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LIMITS OF CHARACTERS OF WREATH
PRODUCTS Sn(T ) OF A COMPACT GROUP T

WITH THE SYMMETRIC GROUPS AND
CHARACTERS OF S∞(T ), I

TAKESHI HIRAI, ETSUKO HIRAI and AKIHITO HORA

Abstract. In the first half of this paper, all the limits of irreducible characters

of Gn = Sn(T ) as n → ∞ are calculated. The set of all continuous limit

functions on G = S∞(T ) is exactly equal to the set of all characters of G

determined in [HH6]. We give a necessary and sufficient condition for a series

of irreducible characters of Gn to have a continuous limit and also such a

condition to have a discontinuous limit. In the second half, we study the

limits of characters of certain induced representations of Gn which are usually

reducible. The limits turn out to be characters of G, and we analyse which of

irreducible components are responsible to these limits.

Introduction

In the present paper we first investigate limits of irreducible characters

of wreath products Gn := Sn(T ) of a compact group T with the symmetric

groups Sn and thereby capture characters of its wreath product with the in-

finite symmetric group G := S∞(T ). This constitutes an important step in

our program to develop harmonic analysis on such infinite wreath product

groups. Secondly we investigate limits of characters of induced represen-

tations of Gn of certain standard type treated in [HH6] which are usually

reducible (cf. Section 10 for definition).

1. The group of all finite permutations on a set I is denoted by SI .

A permutation σ on I is called finite if its support, supp(σ) := {i ∈ I ;

σ(i) 6= i}, is finite. We call the permutation group SN on the set of

natural numbers N the infinite symmetric group. The index N is frequently

replaced by∞. The symmetric group Sn of degree n is naturally embedded

in S∞ as the permutation group of the subset In := {1, 2, . . . , n} ⊂N .
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Let T be a compact group. We consider wreath product group SI(T )

of T with permutation group SI as follows:

(0.1) SI(T ) = DI(T )⋊SI , DI(T ) =
∏′

i∈I

Ti , Ti = T (i ∈ I),

where the symbol
∏′ means the restricted direct product, and σ ∈ SI acts

on DI(T ) as

(0.2) DI(T ) ∋ d = (ti)i∈I
σ7−→ σ(d) = (t′i)i∈I ∈ DI(T ), t′i = tσ−1(i) (i ∈ I).

Identifying groups DI(T ) and SI with their images in semidirect product

SI(T ), we have σ dσ−1 = σ(d). The groups DIn(T ) and SIn(T ) are simply

denoted by Dn(T ) and Sn(T ) respectively. Then G = S∞(T ) is an induc-

tive limit of Gn = Sn(T ) = Dn(T ) ⋊ Sn. Since T is compact and hence

so is Gn, the inductive system is an example of a countable LCG induc-

tive system in [TSH]. We introduce in G its inductive limit topology τind.

Then G equipped with τind becomes a topological group (cf. Theorem 2.7

in [TSH]), but not locally compact if T is not finite.

A natural subgroup of G = S∞(T ) is given as a wreath product of T

with the alternating group A∞ as G′ := A∞(T ) = D∞(T )⋊A∞. Moreover,

in the case where T is abelian, we put

(0.3) PI(d) =
∏

i∈I

ti for d = (ti)i∈I ∈ DI(T ),

and take a subgroup S of T , and define subgroup SI(T )S of SI(T ) as

(0.4) SI(T )S = DI(T )S ⋊SI with DI(T )S := {d = (ti)i∈I ; PI(d) ∈ S}.

If S = {eT } is trivial (eT denoting the identity element of T ), we simply

write it as SI(T )e. These kinds of groups, S∞(T ) and S∞(T )S with T

abelian, contain the infinite Weyl groups of classical types: WA∞
= S∞

of type A∞, WB∞
= S∞(Z2) of type B∞/C∞, and WD∞

= S∞(Z2)
e of

type D∞, and moreover the inductive limits S∞(Zr) = limn→∞G(r, 1, n)

of complex reflection groups G(r, 1, n) = Sn(Zr) (cf. [Kaw], [Sho]).

2. Seen from the viewpoint of developing harmonic analysis on big

groups, especially those which are not of type I, characters of such groups

play an important role as fundamental objects. In general, for a topological

group G, let K1(G) denote the set of invariant continuous positive definite
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functions f on G normalized as f(e) = 1 (e denoting the identity element

of G), and E(G) the set of all extremal (or indecomposable) elements in

K1(G). Then every f ∈ E(G) gives canonically a character of a quasi-

equivalence class of factor representations of G of finite type ([HH4]), and

is called itself a character of G (see Section 2 below).

The first and the second authors have developed character theory of

wreath product groups in a series of papers, which extends celebrated

Thoma’s theory for S∞ in [Tho]. When T is finite, τind in G = S∞(T )

is discrete. In this case, the characters of G are given in [HH2]. When T

is infinite compact, G equipped with τind is not locally compact, and the

subset {(d,1) ; d ∈ D∞(T )} ∼= D∞(T ) is an open neighbourhood of the

identity element e of G, where 1 denotes the trivial permutation on N . All

the characters of G are given in [HH5]–[HH6] with a general explicit charac-

ter formula for fA ∈ E(G) associated with a parameter A (see Theorem 2.3

below).

A nice realization of a finite factor representation of G of Vershik-Kerov

type corresponding to any character f ∈ E(G) are constructed in [HHH1].

3. The purpose of the present paper is two-fold.

The first one is to show that all the characters of G = S∞(T ) are ob-

tained as limits of characters of finite-dimensional irreducible unitary repre-

sentations (= IURs) of Gn = Sn(T ). Furthermore we establish a necessary

and sufficient condition on a sequence of IURs ρn of Gn for existence of a

limit of their normalized characters χ̃ρn = χρn/dim ρn as n→∞, and also

determine explicitly the limits. Asymptotic frequencies of Young diagrams

will appear in a more involved form than in [VK1] reflecting the effect of

compact group T .

There exist also the cases where the limits obtained are nowhere con-

tinuous, and we clarify the situation in these cases too.

Moreover, for the subgroups G′ := A∞(T ) and GS in the case of T

abelian, all the characters of them are obtained simply by restricting those

of G if S is open in T (see [HH6] and Theorem 2.4 below for GS). We prove

in Section 8 that all the characters of GS can be approximated by sequences

of irreducible characters of GS
n := Gn ∩GS as n→∞.

The second purpose of the present paper is to analyse the original

method in [HH5]–[HH6] of getting the general character formula, from the

present stand point of approximation by irreducible characters of Gn. The

method in [HH5]–[HH6] is to use the induced representations Π = IndG
H π

of IURs π of a special kind of subgroups H of G. Taking a diagonal matrix



4 T. HIRAI, E. HIRAI AND A. HORA

element of Π and centralizing it with respect to Gn and then we take the

limit as n → ∞ to get fA. This method is briefly reviewed in Section 10,

then we can translate it as to approximate characters fA of G by those of

induced representation Πn = IndGn

Hn
πn of Gn which are highly reducible in

almost all cases. We investigate which of irreducible components of Πn are

responsible to the limit or to approximate the character fA.

4. This paper is divided into three chapters. Chapter 1 consists of

Sections 1–2 and is devoted to preliminary preparations. Chapter 2 consists

of Sections 3–9 and is devoted to the first purpose, and Chapter 3 consists

of Sections 10–14 and is devoted to the second purpose. Details of each

section can be seen from the table of contents below.

In the present paper, which is Part I of our work under the same ti-

tle, we largely use methods of explicit calculations in the theory of group

representations. The subsequent Part II [HHH2] is devoted to an approach

by way of probabilistic methods, which is an extension of Vershik-Kerov’s

ergodic method in [VK1].

Chapter I. Review on the wreath product S∞(T )
and its characters
§1. Structure of wreath product groups S∞(T ) = D∞(T ) ⋊S∞

For a set I, the group of finite permutations on I is denoted by SI . Fix

a compact group T , and take the wreath product group SI(T ) of T with

the symmetric group SI as

(1.1) SI(T ) = DI(T )⋊SI , DI(T ) :=
∏′

i∈I

Ti , Ti = T (i ∈ I),

where
∏′

i∈I Ti denotes the restricted direct product of copies Ti of T , and

σ ∈ SI acts on d = (ti)i∈I ∈ DI(T ) as σ(d) = (tσ−1(i))i∈I . When I = In :=

{1, 2, . . . , n} or I = N , the suffices I are replaced by n or ∞ respectively.

Put Gn = Sn(T ) and G = S∞(T ). Then, G is an inductive limit of the

inductive system of compact groups G2 →֒ · · · →֒ Gn →֒ Gn+1 →֒ · · · , and

we introduce in G∞ the inductive limit topology τind from the compact τGn

of Gn. Then G∞ becomes a topological group and is not locally compact if

T is not finite. For an element g = (d, σ) ∈ G with d = (ti)i∈N , put

supp(g) = supp(d) ∪ supp(σ),

supp(d) = {i ∈N ; ti 6= eT }, supp(σ) = {i ∈N ; σ(i) 6= i}.
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An element g = (d, σ) ∈ G = S∞(T ) is called basic in the following two

cases:

Case 1: σ is cyclic and supp(d) ⊂ supp(σ);

Case 2: σ = 1 and for d = (ti)i∈N , tq 6= eT only for one q ∈N .

The element (d,1) in Case 2 is denoted by ξq = ξq(tq), and put supp(ξq) :=

supp(d) = {q}. For a cyclic permutation σ = (i1 i2 · · · iℓ) of ℓ integers,

we define its length as ℓ(σ) = ℓ, and for the identity permutation 1, put

ℓ(1) = 1 for convenience. In this connection, ξq is also denoted by (tq, (q))

with a trivial cyclic permutation (q) of length 1. In Cases 1 and 2, put

ℓ(g) = ℓ(σ) for g = (d, σ), and ℓ(ξq) = 1. For basic elements g = (d, σ)

and ξq = (tq, (q)), their expressions in a form of matrices with entries from

{0} ∪ T are displayed in [HH6, §3], and will be very helpful.

An arbitrary element g = (d, σ) ∈ G, is expressed as a product of basic

elements as

(1.2) g = ξq1ξq2 · · · ξqrg1g2 · · · gm

with gj = (dj , σj) in Case 1, in such a way that the supports of these com-

ponents, q1, q2, . . . , qr, and supp(gj) = supp(σj) (1 ≤ j ≤ m), are mutually

disjoint. This expression of g is unique up to the orders of ξqk
’s and gj ’s,

and is called standard decomposition of g as in [HH4], [HH6]. Note that

ℓ(ξqk
) = 1 for 1 ≤ k ≤ r and ℓ(gj) = ℓ(σj) ≥ 2 for 1 ≤ j ≤ m, and that, for

S∞-components, σ = σ1σ2 · · · σm gives a cycle decomposition of σ.

To write down conjugacy class of g = (d, σ), there appear products of

components ti of d = (ti), where the orders of taking products are crucial

when T is not abelian. So we should fix notations well.

We denotes by [t] the conjugacy class of t ∈ T , and by T/∼ the set

of all conjugacy classes of T , and t ∼ t′ denotes that t, t′ ∈ T are mu-

tually conjugate in T . For a basic component gj = (dj , σj) of g, let

σj = (ij,1 ij,2 · · · ij,ℓj
) and put Kj := supp(σj) = {ij,1, ij,2, . . . , ij,ℓj

}
with ℓj = ℓ(σj). For dj = (ti)i∈Kj

, we put

(1.3) Pσj
(dj) :=

[
t′ℓj
t′ℓj−1 · · · t′2t′1

]
∈ T/∼ with t′k = tij,k

(1 ≤ k ≤ ℓj).

Note that the product Pσj
(dj) is well-defined, because, for t1, t2, . . . , tℓ ∈

T , we have t1t2 · · · tℓ ∼ tktk+1 · · · tℓt1 · · · tk−1 for any k, that is, the conjugacy

class does not depend on any cyclic permutation of (t1, t2, . . . , tℓ).
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Theorem 1.2. Let T be a compact group. Take an element g ∈ G =

S∞(T ) and let its standard decomposition into basic elements be g =

ξq1ξq2 · · · ξqrg1g2 · · · gm in (1.2), with ξqk
= (tqk

, (qk)), and gj = (dj , σj),

σj cyclic, supp(dj) ⊂ supp(σj). Then the conjugacy class [g] of g is deter-

mined by

(1.4) [tqk
] ∈ T/∼ (1 ≤ k ≤ r) and (Pσj

(dj), ℓ(σj)) (1 ≤ j ≤ m),

where Pσj
(dj) ∈ T/∼ and ℓ(σj) ≥ 2.

A factor representation of finite type is of type In or of type II1. For

the group G = S∞(T ), finite-dimensional irreducible representations are all

one-dimensional (of type I1) as shown in [HH6, §3], and their characters are

contained in the general formula of characters given in Theorem 2.3 below.

The problem of approximating these characters by sequences of irreducible

characters of Gn = Sn(T ) as n→∞ is trivial in this case.

Proposition 1.3. ([HH6, Lemma 3.4]) A finite-dimensional continu-

ous irreducible representation π of S∞(T ) = D∞(T )⋊S∞ is a one-dimen-

sional character, and is given in the form π = πζ,ε with

(1.5) πζ,ε(g) = ζ(P (d)) (sgnS)ε (σ) for g = (d, σ) ∈ S∞(T ),

where ζ is a one-dimensional character of T , P (d) is a product of compo-

nents ti of d = (ti), and sgnS(σ) denotes the usual sign of σ and ε = 0, 1.

(Since ζ(P (d)) =
∏

i∈N ζ(ti), the order of taking product of ti’s for P (d)

has no meaning here, even if T is not abelian.)

§2. Characters of finite type of the wreath product S∞(T )

2.1. Characterization of characters for S∞(T )

Let G be a topological group. A unitary representation π of G is called

factorial if the von Neumann algebra Uπ := π(G)′′ generated by π(G) is a

factor. If Uπ is of finite type, that is, type In, n < ∞, or II1, then it has a

unique trace φπ : Uπ → C everywhere defined and normalized as φπ(I) = 1

at the identity operator I. Put

fπ(g) := φπ

(
π(g)

)
(g ∈ G).

Then it is a continuous positive definite function on G, invariant under inner

automorphisms, and normalized as fπ(e) = 1 at the identity element e ∈ G.
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This function fπ is called the character of the factor representation π, and

determines the quasi-equivalence class of the factor representation π.

The set of all characters fπ is characterized as follows. Let K(G) be

the set of all continuous invariant positive definite functions on G, and put

K1(G) = {f ∈ K(G) ; f(e) = 1}. The set E(G) of all extremal points of the

convex set K1(G) is exactly equal to the set of all characters fπ (cf. [HH3,

Theorem 1.6.2]). In this sense, an element in E(G) is called a character of

G.

Now, in the case of the wreath product group G = S∞(T ), a character

of G has another characterization which plays very important role in our

present study.

Definition 2.1. A positive definite function f on G = S∞(T ) is called

factorizable if, for g1, g2 ∈ G such that supp(g1)∩ supp(g2) = ∅, there holds

(2.1) f(g1g2) = f(g1)f(g2).

This condition is equivalent to the following:

(FTP) For g ∈ G, let g = ξq1ξq2 · · · ξqrg1g2 · · · gm be its standard de-

composition into basic components in (1.2), then

(2.2) f(g) =
∏

1≤k≤r

f(ξqk
) ·

∏

1≤j≤m

f(gj).

Let F (G) be the set of all f ∈ K1(G) which are factorizable.

Theorem 2.1. ([HH4, Theorem 12], [HH6, Theorem 4.2]) An element

f ∈ K1(G) is extremal if and only if it is factorizable. The set E(G) of all

characters coincides with F (G).

An invariant function is called also a class function because it is essen-

tially a function on the set G/∼ of conjugacy classes [g] of g ∈ G. Taking

into account Theorem 1.2, we see that, if an f ∈ K1(G) is factorizable, then

the multiplicative factors f(ξqk
) and f(gj) are given respectively as follows.

For t ∈ T , let ξq(t) = (t, (q)) be a basic element of Case 2 with t at

q ∈N , and put

(2.3) Y1([t]) := f
(
ξq(t)

)
for ξq(t) = (t, (q)).
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For t ∈ T and an ℓ ≥ 2, let (d, σ) be a basic element in Case 1 such that σ

is a cycle with length ℓ(σ) = ℓ and Pσ(d) = [t], and put

(2.4) Yℓ([t]) := f
(
(d, σ)

)
for ℓ(σ) = ℓ, Pσ(d) = [t].

For convenience we often write Y1([t]) and Yℓ([t]) simply by Y1(t) and Yℓ(t)

respectively.

Theorem 2.2. (i) For an f ∈ F (G), the functions Yℓ([t]), [t] ∈ T/∼,

are well-defined for ℓ ≥ 1.

(ii) For g ∈ G, let g = ξq1ξq2 · · · ξqrg1g2 · · · gm be its standard decompo-

sition with ξq = (tq, (q)), gj = (dj , σj), ℓj = ℓ(σj), then

(2.5) f(g) =
∏

1≤k≤r

Y1([tq]) ·
∏

1≤j≤m

Yℓj

(
Pσj

(dj)
)
.

2.2. Character formula for factor representations of finite type

Let T̂ be the dual of T consisting of all equivalence classes of continuous

irreducible unitary representations (= IURs). For an IUR ζ, its equivalence

class is denoted by [ζ], and we identify the equivalence class [ζ] with its

representative ζ if there is no fear of confusions. Thus ζ ∈ T̂ is an IUR and

denote by χζ its trace character: χζ(t) = tr(ζ(t)) (t ∈ T ), then dim ζ =

χζ(eT ).

