — X, \ supp) is the isomorphism determined by, o', » and
X\ supp@ +C) = X, \ suppF). The X-immersion §', 1') determines an affine ruling
A’ of X and an elemen¥F’ of A/ satisfying suppf”) = supp) (because the image
of u is X, \ supp()). Also, Z’ is the 0-component ofS(, 1') and letX’ be the sec-
tion of (S, w'). Since the unique neighbor of the distinguished vertexgaf,y © T,
has weight—m, we have £)2 = —m. Note that &, A")~ = (¥, |Z/|~), where |Z'|~
denotes the strict transform ¢Z’|. Also, HN(r}, M’) is defined and is equal t@,.

Let 71 : 8 — F, be the unique birational morphism which contracts each re-
ducible member ofZ’| to a 0-curve and whose exceptional locus is disjoint fram
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(see 1.2).

We claim thatN(z;) = m’ — 2, wherem’ is the number of irreducible components
of M" and N(r;) is (as usual) the number of irreducible components in treegtonal
locus of 7;. To see this, letr be the compositio2 % X % § & F,, wherer; and
7, are the two morphisms determined by, (A, F) as in 5.1. TherW(x) = |P|—2 and

consequentlyN (") = |P| — 2, wherer’ is the compositiort2 o A Vi F,.. Since
o’ andm;, correspond to contractions of graphs, it follows th&tr;) = |G_m© T -2,
from which the claim follows.

Note thatr;(X’) is the negative section of the standard ruling of F,, and that
m;(Z') is a member ofA,. We claim that, for some membet of A, other than
L AVAR

(30) m(M') C L+ (2)+m(Z)), centerfr;) C L\ 7y (X) and HN(zy, L) =T].

The verification of this splits into two cases.

If m" =2 then|G_,) & T|| = 2, s0T] is the empty tableau. On the other hand,
N(m;) =m’ — 2 =0 implies thatr; is an isomorphism. If we leL be any member of
A, other thanzi(Z’), then (30) holds.

If m" > 2 thenG_,) © T{ has more than 2 vertices, so the middle vertex of
Gmy has exactly two neighbors, i.e%’ has two neighborsZ’ and Z” in M'. Let
M, ..., M), 5 be the components a¥/’ other thanZ’, ¥’ and Z”; since eachM;
is contained in a member of the ruling’| (becauseM;NZ’ = @) and is disjoint from
X', eachM; is shrunk bysm;. Since N(r;) = m’ — 2, the exceptional locus of; is
EUMU---UM,, . for some curveE not contained inM; U ---U M,, .. Since
(M))?> < =1 for all i, E is the unique £1)-component of the exceptional locus »f.
Let L =m;(Z") and note thatL is a member ofA,, other thanr;(Z) and satisfying:

7(M") = L+n(2)+71(Z") and centert;) C L\ 7;(T').
Using G = (G(mr(M"), F,), L, m1(Z')), we obtain

Gem) © m(”i, L) = (G(my (M), Fp), L, my(Z)) © m(ﬂi, L)
= (Q(M’, S/), Z/) = g(fm) S} T/v

so HN(z;, L) = T; by Lemma 5.14 and (30) holds in this case too.
We conclude thatr; and =, are the two morphisms determined b¥,@’, F')
(5.1) and that disc(, A’, F') = (m, T, T}). O

The following order relation is useful for describifi(X) explicitely:

Derinimion 5.16.  We define a transitive relation on the setT by declaring that
(n, T1, T2) > (m, T/, T,) if n =1 and the following holds:
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Let £ be the weighted pair such th@{_,,)©T] is pseudo-linear of typen(—1, £).
Then there exist an integer > 1 and tableauxXy, ..., X, such thatTy = (T})*,
Ty=X,---X1T, and X; € T;, (L"), wherek; =m — 1 andk; = 0 for all i > 1.

We define the symbols:, > and < the usual way. (See Definition 3.21 fa@g(L£).)

Remark. There cannot be an infinite descending sequemnce w, > --- in T.
Indeed, if @, Ty, To) > (m, T{, T;) then the number of columns df; is strictly less
than that of7T>.

