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1. Introduction

The purpose of this note is to answer a question proposed by Ikawa: does the sin-
gular part of the scattering matrix determine the obstacle?It is well known that the
complete scattering matrix at any fixed energy determines the obstacle – see [5], Sect.
V.6 and [3]. Here we give

Theorem. Suppose thatO1 and O2 are two obstacles inRn and that S1(�),S2(�) are the corresponding scattering matrices. If�0, in C, when n is odd and in31, whenn is even, is a pole ofS1(�) then

S1(�)� S2(�) is holomorphic near�0 =⇒ O1 = O2:
Here31 denotes the first sheet of the logarithmic plane:�� < arg�0 < � .

The proof is an observation based on the complex scaling method and on the Rel-
lich uniqueness theorem. The method does not apply to potential or metric scattering
and in fact, as pointed out to the author by Michael Livshits, the analogous theorem
does not hold in that case – see a remark in Sect. 3. It seems likely however, that
when S1(�) � S2(�) has no poles at all, then any type of scatterer is determined, and
that was Ikawa’s original question.

We recall the basic assumptions and definitions. By anobstacle, O, we mean a
compact subset ofRn such thatRn nO is connected and�O is smooth. We then con-
sider the Laplacian,1 = �Pnj=1 �2j , with the Dirichlet conditions on�O.

There are many equivalent definition of the scattering matrix for O. The one most
relevant here, comes from considering the radiation patterns of plane waves scattered
by the obstacle: for every� 2 R n f0g and f 2 C1(Sn�1) there exist a unique solution
to the exterior problem with prescribed incoming radiationpattern:

(�1� �2)u = 0; u↾�O= 0;
u(x) = jxj�(n�1)=2eijxj� �f � xjxj

�
+ O

�
1jxj
��

+(1.1)
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+ jxj�(n�1)=2e�ijxj� �g � xjxj
�

+ O

�
1jxj
�� ;

jxj �! 1; g 2 C1(Sn�1):
The scattering matrix is defined as the operator mapping the incoming radiation pattern
to the outgoing one:

S(�) : f 7�! i1�ng(��);(1.2)

where the antipodal map and the power ofi were added so thatS(�) = I whenO = ;–
see [7] for a comprehensive review.

A more concrete representation ofS(�) comes from considering solutions of the
form

(�1� �2)u! = 0; u! ↾�O= 0; ! 2 S
n�1

u!(x) = ei�hx;!i + v!(x); v!(r�) = r�(n�1)=2e�i�r �a(�; �; !) + O

�
1r
�� :(1.3)

Since, in the sense of distributions onS
n�1� , we have

ei�rh�;!i =

�
2�i�
�(n�1)=2 r�(n�1)=2

� �ei�r �Æ!(�) + O

�
1r
��

+ in�1e�i�r �Æ�!(�) + O

�
1r
��� ;

the scattering matrix is represented by the kernel

S(�)(!; �) = Æ!(�) + n�(n�1)=2a(�;��; !):
For � 2 R, S(�) is a unitary operator onL2(Sn�1). As was shown in [5] (see also

[11] and references given there) it continues meromorphically to C when in n is odd
and to3, the logarithmic place, whenn is even. The poles coincide with the poles
of the meromorphic continuation of the resolvent, (�1 � �2)�1 : L2

comp(R
n n O) !L2

loc(R
n n O), from the physical half-plane, Im� < 0, to C and3, when n is odd or

even respectively.
The multiplicity of a pole can be defined in any sensible way and all of such def-

initions coincide (we never have the troublesome pole at� = 0 in obstacle scattering).
For instance, we can put

mS(�0) = dim
MX
j=1

Aj (L2(Sn�1)); S(�) =
MX
j=1

Aj
(�� �0)j +A�0(�);(1.4)

A�0 holomorphic near�0:
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Although the issues of the multiplicity will be implicit in Sect. 2, in this note, only an
existence of a pole will matter.

2. Structure of the singular part

We will describe the relation between the singular part of the resolvent and the
singular part of the scattering matrix. In the case of potential scattering, this is well
known–see [9], [2], [1]. For future reference, and to avoid specific aspects of obstacle
scattering, we will now procceed in the generality of “blackbox” scattering introduced
by Sjöstrand and the author in [10]. We briefly recall the assumptions. LetH be a
complex Hilbert space which is a complexification of a real Hilbert space, so that the
complex conjugate is well defined:H 3 g 7! ḡ 2 H. We assume the existence of an
orthogonal decomposition

H = HR0 � L2(Rn n B(0; R0)); n � 2

and letP be a real self-adjoint operator (Pu = P ū, (Pu; v)H = (u; Pv)H) with domain
D � H such that

1↾RnnB(0;R0) D = H 2(Rn n B(0; R0));(2.1)

1↾RnnB(0;R0) P = �1↾RnnB(0;R0);(2.2)

1↾B(0;R0) (P � i)�1 is compact.

The assumption thatP is real is not necessary but, as in [4], it make the structure of
the singular part of the resolvent particularly nice.