For a g ∈ G, let its standard decomposition into basic components be

(2.6) g = ξq1ξq2 · · · ξqrg1g2 · · · gm ,

where the supports of components, q1, q2, . . . , qr, and supp(gj) := supp(σj)

(1 ≤ j ≤ m), are mutually disjoint. Furthermore, ξqk
= (tqk

, (qk)), tqk
6= eT ,

with ℓ(ξqk
) = 1 for 1 ≤ k ≤ r, and σj is a cycle of length ℓ(σj) ≥ 2 and

supp(dj) ⊂ Kj = supp(σj). For dj = (ti)i∈Kj
∈ DKj

(T ) →֒ D∞(T ), put

Pσj
(dj) as in (1.3).

For one-dimensional characters of S∞, we introduce simple notation as

(2.7) χε(σ) := sgnS(σ)ε (σ ∈ S∞ ; ε = 0, 1).

As a parameter for characters of G = S∞(T ), we prepare a set of

(2.8) αζ,ε (ζ ∈ T̂ , ε ∈ {0, 1}) and µ = (µζ)ζ∈ bT ,
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of decreasing sequences αζ,ε of non-negative real numbers

αζ,ε = (αζ,ε,i)i∈N , αζ,ε,1 ≥ αζ,ε,2 ≥ αζ,ε,3 ≥ · · · ≥ 0 ;

and a set of non-negative µζ ≥ 0 (ζ ∈ T̂ ), which altogether satisfies the

condition
∑

ζ∈ bT

∑

ε∈{0,1}

‖αζ,ε‖+ ‖µ‖ = 1 ,(2.9)

with ‖αζ,ε‖ =
∑

i∈N

αζ,ε,i , ‖µ‖ =
∑

ζ∈bT

µζ .

Theorem 2.3. ([HH4, Theorem 2], [HH6, Theorem 5.1]) Let G =

S∞(T ) be a wreath product group of a compact group T with S∞. Then,

for a parameter

(2.10) A =
(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
,

in (2.8)–(2.9), the following formula determines a character fA of G: for

an element g ∈ G, let (2.6) be its standard decomposition, then

fA(g) =
∏

1≤k≤r




∑

ζ∈bT


 ∑

ε∈{0,1}

∑

i∈N

αζ,ε,i

dim ζ
+

µζ

dim ζ


χζ(tqk

)





×
∏

1≤j≤m




∑

ζ∈bT


 ∑

ε∈{0,1}

∑

i∈N

(
αζ,ε,i

dim ζ

)ℓ(σj )

χε(σj)


χζ

(
Pσj

(dj)
)


 ,

where χε(σj) = sgnS(σj)
ε = (−1)ε(ℓ(σj )−1).

Conversely, any character of G is given in the form of fA.

The functions Y1 and Yℓ, ℓ ≥ 2, corresponding to fA, which we denote

by Y A
ℓ are given respectively as follows: for t ∈ T ,

Y A
1 (t) =

∑

ζ∈bT


 ∑

ε∈{0,1}

∑

i∈N

αζ,ε,i

dim ζ
+

µζ

dim ζ


χζ(t)(2.11)

Y A
ℓ (t) =

∑

ζ∈bT


 ∑

ε∈{0,1}

∑

i∈N

(
αζ,ε,i

dim ζ

)ℓ

(−1)ε(ℓ−1)


χζ(t)(2.12)
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Remark 2.1. When T is not discrete or equivalently not finite, the

equality condition (2.9) guarantees the continuity of the normalized function

fA(g) at the identity element g = e ∈ G since fA(e) = 1, because Y1(eT ) = 1

by (2.9).

By the same reason, the global character formula above is valid even

when tqk
= eT for some qk, and in particular valid at the identity element

g = e.

Remark 2.2. When T is discrete or equivalently finite, if we discard the

validity at g = e of the above formula for fA(g), we can accept, in addition

to the equality condition (2.9), the following inequality condition:

(2.13)
∑

ζ∈bT

∑

ε∈{0,1}

‖αζ,ε‖+ ‖µ‖ ≤ 1 .

In fact, we have a linear dependence on T ∗ = T \ {eT } as

1 = χ1T
= −

∑

ζ∈bT ∗

(dim ζ)χζ ,

where T̂ ∗ := T̂ \ {1T } with the trivial representation 1T of T . However in

this case the parameter A for a character fA is no more unique (cf. [HH6,

4.2]).

2.3. Characters of canonical subgroups of S∞(T ) with T abe-

lian

When the compact group T is abelian, take a subgroup S of T , and

define a subgroup GS = S∞(T )S of G = S∞(T ) as follows:

(2.14) GS := {g = (d, σ) ∈ S∞(T ) ; P (d) ∈ S},

where P (d) :=
∏

i∈N ti for d = (ti)i∈N . In case S is not proper, or S = T ,

we have GS = G.

With some additional discussions, the general character formula in The-

orem 2.3 gives us in the case of compact abelian group T the following char-

acter formula for GS = S∞(T )S . In this abelian case, T̂ is nothing but the

dual group consisting of all continuous one-dimensional characters of T , and

for each ζ ∈ T̂ , its character χζ is identified with ζ itself.

For a g ∈ GS , let its standard decomposition in G be as in (2.6), g =

ξq1ξq2 · · · ξqrg1g2 · · · gm, with ξqk
= (tqk

, (qk)), tqk
6= eT , for 1 ≤ k ≤ r,
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and gj = (dj , σj) for 1 ≤ j ≤ m. Note that each basic elements ξqk
,

gj are not necessarily in the subgroup GS . Put Kj = supp(σj), and for

dj = (ti)i∈Kj
∈ DKj

(T ) →֒ D∞(T ), put ζ(dj) :=
∏

i∈Kj
ζ(ti).

Theorem 2.4. ([HH6, Theorem 7.1]) Assume a compact group T be

abelian, and take a subgroup S of T , not necessarily closed. Let GS be the

subgroup of the wreath product group G = S∞(T ) defined in (2.14). Then,

for a parameter

A =
(
(αζ,ε)(ζ,ε)∈ bT×{0,1}

; µ
)

satisfying the condition (2.9), the following formula determines a character

f S
A of GS : for a g ∈ GS, let its standard decomposition be as above, then

f S
A (g) =

∏

1≤k≤r




∑

ζ∈bT


 ∑

ε∈{0,1}

∑

i∈N

αζ,ε,i + µζ


 ζ(tqk

)





×
∏

1≤j≤m




∑

ζ∈ bT


 ∑

ε∈{0,1}

∑

i∈N

(αζ,ε,i)
ℓ(σj) · χε(σj)


 ζ(dj)



 ,

where χε(σj) = sgnS(σj)
ε = (−1)ε(ℓ(σj )−1).

Conversely, if S is open in T , or in particular if T is finite, any char-

acter of GS is given in the form of f S
A .

This theorem says that each character fA of G has its restriction f S
A =

f |GS as a character of GS , and conversely, if S is open in T , any character

of GS is obtained in this way by restriction.

The correspondence of the parameter A→ f S
A is no more one-one when

S is proper. Introduce a translation R(ζ0) on A by an element ζ0 ∈ T̂ as

R(ζ0)A :=
(
(α′

ζ,ε)(ζ,ε)∈ bT×{0,1}
; R(ζ0)µ

)
(2.15)

with α′
ζ,ε = αζζ −1

0 , ε

(
(ζ, ε) ∈ T̂ × {0, 1}

)
;

R(ζ0)µ = (µ′ζ)ζ∈ bT , µ′ζ = µζζ −1
0
.

Proposition 2.5. ([HH6, Proposition 7.2]) Two parameters of char-

acters of G = S∞(T ) = D∞(T )⋊S∞

A =
(
(αζ,ε)(ζ,ε)∈ bT×{0,1} ; µ

)
and A′ =

(
(α′

ζ,ε)(ζ,ε)∈ bT×{0,1} ; µ′
)
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determine the same function on GS , that is, f S
A = f S

A′, if and only if A′ =

R(ζS)A for some ζS ∈ T̂ which is trivial on S. In this case, as elements in

E(G) for the bigger group G, we have

fA′(g) = πζS,0(g) · fA(g) (g ∈ G),

where πζ,0 for ζ ∈ T̂ denotes one-dimensional character of G given in (1.5)

with ε = 0: πζ,0(g) = ζ(P (d)) for g = (d, σ) ∈ G = S∞(T ).

Chapter II. Limits of irreducible characters of Sn

as n → ∞

§3. Construction of IURs of the wreath product group Sn(T )

For the semi-direct product group Gn = Sn(T ) = Dn(T ) ⋊ Sn with

Dn(T ) ∼= T n, we can construct any IUR by a standard inducing-up method

(for the case where T is a finite group, see e.g. [JK, Chapter 4]). We explain

it briefly to prepare an explicit calculation of irreducible characters in the

next section.

3.1. Elementary IURs of Gn = Sn(T ) = Dn(T ) ⋊Sn

Before going into details we define an elementary IUR of Gn directly.

Put In = {1, 2, . . . , n} as before. First, for an IUR of Dn(T ) =
∏

i∈In
Ti,

Ti = T , we take IURs ζi of Ti = T acting on V (ζi), and an outer tensor

product η := ⊠i∈In ζi on the space V (η) :=
⊗

i∈In
V (ζi), then we get an

IUR of Dn as

(3.1) η(d) := ⊠
i∈In

ζi(ti) for d = (ti)i∈In ∈ Dn(T ).

Moreover for σ ∈ Sn, consider an IUR σ(η) := ⊠i∈In ζσ−1(i) of Dn on

V
(
σ(η)

)
=
⊗

i∈In
V (ζσ−1(i)), and an operator I(σ) : V (η)→ V

(
σ(η)

)
given

as

(3.2) I(σ) : V (η) ∋⊗i∈In
vi −→

⊗
i∈In

vσ−1(i) ∈ V
(
σ(η)

)
,

for vi ∈ V (ζi), i ∈ In.

On the other hand, through the action of Sn on Dn, we define an action

of σ on η as a representation ση on the same space V (η) given through

σ−1dσ = σ−1(d) = (tσ(i))i∈In by

(ση)(d) := η(σ−1dσ) = ⊠
i∈In

ζi(tσ(i)).
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Then, I(σ) intertwines the representation ση on V (η) with the one σ(η) on

V
(
σ(η)

)
, that is,

(3.3) σ(η)(d) · I(σ) = I(σ) · ση(d) (d ∈ Dn).

From this fact, we see that ση is equivalent to η, or ση ∼= η, if and only

if ζi ∼= ζσ(i) (i ∈ In), where the symbol ‘∼=’ denotes the equivalence of

representations.

Fix an IUR ζ of T . We put ηζ := ⊠i∈In ζi, ζi = ζ (i ∈ In), and, for

(d, σ) ∈ Dn(T )⋊Sn = Gn,

(3.4) ρζ

(
(d, σ)

)
:= ηζ(d)I(σ).

Then σ(ηζ) = ηζ for σ ∈ Sn, and ρζ gives an IUR of Gn = Sn(T ).

Lemma 3.1. Assume that an IUR π of Gn = Sn(T ) is still irreducible

when it is restricted to the subgroup Dn. Then π is equivalent to ρζ or to

ρζ · sgnSn
for some ζ ∈ T̂ , where sgnSn

denotes the sign character of Sn.

Now take an IUR ξ of the group Sn
∼= Gn/Dn and consider it as a

representation of Gn, trivial on Dn. We define an IUR of Gn, denoted by

πζ,ξ (or by ηζ ⊡ξ in accordance with the later notation), by taking the tensor

product ρζ ⊗ ξ, acting on V (ρζ)⊗ V (ξ), as

πζ,ξ

(
(d, σ)

)
:= ρζ

(
(d, σ)

)
⊗ ξ(σ)

(
(d, σ) ∈ Gn

)
.

Lemma 3.2. Assume that an IUR π of Gn = Sn(T ) contains an IUR

equivalent to ηζ for some ζ ∈ T̂ , when it is restricted to the subgroup Dn.

Then there exists an IUR ξ ∈ Ŝn such that π is equivalent to the tensor

product πζ,ξ = ρζ ⊗ ξ.

3.2. Construction of general IURs of Gn

Take the dual space D̂n
∼= (T̂ )n of Dn = Dn(T ). Then Sn acts on it

as (ση)(d) = η(σ−1(d)) for d = (ti)i∈In and σ(d) := (tσ−1(i)). Firstly fix an

element [η] ∈ D̂n, where [η] denotes the equivalence class of η. Then take

the stationary subgroup S[η] of it in Sn:

S[η] = {σ ∈ Sn ; [ση] = [η]} = {σ ∈ Sn ; ση ∼= η}.



14 T. HIRAI, E. HIRAI AND A. HORA

Note that η is, modulo unitary equivalence, of the form η = ⊠1≤i≤n ζi
with [ζi] ∈ T̂ . Let T̂ ′ be the set of different [ζi]’s. Hereafter we denote the

condition [ζ] ∈ T̂ ′ simply by ζ ∈ T̂ ′ to simplify the notation. Let

In =
⊔

ζ∈ bT ′
In,ζ

be a partition of In such that [ζi] = [ζ] if and only if i ∈ In,ζ . Then,

arranging the order of components of the tensor product, we see that η is

unitary equivalent to

⊠
ζ∈bT ′

ζIn,ζ , ζIn,ζ := ⊠
i∈In,ζ

ζi with ζi = ζ (i ∈ In,ζ).

Replace η by this standard representation. Then the stationary subgroup

S[η] of [η] ∈ (T̂ ′)n (→֒ D̂n) in Sn is given as S[η] =
∏

ζ∈ bT ′ SIn,ζ
, and the

stationary subgroup Hn in the group Gn = Dn⋊Sn is given as Hn = Dn⋊

S[η] =
∏

ζ∈bT ′ SIn,ζ
(T ). For each component SIn,ζ

(T ), taking into account

Lemma 3.1, we have an elementary IUR ρζ similarly as (3.1)–(3.4), and then

taking an outer tensor product, we have an IUR of Hn as ρ := ⊠
ζ∈bT ′ ρζ .

Secondly, taking into account Lemma 3.2, we take an IUR ξ of the

group S[η] =
∏

ζ∈ bT ′ SIn,ζ
∼= Hn/Dn and consider it as a representation of

Hn, then take the tensor product π = ρ⊗ ξ acting on V (η) ⊗ V (ξ), which

we denote by η ⊡ ξ:

π((d, σ)) = (η ⊡ ξ)((d, σ)) := ρ((d, σ)) ⊗ ξ(σ)(3.5)

((d, σ) ∈ Dn ⋊ S[η] = Hn).

Note that the representation π = η ⊡ ξ consists of IURs of the type in

Lemma 3.2 for each components SIn,ζ
(T ), ζ ∈ T̂ ′.

The induced representation Π = IndGn

Hn
π from Hn = Dn ⋊ S[η] to Gn

is realized as follows: for the representation space V (Π), take the space of

continuous V (π)-valued functions ϕ on Gn satisfying ϕ(hg) = π(h)
(
ϕ(g)

)

(h ∈ Hn, g ∈ Gn) with the space V (π) of π, and introduce L2(Hn\Gn)-norm

as

‖ϕ‖2 =

∫

Hn\Gn

‖ϕ(g)‖ 2
V (π) dµHn\Gn

(ĝ),

where ĝ denotes the coset Hng and dµHn\Gn
denotes the normalized invari-

ant measure on Hn\Gn. Note that, for the normalized Haar measure dµGn

on Gn, we have µGn(Hn) = |Hn\Gn|−1 = |S[η]\Sn|−1, and that, accord-

ing to Gn = Dn ⋊Sn, the Haar measure dµGn is written as follows, with
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g = (d, σ) and the normalized Haar measure dµDn on Dn, for a continuous

function ψ on Gn,

∫

Gn

ψ(g) dµGn(g) =
1

|Sn|
∑

σ∈Sn

∫

Dn

ψ
(
(d, σ)

)
dµDn(d).

We get a Hilbert space V (Π), because actually dimΠ < ∞. In fact,

Hn\Gn
∼= S[η]\Sn, and so dimΠ = dimπ × |S[η]\Sn| <∞.

The representation is given as (Π(g0)ϕ)(g) = ϕ(gg0) (g0, g ∈ Gn).

We denote Π also by Πη,ξ when the dependence on (η, ξ) should be

specified.

Theorem 3.3. (i) For an IUR π = η ⊡ ξ of Hn of the form in (3.5),

the induced representation Π = Πη,ξ = IndGn

Hn
π of Gn is irreducible.

(ii) Any irreducible representation of Gn is equivalent to one of the

induced representations Πη,ξ with [η] ∈ D̂n, [ξ] ∈ Ŝ[η].

Proof. (i) Denote by I(Π) the space of intertwining operators for Π.

Then we should prove that dim I(Π) = 1. Since dim Π < ∞, any linear

transformation L on V (Π) is expressed as follows as an integral operator

with a kernel K ′(g, g′) (g, g′ ∈ Gn) taking values in L(V (π)), the space of

linear transformations on V (π), and satisfies the homogeneity condition

K ′(hg, h′g′) = π(h)K ′(g, g′)π(h′)−1 (g, g′ ∈ Gn, h, h
′ ∈ Hn),(3.6)

Lϕ(g) =

∫

Hn\Gn

K ′(g, g′)ϕ(g′) dµHn\Gn
(ĝ′)(3.7)

=

∫

Gn

K ′(g, g′)ϕ(g′) dµGn(g′) (g ∈ Gn).