Note that, ift/ € T is given, we may explicitely describe all € T satisfying
7 > 7’ (this is done in 5.39, below). Thus the following (see alsardllary 5.22)
describesT(X) in terms of To(X):

Corollary 5.17. Let X be a surface satisfyingf).
(1) If z,7’ € T are such thatr > 7/, thent € T(X) < 1’ € T(X).
(2) Given anyr € T(X) \ To(X), there existst’ € To(X) such thatr > 7’.

Although 5.17 is essentially a corollary of Theorem 5.18, ptoof requires some
preparation.

Lemma 5.18. Let (n, T1, T2), (m, I;, T,) € T.
(1) If (n, I1, Io) > (m, T{, T;) then (n, Ty, Ip) = (m, T}, T;).
(2) If (n, Th, To) = (m, ], T) then (G, ©T1)OT» and (G.)©1;)OT; are equivalent
weighted graphs and consequently

(n, 11, ) € T(f) < (m, T, T,) € T(}).

Proof. Suppose thati(71, T2) > (m, T, T,). Recall thatn = 1 and let the no-
tations , s, X1,..., X, k;) be as in Definition 5.16. Sincg_,) © T, is pseudo-
linear of type {» — 1, £), it follows that G_1y © T, is pseudo-linear of type (),
s0 Gy © (T)™) = (G © T))" is pseudo-linear of type (C"). By Corollary 3.37,
G- o (Tl’)(“s))XS ... X, is pseudo-contractible of typen(— 1, £).

Let P < P’ mean, temporarily, that the weighted paiPsand P’ are the same
outside of the connected component containing the disshgd vertex. Then

Gem© T =GO T < G1yo (T)™ =< Gryoe D)X, - X,

where the second=" follows from part (2) of 5.14 and the other two are obvi-
ous. Thus the weighted pairg(1) © (T})*))X, --- X1 and G,y © T| are pseudo-
contractible of the same type, and identical outside of tenected component con-
taining the distinguished vertex; it follows that

(31) Gino @) NX, - X1~ G moT,
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and consequently
G-y © T1)T2 = (G(-1) © (T)X, - X1 Ty ~ (Gmy © T)T>,

which proves assertion (1). (71, T2) = (m, T}, T3) then Gin © T1)T2 = (G—m) ©
T))T;, so

Gemoen)eh=(GmyeT)hol~GmeT),el=(GyeT)eT,
and (2) holds. L]

Lemma 5.19. Lett = (n, Ty, T2) € T(}). If the weighted grapi{G, © T1) © T»
can be contracted to a weighted graph whose number of braoafigis strictly less
than that of(G_,) © Th) © T, thent > ¢’ for somert’ € T(¥).

Proof. LetL be the weighted pair such th#& = G_,) © T is pseudo-linear of
type (2 —1, £'). Note that7, € 7% but that, since §_,)© T1)© T, has a branch point,
T, satisfies none of the conditions of 5.6 (this follows from)5.Thus, if we write
T, =CT with C,T € 7 and C a single column, we have # (7), T # 1 and if T is
a single column then it is not of the fon@). Consider the weighted palf C = (H, ¢)
and regarde as a vertex of §_,)©T1)© T = (H,e)© T. Then G_,) ©T1)© T has
three branches at, say B, B’ and B”, where B contains the vertices oP, BU B’
contains no branch point ofG(_,) © T1) © T, and every weight inBU B’ U B” is
strictly less than—1, except possibly the middle vertex 6{_,) (which belongs to3
and has weight-n). Since (., © T1) © T» contracts to a graph with less branch
points,n = 1 (so P is of type (Q £")) and B shrinks. In other words, the connected
componentL'C of PC (regard£'C as a weighted pair) contracts to a linear pair. By
3.32,£'C(})" is contractible of type. and C(3)" € T(£'), for somev € N; so PC is
pseudo-contractible of typey(L).

We may write 7, = X17, with X; = C(i)l € T (somel e N) and T, € T% If
¢ > v then PX; contracts to a weighted pai#¥{, w) which contains a vertex # w of
nonnegative weight; therg(_,) © T1) © T» = PX1 © T, contracts to a weighted graph
containing a nonnegative weight, contradicting the faett tits intersection matrix is
negative definite. S& < v and consequenthX; € 7, (L), which we rewrite as
X1 € T,_1(L"), wherem > 1. It is then clear that the triple’ = (m, T1, T,) belongs to
T and satisfiex > /. By Lemma 5.18;t" € T(}). ]

