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C
∞

-CONVERGENCE OF CIRCLE PATTERNS TO

MINIMAL SURFACES

SHI-YI LAN and DAO-QING DAI

Abstract. Given a smooth minimal surface F : Ω → R
3 defined on a simply

connected region Ω in the complex plane C, there is a regular SG circle pattern

Qǫ

Ω. By the Weierstrass representation of F and the existence theorem of SG

circle patterns, there exists an associated SG circle pattern P ǫ

Ω in C with the

combinatoric of Qǫ

Ω. Based on the relationship between the circle pattern P ǫ

Ω

and the corresponding discrete minimal surface F ǫ : V ǫ

Ω → R
3 defined on the

vertex set V ǫ

Ω of the graph of Qǫ

Ω, we show that there exists a family of discrete

minimal surface Γǫ : V ǫ

Ω → R
3, which converges in C∞(Ω) to the minimal

surface F : Ω → R
3 as ǫ → 0.

§1. Introduction

The theory of discrete differential geometry is presently emerging on the

border of differential and discrete geometry, which studies geometric shapes

with a finite number of elements (polyhedra) and aims at a development of

discrete equivalents of the geometric notions and methods of surface theory

(see [1], [2], [3], [4], [8], [12], etc.). A smooth geometric shape (such as

surface) appears then as a limit of the refinement of the discretization. One

of the central problems of discrete differential geometry is to find proper

discrete analogues of special classes of surfaces, such as minimal, constant

mean curvature, isothermic, etc. In [2], a new discrete model was intro-

duced to investigate conformal discretizations of minimal surface, i.e., the

analogous discrete minimal surfaces consisting of touching spheres, and of

circles which intersect the spheres orthogonally in their points of touch. It is

proved that the discrete minimal surfaces converge to the smooth ones. The

advantages of the discretizations are that they respect conformal properties

of surfaces, possess a maximum principle, etc. Here, we are concerned with

the C∞-convergence of discrete minimal surfaces given in terms of circles
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and spheres, that is, the convergence of discrete minimal surface discussed

in [2] is extended to C∞-convergence.

For each ǫ > 0, let SGǫ denote the square grid with mesh ǫ > 0. The

vertices of SGǫ form the square lattice V ǫ = {nǫ +mǫi : (n,m) ∈ Z × Z},
and an edge connects any two vertices of SGǫ at distance ǫ. The 1-skeleton

of SGǫ is the graph of regular SG circle pattern Qǫ each circle of which has

radius equal to ǫ/
√

2. Aussume that Ω is a simply-connected domain in C

with Ω 6= C. Let Qǫ
Ω be the largest sub-pattern of Qǫ that is contained

in Ω, and let SGǫ
Ω be the sub-complex of SGǫ whose 1-skeleton is equal to

the graph of Qǫ
Ω. The vertex set of SGǫ

Ω is denoted by V ǫ
Ω. Suppose that

F : Ω → R
3 is a minimal immersion without umbilic points in conformal

curvature line coordinates. First, by the Weierstrass representation of F and

the local theory of SG circle patterns (see [12, §6]), there is an associated

SG circle pattern P ǫ
Ω in C with the combinatoric of Qǫ

Ω. In the meantime,

one gets a discrete minimal surface F ǫ : V ǫ
Ω → R

3 corresponding to F , which

consists of spheres and circles. Secondly, in terms of Möbius invariants of

circle pattern P ǫ
Ω, we define the discrete Schwarzians of P ǫ

Ω and show that

they are uniformly bounded in C∞(Ω). Thirdly, we construct a Möbius

transformation T ǫ through circle pattern P ǫ
Ω such that they can be expressed

by the discrete Schwarzians. By the C∞-boundedness of the Schwarzians,

we will prove that T ǫ converges in C∞(Ω) to some Möbius transformation

T as ǫ→ 0. Lastly, using the relation between the discrete minimal surface

F ǫ and circle pattern P ǫ
Ω, and combining with the definition and the C∞-

convergence of T ǫ, we will show that there exists a family of discrete surface

Γǫ : V ǫ
Ω → R

3, obtained by scaling appropriately the centers of spheres and

circles in F ǫ, which converges in C∞(Ω) to the minimal surface F : Ω → R
3

as ǫ→ 0.

This paper is organized as follows. For a given smooth minimal surface

F : Ω → R
3, we will give the associated SG circle patterns P ǫ

Ω, the cor-

responding discrete minimal surfaces F ǫ and the relation between them in

Section 2. In Section 3, we first give the definitions of C∞-convergence and

C∞-boundedness for discrete functions. Then by using Möbius invariants

of P ǫ
Ω, we define the discrete Schwarzians of P ǫ

Ω and show that they are

uniformly bounded in C∞(Ω). In Section 4, we construct the Möbius trans-

formations T ǫ through circle pattern P ǫ
Ω such that they can be expressed

by the discrete Schwarzians. Then it is proved that T ǫ converges in C∞(Ω)

to some Möbius transformation T as ǫ → 0. In Section 5, by the relation

between the discrete minimal surface F ǫ and the circle pattern P ǫ
Ω, we will
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show that there exists a family of discrete minimal surface Γǫ : V ǫ
Ω → R

3

which converges in C∞(Ω) to F : Ω → R
3 as ǫ→ 0.

§2. Circle patterns and discrete minimal surfaces

In this section, for any smooth minimal surface, we apply its Weierstrass

representation to yield associated circle patterns with the combinatorics of

square grid and define corresponding discrete minimal surfaces. Moreover,

we give the relationship between the circle patterns and the discrete minimal

surfaces (also see [12], [2] for more details).

For each positive number ǫ > 0, let SGǫ be the cell complex whose

vertices form the square lattice V ǫ = ǫZ + iǫZ = {v = ǫn + iǫm : (n,m) ∈
Z×Z}, whose edges are the pair [v, v′] such that |v− v′| = ǫ and v, v′ ∈ V ǫ,

and whose 2-cells are the squares {v + x+ iy : x, y ∈ [0, ǫ]}, v ∈ V ǫ.