The condition L ∈ I(Π) or Π(g0)L = LΠ(g0) (g0 ∈ Gn) is equivalent to

(3.8) K ′(gg0, g
′g0) = K ′(g, g′) (g, g′, g0 ∈ Gn).

Put K(g) = K ′(g, e) with the identity element e ∈ Gn, then K ′(g, g′) =

K(gg′−1), and K(hgh′) = π(h)K(g)π(h′) (h, h′ ∈ Hn, g ∈ Gn).

Now take a representative τ ∈ Sn of a coset in Hn\Gn/Hn
∼=

S[η]\Sn/S[η],

(3.9) π(h)K(τ) = K(τ)π(τ−1hτ) (h ∈ Hn ∩ τHnτ
−1).
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Let h = (d, σ) ∈ Hn = Dn ⋊ S[η], then,

τ−1hτ = (τ−1(d), τ−1στ),

π(τ−1hτ) = ρ
(
τ−1(d), τ−1στ

)
⊗ ξ(τ−1στ).

(3.10)

Suppose that τ represents a double coset different from Hn, then two

representations η(d) and η(τ−1(d)) = τη(d) of Dn ⊂ Hn ∩ τ−1Hnτ are not

mutually equivalent. Therefore, from the intertwining property (3.9) of

K(τ), we have K(τ) = 0.

For the representative τ = 1 of Hn, we see that K(τ) is a multiple of

the identity operator thanks to the irreducibility of π.

Altogether we get dim I(Π) = 1, and the irreducibility of Π.

(ii) Let Π′ be an IUR of Gn on a Hilbert space V (Π′). Restrict Π′ to the

subgroupDn
∼= T n, then we have an IUR η acting on its subspace V (η), and

η is, modulo unitary equivalence, of the form η = ⊠1≤i≤n ζi with [ζi] ∈ T̂ .

Let T̂ ′ be the set of different [ζi]’s. Let a partition In =
⊔

ζ∈bT ′ In,ζ be as

above, and take η, modulo unitary equivalence, as a standard representation

η = ⊠
ζ∈bT ′

ζIn,ζ , ζIn,ζ := ⊠
i∈In,ζ

ζi with ζi = ζ (i ∈ In,ζ).

Then a g ∈ Gn acts on the normal subgroup Dn, and accordingly on η by

(gη)(d) := η(g−1dg). The stationary subgroup S[η] of [η] ∈ (T̂ ′)n (→֒ D̂n)

in Sn is S[η] =
∏

ζ∈ bT ′ SIn,ζ
, and the stationary subgroup Hn in the group

Gn = Dn ⋊Sn is Hn = Dn ⋊ S[η] =
∏

ζ∈bT ′ SIn,ζ
(T ).

Now take the span of Π′(Hn)V (η) = Π′(S[η])V (η) and pick up an irre-

ducible subspace V (π) under Hn, where π is the IUR of Hn acting on it.

Then, discussing for each component SIn,ζ
(T ), we see by Lemma 3.2 that,

modulo equivalence, π can be assumed to be of the form η⊡ ξ with an IUR

ξ of S[η] =
∏

ζ∈ bT ′ SIn,ζ
.

Let P be the orthogonal projection of V (Π′) onto V (π). For v ∈ V (Π′),

consider a V (π)-valued function ϕ = Φ(v) given as

(3.11) ϕ(g) = P
(
Π′(g)v

)
(g ∈ Gn).

Then, ϕ belongs to the space V (Π) of the induced representation Π =

IndGn

Hn
π. In fact, ϕ is continuous in g, and

ϕ(hg) = P
(
Π′(hg)v

)
= P

(
Π′(h)Π′(g)v

)
= π(h)P

(
Π′(g)v

)
= π(h)

(
ϕ(g)

)
.
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Thus we have a linear map Φ : V (Π′) ∋ v 7→ ϕ ∈ V (Π). It intertwines the

representations. In fact,

Π′(g0)v −→ P
(
Π′(g)Π′(g0)v

)
= P

(
Π′(gg0)v

)
= ϕ(gg0) =

(
Π(g0)ϕ

)
(g).

Moreover Φ is injective. In fact, suppose Φ(v) = ϕ = 0. Then, for any

w ∈ V (π),

0 = 〈ϕ(g), w〉 = 〈Π′(g)v,w〉 = 〈v,Π′(g−1)w〉 (g ∈ Gn).

Hence v ⊥ Π′(Gn)V (π), and so v = 0 since Π′ is irreducible.

We know from the part (i) that Π = IndGn

Hn
π is irreducible. Hence Φ

should be surjective, and so gives an equivalence of Π′ to Π.

Take an IUR η of Dn, and an IUR ξ of the stationary subgroup S[η].

Then a κ ∈ Sn acts on η as (κη)(d) = η(κ−1(d)), and S[κη] = κS[η]κ
−1.

Define an IUR κξ of S[κη] by

(κξ)(σ) := ξ(κ−1σκ) (σ ∈ S[κη]).

Theorem 3.4. Two IURs Πη,ξ and Πη′,ξ′ are mutually equivalent if

and only if there exists a κ ∈ Sn such that [η′] = [κη] and [ξ′] = [κξ].

§4. Characters of IURs of Sn(T ) with T a compact group

In the previous section, we constructed IURs of Gn = Sn(T ) = Dn(T )⋊

Sn as induced representation from standard subgroups. Using this construc-

tion, we calculate explicitly characters of IURs of Gn and express them in

the form which fits to the later calculations of their limits as n→∞. For the

case where T is a finite group, a combinatorial construction of irreducible

characters is given in [Mac, Chapter I, Appendix A].

4.1. A formula for characters of induced representations

Before getting into explicit calculations, we prepare some generality.

For a continuous positive definite function f on a topological group G and

a compact subgroup G′ ⊂ G, we defined in [HH4], [HH6] a centralization of

f with respect to G′ as

(4.1) fG′

(g) :=

∫

g′∈G′

f(g′gg′
−1

) dµG′(g′),

where dµG′ denotes the normalized Haar measure on G′.
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Lemma 4.1. For an IUR Π = IndGn

Hn
π of Gn, let χ̃π = χπ/dim π (resp.

χ̃Π = χΠ/dim Π) be the normalized character of π (resp. Π). Then χ̃Π is

the centralization of the trivial extension of χ̃π to Gn, which equals, by

definition, to χ̃π on Hn, and to 0 outside Hn.

From this we see that χ̃Π(g) 6= 0 only when g is conjugate to some

h ∈ Hn in Gn, and that for an h ∈ Hn,

(4.2) χ̃Π(h) =

∫

Gn

χ̃π(g′hg′
−1

) dµGn(g′),

where we put χ̃π(g′hg′ −1) = 0 if g′hg′ −1 6∈ Hn.

4.2. Characters of elementary IURs πζ,ξ = ρζ ⊗ ξ of Gn =

Dn ⋊Sn(T )

For a finite-dimensional representation π, its character tr
(
π(g)

)
, g ∈ Gn,

is denoted by χπ(g), and its normalized character by χ̃π. Then, for the

tensor product representation πζ,ξ = ρζ ⊗ ξ, we have

χπζ,ξ
= χρζ

· χξ, χ̃πζ,ξ
= χ̃ρζ

· χ̃ξ.

Therefore we calculate χρζ
(g), g ∈ Gn. The representation space V (ρζ) is

nothing but the one V (ηζ) =
⊗

i∈In
V (ζi) with ζi = ζ (i ∈ In).

For d = (ti)i∈In , we have ρζ(d) = ηζ(d) = ⊠i∈In ζi(ti) and χρζ
(d) =∏

i∈In
χζ(ti).

For (d, σ) ∈ Dn ⋊Sn, we have for vi ∈ V (ζ), i ∈ In,

ρζ

(
(d, σ)

)
(v1 ⊗ v2 ⊗ · · · ⊗ vn)

= ζ(t1)vσ−1(1) ⊗ ζ(t2)vσ−1(2) ⊗ · · · ⊗ ζ(tn)vσ−1(n).

Choose a complete orthonormal system {wp ; 1 ≤ p ≤ dim ζ} of V (ζ), and

put i′ = σ−1(i) for i ∈ In, then

ρζ

(
(d, σ)

)
(wp1 ⊗ wp2 ⊗ · · · ⊗ wpn)

= ζ(t1)wp1′
⊗ ζ(t2)wp2′

⊗ · · · ⊗ ζ(tn)wpn′ .

Calculate the sum of diagonal matrix elements

〈ρζ

(
(d, σ)

)
(wp1 ⊗ wp2 ⊗ · · · ⊗ wpn), wp1 ⊗ wp2 ⊗ · · · ⊗ wpn〉

=
∏

i∈In

〈ζ(ti)wpi′
, wpi
〉,
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over p1, p2, . . . , pn ∈ {1 ≤ j ≤ dim ζ}.
To do so, instead of the standard decomposition in (2.6) into basic

elements of g = (d, σ) ∈ Gn ⊂ G, we take a standard decomposition in the

wider sense as follows. For the part σ of g, take its cycle decomposition as

σ = σ1σ2 · · · σm, and take basic elements gj = (dj , σj), where dj = (ti)i∈Kj

with Kj = supp(σj). Put Q0 = In \ supp(σ), and let ξq = (tq, (q)) for

q ∈ Q0 be an element of Dn ⊂ Gn with element tq ∈ T at q and eT at other

i ∈ In. Then we have an expression of g as

(4.3) g = (d, σ) =
∏

q∈Q0
ξq · g1g2 · · · gm.

Note that the difference from the standard decomposition (2.6) is that we

accept in (4.3) here ξq’s with tq = eT , and so we call it standard decompo-

sition in a wider sense.

To calculate the above sum of diagonal matrix elements, we avoid su-

perficial complications of suffices with many levels, and can proceed with

typical examples. For example, if σ1 = (1 2 · · · ℓ), then 1′ = σ −1
1 (1) =

ℓ, 2′ = σ −1
1 (2) = 1, . . . , ℓ′ = σ −1

1 (ℓ) = ℓ − 1. Put the matrix elements of

ζ(t) as ζab(t) = 〈ζ(t)wb, wa〉, then the partial summation over pi, i ∈ K1 =

{1, 2, . . . , ℓ} gives us

∑

1≤p1≤dim ζ

· · ·
∑

1≤pℓ≤dim ζ

ζp1pℓ
(t1)ζp2p1(t2) · · · ζpℓpℓ−1

(tℓ)

=
∑

1≤pℓ≤dim ζ

ζpℓpℓ
(tℓtℓ−1 · · · t2t1) = χζ

(
Pσ1(d1)

)
.

Moreover, for q ∈ Q0 = In \ supp(σ), we have q′ = σ−1(q) = q, and the

partial sum over 1 ≤ pq ≤ dim ζ gives us
∑

1≤pq≤dim ζ ζpqpq(tq) = χζ(tq).

Thus, altogether we obtain the following character formula.

Lemma 4.2. For g = (d, σ) ∈ Gn = Dn ⋊ Sn, let g =
∏

q∈Q0 ξq ·
g1g2 · · · gm be its standard decomposition in the wider sense, with Q0 =

In \ supp(σ), then

χρζ

(
(d, σ)

)
=
∏

q∈Q0

χζ(tq) ·
∏

1≤j≤m

χζ

(
Pσj

(dj)
)
,(4.4)

χπζ,ξ

(
(d, σ)

)
=
∏

q∈Q0

χζ(tq) ·
∏

1≤j≤m

χζ

(
Pσj

(dj)
)
× χξ(σ).(4.5)
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The dimension of πζ,ξ = ρζ⊗ ξ is given as dim
(
πζ,ξ

)
= dim ρζ×dim ξ =(

dim ζ
)n × dim ξ. On the other hand,

n = |Q0|+ | supp(σ)| = |Q0|+
∑

1≤j≤m

| supp(σj)| = |Q0|+
∑

1≤j≤m

ℓ(σj).

Thus we get the normalized character χ̃πζ,ξ
of the elementary IUR πζ,ξ as

follows.

Lemma 4.3. (i) For g = (d, σ) ∈ Gn = Dn ⋊ Sn, let g =
∏

q∈Q0 ξq ·
g1g2 · · · gm be its standard decomposition in the wider sense, with Q0 =

In \ supp(σ) and gj = (dj , σj), then

(4.6) χ̃πζ,ξ

(
(d, σ)

)
=
∏

q∈Q0

χζ(tq)

dim ζ
·
∏

1≤j≤m

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)
× χ̃ξ(σ).

(ii) Let g = ξq1ξq2 · · · ξqrg1g2 · · · gm be the standard decomposition in

(2.6) of g into a product of basic elements, so that ξqk
= (tqk

, (qk)) with

tqk
6= eT . Put Q = {q1, q2, . . . , qr}, then

(4.7) χ̃πζ,ξ

(
(d, σ)

)
=
∏

q∈Q

χζ(tq)

dim ζ
·
∏

1≤j≤m

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)
× χ̃ξ(σ).

4.3. Twist by τ ∈ Sn(σ) of irreducible character: χ̃π(τhτ−1)

We follow the notations in the part (ii) of the proof of Theorem 3.3.

For the partition In =
⊔

ζ∈bT ′ In,ζ , we put

Hn = Dn ⋊ S[η], Dn = Dn(T ) = DIn
(T ), S[η] =

∏
ζ∈bT ′

SIn,ζ
,(4.8)

Hn =
∏

ζ∈bT ′
Hn,ζ , Hn,ζ = SIn,ζ

(T ) = DIn,ζ
(T )⋊SIn,ζ

,

π = η ⊡ ξ, η = ⊠
ζ∈bT ′

ζIn,ζ , ξ = ⊠
ζ∈ bT ′

π(λn,ζ),(4.9)

where λn,ζ is a Young diagram of size |In,ζ | and π(λn,ζ) denotes the IUR of

SIn,ζ
determined by the Young diagram λn,ζ . We put Π = Πn = IndGn

Hn
π.

Denote by χ̃(λn,ζ ;σ′) (σ′ ∈ SIn,ζ
) the normalized character of π(λn,ζ). If

σ′ = σ′1σ
′
2 · · · σ′s is a cycle decomposition of σ′, then χ̃(λn,ζ ;σ′) is determined

by the set {ℓ′p = ℓ(σ′p) ; 1 ≤ p ≤ s} of lengths, and so it is also denoted by

χ̃(λn,ζ ; (ℓ′p)1≤p≤s), that is,

(4.10) χ̃(λn,ζ ; (ℓ′p)1≤p≤s) := χ̃(λn,ζ ;σ′) if σ′ = σ′1σ
′
2 · · · σ′s, ℓ′p = ℓ(σ′p).
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Now take an h = (d, σ) ∈ Hn ⊂ Gn, and let its standard decomposition

into basic elements be as in (2.6)

h = (d, σ) = ξq1ξq2 · · · ξqrg1g2 · · · gm,(4.11)

with ξq = (tq, (q)) (q ∈ Q), gj = (dj , σj) (j ∈ J),

Q = {q1, q2, . . . , qr}, J = {1, 2, . . . ,m},(4.12)

where the supports Q and Kj := supp(gj) := supp(σj) (j ∈ J) are disjoint

subsets of In, and σj a cycle of length ℓ(σj) ≥ 2 and supp(dj) ⊂ Kj for

j ∈ J . For Sn-components, σ = σ1σ2 · · · σm is a cycle decomposition of

σ. For dj = (ti)i∈Kj
∈ DKj

(T ) →֒ Dn(T ), put Pσj
(dj) as in (1.3). Put

S(h) := {g′ ∈ Gn ; g′hg′−1 ∈ Hn}. Then, since Dn ⊂ S(h), the set S(h) is

a union of

Dnτ with τ ∈ Sn(σ) :=
{
τ ∈ Sn ; τστ−1 ∈ S[η] =

∏
ζ∈bT ′

SIn,ζ

}
.

Moreover, since Dn ⊂ Hn, the integral in (4.2) is rewritten as

χ̃Πn(h) =
1

|Sn|
∑

τ∈Sn(σ)

Xπ(τhτ−1),(4.13)

with Xπ(h′) :=

∫

Dn

χ̃π(d̃h′d̃−1) dµDn(d̃) = χ̃π(h′) (h′ ∈ Hn),

where dµDn(d̃) (d̃ ∈ Dn) denotes the normalized Haar measure on Dn. Here

we prefer the notation Xπ rather than χ̃π for simplicity. Put h′ = τhτ−1,

then

h′ = (d′, σ′) = ξ′q1
ξ′q2
· · · ξ′qr

g′1g
′
2 · · · g′m, d′ = τ(d), σ′ = τστ−1,(4.14)

{
ξ′qk

= τξqk
τ−1 = (tqk

, (τ(qk))) : element tqk
at i = τ(qk) ∈N ,

g′j = τgjτ
−1 = (d′j , σ

′
j), d

′
j = (t′i)i∈τ(Kj), t

′
i = tτ−1(i), σ

′
j := τσjτ

−1.

Here σ′ = σ′1σ
′
2 · · · σ′m is a cycle decomposition of σ′. Since h′ ∈ Hn =∏

ζ∈bT ′ Hn,ζ , there exist partitions of Q = {q1, q2, . . . , qr} and J = {1, 2, . . . ,
m} as

(4.15)
Q = (Qζ)ζ∈ bT ′ with Q =

⊔
ζ∈bT ′

Qζ ;

J = (Jζ)ζ∈ bT ′ with J =
⊔

ζ∈bT ′
Jζ ,
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such that for Hn,ζ = DIn,ζ
(T )⋊SIn,ζ

(4.16)
ξ′q ∈ Hn,ζ or supp(ξ′q) = τ(q) ∈ In,ζ if q ∈ Qζ ;

g′j ∈ Hn,ζ or supp(g′j) = τ(Kj) ⊂ In,ζ if j ∈ Jζ .