Proof of Corollary 5.17. Since > 1’ implies t = ¢’ by Lemma 5.18, asser-
tion (1) of 5.17 follows from 5.13. Also, (2) follows from (1)f t € T(X) \ To(X)
then Lemma 5.19 implies that is not minimal in [T(}), <); since there is no infinite
descending sequence ifif({), <), we may therefore choose a minimal in (T(}), <)
such thatr > 7’; then (1) impliest’ € T(X), sot’ € To(X) by Lemma 5.19. O
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Notarion 5.20. (1) Givent € T, define
[t.oo)={r'eT |7 27} and (oo, 7]={r' €T |7 <7}
(2) If X satisfies {), min(T(X)) = {r € T(X) | = is a minimal element of [(}), <)}.
Remark. By Lemma 5.19, mif{(X)) € To(X).

Lemma 5.21. Givenrt € T, the set(—oo, 7] is totally ordered and finite. Conse-
quently if ¢ is not minimal inT then there exists exactly one € T such that

>t~ and not* € T satisfiest > 7* > 7~
We call t~ the immediate predecessof t.

Proof. We show that ifr, 7', t” € T satisfyt > ¢’ andt > t”, thent’ > 7" or
U<t Writet=(1,T,T), v = T/, T;) andt” = (m", T}, T))) and letq’ (resp.
q") be the number of columns df) (resp.7,). We may assume that < q”.

Sincet > 1/, we haveT» = X, --- X, T, (notation as in Definition 5.16) and sim-
ilarly T > t” gives T, = Y, --- Y1T). Thus T; (resp.T,) consists of the rightmosy’
(resp.¢”) columns of Ty; sinceq’ < ¢”, it follows that 7)) = WT; for someW e T
(and 7, € T# implies W € T%). So X, --- X1T, =T, =Y, ---Y;WT, and consequently
X,---X1=Y,---Y1W. Since theX; are irreducible elements of the mondid, it fol-
lows thatW = X --- X; (somej > 0) by unique factorization ir7* (see 3.34). Thus
T; = X;---X1T, and it follows thatt” > ¢’ or t” = ¢’. This shows that-{oo, 7] is
totally ordered; the other assertions are trivial. ]

Corollary 5.22. If X satisfies(f) then {[r,c0) | T € min(T(X))} is a partition
of T(X).

RemARK. [T, 00) is described explicitely in 5.39, below.

Proof. By Corollary 5.17, the union of the sets, po) is T(X). If 7/,7” €
min(T(X)) are such thatd, oo) N [t”, 00) # @, then Lemma 5.21 implies’ = t”.
]

In relation with the reduction process of Corollary 2.11, gree:

Proposition 5.23. Let X be a surface satisfyingt), A a non-basic affine rul-
ing of X and F the unique element of,. Consider the paifA~, F~) obtained from
(A, F) by means of the reduction process @brollary 2.11,i.e., if T = (S, u) is the
distinguished X-immersion determinindA, F), P € S the center of the morphism
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7, . X — S which contractsF to a O-curve andz any® element of[1,(/), then

(A, F) is the pair determined by th&-immersion! % 7. Let t and t~ denote the
discrete parts of(A, F) and (A~, F~) respectively. Then~ is the immediate prede-
cessor ofr (seeLemma 5.21).

Proof. Write v = (n, T1, T2). Since A is non-basic, ¢, © T1) © T» = G(A)
can be contracted to a weighted graph with less branch pothen the proof of
Lemma 5.19 produces € = (m, T;, T;) such thatr > t/, T, = X, T, and X; = C(})Z
(note thatt’ is the immediate predecessor of. Sincet > 1’ implies t = 7/, the
proof of Theorem 5.13 produces a paik’( F’') whose discrete part is’. The factor-
ization T, = C(i)KTZ’ determines a factorization of, as

X R’ S
(32) n o c

w

S

and C € 7,(£") implies thatr € ITp(S, u). Then we see that th&-immersion §', 1)
(in the proof of Theorem 5.13) is equivalent fexr. Since §’, 1') determines 4’, F’)
and I x r determines 4, F ), this means thatA’, F') = (A, F~). Sot’ =t~ and
we are done. ]

SURFACES SATISFYING (1)