An indexed collection P ǫ = {P ǫ(v) : v ∈ V ǫ} of oriented circles in the

Riemann sphere Ĉ is said to be a circle pattern with the combinatorics of

square grid SGǫ (or a SG circle pattern) if the following three conditions

hold.

(a) Whenever v, v′ are neighbors in SGǫ, the corresponding circles

P ǫ(v), P ǫ(v′) intersect orthogonally.

(b) If v1, v2 are neighbors of a vertex v in SGǫ, and they belong to

the same square of SGǫ, then the circles P ǫ(v1), P
ǫ(v2) are distinct and

tangent.

(c) Whenever the situation is as in (b) and v2 is neighbor of v, which is

one step counterclockwise from v1, the circular order of the triplet of points

P ǫ(v) ∩ P ǫ(v1) − P ǫ(v2), P
ǫ(v1) ∩ P ǫ(v2), P

ǫ(v) ∩ P ǫ(v2) − P ǫ(v1) agrees

with the orientation of P ǫ(v).

Clearly, the 1-skeleton of SGǫ is the graph of regular SG circle pattern

Qǫ each circle of which has radius equal to ǫ/
√

2.

Suppose that Ω is a simply connected domain in the complex plane C.

Without loss of generality, we may assume 0 ∈ Ω. Let Q̃ǫ
Ω be the largest sub-

pattern of Qǫ that is contained in Ω. Let Qǫ
Ω be the connected component

of Q̃ǫ
Ω that contains 0, and let SGǫ

Ω be the cell complex whose 1-skeleton is

equal to the graph of Qǫ
Ω. The set of vertices of SGǫ

Ω is denoted by V ǫ
Ω, and

the set of centers of squares of SGǫ
Ω by V̂ ǫ

Ω.

A smooth immersed surface in R
3 is said to be isothermic if it admits a

conformal curvature line parametrization in a neighborhood of every non-

umbilic. An isothermic immersion is a minimal surface if and only if the

dual immersion is contained in a sphere. In that case the dual immersion is
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in fact the Gauss map of the minimal surface, up to scale and translation.

We first give the following lemma about the Weierstrass representation of

minimal surfaces, which follows from [2].

Lemma 1. Suppose that F : Ω → R
3 is a minimal immersion without

umbilic points in conformal curvature line coordinates. Then

(1) F =

(

Re

∫

1 − f(z)2

f ′(z)
dz,Re

∫

i(1 + f(z)2)

f ′(z)
dz,Re

∫

2f(z)

f ′(z)
dz

)

,

where f : Ω → C is a locally injective meromorphic function.

For the locally injective meromorphic function f in Lemma 1, set

(2) ν(1)
ǫ (v) = 1 + ǫ2 ReSf (v)

for each boundary vertex v ∈ ∂V ǫ
Ω, where Sf denotes the Schwarzian deriva-

tive of f . Then SGǫ Dirichlet principle [12, Theorem 6.2] implies that ν
(1)
ǫ

is extended to a solution of the SGǫ-Dirichlet problem on SGǫ
Ω. Let ν

(2)
ǫ be

the companion of ν
(1)
ǫ in the solution of the SGǫ − CR equation [12, §5],

i.e.,

(3)
ν

(2)
ǫ (v + ω0)

ν
(2)
ǫ (v + ω1)

=

(

ν
(1)
ǫ (v + iǫ)−1 + 1

ν
(1)
ǫ (v)−1 + 1

)2

and

(4)
ν

(2)
ǫ (v + ω0)

ν
(2)
ǫ (v + ω3)

=

(

ν
(1)
ǫ (v + ǫ) + 1

ν
(1)
ǫ (v) + 1

)2

for any v ∈ V ǫ
Ω, such that

(5) ν(2)
ǫ (ω0) = 1 + ǫ2 ImSf (ω0),

where ωj = ij(ǫ/2 + iǫ/2) (j = 0, 1, 2, 3).

Based on the local theory of SG circle patterns [12, Theorem 6.1], there

exists an SG circle pattern P ǫ
Ω = {P ǫ(v) : v ∈ V ǫ

Ω} for SGǫ
Ω in the com-

plex C that has ν
(1)
ǫ and ν

(2)
ǫ as its Möbius invariants. That is, ν

(1)
ǫ (v) =

− cr[q0(v), q2(v); q3(v), q1(v)] for any v ∈ V ǫ
Ω and ν

(2)
ǫ (u) = − cr[qj(v +

ǫ), qj(v − ǫ); qj(v − iǫ), qj(v + iǫ) for any u = v + ωj ∈ V̂ ǫ
Ω, where qj(v)
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(j = 0, 1, 2, 3) denotes the point of contact with circles P ǫ(v) and P ǫ(v+2ωj)

and cr[q1, q2, q3, q4] denotes the cross ratio of the four points q1, q2, q3, q4 ∈ Ĉ.

On the other hand, we further suppose that there are two kinds of

vertices vs and vc in V ǫ
Ω such that each edge of SGǫ

Ω has vertices of different

kinds. Then a discrete isothermic surface is a mapping

F ǫ : V ǫ
Ω −→ R

3

such that images F ǫ(vs) and F ǫ(vc) of vs and vc are spheres and circles

respectively. Spheres F ǫ(vs) and circles F ǫ(vc) intersect orthogonally if vs

and vc belong to the same edge of SGǫ
Ω, and spheres F ǫ(v

(1)
s ) and F ǫ(v

(2)
s )

(respectively, the circles F ǫ(v
(1)
c ) and F ǫ(v

(2)
c )) are distinct and tangent if

v
(1)
s and v

(2)
s (respectively, v

(1)
c and v

(2)
c ) belong to the same face of SGǫ

Ω.