Lemma 4.4. Let τ ∈ Sn(σ). Then there exist partitions Q = (Qζ)ζ∈bT ′

of Q and J = (Jζ)ζ∈ bT ′ of J such that (4.16) holds. Then Xπ(τhτ−1) is

given with ℓj = ℓ(σj) as

Xπ(τhτ−1)(4.17)

=
∏

ζ∈bT ′


∏

q∈Qζ

χζ(tq)

dim ζ
×
∏

j∈Jζ

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)
× χ̃

(
λn,ζ ; (ℓj)j∈Jζ

)

 .

Put In = (In,ζ)ζ∈ bT and Λn = (λn,ζ)
ζ∈bT , where the size |λn,ζ | of Young

diagram of λn,ζ is |In,ζ | and, except a finite number of ζ ∈ T̂ , In,ζ = ∅ and

accordingly λn,ζ = ∅. We denote the function on the right hand side of

(4.17) also as

X
(
Λn;Q,J ;h

)
(4.18)

:=
∏

ζ∈ bT


∏

q∈Qζ

χζ(tq)

dim ζ
×
∏

j∈Jζ

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)
× χ̃

(
λn,ζ ; (ℓj)j∈Jζ

)

 .

4.4. Character formula for IURs of Sn(T )

Now we come to the calculation of the sum ofXπ(τhτ−1) over τ ∈ Sn(σ)

in (4.13). We divide the sum into partial sums depending on a pair (Q,J )

of partitions of Q = {q1, q2, . . . , qr} and J = {1, 2, . . . ,m} in such a way

that τ satisfies

Condition on τ ∈ Sn(σ):

τ(q) ∈ In,ζ (q ∈ Qζ); τ(Kj) ⊂ In,ζ (j ∈ Jζ).(4.19)

This kind of τ exists for a pair (Q,J ) if and only if the following in-

equalities hold:

(4.20) |In,ζ | ≥ |Qζ |+
∑

j∈Jζ

|Kj | = |Qζ |+
∑

j∈Jζ

ℓ(σj) (∀ ζ ∈ T̂ ).
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For any τ satisfying (4.19), the valueXπ(τhτ−1) coincides with the term

in (4.18). So we should calculate the number N(In;Q,J ) of τ ∈ Sn(σ)

satisfying (4.19), where In := (In,ζ)ζ∈bT .

Since τ(i) ∈ In,ζ can be chosen arbitrary inside In,ζ for any i ∈ Qζ ⊔(⊔
j∈Jζ

Kj

)
, and then, for any i ∈ In \

(
Q ⊔ supp(σ)

)
, τ(i) can be chosen

freely, we get the following, because supp(σ) =
⊔

j∈J Kj and

|In \
(
Q ⊔ supp(σ)

)
| = n−

∑

ζ∈bT

|Qζ | −
∑

j∈J

|Kj | = n− |Q| − | supp(σ)| :

N(In;Q,J )

=
∏

ζ∈ bT

|In,ζ |
(
|In,ζ | − 1

)
· · ·
(
|In,ζ | − |Qζ | −

∑

j∈Jζ

|Kj |+ 1
)

× (n− |Q| − | supp(σ)|)!

(4.21)

∑

Q,J

N(In;Q,J ) = n! for n ≥ |Q|+ | supp(σ)|.(4.22)

Here even for a pair (Q,J ) which does not satisfy the inequality con-

dition (4.20), the above formula for N(In;Q,J ) is valid, since it says

N(In;Q,J ) = 0.

After these calculations we obtain finally the normalized character of

an IUR of the wreath product Gn = Sn(T ) = Dn(T ) ⋊ Sn of a compact

group T with the n-th symmetric group Sn as follows.

Theorem 4.5. (i) Let In = (In,ζ)ζ∈ bT be a partition of In, and Λn =

(λn,ζ)
ζ∈ bT be a set of Young diagrams such that λn,ζ determines an IUR

π(λn,ζ) of SIn,ζ
∼= S|In,ζ |, where the size of λn,ζ, denoted by |λn,ζ |, is equal

to |In,ζ |. Put

(4.23) η = ⊠
ζ∈bT

ζIn,ζ , ξ = ⊠
ζ∈bT

π(λn,ζ), π = η ⊡ ξ.

Then π is an IUR of Hn = Dn(T ) ⋊ S[η] with S[η] =
∏

ζ∈bT SIn,ζ
, and the

induced representation Πn = IndGn

Hn
π is irreducible. Every IUR of Gn is

equivalent to an induced representation of this type.

(ii) Take a g = (d, σ) ∈ Gn which is conjugate to an element in Hn.

Let its standard decomposition be as in (4.11), and correspondingly define

Q = {q1, q2, . . . , qr} and J = {1, 2, . . . ,m} as in (4.12). Then the value



24 T. HIRAI, E. HIRAI AND A. HORA

χ̃Πn(g) of the normalized character χ̃Πn of the IUR Πn of Gn is given as

follows:

χ̃Πn(g) =
∑

Q,J

c(In;Q,J )X
(
Λn;Q,J ; g

)
,(4.24)

with c(In;Q,J ) =
N(In;Q,J )

n!

=

∏
ζ∈bT |In,ζ |

(
|In,ζ | − 1

)
· · ·
(
|In,ζ | − |Qζ | −

∑
j∈Jζ
|Kj |+ 1

)

n(n− 1)(n − 2) · · ·
(
n− |Q| − | supp(σ)|+ 1

) ,

X
(
Λn;Q,J ; g

)

=
∏

ζ∈bT


∏

q∈Qζ

χζ(tq)

dim ζ
×
∏

j∈Jζ

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)
× χ̃

(
λn,ζ ; (ℓ(σj))j∈Jζ

)

 ,

where Q = (Qζ)ζ∈ bT and J = (Jζ)ζ∈ bT run over partitions of Q and J

respectively, and χ̃
(
λn,ζ ; ∗

)
denotes the normalized character of IUR π(λn,ζ)

of SIn,ζ
as in (4.10).

Here, except a finite number of ζ ∈ T̂ , Qζ = ∅ and Jζ = ∅, and then the

corresponding ζ-th factor in
∏

ζ∈bT • should be understood as equal to 1.

(iii) For a g = (d, σ) ∈ Gn which is not conjugate to any element in Hn,

the character vanishes: χ̃Πn(g) = 0. The above character formula (4.24)

is also valid for g in the sense that there is no pair of partitions (Q,J )

for which |In,ζ | − |Qζ | −
∑

j∈Jζ
|Kj | ≥ 0 (∀ ζ ∈ T̂ ), or no J for which

|In,ζ | ≥
∑

j∈Jζ
|Kj | (∀ ζ ∈ T̂ ).

Remark 4.1. The character formula in Theorem 4.5 (ii) is given for

g = (d, σ) such that supp(d)\supp(σ) = Q, but it is valid even for g′ = (d′, σ)

with the same σ but with a Dn-part d′ satisfying a weaker condition:

(4.25) supp(d′) \ supp(σ) ⊂ Q.
This validity can be seen from the continuity of the both sides of (4.24).

Remark 4.2. The partition In of In is used to construct IUR Πn, but

in the character formula for χ̃Πn , the property of the partition In itself has

disappeared, and there remains only the partition Nn = (nζ)ζ∈ bT of n = |In|
given as n =

∑
ζ∈ bT nζ , nζ = |In,ζ |.

It is worth noting here that many related interesting things are going

on in the case where T is finite (see e.g. [AK], [Kaw] and [Sho]).
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§5. Towards limits of irreducible characters of Sn(T )

5.1. Conditions for existence of limits of irreducible charac-

ters

Let us study asymptotic behavior as n→∞ of the characters of IURs

Π = Πn of Sn(T ) parametrized by a pair of a partition In = (In,ζ)ζ∈ bT of In

and a set of Young diagrams Λn = (λn,ζ)
ζ∈ bT corresponding to In by (4.23).

The present purpose is to determine a necessary and sufficient condition

for pointwise convergence according as both In’s and Λn’s are increasing so

that In,ζ ⊆ In+1,ζ ⊆ · · · (and In =
⊔

ζ∈bT In,ζ ր N ) and that, for n ≥ n0,

Λn ր Λn+1. Here by definition

(5.1) Λn = (λn,ζ)ζ∈bT ր Λn+1 = (λn+1,ζ)ζ∈ bT

means that, for one ζ ′ only, λn,ζ′ ր λn+1,ζ′ and, for other ζ 6= ζ ′, λn,ζ =

λn+1,ζ , and in turn, λn,ζ′ ր λn+1,ζ′ means that the Young diagram of λn,ζ′

increases to that of λn+1,ζ′ by adding one box to some possible position.

Admitting the empty set as a Young diagram of size 0, we put ∅ =

(∅ζ)ζ∈ bT . In the second part [HHH2] of our present work, we will treat in

detail the spaces of paths

(Λn)n≥0 : Λ0 = ∅ ր Λ1 ր · · · ր Λn ր Λn+1 ր · · ·

of infinite lengths on the set of Young diagrams and probability measures

on it, and discuss problems of limits of irreducible characters from the stand

point of stochastic processes in discrete time. However in this first part of

our present work we do not get into details in this direction, and restrict our-

selves to discuss these limit problems by explicit calculations in the theory

of group representations.

In this section we proceed step by step to get limits of irreducible char-

acters, and in the next section we obtain explicitly the limits and also de-

termine a necessary and sufficient condition on a sequence of irreducible

characters of Sn(T ) to have a limit as n→∞.

Note that, in the case where the compact group T is finite, the limit

group G = D∞ ⋊ S∞ with the inductive limit topology τind is discrete,

and so the continuity of the limit functions is not a problem. However,

in the case where the compact group T is infinite, G with τind is no more

locally compact, and the continuity of limit functions is an important point

to study. In this case, the group D∞ = D∞(T ) = limn→∞Dn(T ) embedded
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into G is an open subgroup, and accordingly positive definite functions

obtained as limits of irreducible characters of Gn as n→∞ are continuous

on G if and only if so are they on D∞.

Take an h = (d, σ) ∈ Sn0(T ) and consider it as an element of each

Sn(T ) ←֓ Sn0(T ), n ≥ n0.

Step 1. Case of h = (d,1), d = (ti)i∈In ∈ Dn, with 1 ∈ Sn the identity

element.

In this case, Q = supp(d) = {q ∈ N ; tq 6= eT } and J = ∅, and so the

parameter J does not exist, and the character formula (4.24) in Theorem 4.5

reduces at h = (d,1) as follows:

(5.2)





χ̃Πn

(
(d,1)

)
=
∑

Q

c(In;Q)X
(
Q; (d,1)

)
,

c(In;Q) =

∏
ζ∈bT |In,ζ |

(
|In,ζ | − 1

)
· · ·
(
|In,ζ | − |Qζ |+ 1

)

n(n− 1)(n − 2) · · ·
(
n− |Q|+ 1

) ,

X
(
Q; (d,1)

)
=
∏

ζ∈ bT

(∏

q∈Qζ

χζ(tq)

dim ζ

)
(d ∈ Dn).

Note thatQ = (Qζ)ζ∈ bT runs over all partitions of Q into subsets indexed

by T̂ , and that

c(In;Q) ≍
∏

ζ∈bT

( |In,ζ |
n

)|Qζ|
(asymptotically equivalent as n→∞),(5.3)

∑

Q

c(In;Q) = 1,
∑

Q

∏

ζ∈bT

( |In,ζ |
n

)|Qζ |
= 1 for any n ≥ |Q|.(5.4)

Note that the first equality in (5.4) is for the case where we take a

number of |Q| elements without repetitions, and the second one is for the

case with repetitions.

Note further that for a d ∈ D∞, there exists n0 > 0 such that d is

contained in Dn and so h = (d,1) ∈ Gn, for n ≥ n0.

Lemma 5.1. If there exists the pointwise limit limn→∞ χ̃Πn((d,1)) on

D∞, then the ratio |In,ζ |/n converges for every ζ ∈ T̂ , or equivalently there

holds:

(5.5) (Condition I) the following limits exist : Bζ := lim
n→∞

|In,ζ |
n

(ζ ∈ T̂ ).
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Proof. For a finite subset Q ⊂ N , define a compact subgroup DQ of

D∞ and its open subset D′
Q as

DQ := {d = (ti)i∈N ∈ D∞ ; ti = eT (i 6∈ Q)},
D′

Q := {d = (ti)i∈N ∈ DQ ; ti 6= eT (i ∈ Q)}.(5.6)

Then (5.2) is valid not only on D′
Q but also on the compact group DQ. Let

L2(DQ) be the Hilbert space of square-summable functions with respect

to the normalized Haar measure on DQ. Take n sufficiently large so that

DQ ⊂ Dn. Put f(Q; d) = X
(
Q; (d,1)

)
, d ∈ DQ. Then they are mutually

orthogonal in L2(DQ), and have the lengths ‖f(Q)‖ =
∏

ζ∈bT (dim ζ)−|Qζ| =

(dim ζ)−|Q|.

On the other hand, the functions χ̃Πn , n ≥ n0, on DQ are uniformly

bounded by 1. Hence, if the sequence χ̃Πn converges pointwise on DQ, then

the inner product in L2(DQ)

〈χ̃Πn , f(Q)〉 = c(In;Q) (dim ζ)−2|Q|

will converge. This gives Condition I.

Under Condition I, we have Bζ ≥ 0, and
∑

ζ∈bT Bζ ≤ 1.

Assume T be finite. Then the dual T̂ is automatically finite, and we

get in the inequality above the equality:
∑

ζ∈bT Bζ = 1.

Assume T be infinite. Then we consider the following equality condi-

tion:

(5.7) (Condition E)
∑

ζ∈ bT

Bζ = 1.

Lemma 5.2. Assume Condition I. Then, under Condition E, the

limit positive definite function limn→∞ χ̃Πn((d,1)) on D∞ →֒ G is given by

F (d) =
∑

Q

∏

ζ∈ bT


∏

q∈Qζ

Bζ
χζ(tq)

dim ζ


 =

∏

q∈Q

F1(tq),(5.8)

F1(t) :=
∑

ζ∈ bT

Bζ
χζ(t)

dim ζ
(t ∈ T ),

where Q = supp(d) = {q ∈ N ; tq 6= eT }. The convergence is uniform on

each Dk.
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If T is infinite, the limit function F is continuous on D∞ under Con-

dition E.

Proof. Take a finite subset F of partitions Q = (Qζ)ζ∈ bT of Q. Then,

∣∣∣χ̃Πn

(
(d,1)

)
− F (d)

∣∣∣ ≤ J1(n;F) + J2(n;F) + J3(F),

where, with c(Q) := limn→∞ c(In;Q) =
∏

ζ∈ bT B
|Qζ |

ζ ,

J1(n;F) =

∣∣∣∣∣
∑

Q∈F

(
c(In;Q) − c(Q)

)∏

ζ∈ bT

∏

q∈Qζ

χζ(tq)

dim ζ

∣∣∣∣∣

≤
∑

Q∈F

∣∣∣c(In;Q)− c(Q)
∣∣∣ =: J0

1 (n;F),

and, under the similar evaluations,

J2(n;F) =

∣∣∣∣∣
∑

Q6∈F

c(In;Q)
∏

ζ∈ bT

∏

q∈Qζ

χζ(tq)

dim ζ

∣∣∣∣∣ ≤
∑

Q6∈F

c(In;Q) =: J0
2 (n;F),

J3(F) =

∣∣∣∣∣
∑

Q6∈F

∏

ζ∈bT

∏

q∈Qζ

Bζ
χζ(tq)

dim ζ

∣∣∣∣∣ ≤
∑

Q6∈F

c(Q) =: J0
3 (F).

Note that

(5.9)
∑

Q

c(In;Q) = 1,
∑

Q

c(Q) =
(∑

ζ∈ bT

Bζ

)|Q|
= 1,

then we have

∑

Q6∈F

c(In;Q) = 1−
∑

Q∈F

c(In;Q) =
∑

Q

c(Q)−
∑

Q∈F

c(In;Q)(5.10)

=
∑

Q∈F

(
c(Q) − c(In;Q)

)
+
∑

Q6∈F

c(Q),(5.11)

and so, J0
2 (n;F) ≤ J0

1 (n;F) + J0
3 (F). Hence

∣∣∣χ̃Πn

(
(d,1)

)
− F (d)

∣∣∣ ≤ 2J0
1 (n;F) + 2J0

3 (F).
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Now, for a given small ε > 0, take a finite set F sufficiently large so

that J0
3 (F) < ε. Then, choose n sufficiently large so that J0

1 (n;F) < ε. So,

we have ∣∣χ̃Πn

(
(d,1)

)
− F (d)

∣∣ ≤ 4ε.

This proves that χ̃Πn

(
(d,1)

)
converges to F (d) uniformly on DQ.

The continuity of F on D∞ is easy to see.

In the case of infinite compact group T , we have the following interesting

case of discontinuous limit functions. For a finite subset Q of N , define a

compact subgroup DQ of D∞ and its open subset D′
Q as in (5.6). Assume

Condition I holds, and using Bζ = limn→∞ |In,ζ |/n, we put F (d) for d ∈
D∞ as in Lemma 5.2, if supp(d) = Q,

(5.12) F (d) :=
∏

q∈Q

F1(tq), F1(t) :=
∑

ζ∈ bT

Bζ
χζ(t)

dim ζ
(t ∈ T ).