Theorem 1 of [10] gives the meromorphic continuation ofR(�) = (P � �2)�1 as
an operator

R(�) = Hcomp�! Dloc:
In fact, for any� 2 C1comp(R), � = 1 nearB(0; R0 + a0), a0 > 0 we have

R(�)� = (Q0(�) +Q1(�))�(I +K(�;�)�)�1;
Q0(�) = (1� �0)R0(�)(1� �1); Q1(�) = �2R(�)�1;(2.3)

where�i ’s are functions with the same property as� , ��i = �i (and some other prop-
erties), andK(�;�)� is a compact operator onH. R0(�) denotes the free resolvent
and Im� � 0 (the convention is the same as in Sect. 1:R(�) is bounded onH for
Im� < 0).

The assumption thatP is real shows thatR(�) is formally symmetric with respect
to the form (�; �̄)H) (that is 1B(0;R0+a)R(�)1B(0;R0+a) is symmetric). Proceeding as in
Sect. 3 of [10], the structure of the singular part of the resolvent can be described as
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follows: for �0 6= 0 we have

R(�) =
MX
j=1

Bj
(�� �0)j +B�0(�); B�0 holomorphic near�0;

(P � �2
0)MB1 = 0; rankB1 <1; Bk = (P � �2

0)k�1B1

(2.4)

The symmetry ofR(�) with respect (�; �̄)H, shows that the operatorBM 6= 0 is of
the form

BM =
LX
j=1

�j 
 �j ; (P � �2
0)�j = 0; spanf�j gLj=1 = BM (Hcomp);(2.5)

and�j ’s are independent. Here�
 denotes a rank one operator onHcomp given by

� 
  (g) = ( ; ḡ)H�; g 2 Hcomp:
Combined with (2.3) this gives

Lemma 1. For every�j in (2.5), there existshj 2 C1c (Rn) such that

1RnnB(0;R0+a0)�j = R0(�)hj ↾RnnB(0;R0+a0);
unless, possibly,�2

0 < 0, M = 1, and there existsu 2 Hcomp, such that(P � �2
0)u = 0.

Proof. The structure of the resolvent, (2.3), (2.4), shows that for anyg 2 Hcomp

we have that

1RnnB(0;R0+a0)

NX
j=1

�j (�j ; ḡ)H ↾�=�0= 1RnnB(0;R0+a0)R0(�0)hg; hg 2 C1c (Rn):
Using the complex scaling method (see Sect. 3 of [10]), we seethat we can chooseg = gi so that (�ij )1�i;j�N = ((�j ; ḡi)H)1�i;j�N is invertible. In fact, let j =�j ↾B(0;R0+a2)nB(0;R0+a1), a2 > a1, B(0; R0 + a2) � 0� \R

n. Then j ’s are independent inL2(Rn) as otherwiseu =
PNj=1�j�j would vanish inB(0; R0 +a2)nB(0; R0 +a1). As it

solves (P ��2
0)u = 0, it would then vanish onRn nB(0; R0 +a1) (by analytic continua-

tion). But then,u 2 Hcomp is an eigenfunction which, by self-adjointness ofP , shows
that u � 0, unless�2

0 < 0. The caseM > 1 is impossible, as thenu = (P � �2
0) , 2 Hloc and

(u; u)H = (u; (P � �2
0) )H = (u; (P � �2

0)� )H = ((P � �2
0)u; � )H = 0;

where� 2 C1c (Rn), B(0; R0 + a0) [ suppu � f� = 1g. Hence, again,u � 0.
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Writing hi = hgi , we obtain

1RnnB(0;R0+a0)

NX
j=1

�ij�j = 1RnnB(0;R0+a0)

NX
j=1

R0(�)hi;
and the lemma follows.

REMARK. The exceptional case in the lemma can be eliminated by adding a
unique continuation assumption holding in most interesting situations:

(P � �2)u = 0; u 2 Dcomp =⇒ u � 0:(2.6)

It is in fact, possible that the exceptional case never occurs for a general perturbation.
To connect this to the structure of the scattering matrix we recall the following

simple

Lemma 2. The scattering matrix for a “black box” perturbation is given by

S(�) = I +A(�); �A(�) = ntE(��)[1;�2]R(�)[1;� ]E(�); where

E(�) : L2(Sn�1) �! C1(Rn); E(�)u(x) = n�(n�1)=2 Z
Sn�1

u(!)ei�hx;!id!;
and �j 2 C1c (Rn) are the same as in(2.3)

Proof. As recalled in Sect. 1,A(�), for � real, comes from the radiation pattern
of R(�)(�[1;� ]eih�;!i). To obtain a formula forA(�), we write

(1� �2)R(�)�1 = R0(�)(�1� �2)(1� �2)R(�)�1 = R0(�)(�[1;�2]R(�)�1);
since (1� �2)(�1� �2) = (1� �2)(P � �2) and (1� �2)�1 = 0. The basic asymptotic
formula,

jxj(n�1)=2ei�jxjR0(�)(x; y) �! �n�(n�3)=2eihy;!i;(2.7)

jxj ! 1; x=jxj = !; y=jxj ! 0:
and the definition ofS(�) give the lemma.