Let F̂ ǫ(v) be the center of sphere (or circle) F ǫ(v) for each v ∈ V ǫ
Ω,

pj(vs) be the intersection points of spheres F ǫ(vs) and F ǫ(vs + ωj) (j =

0, 1, 2, 3), and let pj(vs) = F̂ ǫ(ws) + bj . Then a discrete isothermic surface

F ǫ : V ǫ
Ω → R

3 is called a discrete minimal surface if it satisfies any one of

the equivalent conditions below.

(a) The points F̂ ǫ(vs) + (−1)jbj lie on a circle.

(b) There is a d ∈ R
3 such that (−1)j(bj , d) is the same for j = 0, 1, 2, 3.

(c) There is a plane through F̂ ǫ(vs) such that the points {pj(vs) | j =

0, 2} and the points {pj(vs) | j = 1, 3} lie in planes which are parallel to it

at the same distance on opposite sides.

From the definition above, it is easy to see that a discrete isothermic

surface is a discrete minimal surface, if and only if the dual discrete isother-

mic surface corresponds to a Koebe polyhedron (see [2, §4]). Let Aǫ(v)

denote the center of circle P ǫ(v) in the circle pattern P ǫ
Ω for each v ∈ V ǫ

Ω.

Then the following lemma, which can follow from [2, §5], gives the relation

between the discrete minimal surfaces F ǫ and the circle patterns P ǫ
Ω.

Lemma 2. For any vertices v
(1)
s and v

(2)
s that belong to the same square

of SGǫ
Ω, let F̂ ǫ(v

(1)
s ) and F̂ ǫ(v

(2)
s ) denote the centers of spheres F ǫ(v

(1)
s ) and

F ǫ(v
(2)
s ) in the discrete minimal surface F ǫ, respectively. Then

F̂ ǫ(v(1)
s ) − F̂ ǫ(v(2)

s )(6)

= Re

(

R(v
(1)
s ) +R(v

(2)
s )

1 + |q|2
A(v

(1)
s ) −A(v

(2)
s )

|A(v
(1)
s ) −A(v

(2)
s )|

(1 − q2, i(1 + q2), 2q)

)

,
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where q denotes the point of contact with circles P ǫ(v
(1)
s ) and P ǫ(v

(2)
s ) in

the circle pattern P ǫ
Ω and the radii R(v

(j)
s ) of the sphere F ǫ(v

(j)
s ) (j = 1, 2)

are

R(v(j)
s ) =

∣

∣

∣

∣

∣

1 + |A(v
(j)
s )|2 − |A(v

(j)
s − q|2

2|A(v
(j)
s − q|

∣

∣

∣

∣

∣

.(7)

For the discrete minimal surface F ǫ, we define a discrete surface F̃ ǫ :

V ǫ
Ω → R

3 by F̃ ǫ(v) = F̂ ǫ(v) for each v ∈ V ǫ
Ω. Then F̃ is called a dis-

crete minimal surface comprised of points and F ǫ is called one consisting

of spheres and circles for distinction. Next, we will show that after scaling

appropriately, F̃ ǫ converges in C∞(Ω) to F : Ω → R
3.

§3. The C
∞-boundedness of discrete Schwarzians

In this section we first give some definitions and notations related to

discrete differential operators (also see [8]). Then using the Möbius invari-

ants ν
(1)
ǫ and ν

(2)
ǫ given in Section 2, we define the discrete Schwarzians of

circle pattern P ǫ
Ω and show that they are uniformly bounded in C∞(Ω).

Let W be a subset of V ǫ
Ω. A vertex v ∈ W is said to be an interior

vertex of W if all its neighboring vertices are contained in W . Let int W

denote the set of the interior vertices of W . Given a function ρ : W → R,

we define the discrete directional derivative ∂ρj : int W → R by

∂ǫ
jρ(v) = (ρ(v + ijǫ) − ρ(v))/ǫ,

for each j ∈ Z4. The discrete Laplacian of a function ρ : W → R is a

function in int W defined by the formula

∆ǫρ(v) = 1/(4ǫ2)
3
∑

j=0

(ρ(v + ijǫ) − ρ(v)).

For any differentiable function H : Ω → R, let ∂jH denote the direc-

tional derivate

∂jH(z) = lim
s→0

H(z + ijs) −H(z)

s
,

where j = 0, 1, 2, 3. Let f : Ω → C
d be a function defined in Ω. For each

ǫ > 0, let f ǫ be a function defined on some set of vertices Ṽ ǫ ⊂ V ǫ
Ω, with
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values in C
d. Assume that for each z ∈ Ω, there are some δ1, δ2 > 0 such

that {v ∈ V ǫ
Ω : |v − z| < δ2} ⊂ Ṽ ǫ whenever ǫ ∈ (0, δ1).

If for every z ∈ Ω and every δ > 0, there are some δ1, δ2 > 0 such that

|f(z) − f ǫ(v)| < δ, for every ǫ ∈ (0, δ1) and every v ∈ V ǫ
Ω with |v − z| < δ2,

then we say f ǫ converges to f , locally uniformly in Ω.

Let n ∈ N, and suppose that f is Cn-smooth. If for every sequence

j1, j2, . . . , jk ∈ Z4 with k ≤ n we have ∂ǫ
jk
∂ǫ

jk−1
· · · ∂ǫ

j1
f ǫ → ∂jk

∂jk−1
· · · ∂j1f

locally uniformly in Ω, then we say that f ǫ converges to f in Cn(Ω). If that

holds for all n ∈ N, then the convergence is C∞. The functions f ǫ are said

to be uniformly bounded in Cn(Ω) provided that for every compact K ⊂ Ω

there is some constant C(K,n) such that

‖∂ǫ
jk
∂ǫ

jk−1
· · · ∂ǫ

j1f
ǫ‖K∩V ǫ

Ω
< C(K,n)

whenever k ≤ n, and ǫ is sufficiently small, where ‖·‖ denotes the L∞-norm.