Then the sum expressing F1(t) is uniformly convergent on T , and F (d),

d ∈ D′
Q, has a continuous extension fQ onto DQ, with the same factorized

form.

Assume Condition E does not hold, or
∑

ζ∈bT Bζ < 1. In this case,

contrary to the case of Lemma 5.2 under Condition E, the function F ,

presumably supposed to be the pointwise limit, is nowhere continuous on

D∞. In fact, the system of functions fQ on DQ are not consistent with

inclusion relations DQ ⊃ DQ0 with Q ⊃ Q0 as seen in Remark 5.1 below.

However we presume that F is the pointwise limit of χ̃Πn

(
(d,1)

)
in this

case too. Here we only show that F is a kind of weak limit in the following

lemma (also cf. Example 6.1).

Lemma 5.3. Let T be an infinite compact group. Assume that Condi-

tion I in (5.5) holds, but Condition E in (5.7) does not hold. For each

finite subset Q of N , take a compact subgroup DQ of D∞. Then the restric-

tion χ̃Πn

(
(d,1)

)
, d ∈ DQ, of irreducible character χ̃Πn converges weakly in

L2(DQ) to a positive definite function

fQ(d) :=
∏

q∈Q

F1(tq) (d = (tq)q∈Q ∈ DQ).

Proof. For a finite subset Q, the function fQ on DQ is continuous

and positive definite. Then, Condition I says that 〈χ̃Πn

(
(d,1)

)
− fQ(d),
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f(Q; d)〉 → 0 as n → ∞ in L2(DQ). On the other hand, for the sub-

space L2(DQ)0 consisting of functions invariant under inner automorphisms,

{f(Q)} gives a complete orthogonal system. Therefore 〈χ̃Πn − fQ, f〉 → 0

for any f ∈ L2(DQ)0, that is, χ̃Πn converges weakly to fQ.

We also wonder if χ̃Πn

(
(d,1)

)
converges strongly to fQ(d) in L2(DQ).

If so, χ̃Πn

(
(d,1)

)
converges on D∞ to F ‘almost everywhere’ pointwise. The

strong convergence is equivalent to ‖χ̃Πn‖2 → ‖fQ‖2, that is,

∑

Q

c(In,Q)2(dim ζ)−2|Q| −→
∑

Q

(∏

ζ∈bT

B
|Qζ |
ζ

)2
(dim ζ)−2|Q|,

or
∑

Q

c(In,Q)2 −→
(∑

ζ∈ bT

B 2
ζ

)|Q|
.

Remark 5.1. In the situation of Lemma 5.3, we have B :=
∑

ζ∈ bT Bζ <

1, since Condition E does not hold. Note that the system of functions fQ

is not consistent with the inclusion of the groups DQ ⊃ DQ0 as Q ⊃ Q0,

In fact, take a q0 ∈ Q and put Q0 = Q \ {q0}, and let an open subset

D′
Q of DQ be as above. Then, when tq0 → eT in d = (ti)i∈N ∈ D′

Q, we

have d → d′ := (t′i)i∈N ∈ D′
Q0 with t′q0

= eT and t′i = ti (i 6= q0), and for

tq0 → eT ,

fQ(d)→
(∑

ζ∈bT

Bζ

)
·
∏

q∈Q0

F1(tq) = B · fQ0(d′) 6= fQ0(d′).

For each compact subgroup DQ ⊂ D∞, the weak limit function F |DQ
in

L2(DQ), a measurable positive definite function on DQ, has a continuous

version fQ. However, on the whole D∞ which is no more locally compact,

F is a measurable positive definite function which is nowhere continuous

and has no continuous version.

Remark 5.2. A reason why we have inconsistency at the boundaryDQ\
D′

Q of DQ can be seen as follows. By Remark 4.1, the formula (5.2) for the

character value χ̃Πn

(
(d,1)

)
is valid not only on D′

Q but also on the compact

group DQ.

Take a q0 ∈ Q and a boundary point d0 ∈ DQ\D′
Q given as d0 = (tq)q∈Q

with tq0 = eT and tq 6= eT (q ∈ Q0 = Q \ {q0}), where, outside Q, ti = eT
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for all i 6∈ Q and these are omitted. Then d0 ∈ D′
Q0 , and the proper formula

for D′
Q0 gives us

χ̃Πn

(
(d0,1)

)
=
∑

Q0

c(In;Q0)X
(
Q0; (d0,1)

)
,

c(In;Q0) =

∏
ζ∈bT |In,ζ |

(
|In,ζ | − 1

)
· · ·
(
|In,ζ | − |Q0

ζ |+ 1
)

n(n− 1)(n − 2) · · ·
(
n− |Q0|+ 1

) ,

X
(
Q0; (d0,1)

)
=
∏

ζ∈ bT



∏

q∈Q0
ζ

χζ(tq)

dim ζ


 ,

where Q0 = (Q0
ζ)ζ∈ bT runs over all partitions of Q0.

Now compare this expression with the expression of χ̃Πn(d0) in the

formula (5.2), extended from D′
Q to DQ. In the above expression for

(d0,1) ∈ D′
Q0 , the monomial terms X

(
Q0; (d0,1)

)
are mutually orthogo-

nal. On the other hand, in the extended formula (5.2), each monomial term

X
(
Q0; (d0,1)

)
appears in many places corresponding to different partitions

Q so as to realize B =
∑

ζ∈bT Bζ < 1.

The situation is similar to the following simple example. Consider for

each n an expression of bn = 1 as

bn =
∑

1≤k≤n

an,k, bn = 1, an,k :=
1

n

(
n times of

1

n

)
.

Then, starting from limn→∞ bn = 1 6= 0 =
∑

1≤k<∞ limn→∞ an,k.

Step 2. Limits of the coefficients c(In;Q,J ).

Assume the above limit condition Condition I. Since
∑

ζ∈bT

|Qζ |+
∑

j∈Jζ

ℓ(σj) = | supp(h)|

for a fixed h = (d, σ), we get from the formula of c(In;Q,J ) in (4.24)

(5.13) lim
n→∞

c(In;Q,J ) = c(Q,J ) :=
∏

ζ∈ bT

(
B

|Qζ |
ζ ·

∏

j∈Jζ

B
ℓ(σj)

ζ

)
.

Step 3. Limits of c(In;Q,J )X
(
Λn;Q,J ;h

)
in case Bζ = limn→∞

|In,ζ |/n = 0.
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For a pair of partitions (Q,J ), assume that Mζ := |Qζ |+
∑

j∈Jζ
|Kj | >

0. Then, from the above formula, limn→∞ c(In;Q,J ) =
∏

ζ∈bT B
Mζ

ζ = 0.

On the other hand, |X(Λn;Q,J ;h)| ≤ 1, whence

c(In;Q,J )X(Λn;Q,J ;h) −→ 0.

Put T̂+ = {ζ ∈ T̂ ; Bζ > 0}. Then the subset T̂+ ⊂ T̂ is at most

countably infinite. For ζ ∈ T̂ , put I∞,ζ = limn→∞ In,ζ =
⋃

n≥1 In,ζ . Then

I∞,ζ is infinite for ζ ∈ T̂+. We have
⊔

ζ∈bT+ I∞,ζ ⊂N , whereas
⊔

ζ∈ bT I∞,ζ =

N . Even in the case where T is infinite (and compact), there exists at most

a countably infinite number of ζ for which I∞,ζ 6= ∅.
Step 4. By Step 3, we need to consider only such (Q,J ) that Mζ =

|Qζ | +
∑

j∈Jζ
|Kj | > 0 only for ζ ∈ T̂+. We fix such a (Q,J ). Then, by

Step 2, the coefficient c(In;Q,J ) converges to a positive constant as n→∞,

and so the point to study is the convergence of the factor X(Λn;Q,J ;h).

It is given as

(5.14)
∏

ζ∈bT+


∏

q∈Qζ

χζ(tq)

dim ζ
×
∏

j∈Jζ

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)
× χ̃

(
λn,ζ ; (ℓ(σj))j∈Jζ

)

 .

The moving factor in it is only the normalized character of IUR π(λn,ζ) of

SIn,ζ
:

(5.15) χ̃
(
λn,ζ ; (ℓ(σj))j∈Jζ

)
= χ̃

(
λn,ζ ;

∏
j∈Jζ

σj

)
.

This term moves along with a weakly increasing sequence of Young diagrams

λn,ζ together with In,ζ ր I∞,ζ such that |In,ζ | = |λn,ζ |.
Since I∞,ζ is infinite, we have an order-preserving bijection

(5.16) Φ : I∞,ζ −→N such that Φ(In,ζ) = INn

with Nn = |In,ζ | ր ∞, and through Φ an isomorphism ϕ such that

(5.17) ϕ : SI∞,ζ
∋ σ −→ ϕ(σ) = Φ ◦ σ ◦ Φ−1 ∈ SN = S∞

and accordingly a consistent sequence of isomorphisms SIn,ζ
→ SNn with

Nn ր ∞. Correspondingly, the Young diagram λn,ζ for SIn,ζ
is mapped

to such a one Φ(λn,ζ) for SNn , and the IUR π(λn,ζ) of Φ(λn,ζ) to an IUR

π(Φ(λn,ζ)) of SNn .
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Thus, we arrive at a situation where, for an increasing sequence of

pairs of symmetric groups SNn and their IURs π(Φ(λn,ζ)), we look for a

necessary and sufficient condition for the existence of the pointwise limits

of the normalized characters χ̃(Φ(λn,ζ)) of π(Φ(λn,ζ)), and then calculate

the limit of irreducible characters.

This problem has been settled in [VK1] and [VK2]. Only a difference

from the present situation is that here SNn is weakly increasing up to S∞,

but there Sn goes up to S∞ one by one as n→ n+ 1→ n+ 2→ · · · .
5.2. Known results on limits of irreducible characters for

Sn ր S∞

The infinite symmetric group S∞ is an inductive limit of the n-th sym-

metric group Sn. An equivalence class of IURs of the latter is parametrized

by a Young diagram

(5.18) λ(n) = (λ
(n)
1 , λ

(n)
2 , . . . , λ(n)

n ), λ
(n)
1 ≥ λ(n)

2 ≥ · · · ≥ λ(n)
n ≥ 0,

of size n = |λ(n)|, which is by definition the number of boxes in λ(n). The

normalized character corresponding to it is denoted by χ̃(λ(n);σ) (σ ∈ Sn).

Denote by rk(λ
(n)) and ck(λ

(n)) the length of k-th row and k-th column of

λ(n). Then rk(λ
(n)) = λ

(n)
k and

(5.19)
∑

1≤k≤n

rk(λ
(n)) = n,

∑

1≤k≤n

ck(λ
(n)) = n.

Consider the case of an increasing sequence of Young diagrams λ(n) as

In րN . In [VK2, Theorem 1], the following is asserted (cf. also Theorems 1

and 2 in [VK1]):

Theorem 5.4. ([VK1], [VK2]) The point-wise limit limn→∞ χ̃(λ(n);σ)

exists for each σ ∈ S∞ if and only if there exist limits of relative lengths of

the rows and columns as

(5.20) lim
n→∞

rk(λ
(n))

n
= αk, lim

n→∞

ck(λ
(n))

n
= βk (k = 1, 2, . . . ).

In this case, the limit is the character of S∞ corresponding to the

Thoma parameter α = (αk)k≥1, β = (βk)k≥1.

Let bk := rk(λ
(n)) − k, ak := ck(λ

(n)) − k be the lengths of k-th row

and k-th column of λ(n) counted off diagonal. Suppose ak ≥ 0, bk ≥ 0, only
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for 1 ≤ k ≤ r. Then a1 > a2 > · · · > ar ≥ 0, b1 > b2 > · · · > br ≥ 0,∑
i ai +

∑
i bi = n− r, and

(5.21)

(
ar ar−1 · · · a1

br br−1 · · · b1

)

is taken as a parameter for the irreducible character χπ(λn) of Sn and called

‘Characteristik’ (of rank r) by Frobenius in his paper [Frob], where irre-

ducible characters of symmetric groups have been first studied (the num-

bering of ai and that of bi are reversed here from that in [Frob]). Frobenius

dimension formula is given as

(5.22) dimπ(λ(n)) =
n!∆(a1, a2, . . . , ar)∆(b1, b2, . . . , br)∏

1≤i≤r ai! ·
∏

1≤j≤r bj! ·
∏

1≤i,j≤r(ai + bj + 1)
,

where ∆ denotes the difference products. The ratios bk/n, ak/n have the

same limits as αk, βk in (5.20).

A basis of the above theorem is an asymptotic evaluation of the normal-

ized irreducible character χ̃(λ(n);σ) as n →∞. For instance, let σ(ℓ) ∈ Sn

be a cycle of length ℓ. Then we have the following evaluation deduced from

a formula due to F. Murnaghan ([Mur], [VK1]):

(5.23) χ̃
(
λ(n);σ(ℓ)

)
=
∑

k

(
bk
n

)ℓ

+ (−1)ℓ−1
∑

k

(ak

n

)ℓ
+O

(
1

n

)
.

5.3. Thoma’s character formula revisited

We revue here Thoma’s character formula for S∞. In his paper [Tho],

a character of S∞ is, by definition, an extremal element in K1(S∞) or

an element in E(S∞) (cf. 2.1). As a parameter for a character, he takes

(α, β) with α = (αi)i≥1, β = (βi)i≥1, a pair of two decreasing sequences of

non-negative real numbers such as

α1 ≥ α2 ≥ α3 ≥ · · · ≥ 0, β1 ≥ β2 ≥ β3 ≥ · · · ≥ 0;

‖α‖ + ‖β‖ ≤ 1 with ‖α‖ :=
∑

i≥1

αi, ‖β‖ :=
∑

i≥1

βi.(5.24)

For a σ ∈ S∞, let σ = σ1σ2 · · · σm be a cycle decomposition, and let

nℓ(σ) denotes the number of σj such that ℓ(σj) = ℓ for ℓ ≥ 2. Then Thoma’s

formula for the character fα,β is given as

(5.25) fα,β(σ) =
∏

ℓ≥2

(∑

i≥1

α ℓ
i + (−1)ℓ−1

∑

i≥1

β ℓ
i

)nℓ(σ)
(σ ∈ S∞).
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We rewrite this in the form of our formula for S∞(T ) in Theorem 3.3.

Here we take T as the trivial group T = {eT }, and T̂ = {1T }, where 1T is

the trivial representation of the trivial group T , and put with ζ = 1T and

ε = 0, 1,

αζ,0,i := αi , αζ,1,i := βi , αζ,ε := (αζ,ε,i)i∈N ;

µζ := 1−
∑

ε=0,1

‖αζ,ε‖ ; χε(σ) :=
(
sgnS(σ)

)ε
(σ ∈ S∞).

For a cycle σj in the cycle decomposition of σ, we have sgnS(σj) =

(−1)ℓ(σj )−1, and the formula above is rewritten as

(5.26) fα,β(σ) =
∏

1≤j≤m

(∑

ε=0,1

∑

i∈N

(αζ,ε,i)
ℓ(σj ) · χε(σj)

)
.

Remark 5.3. In [Hir2]–[Hir3], it is shown that all these characters fα,β

are obtained as various limits of centralizations of one matrix element F =

IndG
H fπ of a unitary representation ρ = IndG

H π, induced from one-dimen-

sional character π of a certain subgroupH of wreath product type (cf. [Hir3,

§15] in particular).

This fact means also that fα,β can be obtained as a limit of a sequence

of characters of certain standard induced representations (not irreducible in

general) of Sn as n→∞.

5.4. Limits of monomial terms of irreducible characters of

Sn(T )

Let us continue the discussions in 5.1.

Step 5. We apply Theorem 5.4 to the ζ-factor in (5.15), or more

exactly to the increasing sequence of IURs π(Φ(λn,ζ)) of SNn ր S∞, where

Nn = |In,ζ | = |λn,ζ | is the size of λn,ζ . Then, coming back to π(λn,ζ) of

SIn,ζ
ր SI∞,ζ

∼= S∞, we get the following.

Lemma 5.5. The normalized character χ̃(λn,ζ) of IURs π(λn,ζ) of SIn,ζ

converge pointwise if and only if there exist the following limits for any

k ≥ 1:

(5.27) lim
n→∞

rk(λ
n,ζ)

|In,ζ |
= α′

ζ,k , lim
n→∞

ck(λ
n,ζ)

|In,ζ |
= β′ζ,k .
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In that case, put α′
ζ = (α′

ζ,i)i≥1, β
′
ζ = (β′ζ,i)i≥1. Then, the limit is given

through a bijection Φ : I∞,ζ → N in (5.16) and ϕ : SIn,ζ
→ S∞ in (5.17)

as

(5.28) lim
n→∞

χ̃(λn,ζ ; τ) = fα′
ζ
,β′

ζ

(
ϕ(τ)

)
(τ ∈ SIn,ζ

),

where ϕ(τ) = Φ ◦ τ ◦ Φ−1.