NortaTion 5.24.
(1) Consider triples X, A, F) where X satisfies {), A is an affine ruling ofX and
F € A,. Two such triples areequivalent (X, A, F) ~ (X', A’, F’), when there exists
an isomorphismX — X’ which transformsA into A’ and F into F’. If this is the
case then dise{, A, F) = disc(X', A/, F’), so we may speak of the discrete part of
the equivalence class{[ A, F] of (X, A, F). So we obtain a map discS(}) — T(¥),
where S(7) denotes the set of equivalence classEsA, F1].
(2) We will also consider the restriction disc So(f) — To(1) of the above map
S(1) — T(t), whereSo(}) = {[X, A, F] € S(f) | X satisfies f) and A is basi¢ and
where To(1) is the set of 1, T1, T2) € T such that (i) each off;, T, satisfies one of
conditions (1-3) of 5.6; and (ii) the weighted grapfi(,) © T1) © T> has a nega-
tive definite intersection matrix. (See Lemma 5.11 for thet that disc map$So(f) in
To(1); see also 5.41.)
(3) LetS(}) be the set of isomorphism classes of surfaces satisfyipgThe isomor-
phism class ofX is denoted k]. Then [X, A, F] — [X] defines a maSo(}) — S(1).

In particular, we will show:

8For the fact that(A—, F~) is independent of the choice af € T1p(I), see the last assertion of
Corollary 4.4.
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Proposition 5.25. So(f) — S(}) and S(t) — T(}) are surjective andSo() —
To(1) is bijective.

Proof thatSo(f) — S(f) is surjective. IfX is any surface satisfyingf), then X
admits a basic affine ruling. by Theorem 2.1 and\, # @ by 2.5; thus K] is in the
image ofSo(f) — S(1). O

The proof of the other assertions requires some preparation

DeriniTion 5.26. Letm be a positive integerp,, the standard ruling of,, and
3. C F,, the negative section ah,, (E,%l =—m). LetT1, T, e 7.
(1) By ablowing-up of[F,, according to(7y, T>), we mean a triples, P, P,) where
7 .Y — F, is a birational morphism (withY smooth and complete)P;, P, are
points of F,, \ X,, belonging to distinct members ok, (P; € Z; € A, Z1 # Z)),
centerfr) € {P1, P»} and, for eachi = 1,2, #~1(P;) contains at most one—l)-curve
andHN(z, Z,) = T,.
(2) Let B = (m, P, P,) and B’ = (7, P;, P;) be two blowings-up ofF,, according to
(11, T»). We say thatg is equivalent tog’ if there exists a commutative diagram:

Y — > v

l- [
F,. —E> I,
¢

where the horizontal arrows are isomorphisms and, for éaeh, 2, (P;) = P/.

Lemma 5.27. Let (m, Ty, T;) € Z* x T x T be such that
() Each T; satisfies one of conditiond—3) of 5.6; and
(i) if both T; are nonempty themicico — cipo — capi 7 0, where (f) is the first
column ofT;.
Then any two blowings-up d, according to(7y, T>) are equivalent.

Proof. Letpg = (w, P1, P;) and g’ = (z', P{, P;) be two blowings-up off,, ac-
cording to (1, T»). Since there exists an automorphfswf F,, which mapsP; and
P, to P{ and P; respectively, we may assume thdt (P,) = (P;, P;). Let Z; be the
member ofA,, containing P; (Z; # Z,) and choose a sectiofi of A,, such thatS N
n =¥ and Py, P, € S. We can writeF,, \ X,, = Sped[x1, y1] U Spe[xz, y,], where
x;,y; are local equations af; for Z; and S respectively,x, = x7* and y, = yix;™.
Then the Hamburger-Noether tableaux HNHN(r; x;, y;) and HN = HN(x'; x;, ;)
satisfy HN; = 7, =HN, (i = 1, 2).

9The automorphism preserves fibres anyg, sincem > 0.
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Note that, for eachd(, 7) € (k*)?, x; — ox1, y1 — Ty induces an automorphism
¢s.r of F,, which leaves P4, P,, S) unchanged.

Let 7 = {i € {1, 2} | T; has two columnk and, for eachi € I, definea;, o €
k* by saying that(}i) (resp. (E)) is the first column of HN (resp. HN). If the
two sequences$o;}ic; and {o)}ie; are equal, then the assertion is trivial. So it suffices
to show that the sequende;};c; can be transformed into the constant sequence with
value 1 by composingr with automorphismsp, ..