The functions f ǫ are uniformly bounded in C∞(Ω), if they are uniformly

bounded in Cn(Ω) for every n ∈ N.

For a smooth vector function F : Ω → R
3 and a discrete vector function

F ǫ : V ǫ
Ω → R

3, it is said that F ǫ converges in C∞(Ω) to F if every component

of F ǫ converges in C∞(Ω) to the corresponding one of F , and that F ǫ are

uniformly bounded in C∞(Ω) if all components of F ǫ are uniformly bounded

in C∞(Ω).

For ν
(1)
ǫ and ν

(2)
ǫ given in Section 2, we define the two discrete Schwarz-

ians of P ǫ
Ω as follows: let

(8) h(1)
ǫ (v) = ǫ−2(ν(1)

ǫ (v) − 1)

for each vertex v ∈ V ǫ
Ω and let

(9) h(2)
ǫ (u) = ǫ−2(ν(2)

ǫ (u) − 1)

for every u ∈ V̂ ǫ
Ω. It is easy to see that h

(1)
ǫ = h

(2)
ǫ ≡ 0 if P ǫ

Ω is a regular SG

circle pattern, because ν
(1)
ǫ = ν

(2)
ǫ ≡ 1 for regular SG circle patterns.

Let SGǫ
h denote (1/2)SGǫ

Ω + (1 + i)ǫ/4, and the set of vertices of SGǫ
h

is denoted by V ǫ
h . For any w ∈ V ǫ

h , let v ∈ V ǫ
Ω be the unique vertex of SGǫ

Ω

that is closest to w. Let Mw be the Möbius transformation that takes ∞,

0, 1 to q0(v), q1(v), q3(v), respectively. Set

M[w1,w2] = M−1
w1

◦Mw2

for each directed edge [w1, w2] of SGǫ
h. Write ej(v) = [v+ωj/2, v+ωj+1/2]

for any v ∈ V ǫ
Ω ∪ V̂ ǫ

Ω and for any j ∈ Z4, then we have
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Lemma 3. There hold the following equalities

Me0(u)(z) = Me2(u)(z) = 1 − iǫ(h(2)
ǫ (u) + 1)1/2z,(10)

Me1(u)(z) = Me3(u)(z) = 1 − i(1/ǫ)(h(2)
ǫ (u) + 1)−1/2z(11)

for each u ∈ V̂ ǫ
Ω and

Me0(v)(z) = Me2(v)(z) = (ǫ−2(h(1)
ǫ (v) + 1)−1 + 1)−1/(1 − z),(12)

Me1(v)(z) = Me3(v)(z) = (ǫ2(h(1)
ǫ (v) + 1) + 1)−1/(1 − z)(13)

for every v ∈ V ǫ
Ω.

Proof. For any u ∈ V̂ ǫ
Ω, we first consider the directed edge e2(u) =

[u + ω2/2, u + ω3/2] ∈ SGǫ
h. By the definition of M[w1,w2], we get that

M[w1,w2] does not change if we apply a Möbius transformation to P ǫ
Ω. So we

may assume that Mu+ω2/2 is the identity. It follows from the definition of

Mw that

q1(v) = ∞, q1(v − ǫ) = 0, q1(v − iǫ) = 1,

where v ∈ V ǫ
Ω is the unique vertex of SGǫ

Ω that is closest to u+ω3/2. Hence

we deduce that the four points q1(v ± ǫ), q1(v ± iǫ) form the vertices of a

rectangle. From the definition of ν
(2)
ǫ in Section 2, we get

ν(2)
ǫ (u) = −

(

q1(v + ǫ) − q1(v − iǫ)

q1(v − iǫ) − q1(v − ǫ)

)2

,

which implies

q1(v + ǫ) = q1(v − iǫ) − i(ν(2)
ǫ )1/2(q1(v − iǫ) − q1(v − ǫ)) = 1 − i(ν(2)

ǫ )1/2.

Since Me2(u) takes ∞, 0, 1 to q1(v), q1(v − iǫ), q1(v + iǫ), respectively, we

conclude from (9) that

Me2(u)(z) = 1 − i(ν(2)
ǫ )1/2z = 1 − iǫ(h(2)

ǫ (u) + 1)1/2z.

Similarly, we deduce that Me0(u)(z) = 1− iǫ(h(2)
ǫ (u)+1)1/2z. So (10) holds.

Identical to the above arguments, we conclude that (11) holds.

Next, we consider the directed edge e0(v) = [v+ω0/2, v+ω1/2] ∈ SGǫ
h

for any v ∈ V ǫ
Ω. We assume with no loss of generality that Mv+ω0/2 is the

identity. Then we obtain

q0(v) = ∞, q1(v) = 0, q1(v) = 1.
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By the definition of ν
(1)
ǫ , we get q2(v) = 1/(ν

(1)
ǫ (v) + 1). Note that Me0(v)

takes ∞, 0, 1 to q1(v), q1(v), q1(v), respectively, combining with (8), we

deduce

Me0(v) = ((ν(1)
ǫ (v))−1 + 1)−1/(1 − z)

= (ǫ−2(h(1)
ǫ (v) + 1)−1 + 1)−1/(1 − z).

Similarly, we get

Me2(v)(z) = (ǫ−2(h(1)
ǫ (v) + 1)−1 + 1)−1/(1 − z).

Thus (12) holds. With the same arguments as above, we get that (13) holds.

Lemma 4. (i) The equality

(14) h(1)
ǫ (v) = ReSf (v) + ǫ2 ·O(1)

holds for each v ∈ V ǫ
Ω.