Lemma 3. If AM is the operator given in(1.4), then

A1 = an��1
NX
j=1

t
E(��0)hj 
 t

E(�0)hj ;
wherehj are given inLemma 1, and E(�0) are as inLemma 2.
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Proof. Because of Lemmas 1 and 2, we only need to show that

t
E(�)h = �tE(�)[1;� ]R0(�)h; h 2 C1c (Rn); (1� �)h = 0:(2.8)

In fact,

(1� �)R0(�0)h = R0(�)(1� �2)(1� �)R0(�)h = R0(�)(�[1;� ]R0(�)h);
where the equalities are justified for Im� < 0, with analytic continuation showing
the equality of the extreme terms for all�. Applying (2.7) to both sides gives (2.8).

3. Proof of Theorem

The real meaning of Lemma 3 is in relating the singular part ofthe scattering
matrix to radiation patterns of the resonant states, j . Using the complex scaling for
large angles (see [10] for the large angle scaling for compactly supported perturbations
and for references to the origins of the method), we obtain

Lemma 4. For a “black box” operator, P , satisfying the assumptions above,
and (2.6), the singular part of(� � �0)M�1S(�) at �0 6= 0 determines the singular
part of (�� �0)M�1R(�) at �0. If we do not assume(2.6), then the same exception as
in Lemma 1has to be allowed.

Proof. We apply the large angle scaling of Sect. 3 of [10] which deformsP to
an operatorP� on HR0 
 L2(0� n B(0; R0)). For a0 large enough10�nB(0;R0+a0)P� =
10� nB(0;R0+a0)e�2i�1x , where we parametrized

0� ↾jzj>R0+a1= ei�Rn ↾jzj>R0+a1� C
n:

The resonant states, j , continue holomorphically (as multivalued functions) to a
neighbourhood of[0<�0� , and the restriction to0� is given by

10� nB(0;R0+a0) �j = 10�nB(0;R0+a0)R(ei��0)hj :
We now apply this with� = �arg�0 (the difference in sign comes from a switch in
the sign convention), so that

(1x � (ei��0)2) �j = 0; on ei�Rnx ↾jzj>R0+a1;
 �j = �n��1jxj�(n�1)=2e�i(ei��0)jxj �t

E(�0)hj + O(jxj�1)
� ;

where, again, we used (2.7). Since,ei��0 is real, the Rellich uniqueness theorem (see
[5], Chapter V) shows that10�↾jxj>R0+a1

 �j , is uniquely determined bytE(�0)hj , its radi-
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ation pattern. Analytic continuation now shows that1RnnB(0;R0+a0) j is determined byt
E(�0)hj . As in the proof of Lemma 1, we see that this determines all 0j s.

The proof of the Theorem in Sect. 1 now follows from the classical argument of
Shiffer, presented in [5] and in a slightly corrected form in[3]. If S1 � S2 is regular
near�0, a pole ofS1, then the proof of Lemma 4 shows that there existuj , j = 1;2,
such that

(�1� �2
0)u1 = 0; on R

n nO1 u2↾�O1= 0;
(�1� �2

0)u2 = 0; on R
n nO2 u2↾�O2= 0;

u1 = u2 on G, the connected component of infinity inRn n (O1 [O2):
In particularu1 ↾�G= u2 ↾�G= 0. If, say,O = (Rn nG) n O1 6= ;, then,O is a bounded
open set, and

(�1� �2
0)u1 = 0; u1 2 H 2(O) \H 1

0 (O):
Since�2

0 2 C n [0;1), integration by parts shows that this is impossible.

REMARK. As was pointed out by Livshits [6] the result does not hold for po-
tentials and metrics: the knowledge of one pole and its polarpart will not, in gen-
eral, determine the scatterer. To outline his argument, consider a radial potential of
compact support (or a rotationally invariant metric). Then, S(�) can be diagonalized
using spherical harmonics and, if�0 is a resonance, it appears as a pole of finitely
many diagonal terms. The singular part is then given by a finite set of numbers. It
is intuitively clear that a one dimensional potential cannot be recovered from finitely
many parameters. More specifically, takeV�;�(r) =

PNi=1�i10�r<�i (r), � 2 R
N and

0 < �1 < �2 < � � � < �N . Then, for any�, the existence of an outgoing solution is
equivalent toHl(�; �; �) = 0, for somel. Here, for each spherical model, Hl(�; �; �)
is a transcendental equation obtained from matching boundary conditions at each�i ,
and using the explicit solutions on each step given by Hankelfunctions (in one di-
mension we simply have exponentials–see for instance [8]).For j�j � C only finitely
many l0s can give a solution (see for instance [12]). The finite numberof parameters
corresponding to the singular part is then given by equations in � and �. With a suf-
ficiently largeN , we can keep the solution and those parameters fixed, while varying� and �.
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