Let us study the following situation. LeP;, Z;, S and (;, y;) be as above. Let
a1, 2z € k* and p1,c1, p2,c2 € N be such that O< p; < ¢; are relatively prime
(i =1,2) andmcicy —cip2—cap1 # 0; consider a birational morphistfi: ¥ — F,, (Y
smooth and complete) satisfying centr= {Py, P»} and, for eachi = 1,2, f~1(P)

contains a unique—{1)-curve E; and HN(f;x;, y;) = (’Z) For eachi =1, 2, the HN-

algorithm of [11] produces a parametey for E; = P! and the conditionu; = «;
determines a point o;. Moreover,u; =y /x"" or u; = x""/y{". We haveg, .(u;) =
oVithiy;, with (\)1, [,L]_) = :E(—pj_, C]_) and 6)2, /Lz) = :|:(p2 — mcy, Cz). Since | 5; ﬁ; | =
+(mcic2 — cap2 — cap1) #0, we may chooseo(, ) such that

HNGpo.c o fixn) = () and  HNGo.co fixo )= (). 0

Lemma 5.28. Let (m, Ty, T») € To(%).
(1) If both 7; are nonempty themicic, — cipr — cap1 > 0, where (f) is the first
column of7;.
(2) The blowing-up off,, according to(71, T>) is unique up to equivalence.

Proof. If bothT; are nonempty then Ief be the connected component of

(sme () ()

containing the vertices ofj_,). SinceI" is a subgraph of(_,, © T1) © T», it must
have a negative definite intersection matrix. In particudet(’) > 0. By 3.16 and
Lemma 3.23, def() = mcic; — c1pr — cop1. This proves (1), and (2) follows from
(1) and Lemma 5.27. Ll

5.29 (Proof of Proposition 5.25, continued). Given= (m, 71, T») € T(}), we
describe a method for constructing alf,(A, F) such that disX, A, F) = t (where
X satisfies ), A is an affine ruling ofX and F € A,). This will show, in particular,
that disc :S(1) — T(7) is surjective.

Choose a blowing-up

(i L Fm’ Pl! PZ)
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of F,, according to i1, T>) and letZ; and Z, be the elements of\,, satisfying P;
Z;. Recall that center() C {P1, P,} andHN(x, Z;) = T;. Fori = 1, 2, define

_ [ =Xz, if P; ¢ centerfr),

i {the (1)-curve intY(P;), if P; e centerfr)

and letD be the divisor ofX with strong normal crossings defined by (supp@. +

T+ Z2)) = suppEr+D+Ep) and Ex, E; Z supp@). ThenG(D, X) = (GmOT1)O T2

and consequentlyp has a negative definite intersection matrix (becauseT(t)). So

there exists a complete normal surfak¥eand a birational morphisnX — X with

exceptional locus supp). Note thatA,, determines an affine ruling of X, because
F, < X — X restrict to an isomorphism betwed, \ supp¢i + X,, + Z,) and an
open subset ofX. Moreover, if A is the strict transform ofA,, with respect tor,

then (X, A) = (X, A)~. Equation (4) of 1.7 implies that Pi&() has rank 1, sox

satisfies {). Note that the image of; under X — X is the support of som&; €

A; moreover,F, € A, and disck, A, F») = t. It is clear, also, thatX, A, F5) is

determined by the choice of the blowing-up, (P1, P,) and that every triple X, A, F)

with discrete partr can be obtained in this way, i.e., by choosing a suitable ipigw
up. O

5.30 (End of proof of Proposition 5.25). We show th&§(f) — To(}) is bijec-
tive. Givent = (m, T1, Tz) € To(1), consider a triple X, A, F>) constructed as in 5.29.
By Lemma 5.11,X satisfies f) and A is basic, so X, A, F,] € Sp(}). Also, unique-
ness (Lemma 5.28) of the blowing-up ,(P1, P;) up to equivalence implies uniqueness
of (X, A, F») up to equivalence; in other words,— [X, A, F>] is a well-defined map
To(t) — So(t), and this is the inverse of the “discrete part” mSg{t) — To(f). U

Corollary 5.31. There exists a surjective map: To(f) — S(}) satisfying
Given t € Ty(f) and X satisfying(f), f(r) = [X] if and only if there exists an
affine ruling A of X and an F € A, such thatr is the discrete part ofA, F).