(ii) The equality

(15) h(2)
ǫ (u) = ImSf (u) + δǫ(u)ǫ

2 ·O(1)

holds for each u ∈ V̂ ǫ
Ω, where δǫ(u) denotes the combinatorial distance in

SGǫ
Ω from u to ω0, i.e., the least l such that there is a sequence {u1, u2, . . . ,

ul = u} ⊂ V̂ ǫ
Ω such that u1 = ω0 and |uj+1 − uj | = ǫ for j = 1, 2, . . . , l − 1.

Proof. First, for any v ∈ int V ǫ
Ω, expending Sf in power series about v

and noting that
∑3

k=0 i
jk = 0 for j = 1, 2, 3, we obtain

∆ǫ ReSf = Re

(

1/(4ǫ2)

3
∑

j=0

[Sf (v + ijǫ) − Sf (v)]

)

= O(ǫ2).

Consider the function

g1(v) = h(1)
ǫ (v) − ReSf + β|v|2,

where β ∈ (0, ǫ2) is some function of ǫ. Similar to the proof of [12, Lemma

9.2], we deduce from the Taylor’s formula and the properties of Möbius

invariant h
(1)
ǫ that g1 has no maxima in int V ǫ

Ω if β is chosen as β = Cǫ2

with C > 0 a sufficiently large constant. By the assumption (2), it follows
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that g1(v) = β|v|2 = O(ǫ2) on ∂V ǫ
Ω. Hence we obtain g1(z) ≤ O(ǫ2) in V ǫ

Ω,

which implies

h(1)
ǫ (v) ≤ ReSf (v) +O(ǫ2).

On the other hand, if we let g2(v) = h
(1)
ǫ (v)−ReSf (v)−β|v|2, then similar

to the above arguments, we conclude that

h(1)
ǫ (v) ≥ ReSf (v) +O(ǫ2).

So it follows that

h(1)
ǫ (v) = ReSf (v) +O(ǫ2),

which implies (i).

Next, by (3), the relationship between ν
(1)
ǫ and h

(1)
ǫ and Taylor’s for-

mula, we get

log ν(2)
ǫ (v + ω0) − log ν(2)

ǫ (v + ω1)

= 2 log(ν(1)
ǫ (v + iǫ)−1 + 1) − 2 log(ν(1)

ǫ (v)−1 + 1)

= 2 log((1 + ǫ2h(1)
ǫ (v + iǫ))−1 + 1) − 2 log((1 + ǫ2h(1)

ǫ (v))−1 + 1)

= 2 log(2 − ǫ2h(1)
ǫ (v + iǫ)) − 2 log(2 − ǫ2h(1)

ǫ (v)) +O(ǫ4)

= ǫ2h(1)
ǫ (v) − ǫ2h(1)

ǫ (v + iǫ) +O(ǫ4).

Hence it follows from (14) and Taylor’s formula

log ν(2)
ǫ (v + ω0) − log ν(2)

ǫ (v + ω1)(16)

= ǫ2 Re(Sf (v) − Sf (v + iǫ)) +O(ǫ4)

= ǫ2 Re(iǫS′

f (v)) +O(ǫ4)

= ǫ3 ImS′

f (v) +O(ǫ4)

= ǫ2 ImSf (v + iǫ) − ǫ2 ImSf (v) +O(ǫ4).

Similarly, we conclude from (4) that

log ν(2)
ǫ (v + ω0) − log ν(2)

ǫ (v + ω3)(17)

= ǫ2 ImSf (v + ǫ) − ǫ2 ImSf (v) +O(ǫ4).

By (5) and Taylor’s formula, we deduce that

log ν(2)
ǫ (ǫ/2 + iǫ/2) = ǫ2 ImSf (ǫ/2 + iǫ/2) +O(ǫ4).(18)
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So we conclude from (16), (17) and (18) that

log ν(2)
ǫ (u) = ǫ2 ImSf (u) + δǫ(u)O(ǫ2),

By the relationship between ν
(2)
ǫ and h

(2)
ǫ and Taylor’s formula, we obtain

h(2)
ǫ (u) = ImSf (u) + δǫ(u)ǫ

2 ·O(1),

which implies (ii). This completes the proof of the lemma.

Lemma 5. Let v ∈ V ǫ
Ω, u ∈ V̂ ǫ

Ω, and suppose that the distance δ from v

(respectively, u) to ∂Ω is greater than 2ǫ. Then

h(1)
ǫ (v) ≤ C, h(2)

ǫ (u) ≤ C

for some constant C = C(δ, f) which depends only on δ and f .

Proof. Note that ReSf and ImSf are bounded on compact subset

K ⊂ Ω and δǫ = O(1/ǫ) on K. By Lemma 4, we conclude that the lemma

holds.

Similar to the case of regular hexagonal lattice (see [8, §7]), for regular

square lattice we have

Lemma 6. Suppose that (i) W is a subset of V ǫ
Ω (or V̂ ǫ

Ω); (ii) u ∈ int W ;

(iii) δ is the distance from u to V ǫ
Ω −W (or V̂ ǫ

Ω −W ). If ψ : W → R is any

function, then the inequality

(19) δ|∂ǫ
jψ(u)| < 5‖ψ‖ + (1/2)δ2‖∆ǫψ‖int W

holds for any j = 0, 1, 2, 3.

Proof. The proof of the Lemma is similar to that of [8, Lemma 7.1]

where regular hexagonal lattices were investigated.