Step 6. We assume Condition I holds, that is, that for each ζ ∈ T̂
there exists limn→∞ |In,ζ |/n = Bζ ≥ 0. Put T̂+ = {ζ ∈ T̂ ; Bζ > 0}. For

ζ ∈ T̂+, we assume that the limits (5.27) exist for 1 ≤ k <∞. Introduce a

parameter ε = 0, 1 corresponding to a one-dimensional character (sgnS)ε,

and put

αζ,0,k := lim
n→∞

rk(λ
n,ζ)

n
, αζ,1,k := lim

n→∞

ck(λ
n,ζ)

n
,

µζ := Bζ −
∑

ε=0,1

‖αζ,ε‖ with αζ,ε = (αζ,ε,i)i≥1.
(5.29)

Then, αζ,0,k = Bζ α
′
ζ,k, αζ,1,k = Bζ β

′
ζ,k for ζ ∈ T̂+, and αζ,0,k = 0, αζ,1,k =

0, µζ = 0 for ζ 6∈ T̂+. Since B =
∑

ζ∈ bT Bζ ≤ 1, we have

µζ ≥ 0, ‖αζ,0‖+ ‖αζ,1‖+ µζ = Bζ ,

∑

ζ∈bT

∑

ε=0,1

‖αζ,ε‖+ ‖µ‖ ≤ 1

with µ = (µζ)ζ∈bT , ‖µ‖ =
∑

ζ∈bT

µζ .

Let τ =
∏

j∈Jζ
σj be a cycle decomposition of τ , then ϕ(τ) =

∏
j∈Jζ

ϕ(σj)

is a cycle decomposition of ϕ(τ), and ℓ(ϕ(σj)) = ℓ(σj). Hence we see from

(5.26) that, with α′
ζ,0,i = α′

ζ,i, α
′
ζ,1,i = β′ζ,i.

(5.30) fα′
ζ
,β′

ζ

(
ϕ(τ)

)
=
∏

j∈Jζ


∑

ε=0,1

∑

i∈N

χε(σj)(α
′
ζ,ε,i)

ℓ(σj )


 .

Thus, taking into account (5.13) and (5.14), we get the following con-

vergence lemma.
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Lemma 5.6. Let In = (In,ζ)ζ∈ bT be a partition of In increasing along

with n→∞ in such a way that In,ζ ⊆ In+1,ζ ⊆ · · · . Assume Condition I

holds, and put T̂+ = {ζ ∈ T̂ ; Bζ > 0}. Moreover assume that the limits in

(5.27) exist for ζ ∈ T̂+.

Take an h = (d, σ) ∈ Hn0 ⊂ Gn0 = Sn0(T ). Then h ∈ Hn ⊂ Gn for

n ≥ n0. Let h = ξq1ξq2 · · · ξqrg1g2 · · · gm with ξq =
(
tq, (q)

)
, gj = (dj , σj)

be a standard decomposition of h as an element of G = S∞(T ). Then

σ = σ1σ2 · · · σm is a cycle decomposition of σ. Put Q = {q1, q2, . . . , qr} =

supp(d)\supp(σ) and J = {1, 2, . . . ,m}. Take a pair (Q,J ) of partitions of

Q and J . Then, for the term corresponding to (Q,J ) in (4.24) of irreducible

characters of Gn, the limit is given as follows.

(i) The limit of coefficients is given as

lim
n→∞

c(In;Q,J ) = c(Q,J ) :=
∏

ζ∈bT

(
B

|Qζ|
ζ ·

∏

j∈Jζ

B
ℓ(σj)

ζ

)
,

(ii) If Qζ 6= ∅ or Jζ 6= ∅ for some ζ 6∈ T̂+, then

lim
n→∞

c(In;Q,J )X(Λn;Q,J ;h) = 0,

otherwise,
⊔

ζ∈bT+ Qζ = Q,
⊔

ζ∈ bT+ Jζ = J , and

lim
n→∞

X(Λn;Q,J ;h)

=
∏

ζ∈bT+

(∏

q∈Qζ

χζ(tq)

dim ζ
×
∏

j∈Jζ

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)

∑

ε=0,1

χε(σj)
∑

i∈N

(α′
ζ,ε,i)

ℓ(σj )

)
;

lim
n→∞

c(In;Q,J )X(Λn;Q,J ;h)

=
∏

ζ∈bT+

{∏

q∈Qζ

(
‖αζ,0‖+ ‖αζ,1‖+ µζ)

χζ(tq)

dim ζ

)

×
∏

j∈Jζ

(∑

ε=0,1

∑

i∈N

(αζ,ε,i)
ℓ(σj) χε(σj) ·

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)

)}
.

§6. Limits of irreducible characters of Sn(T )

By Lemma 5.6 above, we get the limit of each monomial term c(In;Q,J )

X(Λn;Q,J ;h) of χ̃Πn(h) of Gn = Sn(T ) in (4.24) as n → ∞, and then
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summing up these limits, we obtain the limit function limn→∞ χ̃Πn(h) on

G = S∞(T ) as follows.

Let In = (In,ζ)ζ∈bT be a partition of In and Λn = (λn,ζ)
ζ∈bT a set

of Young diagrams such that λn,ζ has the size |In,ζ | and determines IURs

π(λn,ζ) of the subgroup SIn,ζ
of Sn. Take a subgroup Hn of Gn and its

IUR πn given as

Hn = Dn ⋊ S[ηn], Dn = Dn(T ) = DIn(T ), S[ηn] =
∏

ζ∈bT ′

SIn,ζ
,(6.1)

πn = ηn ⊡ ξn, ηn = ⊠
ζ∈ bT ′

ζIn,ζ , ξn = ⊠
ζ∈bT ′

π(λn,ζ),(6.2)

and consider a sequence of IURs Πn = IndGn

Hn
πn of Gn (n = 3, 4, 5, . . . ).

Assume that the pair (In,Λn) increases along with n→∞ in such a way

that In,ζ ⊆ In+1,ζ ⊆ · · · and λn,ζ ⊆ λn+1,ζ ⊆ · · · . Moreover assume that the

sequence (In,Λn), n→∞, satisfies Condition I on In, and Condition IΛ

on (In,Λn) given below:

(Condition I) the following limits exist : Bζ := lim
n→∞

|In,ζ |
n

(ζ ∈ T̂ ).

(Condition IΛ) For each ζ ∈ T̂+ := {ζ ∈ T̂ ; Bζ > 0}, there exist

limits

(6.3) lim
n→∞

rk(λ
n,ζ)

|In,ζ |
= α′

ζ,k , lim
n→∞

ck(λ
n,ζ)

|In,ζ |
= β′ζ,k (1 ≤ k <∞).

Put, for ζ ∈ T̂ ,

(6.4)





αζ,0,k := lim
n→∞

rk(λ
n,ζ)

n
, αζ,1,k := lim

n→∞

ck(λ
n,ζ)

n
,

αζ,ε = (αζ,ε,k)k≥1 for ε = 0, 1;

µζ := Bζ −
∑

ε=0,1
‖αζ,ε‖, µ := (µζ)ζ∈ bT .

Then, for ζ ∈ T̂+, αζ,0,k = Bζ α
′
ζ,k, αζ,1,k = Bζ β

′
ζ,k, and for ζ 6∈ T̂+,

αζ,0,k = 0, αζ,1,k = 0, and µζ = 0, with Bζ = 0.

With these data, we define a parameter A as A =
(
(αζ,ε)(ζ,ε)∈ bT×{0,1}

;

µ
)
, then,

(6.5)
∑

ζ∈bT

∑

ε∈{0,1}

‖αζ,ε‖+ ‖µ‖ =
∑

ζ∈ bT

Bζ ≤ 1.
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Corresponding to this parameter A, we define a function FA on G. Take

an element g = (d, σ) ∈ G. Let g = ξq1ξq2 · · · ξqrg1g2 · · · gm with ξq =(
tq, (q)

)
, gj = (dj , σj), be a standard decomposition of g. Put Q = supp(d)\

supp(σ) = {q1, q2, . . . , qr} and J = {1, 2, . . . ,m}, then

FA(g) :=
∏

q∈Q




∑

ζ∈bT


 ∑

ε∈{0,1}

‖αζ,ε‖+ µζ


 χζ(tq)

dim ζ



(6.6)

×
∏

j∈J




∑

ζ∈ bT


 ∑

ε∈{0,1}

∑

i∈N

(αζ,ε,i)
ℓ(σj)χε(σj) ·

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)





 ,

where χε(σj) = sgnS(σj)
ε = (−1)ε(ℓ(σj )−1), and for σj = (i1 i2 · · · iℓj

)

with ℓj = ℓ(σj) and dj = (ti)i∈Kj
with Kj := supp(σj), Pσj

(dj) :=[
t′ℓj
t′ℓj−1 · · · t′2t′1

]
∈ T/∼ with t′k = tik .

Theorem 6.1. Assume that the sequence (In,Λn), n → ∞, satisfies

Condition I on In and Condition IΛ on Λn.

(i) In the case where T is finite, we have

(6.7) lim
n→∞

χ̃Πn(g) = FA(g) (g ∈ G),

and the limit function FA is equal to the character fA in Theorem 2.2 with

a parameter A =
(
(αζ,ε)(ζ,ε)∈ bT×{0,1} ; µ

)
given above, which satisfies the

equality condition (2.9), that is,
∑

ζ∈ bT
∑

ε∈{0,1} ‖αζ,ε‖+ ‖µ‖ = 1.

The set of limits limn→∞ χ̃Πn of normalized characters of IURs of Gn

is exactly equal to the set of all characters of factor representations of finite

type of G.

(ii) In the case where T is infinite, the function FA is continuous if

and only if the equality condition (2.9) holds for A, or if and only if the

following Condition E holds:

(Condition E)
∑

ζ∈bT

Bζ = 1.

In that case, limn→∞ χ̃Πn(g) is given by FA(g) as in (6.7), and the limit

function FA equals the character fA in Theorem 2.2, and the convergence

is uniform on every compact subset of G.

The set of limit functions limn→∞ χ̃Πn of normalized characters of IURs

of Gn which are continuous on G is exactly equal to the set of all characters

of factor representations of finite type of G.
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Proof. Let us prove the convergence χ̃Πn(g) → FA(g) as n → ∞.

Fix n0 and take g = (d, σ) ∈ Gn0 ⊂ G, then g ∈ Gn for n ≥ n0. Let

its standard decomposition be g = ξq1ξq2 · · · ξqrg1g2 · · · gm as in (4.11), and

correspondingly put Q = {q1, q2, . . . , qr} and J = {1, 2, . . . ,m} as in (4.12).

By Theorem 4.5,

(6.8) χ̃Πn(g) =
∑

(Q,J )

c(In;Q,J )X
(
Λn;Q,J ; g

)
,

where, for a pair (Q,J ) of partitions Q = (Qζ)ζ∈bT of Q and J = (Jζ)ζ∈ bT
of J ,

c(In;Q,J ) =
∏

ζ∈ bT

|In,ζ |
(
|In,ζ | − 1

)
· · ·
(
|In,ζ | − |Qζ | −

∑
j∈Jζ

|Kj |+ 1
)

n(n− 1)(n − 2) · · ·
(
n− |Q| − | supp(σ)|+ 1

) ,

X
(
Λn;Q,J ; g

)

=
∏

ζ∈bT


∏

q∈Qζ

χζ(tq)

dim ζ
×
∏

j∈Jζ

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)
× χ̃

(
λn,ζ ; (ℓ(σj))j∈Jζ

)

 .

The target function FA(g) is expressed in a similar way as

(6.9) FA(g) =
∑

(Q,J )

c(Q,J )X(Q,J ; g),

where (Q,J ) runs over pairs of partitions Q = (Qζ)ζ∈ bT+ of Q and J =

(Jζ)ζ∈ bT+ of J , and

c(Q,J ) = lim
n→∞

c(In;Q,J ) =
∏

ζ∈bT+

(
B

|Qζ |
ζ ·

∏

j∈Jζ

B
ℓ(σj)

ζ

)
,(6.10)

X(Q,J ; g) := lim
n→∞

X
(
Λn;Q,J ; g

)

=
∏

ζ∈bT+


∏

q∈Qζ

χζ(tq)

dim ζ
×
∏

j∈Jζ

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)

×
(∑

ε=0,1

χε(σj)
∑

i∈N

(α′
ζ,ε,i)

ℓ(σj)

)
 .
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Since Bζ = 0 for ζ ∈ T̂ \ T̂+, we can extend the summation in (6.9) over

pairs (Q,J ) of partitions Q = (Qζ)ζ∈ bT of Q and J = (Jζ)ζ∈ bT of J , just as

in (6.8), by extending the definitions of c(Q,J ) and X(Q,J ; g) naturally,

where for the latter the parameters (α′
ζ,ε,i) can be taken arbitrary since the

term c(Q,J )X(Q,J ; g) are understood naturally as equals 0.

So doing, we evaluate the difference of two corresponding terms of the

same kind by separating into two factors as

∣∣c(In;Q,J )X
(
Λn;Q,J ; g

)
− c(Q,J )X(Q,J ; g)

∣∣
≤ I (n;Q,J ) + II (n;Q,J ),

where

I (n;Q,J ) :=
∣∣c(In;Q,J )− c(Q,J )

∣∣,
II (n;Q,J ) := c(Q,J )

×

∣∣∣∣∣∣
∏

ζ∈bT+

∏

j∈Jζ

χ̃
(
λn,ζ ; (ℓ(σj))j∈Jζ

)
−
∏

ζ∈bT+

∏

j∈Jζ

∑

ε=0,1

χε(σj)
∑

i∈N

(α′
ζ,ε,i)

ℓ(σj )

∣∣∣∣∣∣
.

Here we put II (n;Q,J ) = 0 in accordance with c(Q,J ) = 0, when some of

Qζ and Jζ are not empty for a ζ ∈ T̂ \ T̂+, and we have used the evaluation

of monomial terms given as

∣∣X
(
Λn;Q,J ; g

)∣∣ ≤ 1,

∣∣∣∣∣
∏

ζ∈bT


∏

q∈Qζ

χζ(tq)

dim ζ
×
∏

j∈Jζ

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)



∣∣∣∣∣ ≤ 1.

The difference between χ̃Πn(g) and FA(g) is evaluated as follows. Let

F = FQ × FJ be a finite subset of pairs (Q,J ) of partitions of Q and J ,

with finite subsets FQ of Q and FJ of J , then

∣∣χ̃Πn(g)− FA(g)
∣∣ ≤

∑

(Q,J )

I (n;Q,J ) +
∑

(Q,J )

II (n;Q,J );

where

∑

(Q,J )

I (n;Q,J ) ≤ J0
1 (n;F) + J0

2 (n;F) + J0
3 (F),

J0
1 (n;F) :=

∑

(Q,J )∈F

∣∣∣c(In;Q,J )− c(Q,J )
∣∣∣,
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J0
2 (n;F) :=

∑

(Q,J )6∈F

c(In;Q,J )

J0
3 (F) :=

∑

(Q,J )6∈F

c(Q,J ) =
∑

(Q,J )6∈F

∏

ζ∈ bT

(
B

|Qζ |
ζ

∏

j∈Jζ

B
ℓ(σj)

ζ

)
,

and, since

∑

Q

c(Q,J ) = c(J ) with c(J ) :=
(∑

ζ∈ bT

Bζ

)|Q|
·
∏

ζ∈ bT

∏

j∈Jζ

B
ℓ(σj)

ζ ,

∑

(Q,J )

II (n;Q,J ) ≤ J0
4 (n;FJ) + J0

5 (FJ),

J0
4 (n;FJ) :=

∑

J∈FJ

{
c(J ) ·

∣∣∣∣∣
∏

ζ∈bT+

∏

j∈Jζ

χ̃
(
λn,ζ ; (ℓ(σj))j∈Jζ

)

−
∏

ζ∈bT+

∏

j∈Jζ

∑

ε=0,1

χε(σj)
∑

i∈N

(α′
ζ,ε,i)

ℓ(σj)

∣∣∣∣∣

}
,

J0
5 (FJ) :=

∑

J 6∈FJ

2 · c(J ) = 2 ·
(∑

ζ∈bT

Bζ

)|Q|
·
∑

J 6∈FJ

∏

ζ∈bT

∏

j∈Jζ

B
ℓ(σj)

ζ .

Note that
∑

(Q,J )

c(In;Q,J ) = 1 (from (4.22)),

∑

(Q,J )

c(Q,J ) =
∑

(Q,J )

∏

ζ∈ bT

B
|Qζ |+

P
j∈Jζ

ℓ(σj)

ζ =
(∑

ζ∈bT

Bζ

)|Q|+| supp(σ)|
.

Now assume that Condition E holds, or
∑

ζ∈ bT Bζ = 1. Then, in the

last equality, we have
∑

(Q,J ) c(Q,J ) = 1, and so the evaluation similar to

(5.10) is possible and gives us J0
2 (n;F) ≤ J0

1 (n;F) + J0
3 (F). Hence

∣∣∣χ̃Πn(g)) − FA(g)
∣∣∣ ≤ 2J0

1 (n;F) + 2J0
3 (F) + J0

4 (n;FJ ) + J0
5 (FJ ).

Now, for a given small ε > 0, take a finite set F = FQ×FJ sufficiently

large so that J0
3 (F) < ε and J0

5 (FJ) < ε. Then, choosing n sufficiently

large, we have J0
1 (n,F) < ε by (6.10), and J0

4 (n;FJ) < ε by Lemma 5.6.

So, we obtain ∣∣χ̃Πn(g)− FA(g)
∣∣ ≤ 6ε.
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This proves that χ̃Πn(g) converges to FA(g) uniformly on GK0 = DK0 ⋊

SK0 with a fixed finite set K0 ⊃ supp(g) = Q ⊔ K, K = supp(σ) =⊔
j∈J supp(σj).