RemarRk. One interesting aspect of the surjectign: To(f) — S(i) of Corol-
lary 5.31 is that, giverr € Ty(}), we may construct, in a very explicit way, a surface
X such thatf(r) = [X] (the construction is carried out in 5.29). Since the elamaf
To(f) can be described explicitely (see 5.41), this gives anresteng description of
the class of surfaces satisfying).(

Corollary 5.32. Let X; and X, be surfaces satisfyin) and such thafl'(X1) N
T(X2) #@. Then
(1) To(X1) NTo(X2) #¥.
(2) If at least one ofX3, X, satisfies(}), then X; = X».
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Proof. Assertion (1) follows immediately from Corollaryl3. To prove (2), as-
sume thatX; satisfies {) and considerr = (m,T1,T2) € To(X1) N To(X2). By
Lemma 5.11, each of, T satisfies one of the conditions (1-3) of 5.6; sinces
T(X>), Lemma 5.11 implies thak, satisfies {). Then the surjectiory : To(t) — S(f)
of Corollary 5.31 satisfies'(zr) = [X4] and f(t) = [X2], so [X1] = [X2]. O

5.33. Consider the equivalence relation™ on T which is generatedby declar-
ing thatt ~ t/ whenevert < t’. Thent ~ v/ = 1 = 7/, but the converse does
not hold Indeed, Lemma 5.21 implies that/~ = {[r,00) | = € min(T)}, so each
equivalence class with respect to contains exactly one minimal element df, (<).
However, if r = (1,(3§3).(333%) and 7' = (1,(%3).(%%)) thent and ¢’ are dis-
tinct minimal elements of T, <) andt = 7'.

Regarding the relation- of 5.33, we have the following:

Corollary 5.34. For i = 1,2, let X; be a surface satisfyingt), let A; be an
affine ruling of X; and let F; € (A;),. If disc(X1, A1, F1) ~ disc(X2, Az, F»), then
there exist(A], F]) and (A%, F;) satisfying
(1) For eachi, A} is a basic affine ruling ofX;, F/ € (A}). and supp{;) = supp{;);
(2) there exists an isomorphisixiy — X, which carriesA] to A, and F] to F.

In particular, there exists an isomorphism{; — X, which mapssupp:) onto

supp).

Proof. Letr; € T be the discrete part ofA;, F;). Then Lemma 5.21 implies that
there existst’ € T such that (for alli) 7; > t’; clearly, © may be chosen so that it
is a minimal element off. By Theorem 5.13, for each there exists an affine ruling
A} of X; and F/ € (A}), satisfying suppk;) = supp;) and such that the discrete part
of (X;, A}, F/) is . So (Lemma 5.19A! is basic and the two elementX{, A}, F[]
and [X, A}, FJ] of So(}) have the same image (namely) under the bijective map
So(1) = To(f). Hence, K1, A}, Fi] = [X2, A}, Fj]. I

MULTIPLICITIES

Derinimion 5.35.  Given a tablead = (£ %) € T, we define

1, if T=1,
Cc1- - Ck, else.

u=|
Note thaty : 7 — N\ {0} is a homomorphism of multiplicative monoids.

Remark. Given a finite Hamburger-Noether tableau HI\(%l ) considerT =
HN € 7 defined as in 3.6. Thep(T) =c; (or 1, if HN is empty).
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By the above remark and A.10.1 of [11], we have

5.36. Let f : X — Y be a birational morphism of smooth complete surfaces
and D a nonzero divisor ofY with strong normal crossings. Assume that the ex-
ceptional locus off contains at most one—1)-curve and that the center of, if
nonempty, is a point? belonging to exactly one componeftof D. Let

£= 2. if f is an isomorphism,
"~ | the (~1)-curve in f~X(P), if f is not an isomorphism.

Then the multiplicity of £ in the total transform ofD is equal tou(HN(f, D)).
The above statement and Proposition 1.8 give:

Corollary 5.37. Let X be a surface satisfyingt). If (m, T1, T>) is the discrete
part of (A, F), where A is an affine ruling ofX and F € A,, and if G € A\ {F} is
such that{F, G} contains all multiple members af (such aG exists, by definition of
A,), then

F=u(T2)C; and G = u(T1)Cy,

where C;, Co, C X are (irreducible) curves. MoreoverPic(X,) = Z & Z/dZ, where
d = ged@(T1), n(12)).