Theorem 1. Let n be an integer, and let V ǫ
δ (respectively, V̂ ǫ

δ ) be the

set of vertices of V ǫ
Ω (respectively, V̂ ǫ

Ω) whose distance to ∂Ω is at least δ for

each δ > 0. Then there are constants C = C(n, δ) and µ = µ(n, δ) > 0 such

that

‖∂ǫ
jn
∂ǫ

jn−1
· · · ∂j1h

(1)
ǫ ‖V ǫ

δ
< C, ‖∂ǫ

jn
∂ǫ

jn−1
· · · ∂j1h

(2)
ǫ ‖V̂ ǫ

δ

< C(20)

hold for each ǫ < µ, and j0, j1, . . . , jn ∈ Z4.
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Proof. The proof proceeds by induction on n. In the case n = 0, by

Lemma 5, we get that (20) holds. So we suppose that n > 0, and that (20)

holds for n = 0, 1, 2, . . . , n− 1. Let

ϕ1 = ∂jn−1
· · · ∂j1h

(1)
ǫ , ϕ2 = ∂jn−1

· · · ∂j1h
(2)
ǫ .

Note that the operators ∆ǫ and ∂j can commute with each other, so we

have

∆ǫϕ1 = ∆ǫ∂jn−1
· · · ∂j1h

(1)
ǫ = ∂jn−1

· · · ∂j1∆
ǫh(1)

ǫ ,

and

∆ǫϕ2 = ∆ǫ∂jn−1
· · · ∂j1h

(2)
ǫ = ∂jn−1

· · · ∂j1∆
ǫh(2)

ǫ .

By Lemma 4, it follows that

∆ǫh(1)
ǫ = ∆ǫ ReSf + ∆ǫ(ǫ2O(1)), ∆ǫh(2)

ǫ = ∆ǫ ImSf + ∆ǫ(δǫǫ
2O(1)).

Since ∆ǫSf = O(ǫ2) and δǫ = O(1/ǫ) on compact subset K ⊂ Ω, we have

∆ǫh(1)
ǫ = O(ǫ2) +O(1), ∆ǫh(2)

ǫ = O(ǫ2) + ∆ǫ(ǫO(1))

on compact subset K ⊂ Ω. Note that O(1) ∈ C∞(Ω), we deduce that there

exists a constant C1 = C1(δ, n) such that

‖∆ǫϕ1(v)‖V ǫ

δ
≤ C1, ‖∆ǫϕ2(v)‖V̂ ǫ

δ

≤ C1.

Since |ϕ1| and |ϕ2| are bounded on V ǫ
δ and V̂ ǫ

δ , respectively, it follows from

Lemma 4 that |∂ϕ1| and |∂ϕ2| are bounded on V ǫ
δ and V̂ ǫ

δ , respectively,

which completes the induction step. So (20) holds for any integer n and

any j0, j1, . . . , jn ∈ Z4.

§4. The Möbius transformations of circle patterns

In this section, we construct the Möbius transformations T ǫ through cir-

cle pattern P ǫ
Ω such that they can be expressed by the discrete Schwarzians

h
(1)
ǫ and h

(2)
ǫ . By the boundedness of h

(1)
ǫ and h

(2)
ǫ , we will prove that T ǫ

converges in C∞(Ω) to some Möbius transformation T as ǫ→ 0 and obtain

the relation between T and f .

Note that 0 ∈ V ǫ
Ω, so we may suppose that P ǫ

Ω is normalized by Möbius

transformations so that

(21) q0(0) = f(ω0), q1(0) = f(ω1), q3(0) = f(ω3),

where ωj = ij(1 + i)ǫ/2 (j = 0, 1, 2, 3). Then we have
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Theorem 2. For each v ∈ int V ǫ
Ω, let T ǫ = T ǫ(v) be the Möbius trans-

formation that takes the three points ω0, ω1, ω3 to the points q0(v), q1(v),

q3(v), respectively. Then

(i) the limit

(22) T (z) = lim
ǫ→0

T ǫ(v)

exists for any ǫ→ 0, and the convergence is in C∞(Ω).

(ii) T (z)(0) = f(z).

Proof. (i) Let B = Bǫ be the Möbius transformation that takes ∞, 0,

1 to ω0, ω1, ω3, respectively. Then we have

(23) B(z) =
ǫz − (1 + i)ǫ/2

(1 − i)z + i
.

Recall the definition of Mw and M[w1,w2] as in Section 3, we deduce that

T ǫ(v) ◦B = Mv+(1+i)ǫ/4.

and

T ǫ(v)−1 ◦ T ǫ(v + ǫ) = B ◦M[v+ω0/2,v+ω0/2+ǫ/2] ◦M[v+ω0+ǫ/2,v+ω0+ǫ] ◦B−1.

Using the usual matrix notation for Möbius transformations and the fact

that M[w1,w2] = M−1
[w2,w1]

, we obtain from (10), (12) and (23) that

T ǫ(v)−1 ◦ T ǫ(v + ǫ)

=

(

ǫ −(1 + i)ǫ/2
1 − i i

)

◦
(

−iǫ(h(2)
ǫ (v + ω0) + 1)1/2 1

0 1

)

◦
(

0 (ǫ−2(h
(1)
ǫ (v + ǫ) + 1)−1 + 1)−1

−1 −1

)

−1

◦
(

ǫ −(1 + i)ǫ/2
1 − i 1

)−1

.

By Lemma 4 and noting that Sf is Lipschitz, we deduce that

T ǫ(v)−1 ◦ T ǫ(v + ǫ) =

(

1 ǫ
−ǫSf (v)/2 1

)

+O(ǫ2) = I + ǫC(v) +O(ǫ2),

where I denotes the identity matrix and

C(v) =

(

0 1
−Sf (v)/2 0

)

.
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This implies

(24) T ǫ(v + ǫ) = T ǫ(v) + ǫT ǫ(v)C(v) + T ǫ(v)O(ǫ2).