Thus the convergence χ̃Πn(g) → FA(g) is uniform on each Gn0 . Since

any compact subset of G in the inductive limit topology τind is contained

in some Gn, the convergence is uniform on every compact subsets of G.

The rests of the theorem are easy to prove.

Remark 6.1. In the case where Condition I holds but Condition E

does not, the function FA is nowhere continuous. However it is continuous

on every D′
QDK×{σ} with K = supp(σ). Therefore FA is Borel measurable

on G in the topology τind.

Problem 6.1. We suspect that FA is a weak limit in a certain sense,

and also a pointwise limit “almost everywhere”, of normalized irreducible

characters χ̃Πn of Sn. At least, the restriction FA|Gk
is the weak limit of

χ̃Πn |Gk
in each L2(Gk).

Example 6.1. To give examples of discontinuous limits limn→∞ χ̃Πn(g)

on G, we take G = S∞(T ) with T = T1 one-dimensional torus. The dual

of T is given as T̂ = {ζk ; k ∈ Z}, where ζk(t) = tk (t ∈ T ). For a fixed n0,

we take h = (d, σ) with d = (t1, t2, . . . , tn0 , eT , eT , . . . ). For n ≥ n0, take a

partition In =
⊔

ζ∈bT In,ζ given as

In,ζs
= ∅ (1 ≤ s < n0),

In,ζn0
= In0 ⊔ {n0 + 2p + 1 ; 0 ≤ p ≤ [(n − n0 − 1)/2]},

In,ζn0+u
=

{
{n0 + 2u} if n0 + 2u ≤ n
∅ if n0 + 2u > n.

Then, Bζn0
= 1/2 and Bζ = 0 for ζ 6= ζn0 , and

∑
ζ∈bT Bζ = 1/2.

The normalized character χ̃Πn of irreducible representation Π = IndGn

Hn
π

is given for h = (d,1) with d ∈ D′
Q by (5.2). In particular, if h =

(t1, eT , eT , . . .), t1 6= eT , we have Q = {1}, J = ∅, and since dim ζ = 1,

(6.11) χ̃Πn(h) =
|In,ζn0

|
n

· χζn0
(t1) +

∑

1≤u≤(n−n0)/2

1

n
· χζn0+u

(t1).
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Hence we get a discontinuous pointwise limit function as

lim
n→∞

χ̃Πn(h) =
1

2
· χζn0

(t1) for t1 6= eT ;

lim
n→∞

χ̃Πn(e) = 1 for the identity element e ∈ G.

Similarly we have the restriction FA|D′
Q

as pointwise limit of χ̃Πn

(
(d,1)

)
,

d ∈ D′
Q.

Another simpler example is given as follows. Fix an integer p > 0, and

In,ζk
= {k} if k = sp, 1 ≤ s ≤ n, and In,ζk

= ∅ otherwise. Then, for

h = (d,1) with t1 = t 6= eT ,

χ̃Πn(h) =
∑

1≤s≤n

1

n
ζsp(t) =

1

n
×





tnp+p − tp
tp − 1

if tp 6= 1,

n if tp = 1.

Hence

lim
n→∞

χ̃Πn(h) =

{
0 if tp 6= 1,
1 if tp = 1.

One more example: we put

In,ζk
= {2k + 1} for 0 ≤ k ≤ (n− 1)/2 ;

In,ζ−k
= {2k} for 1 ≤ k ≤ n/2.

Then, for h = (d,1) with t1 = t 6= eT ,

χ̃Πn(h) =
∑

−n/2≤k≤(n−1)/2

1

n
ζk(t) =

1

n
×





tp − t−p

t− 1
if n = 2p ,

tp+1 − t−p

t− 1
if n = 2p+ 1 .

Put t = eiθ (0 ≤ θ ≤ 2π) and f(t) = χ̃Πn(h), then for n = 2p+ ǫ (ǫ = 0, 1),

f(eiθ) =
1

n
e(ǫ−1)iθ/2 sin(nθ/2)

sin(θ/2)
−→ 0 (if eiθ 6= 1)

and nf(eiθ) −→ δ1 (δ-distribution on T 1 supported by 1 ∈ T 1).
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§7. Necessary and sufficient condition for existence of a limit of

irreducible characters of Sn(T )

To construct explicitly IURs Πn = IndGn

Hn
πn of Gn = Sn(T ), we have

used in Section 3 a partition (In,ζ)ζ∈bT of In = {1, 2, . . . , n}. However,

to parametrize irreducible characters χ̃Πn , the essential thing is not the

partition (In,ζ)ζ∈ bT itself but the partition (nζ)ζ∈ bT of n given by nζ = |In,ζ | =
|λn,ζ |, as seen in Remark 4.2. Therefore we rewrite Condition I on In’s

and Condition IΛ on (In,Λn)’s together in one condition as follows: for

increasing sequence Λn = (λn,ζ)
ζ∈ bT of sets of Young diagrams λn,ζ with

n =
∑

ζ∈bT |λn,ζ |,

(Condition Λ) there exist limits: Bζ := lim
n→∞

|λn,ζ |
n

(ζ ∈ T̂ ),

and for each ζ ∈ T̂+ := {ζ ∈ T̂ ; Bζ > 0}, there exist limits

(7.1) αζ,0,k := lim
n→∞

rk(λ
n,ζ)

n
, αζ,1,k := lim

n→∞

ck(λ
n,ζ)

n
(1 ≤ k <∞).

For later use in the second part [HHH2] of our present work, we sum-

marize the results in the preceding section as in the following form. We put

also for ζ ∈ T̂ \ T̂+

αζ,0,k := lim
n→∞

rk(λ
n,ζ)

n
= 0, αζ,1,k := lim

n→∞

ck(λ
n,ζ)

n
= 0 (1 ≤ k <∞).

and put for ε = 0, 1, αζ,ε := (αζ,ε,k)k≥1, and

(7.2) µζ := Bζ −
∑

ε∈{0,1}

‖αζ,ε‖, µ := (µζ)ζ∈ bT .

Then we have ∑

ζ∈bT

∑

ε∈{0,1}

‖αζ,ε‖+ ‖µ‖ =
∑

ζ∈bT

Bζ ≤ 1.

Theorem 7.1. Let G = S∞(T ), Gn = Sn(T ) with T any compact

group. Let the normalized characters of χ̃Πn of IURs Πn of Gn be parame-

trized by Λn as in Theorem 6.1.

(i) The following is a necessary and sufficient condition for the existence

of the pointwise limit of χ̃Πn as n → ∞, as a continuous function on G in

case T is infinite.
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(i-1) In the case where T is finite, the limit limn→∞ χ̃Πn exists if and

only if Condition Λ holds. Here Condition E holds automatically, or∑
ζ∈bT Bζ = 1.

(i-2) In the case where T is infinite, the limit limn→∞ χ̃Πn exists and is

continuous on G, if and only if both Condition Λ and Condition E hold.

Here the convergence is compact uniform on G.

(ii) In both cases (i-1) and (i-2), the set of all the limits limn→∞ χ̃Πn

coincides with the set of all characters (of factor representations of finite

type) of G. The parameter A =
(
(αζ,ε)(ζ,ε)∈ bT×{0,1}

; µ
)

for a character of

G thus obtained is given by (7.1) and (7.2).

§8. Case of canonical subgroups GS for T abelian

Let T be a compact abelian group and S its subgroup, not necessarily

closed. Define subgroups of G = S∞(T ) = D∞(T ) ⋊ S∞, and Gn =

Sn(T ) = Dn(T )⋊Sn, which are called canonical as follows:

GS = S∞(T )S = D∞(T )S ⋊S∞, GS
n = Sn(T )S = Dn(T )S ⋊Sn,

with D∞(T )S = D S
∞ :=

{
d = (ti)i∈N ∈ D∞(T ) ; P (d) :=

∏
i∈N ti ∈ S

}
,

Dn(T )S = D S
n := {d = (ti)i∈In ∈ Dn(T ) ; P (d) ∈ S}.

Then, by Theorem 2.4, the restriction of a character of G onto GS

gives a character of GS , and in case S is open in T any character of GS is

obtained by this restriction. Note that in the case of GS the factorizability

of positive definite functions in Definition 2.1 used to characterize characters

is no longer well-fitted to the situation because the canonical decomposition

in (2.6) of g ∈ GS should be considered in the bigger group G.

In this section we study, for GS = limn→∞GS
n , limits of irreducible

characters of GS
n , and in particular ask if all characters of GS can be ob-

tained as limits of irreducible characters of GS
n .

8.1. Restriction of IURs of Gn on its subgroup G S
n

Let us first study the structure of the restriction Πn|G S
n

of an IUR Πn

of Gn on its subgroup GS
n , and in particular, study if Πn|G S

n
remains still

irreducible or not. As is proved in Section 3, every IUR Πn is realized as

an induced representation as Πn = IndGn

Hn
πn. We keep here notations in

Section 3:
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In = (In,ζ)ζ∈ bT : a partition of In,

Λn = (λn,ζ)ζ∈ bT : a set of Young diagrams such that |λn,ζ | = |In,ζ |,
π(λn,ζ) : an IUR of SIn,ζ

⊂ Sn determined by λn,ζ ,

a subgroup Hn ⊂ Gn and its IUR πn : with T̂ ′
n := {ζ ∈ T̂ ; In,ζ 6= ∅},

Hn = Dn ⋊ S[ηn], Dn = Dn(T ) = DIn
(T ), S[ηn] =

∏

ζ∈bT ′
n

SIn,ζ
,

πn = ηn ⊡ ξn, ηn = ⊠
ζ∈ bT ′

n

ζIn,ζ , ξn = ⊠
ζ∈bT ′

n

π(λn,ζ).

Moreover the space V (Πn) of Πn = IndGn

Hn
πn consists of V (πn)-valued con-

tinuous functions on Gn satisfying ϕ(hg) = πn(h)
(
ϕ(g)

)
(h ∈ Hn, g ∈ Gn),

and the representation operator is given by
(
Πn(g0)ϕ

)
(g) = ϕ(gg0) (g, g0 ∈

Gn).

Let us examine the algebra of intertwining operators I(Πn|G S
n
) of the

representation Πn|G S
n

of GS
n with itself.

Step 1. Since dimV (Πn) <∞, any linear transformation L of V (Πn) is

given as follows by an L
(
V (πn)

)
-valued continuous kernelK ′(g, g′) satisfying

K ′(hg, h′g′) = πn(h)K ′(g, g′)πn(h′)−1 (h, h′ ∈ Hn, g, g
′ ∈ Gn),

Lϕ(g) =

∫

Hn\Gn

K ′(g, g′)ϕ(g′) dµHn\Gn
(ĝ′) =

∫

Gn

K ′(g, g′)ϕ(g′) dµGn(g′),

where ĝ′ = Hng
′. Suppose J be an intertwining operator of GS

n -module

Πn|G S
n
. Then it is expressed as an integral operator with a kernel K ′(g, g′)

satisfying

K ′(ggS , g′gS) = K ′(g, g′) (g, g′ ∈ Gn, g
S ∈ GS

n ).

Note that HnG
S
n = Gn, then we see that K ′(g, g′) is uniquely determined

by K(g) := K ′(g, e) as

(8.1) K ′(g, h′gS) = K(g(gS)−1)πn(h′) (g ∈ G, h′ ∈ Hn, g
S ∈ GS).

The latter K(g) is determined by the system {K(τ)}, where τ runs over a

complete system of representatives of double coset space

(8.2) Hn\Gn/(Hn ∩GS) ∼= S[ηn]\Sn/S[ηn] ,
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with S[ηn] = Hn ∩Sn =
∏

ζ∈bT ′
n

SIn,ζ
, and for a fixed τ ,

K(hτh′) = πn(h)K(τ)πn(h′) (h ∈ Hn, h
′ ∈ Hn ∩GS).

Noting that Hn∩GS = D S
n ⋊S[ηn] and Hn∩τ(Hn∩GS)τ−1 = D S

n ⋊
(
S[ηn]∩

τS[ηn]τ
−1
)
, we obtain the following lemma.

Lemma 8.1. For a representative τ of a double coset in S[ηn]\Sn/S[ηn],

the operator K(τ) ∈ L
(
V (πn)

)
intertwines two representations of Hn ∩

τ(Hn ∩GS)τ−1 = D S
n ⋊

(
S[ηn] ∩ τS[ηn]τ

−1
)

as

πn(h)K(τ) = K(τ)πn(τ−1hτ)
(
h ∈ D S

n ⋊
(
S[ηn] ∩ τS[ηn]τ

−1
))
.

Step 2. Let us first study D S
n -module structure. For h = (d,1) with

d = (ti)i∈In ∈ D S
n , we have P (d) =

∏
i∈In

ti ∈ S, and

πn(h) = ηn(d) ⊡ ξn(1), ηn(d) =
∏

ζ∈ bT ′
n

∏

i∈In,ζ

ζi(ti)

with ζi = ζ for i ∈ In,ζ . Furthermore τhτ−1 = (τ(d),1) with τ(d) =

(tτ−1(i))i∈In ,

πn(τhτ−1) = ηn

(
τ(d)

)
⊡ ξn(1), ηn

(
τ(d)

)
=
∏

ζ∈bT ′
n

∏

i∈In,ζ

ζi(tτ−1(i)).

Hence, supposing K(τ) 6= 0, we have ηn(d) = ηn

(
τ(d)

)
or

(8.3)
∏

i∈In

ζi(ti) =
∏

i∈In

ζτ(i)(ti) if
∏

i∈In

ti ∈ S.

On the other hand, consider characters of Dn =
∏

i∈In
Ti, Ti = T ,

which are trivial on D S
n . A character of T is trivial on S if and only if so

is on the closure S, and so it is naturally considered as a character of T/S.

Since Dn/D
S
n
∼= T/S, characters of Dn vanishing on D S

n are of the form

⊠
i∈In

ζ ′i with ζ ′i = ζS (∀i) for some ζS ∈
(
T/S

)
.̂

Therefore we see from (8.3) that ζτ(i) = ζSζi (∀i) for some ζS ∈
(
T/S

)
,̂ and

so (ζS)n = 1. Denote by In,ζ the underlying set of integers of In,ζ , then we

have τ
(
In,ζ

)
= In,ζSζ . By adjusting the representative τ of a double coset
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S[ηn]\Sn/S[ηn], we have τ(In,ζ) = In,ζSζ as ordered sets, that is, τ(i) > τ(i′)

in In,ζSζ if i > i′ in In,ζ . Hence the map

(8.4) SIn,ζ
∋ σ 7−→ τστ−1 ∈ SI

n,ζSζ

gives a natural isomorphism between components of S[ηn], and those of

S[ηn] ∩ τS[ηn]τ
−1 = S[ηn].

Now turn to study the module structure for S[ηn]. Then we get the

following lemma.

Lemma 8.2. (i) Suppose K(τ) 6= 0. There exists a unique ζS ∈
(
T/S

)
̂

such that τ
(
In,ζ

)
= In,ζSζ (ζ ∈ T̂ ′

n), and

(8.5) λn,ζ = λn,ζSζ (ζ ∈ T̂ ′
n) (as abstract Young diagrams).

(ii) Normalize a representative τ of double coset in S[ηn]\Sn/S[ηn] such

that

(8.6) τ(In,ζ) = In,ζSζ (ζ ∈ T̂ ′
n) (as ordered sets).

Then the intertwining operator K(τ) is a scalar multiple of the unitary

operator U(τ) of exchange of the order of components in the exterior tensor

product ξn = ⊠ζ∈bT ′
n
π(λn,ζ) for S[ηn] =

∏
ζ∈bT ′

n
SIn,ζ

by replacing π(λn,ζ)

with π(λn,ζSζ) together with the same exchange in ηn = ⊠ζ∈bT ′
n
ζIn,ζ for Dn.

Let p = p(ζS) be the order of ζS. Take a partition of T̂ ′
n into subsets

of p elements of the form Z(ζ) := {ζ, (ζS)ζ, . . . , (ζS)p−1ζ}, and a complete

set of representatives ∆n = ∆n,ζS = {ζ}, |∆n| = |T̂ ′
n|/p, then

T̂ ′
n =

⊔

ζ∈∆n

Z(ζ), n = pN with N :=
∑

ζ∈∆n

|In,ζ |,(8.7)

λn,ζ′ = λn,ζ′′ (ζ ′, ζ ′′ ∈ Z(ζ)) (as abstract Young diagrams).(8.8)

Accordingly the operator U(τ) for the normalized representative τ , asso-

ciated to ζS , is of order p, and if we determine well the positive multiplicative

scalar, the operator L(ζS) with the integral kernel K ′(g, g′) given by (8.1)

through K(g), which corresponds to K(τ) and zero outside HnτHn, is uni-

tary and of order p and intertwines Πn|G S
n

with itself. HereK ′(hτgS , h′gS) =
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πn(h)K(τ)πn(h′−1) (h, h′ ∈ Hn, g
S ∈ GS

n ) and K ′(g, g′) = 0 if g(g′)−1 6∈
HnτHn, and L(ζS) is given as follows: for g = (d, σ) = dσ ∈ Gn,

L(ζS)ϕ(g) :=

∫

Gn

K ′(g, g′)ϕ(g′) dµGn(g′) =
1

|Sn|
∑

σ′∈Sn

K(dσσ′
−1

)ϕ(σ′)

= ηn(d) · 1

|Sn|
∑

σ′∈Sn

K(σσ′
−1

)ϕ(σ′).