Remark. If X = P2, or more generally a weighted projective plaRé, b, )
wherea, b, ¢ are pairwise relatively prime, then(71) = degC, and u(7>) = degC,.
(In view of the above result, this follows immediately fronedfdegC:, degCs) = 1,
for which we refer to [5] or [6].)

See also Corollary 5.40.

SOME EXPLICIT COMPUTATIONS

5.38. Let m > 0 be an integer and suppose thate 7 satisfies one of condi-
tions (1-3) of 5.6.

(1) Recall thatG_,,y © T is pseudo-linear of typen{ — 1, £), where L is a weighted
pair satisfying the condition (0), uniquely determined By Then Lemma 3.23 gives:

(91) if T satisfies 5.6.1
M(L) = (C_’;i’,’,'f”" C;”) if 7 satisfies 5.6.2

Np(c—p)—1 Nc?2—Nep-1Y . g
( Nep—1 N2 ) if T satisfies 5.6.3
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where p’ and p” are defined by(’l’)) = (*)". Note thatL is degenerate if and only if
Te{L (3DIU{(i) [n =1}
(2) The conditions

M= (70 ) and w=a; (2 1)
define positive integerg(7T) and y(7T) and an infinite sequencee(T’) = (a1, a, ...) of
positive integers. Note that these are uniquely determmed and can be computed

from (1). They satisfyM (L) = (Vg) ;‘(Tl)) for all i > 1.
(3) A sequences = (vy, ..., vy) of natural numbers is said to be:(T)-admissibleif
s > 1 and the following conditions hold:

@ T e{l,(3Hu{(r) |n=1}, vi > max(Lm —1) andv; > 1 for all

i>1.
(b) For all otherT, vi >m —1 andy; >0 for all i > 1.
(4) Given an fu, T)-admissible sequence = (vq,..., ), consider the sequence of

tableaux &, ..., X,;) € 7° given by X; = (f{')(i)”ﬁk’, where (¥) is the matrix product
M(L")(}), ko =m—1 andk; =0 for alli > 1. ThenX; € 7 (L") forall i = 1,...,s.

5.39. Lett = (m,T1,T») € T. For each (m, T1)-admissible sequence =
(v1, ..., v,), definet, € T by 7, = (1, (T)*, X, - - - X1T»), where (X4, ..., X,) is de-
termined byv and (m, T1) as in part 4 of 5.38. Then

[t,00) = {r} U {7, | v is an (m, T1)-admissible sequenge

Corollary 5.40. Let X be a surface satisfyingj) and suppose thatn, T}, T;) €
T(X). Lety = y(T7]) and «(T}) = (@1, a2, ...). Then the set

{((1), (1)) | (1, Ty, Tp) € T(X) and (L, Tn, T) > (m, Ty, T,)}

is equal to

{(M(T{), ,u(TZ’)~li[(oz,~+v,'y)>‘ (V1. ....v,) is (m, T})-admissible } .

i=1

5.41. We describe the elements @f(1). Consider a tripler = (m, T1, T2) where
m is a positive integer and ead) is a tableau 1; € 7) satisfying one of conditions
(1-3) of 5.6 (each element dfy(f) is such a triple). Consider the connected compo-
nentT" of (G.) © T1) © T» containing the vertices of_,,). Then every connected
component of ¢_,,) ©T1) © T» is a linear chain and every vertex, except possibly the
middle vertex ofG._,) (which has weight-m), has weight strictly less thar1. So
7 € To(}) < det(") > 0 and in particular:
e If m>1thent e Ty(});
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if 1e{T1, T,} thent € To().

Assume thatn = 1 and that neither of, T» is empty; then7; is either (%) or (2 1)
with x; > 1. We may then compute d&t( in each case and conclude:
Q) If Ti=() and T2 = (), T € To(}) &= A >0;

2

(2) if ;= (") and T; = (/g;‘ 1) T e To(f) & Acjx;—c¢; > O;

Ci

() if Iy = (1’1 1) and T, = (1’2 1 ), T € To(l) & Acicoxixz — cfxl - c%xz > 0,

C1 X1 Cc2 X2

where A = mciCp — C1p2 — C2P1 = C1€2 — C1P2 — C2P1.

(1]
(2]
(3]
(4]
5]
(6]
[7]
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