Similarly, we have

(25) T ǫ(v + ijǫ) = T ǫ(v) + ijǫT ǫ(v)C(v) + T ǫ(v)O(ǫ2)

for j = 1, 2, 3. We assume, without loss of generality, that

f(0) = 0, f ′(0) = 1, f ′′(0) = 0,

because the statement of Theorem 2 is Möbius invariant. Thus we get from

Taylor’s formula that

f(ij(1 + i)ǫ/2) = ij(1 + i)ǫ/2 +O(ǫ3)

for j = 0, 1, 2, 3. From (21) and the definition of T ǫ(v), it follows that

T ǫ(0)(ij(1 + i)ǫ/2) = ij(1 + i)ǫ/2 +O(ǫ3)

for j = 0, 1, 3, which implies

T ǫ(0) = I +O(ǫ).

By (24) and (25), we deduce that the matrices T ǫ(v) (v ∈ int V ǫ
Ω) are

bounded in compact subsets of Ω, independently of ǫ. On the other hand,

(24) and (25) imply

(26) ∂ǫ
jT

ǫ(v) = ijT ǫ(v) · C(v) + T ǫ(v) ·O(ǫ) = T ǫ(v) ·O(1)

for j = 0, 1, 2, 3, where O(1) = ijC(v) + O(ǫ). It follows from Theorem 1

that h
(1)
ǫ and h

(2)
ǫ are C∞-bounded, so O(1) is bounded in C∞(Ω). By re-

peating differentiation of (26), we conclude that T ǫ(v) is bounded in C∞(Ω)

uniformly in ǫ. By the properties of C∞-convergence of functions (see [8,

Lemma 2.1]), we obtain that (22) holds for some subsequence of ǫ→ 0, and

the convergence is C∞(Ω).

In the following we will show that (22) is also valid for every sequence of

ǫ→ 0. Indeed, let D(v) be the matrix solution of the differential equation

(27) D′(v) = D(v)C(v)
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with initial condition D(0) = I, then we have

D(v + ijǫ) = D(v) + ijǫD(v)C(v) +O(ǫ2)

for j = 0, 1, 2, 3. From (24) and (25), we obtain

|T ǫ(v + ijǫ) −D(v + ijǫ)|
≤ |T ǫ(v) −D(v)| + ǫ|(T ǫ(v) −D(v))C(v)| + (1 + |T ǫ(v)|)O(ǫ2)

≤ |T ǫ(v) −D(v)|(1 +O(ǫ)) + (1 + |T ǫ(v)|)O(ǫ2).

Note that T ǫ(0) = I +O(ǫ) = C(0) +O(ǫ), we deduce

|T ǫ(v) −D(v)| = (δ(v)O(ǫ2) +O(ǫ))(1 +O(ǫ))δ(v),

where δ(v) is the combinatorial distance from v to 0 in SGǫ. Hence we

deduce

|T ǫ(v) −D(v)| ≤ O(ǫ)eO(1) = O(ǫ)

on a compact subset K ∈ Ω, because δ(v) = O(1/ǫ) on K. So T ǫ(v) =

D(v) +O(ǫ), which implies that (22) holds for every ǫ→ 0.

In equation (26), taking a limit as ǫ→ 0, we obtain

(28) ∂jT (z) = ijT (z)C(z).

Hence, we get

∂jT (z) = −∂j+2T (z),

which implies that T (z) is a matrix-valued analytic function of z. In addi-

tion, it follows from (28) that the determinant of T (z) is constant in Ω. Note

that at z = 0 this determinant is 1. So T (z) is a Möbius transformation for

each z ∈ Ω.

(ii) Let

T (z) =

(

a(v) b(v)
c(v) d(v)

)

.

Then T (z) satisfies the differential equation (27). By the definitions of

Schwarzian derivative and C(v), we deduce that

Sb/d = Sf .

Note that b/d(0) = f(0) = 0, (b/d)′(0) = f ′(0) = 1, (b/d)′′(0) = f ′′(0) = 0.

So we conclude that T (z)(0) = b(z)/d(z) = f(z).
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§5. C
∞-convergence to minimal surfaces

We will show that there exists a family of discrete minimal surface

Γǫ : V ǫ
Ω → R

3 which converges in C∞(Ω) to the smooth minimal surface

F : Ω → R
3 in this section.

We first give some properties of C∞-convergence of discrete functions,

that is

Lemma 7. Suppose that f ǫ, gǫ converge in C∞(Ω) to functions f, g :

Ω → C, respectively. Then the following statements hold in C∞(Ω): (i)

f ǫ + gǫ → f + g; (ii) f ǫgǫ → fg; (iii) 1/f ǫ → 1/f if f 6= 0 in Ω; (iv)√
f ǫ →

√
f if f ǫ > 0; (v) |f ǫ| → |f |.

Proof. Using the definition of discrete directional derivative as well as

the definition of C∞-convergence of discrete function, we deduce easily that

the lemma holds.

For each v ∈ V ǫ
Ω, let f ǫ(v) and rǫ(v) denote the center and radius of

circle P ǫ(v) in the circle pattern P ǫ
Ω, respectively, and let gǫ(v) denote the

intersection point q0(v) of circles P ǫ(v) and P ǫ(v + 2ω0) in P ǫ
Ω. Then we

have

Lemma 8. The discrete functions f ǫ(v) and gǫ(v) converge in C∞(Ω)

to the locally injective meromorphic function f : Ω → C, and rǫ(v)/ǫ con-

verges in C∞(Ω) to |f ′| as ǫ→ 0.

Proof. First, we write T ǫ(v) and T (z) as matrices

T ǫ(v) =

(

aǫ(v) bǫ(v)
cǫ(v) dǫ(v)

)

, T (z) =

(

a(z) b(z)
c(z) d(z)

)

.

Then it follows from Theorem 2(i) that ω0c
ǫ +dǫ and ω0a

ǫ +bǫ converge to d

and b in C∞(Ω), respectively. By Theorem 2(ii), we obtain that b(z)/d(z) =

f(z). Since the determinant of T (z) is nonzero, d is nonzero in Ω. By

Lemma 7, we get that (ω0a
ǫ + bǫ)/(ω0c

ǫ + dǫ) → b/d in C∞(Ω). Note that

gǫ(v) = T ǫ(v)(ω0), so we conclude that the discrete function gǫ → f in

C∞(Ω) as ǫ→ 0.

Next, let c be the circle that contains the three points ω0, ω1, ω3. Since

T ǫ(v) maps the three points ω0, ω1, ω3 to q0(v), q1(v), q3(v), respectively,

and since the three points q0(v), q1(v), and q3(v) lie in the circle P ǫ(v),



CONVERGENCE OF CIRCLE PATTERNS TO MINIMAL SURFACE 165

it follows that T ǫ(v) maps the circle c onto P ǫ(v). Hence it follows that

T ǫ(v)(0) = f ǫ(v). Similar to the above arguments, we conclude that f ǫ(v) =

T ǫ(v)(0) converges in C∞(Ω) to f as ǫ→ 0.

Lastly, note that
√

rǫ(v) + rǫ(v + ǫ) = |f ǫ(v) − f ǫ(v + ǫ)| = ǫ|∂ǫ
0f

ǫ|,
rǫ(v) + rǫ(v + 2ω0) = |f ǫ(v) − f ǫ(v + 2ω0)| = ǫ|∂ǫ

0f
ǫ(v) + ∂1f

ǫ(v + ǫ)|, and
√

rǫ(v + ǫ) + rǫ(v + 2ω0) = |f ǫ(v+ ǫ)− f ǫ(v+2ω0)| = ǫ|∂ǫ
1f

ǫ(v+ ǫ)|. So we

deduce

2rǫ(v)/ǫ = |∂ǫ
0f

ǫ(v) + ∂1f
ǫ(v + ǫ)| + ǫ(|∂ǫ

0f
ǫ|2 − |∂ǫ

1f
ǫ(v + ǫ)|2).

Because ∂jf
ǫ converges in C∞(Ω) to f ′, it follows from Lemma 7 that

|∂ǫ
jf | converges in C∞(Ω) to |f ′|. Hence we obtain that rǫ/ǫ converges

C∞(Ω) to |f ′|.

Now we give the following C∞-convergence theorem for smooth minimal

surfaces.

Theorem 3. Suppose that F : Ω → R
3 is a minimal immersion with-

out umbilic points in conformal curvature line coordinates. Then there exists

a family of discrete surface Γǫ : V ǫ
Ω → R

3 that converges in C∞(Ω) to F as

ǫ→ 0.

Proof. It follows from Lemma 1 that the smooth minimal surface F :

Ω → R
3 is expressed by (1). Thus, to prove that there is a discrete minimal

surface Γǫ that converges in C∞(Ω) to F , it suffices to show that each

component of Γǫ converges in C∞(Ω) to the corresponding one of F .

For any ǫ > 0, let F ǫ : V ǫ
Ω → R

3 be the discrete minimal surface

corresponding to F , which consists of spheres and circles, and F̃ ǫ : V ǫ
Ω → R

3

be the discrete minimal surface which is comprised of the centers of spheres

and circles in F ǫ. Then it follows from (6) that

F̃ ǫ(v(1)
s ) − F̃ ǫ(v(2)

s )

(29)

= Re

(

R(v
(1)
s ) +R(v

(2)
s )

1 + |gǫ|2
|f ǫ(v

(1)
s ) − f ǫ(v

(2)
s )|

f ǫ(v
(1)
s ) − f ǫ(v

(2)
s )

(1 − (gǫ)2, i(1 + (gǫ)2), 2gǫ)

)

, Re(Λǫ
1,Λ

ǫ
2,Λ

ǫ
3)
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for any v
(1)
s , v

(2)
s lying in the same square of SGǫ

Ω, where

Λǫ
1 =

R(v
(1)
s ) +R(v

(2)
s )

1 + |gǫ|2
|f ǫ(v

(1)
s ) − f ǫ(v

(2)
s )|

f ǫ(v
(1)
s ) − f ǫ(v

(2)
s )

(1 − (gǫ)2),

Λǫ
2 =

R(v
(1)
s ) +R(v

(2)
s )

1 + |gǫ|2
|f ǫ(v

(1)
s ) − f ǫ(v

(2)
s )|

f ǫ(v
(1)
s ) − f ǫ(v

(2)
s )

i(1 + (gǫ)2),

Λǫ
3 =

R(v
(1)
s ) +R(v

(2)
s )

1 + |gǫ|2
|f ǫ(v

(1)
s ) − f ǫ(v

(2)
s )|

f ǫ(v
(1)
s ) − f ǫ(v

(2)
s )

(2gǫ).

By Lemma 8, we get that f ǫ and gǫ converge in C∞(Ω) to f , and that

rǫ(v)/ǫ converges in C∞(Ω) to |f ′| as ǫ→ 0. Moreover, it is easy to see that

(f ǫ(v
(1)
s ) − f ǫ(v

(2)
s ))/ǫ converges in C∞(Ω) to 2f ′. On the other hand, we

get from (7) that

R(v(k)
s ) =

∣

∣

∣

∣

∣

1 + |f ǫ(v
(k)
s )|2 − |f ǫ(v

(k)
s ) − gǫ|2

2|f ǫ(v
(k)
s ) − gǫ|

∣

∣

∣

∣

∣

for k = 1, 2. So we deduce from the definitions of Λǫ
l (l = 1, 2, 3) and Lemma

7 that ǫΛǫ
1, ǫΛ

ǫ
2 and ǫΛǫ

3 converge in C∞(Ω) to (1− f2)/f ′, i(1+ f2)/f ′ and

2f/f ′, respectively.

Set Γǫ(v) = 2ǫ2F̃ ǫ(v) for each v ∈ V ǫ
Ω, then we conclude from (29) that

the discrete minimal surface Γǫ converges in C∞(Ω) to the smooth minimal

surface F : Ω → R
3. This completes the proof of Theorem 3.
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