Lemma 8.3. For K(τ) = cU(τ), c > 0, the associated operator L(ζS)

is unitary if c = µGn(Hn)−1 = |Sn|/|S[ηn]|. Put KU (g) := c−1K(g), then

KU(g) is associated to U(τ) and

(8.9) L(ζS)ϕ(g) = ηn(d) ·
∑

σ′∈S[ηn]\Sn

KU (σσ′
−1

)ϕ(σ′).

Proof. Define ϕσ,v ∈ V (Πn) for σ ∈ Sn and v ∈ V (πn) as ϕσ,v(hσ) :=

πn(h)v (h ∈ Hn), and ϕσ,v(hσ) := 0 outside Hnσ. Then ‖ϕσ,v‖2 =

µGn(Hn) ‖v‖2, and

L(ζS)ϕσ,v = c · µGn(Hn)ϕτσ,U(τ)v .

Comparing lengths of vectors in both sides, we have c · µGn(Hn) = 1.

Let Z(πn) be the set of all ζS ∈
(
T/S

)
̂which satisfy (8.5):

(8.10) Z(πn) := {ζS ∈
(
T/S

)
̂; λn,ζ = λn,ζSζ (ζ ∈ T̂ ′

n)}.

Then it is a subgroup of order ≤ n consisting of elements of orders dividing

n. From the structure theory for abelian groups of finite orders, we see that

Z(πn) is a direct product of cyclic groups as Z(πn) ∼=
∏

1≤j≤b Zpj
.

Proposition 8.4. The algebra I(Πn|G S
n
) of intertwining operators for

the restriction Πn|G S
n

of IUR Πn = IndGn

Hn
πn on GS

n is isomorphic to the

group algebra of Z(πn), and there corresponds to a group element ζS the

operator L(ζS) ∈ L
(
V (Πn)

)
.

Since I(Πn|G S
n
) is abelian, the irreducible decomposition of Πn|G S

n
is of

multiplicity free, and the number of irreducible components equals the order

|Z(πn)|.
In particular, the restriction of IUR Πn of Gn on its subgroup GS

n re-

mains irreducible if there exists no non-trivial character ζS ∈
(
T/S

)
̂ for

which (8.5) holds.
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Conversely, now consider an IUR ρn of GS
n and ask if it appears in

a restriction of an IUR Πn of Gn. Note that the map GS ∋ g 7→ ρn(g)

is uniformly continuous and can be uniquely extended by continuity to an

IUR ρn of the closure GS
n which is equal to GS

n . From the general theory of

representations of compact groups, we extract Frobenius reciprocity given in

the following lemma, and from it we know that every irreducible component

of the induced representation IndGn

G S
n

ρn contains a multiple of ρn when it is

restricted on GS
n and naturally a multiple of ρn.

Lemma 8.5.
[
IndGn

G S
n

ρn : Πn

]
=
[
Πn|G S

n
: ρn

]
.

8.2. Limits of irreducible characters of G S
n as n → ∞

Definition 8.1. For IURs ΠS
n of GS

n and ΠS
n+1 of GS

n+1, suppose that

they are restrictions of IURs Πn of Gn and Πn+1 of Gn+1 respectively.

Then we say ΠS
n increases to ΠS

n+1 (notation: ΠS
n ր ΠS

n+1) if and only if

Πn increases to Πn+1.

Taking increasing sequences of IURs Πn of Gn, n→∞, we restrict their

each terms to subgroups GS
n , and apply the results in 8.1. Then, with the

help of Theorem 2.4, we obtain from Proposition 8.4 the following results

on limits of irreducible characters of GS
n and on characters of GS .

Theorem 8.6. (i) Every character of GS is a limit of characters of

sequence of increasing IURs of GS
n as n→∞. In this case, the convergence

is compact uniform.

(ii) Take an increasing sequence Πn of IURs of Gn for which the nor-

malized characters χ̃Πn converge to a character fA of G. Then, their re-

strictions ΠS
n = Πn|G S

n
remain irreducible for an infinite number of n, and

thus obtained sequence of normalized characters χ̃Π S
n

of IURs of GS
n (even

though it may have an infinite number of n of lacks or defects) converges

compact uniformly to the character f S
A = fA|GS of GS .

(iii) In the case of (ii), suppose an infinite number of ΠS
n = Πn|G S

n

are reducible. Then, for the sequence consisting of reducible ΠS
n , their nor-

malized characters χ̃Π S
n

also converge compact uniformly to the character

f S
A = fA|GS of GS as n→∞.

In this case, the character fA of G is characterized by the property that,

for some non-trivial ζS ∈
(
T/S

)
,̂

(8.11) αζ,ε = αζSζ,ε, µζ = µζSζ (ζ ∈ T̂ , ε = 0, 1)
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Proof. If the restriction ΠS
n = Πn|G S

n
is reducible, there hold (8.6)

and (8.8) or |In,ζ | = |In,ζSζ | and λn,ζ = λn,ζSζ . These conditions can not

occur consecutively for n. Moreover, for any character fA of G, we can

find a sequence of Πn for which none of Πn satisfies these conditions and

fA = limn→∞ χ̃Πn . This gives us a sequence of IURs ΠS
n for which f S

A =

limn→∞ χ̃Π S
n
, and so the assertion (i).

Taking into account the above conditions (8.6) and (8.8), we can deduce

other assertions easily from Proposition 8.4.

Remark 8.1. For another type of subgroups An(T ) := Dn(T ) ⋊ An of

Sn(T ) and A∞(T ) := D∞(T )⋊A∞ of S∞(T ), we can study the analogous

problem. By Theorem 16.1 [HH6], all the characters of A∞(T ) are obtained

as restrictions of those of S∞(T ), and conversely the restriction of any

character of the latter is also a character of the former.

8.3. Characters of irreducible components of the restriction

Πn|G S
n

Analysis of reducible restrictions Πn|G S
n

of IURs Πn = IndGn

Hn
πn of Gn

is interesting, and necessary to study further the situations of GS
n and GS

independently from Gn and G, for instance, to extend Definition refdefn8.1

to general IURs of GS
n , and to clarify the situation in Theorem 8.6 (iii).

The algebra I(Πn|G S
n
) of intertwining operators for the restriction

Πn|G S
n

of IUR Πn = IndGn

Hn
πn is abelian and isomorphic to the group algebra

of

(8.12) Z(πn) =
{
ζS ∈

(
T/S

)
̂ ; λn,ζ = λn,ζSζ (ζ ∈ T̂ ′

n)
} ∼=

∏

1≤k≤b

Zpk
.

The set of operators L(ζS) on V (Πn) is isomorphic to the above group in

such a way that L(zz′) = L(z)L(z′) (z, z′ ∈ Z(πn)), and we can construct

from them projections onto each irreducible subspaces. Then we can also

determine characters of irreducible constituents of Πn|G S
n
.

Take an Lk = L(ζS) corresponding to the generator ζS of k-th cyclic

component Zpk
in the right hand side of the above isomorphism. Put L =

Lk, p = pk for a moment, and for cyclic group Zp, we solve Lp = I (the

identity operator) to get p orthogonal projections corresponding to different

minimal idempotents in the group algebra of Zp. Put αp = exp(2πi/p) a

p-th elementary root of 1, then
∏

0≤s<p(L − α s
p I) = 0. Differentiate the
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identity Xp − 1 =
∏

0≤s<p(X − α s
p I) in an indeterminate X, and then

multiply by X, we have

(8.13)
∑

0≤u<p

Qu(X) = Xp with Qu(X) =
1

p
X ·

∏

0≤s<p, s 6=u

(X − α s
p ).

Put Qu := Qu(L), then Qu ·Qv = 0 (u 6= v). Take firstly the square of the

first identity in (8.13) with X = L, and secondly multiply Qv to it, then we

obtain
∑

0≤u<p

Q 2
u = (Lp)2 = I,

∑

0≤u<p

Qu ·Qv = Lp ·Qv ∴ Q 2
v = Qv.

Therefore Qu, 0 ≤ u < p, are projections (not necessarily self-adjoint)

mutually orthogonal. Note that, in the expression Qu = a0,uI + a1,uL +

a2,uL
2 + · · ·+ ap−1,uL

p−1, the “constant terms” are the same: a0,uI = 1
pI.

Come back to the notations with indices k. Let Q
(k)
u , 0 ≤ u ≤ pk, be

the projection constructed from Lk. Then the set of possible products

(8.14) Qu1,u2,...,us :=
∏

1≤k≤s

Q(k)
uk

(1 ≤ uk ≤ pk)

are all of minimal projections onto different irreducible components of

Πn|G S
n
, and so the total number of irreducible components equals p1p2 · · · pb

= |Z(πn)|. Note that the common “constant term” of Qu1,u2,...,us is equal

to 1
|Z(πn)|I.

Now let us calculate the trace of L(ζS)ΠS
n (gS), gS ∈ GS

n , which is called

virtual character of L(ζS)ΠS
n , and is denoted by χL(ζS)Π S

n
. On the space

V (Πn), the operator L(ζS)ΠS
n (gS) = L(ζS)Πn(gS) is given with an integral

kernel as

(
L(ζS)ΠS

n (gS)
)
ϕ(g′) =

∫

Hn\Gn

K ′(g′, g′′)ϕ(g′′gS) dµHn\Gn
(g′′)

=

∫

Hn\Gn

K ′(g′, g′′(gS)−1)ϕ(g′′) dµHn\Gn
(g′′)

=

∫

Hn\Gn

K ′(g′gS , g′′)ϕ(g′′) dµHn\Gn
(g′′).
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Therefore its trace is given by an integral, and then by a sum as

tr
(
L(ζS)ΠS

n (gS)
)

=

∫

Hn\Gn

tr
(
K ′(g′gS , g′)

)
dµHn\Gn

(g′)

=
1

|Sn|
∑

σ′∈Sn

tr
(
K ′(σ′gSσ′

−1
)
)

=
∑

σ′∈S[ηn]\Sn

tr
(
KU (σ′gSσ′

−1
)
)
,

because, for h ∈ Hn = Dn ⋊ S[ηn], we have

K ′(hσ′gS , hσ′) = πn(h)K ′(σ′gS , σ′)πn(h)−1

= πn(h)K(σ′gSσ′
−1

)πn(h)−1.

Let gS = (dS , σ) ∈ GS
n = D S

n ⋊ Sn, and we identify dS and σ with their

images in Gn. Then σ′gSσ′−1 =
(
σ′(dS), σ′σσ′−1), and so

KU(σ′gSσ′
−1

) = πn

(
σ′(dS)

)
KU(σ′σσ′

−1
),

tr
(
L(ζS)ΠS

n (gS)
)

=
∑

σ′∈S[ηn]\Sn

tr
(
πn

(
σ′(dS)

)
KU
(
σ′σσ′

−1))
.(8.15)

Here, with an element τ = τζS ∈ Sn determined by ζS such that τS[ηn]τ
−1 =

S[ηn] and τ 6= 1, the kernel is given as

KU (σ′) =

{
πn(κ)KU (τ)πn(κ′) for σ′ = κτκ′, κ, κ′ ∈ S[ηn],

0 outside of S[ηn]τS[ηn] = S[ηn]τ .

Case I. Case of g = (d, σ), where σ is not conjugate to any κτ with

κ ∈ S[ηn] (in particular σ = 1):

tr
(
L(ζS)ΠS

n

)(
(d, σ)

)
= 0.

Lemma 8.7. For each minimal projection Q = Qu1,u2,...,us in (8.14),

let Π
(Q)
n = Q · ΠS

n · Q be the corresponding irreducible component of Πn.

Then their dimensions are all equal and

dimΠ(Q)
n =

1

|Z(πn)| · dim Πn.
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Proof. Express Q = Qu1,u2,...,us in (8.14) as a linear combination of

the identity operator I and L(ζS) for non-trivial ζS ∈ Z(πn) as Q = a0I +∑
ζS aζSL(ζS). Then, as remarked before, a0 = 1/|Z(πn)|.

On the other hand, tr
(
L(ζS)Πn(e)

)
= 0 as above for non-trivial ζS, and

so

dim Π(Q)
n = tr

(
Π(Q)

n (e)
)

= a0 · tr
(
Πn(e)

)
= a0 · dim Πn.

Case II. Case of g = (d, σ), where σ is conjugate to κτ , κ ∈ S[ηn]:

From σ′σσ′−1 = κτ , we have

πn

(
σ′(dS)

)
KU (σ′σσ′

−1
) = πn

(
σ′(dS)

)
πn(κ)U(τ)

=
(
ηn

(
σ′(dS)

)
⊠ ξn(κ)

)
U(τ).

Here ηn( · ) is a one-dimensional character given as

(8.16) ηn

(
σ′(dS)

)
=
∏

i∈In

ζi(tσ′−1(i)) =
∏

i∈In

ζσ′(i)(ti) for dS = (ti).

Decompose κ ∈ S[ηn] as κ =
∏

ζ∈bT ′
n
κζ , κζ ∈ SIn,ζ

, then

ξn(κ) = ⊠
ζ∈bT ′

n

π(λn,ζ)(κζ).

Moreover K(τ) sends each component π(λn,ζ) of ξn to π(λn,ζSζ).

To compute the trace, we apply the following lemma.

Lemma 8.8. Let V be a Hilbert space of finite dimension, and take its

copies V (k), 0 ≤ k ≤ p− 1. Let U be a cycle of linear isomorphisms of V (k)

onto V (k+1) coming from the identity map on V for 0 ≤ k ≤ p− 1 such that

V (0) −→ V (1) −→ · · · −→ V (p−1) −→ V (0),

where superfices k are considered modulo p, that is, superfix p is understood

as 0. In another expression, U is a linear map on X :=
⊕

0≤k≤p−1 sending

V (k) = V onto V (k+1) = V through the identity map on V . Let L be a

linear transformation of tensor product space W =
⊗

0≤k≤p−1 V
(k) given by

permuting components by U as

L :
⊗

0≤k≤p−1 v
(k) 7−→⊗

0≤k≤p−1 Uv
(k−1) (v(k) ∈ V (k)).
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Let A(k) be a linear transformation on V (k) for 0 ≤ k ≤ p − 1. Then the

trace of linear transformation
(⊗

0≤k≤p−1A
(k)
)
· L on W is given by

trW

(( ⊗

0≤k≤p−1

A(k)
)
· L
)

(8.17)

= trV (0)

(
UA(p−1)UA(p−2) · · ·UA(1)UA(0)

)

= trV

(
A(p−1)A(p−2) · · ·A(1)A(0)

)
,

where, on the last right hand side, trV denotes the trace on V , and each

A(k) on V (k) is pulled back as a linear transformation on V ∼= V (k).

Let A(k) and B(k) be two linear transformation on V (k). Then the trace

of linear transformation
(⊗

0≤k≤p−1A
(k)
)
· L ·

(⊗
0≤k≤p−1B

(k)
)

on W is

given by

trW

(( ⊗

0≤k≤p−1

A(k)
)
· L ·

( ⊗

0≤k≤p−1

B(k)
))

(8.18)

= trV (0)

(
A(0)UB(p−1)A(p−1)UB(p−2)A(p−2)UB(p−3) · · ·A(1)UB(0)

)

= trV

(
A(0)B(p−1)A(p−1)B(p−2)A(p−2)B(p−3) · · ·A(1)B(0)

)
.

Proof. Let N = dimV , and take an orthonormal basis {em, 1 ≤ m ≤
N} of V , and take its copy in V (k) as an orthonormal basis {e(k)

m , 1 ≤
m ≤ N}, for 0 ≤ k ≤ p − 1. Take an orthonormal basis of W given by⊗

0≤k≤p−1 e
(k)
mk

, 1 ≤ mk ≤ N . Then, by definition, L maps
⊗

0≤k≤p−1 e
(k)
mk

to
⊗

0≤k≤p−1 e
(k)
mk−1 . Put matrix elements of A(k) as a(k)(m,m′) = 〈A(k)e

(k)
m′ ,

e
(k)
m 〉. Then

〈(( ⊗

0≤k≤p−1

A(k)
)
· L
) ⊗

0≤k≤p−1

e(k)
mk
,
⊗

0≤k≤p−1

e(k)
mk

〉

=
〈( ⊗

0≤k≤p−1

A(k)
) ⊗

0≤k≤p−1

e(k)
mk−1

,
⊗

0≤k≤p−1

e(k)
mk

〉

= a(0)(m0,mp−1) a
(1)(m1,m0) · · · a(p−1)(mp−1,mp−2).

Summing up over 1 ≤ m0,m1, . . . ,mp−1 ≤ N , we get trV

(
A(p−1)A(p−2) · · ·

A(1)A(0)
)
.
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Put matrix elements of B(k) as b(k)(m,m′) = 〈B(k)e
(k)
m′ , e

(k)
m 〉. Then

〈( ⊗

0≤k≤p−1

A(k)
)
· L ·

( ⊗

0≤k≤p−1

B(k)
) ⊗

0≤k≤p−1

e(k)
mk

,
⊗

0≤k≤p−1

e(k)
mk

〉

=
〈(⊗

k

A(k)
)
· L

∑

1≤n0,n1,...,np−1≤N

∏

k

b(k)(nk,mk)
⊗

k

e(k)
nk
,
⊗

k

e(k)
mk

〉

=
〈(⊗

k

A(k)
) ∑

n0,n1,...,np−1

∏

k

b(k)(nk,mk)
⊗

k

e(k)
nk−1

,
⊗

k

e(k)
mk

〉

=
∑

n0,n1,...,np−1

∏

k

b(k)(nk,mk)
∏

k

a(k)(mk, nk−1)

=
∑

n0,n1,...,np−1

a(0)(m0, np−1) b
(p−1)(np−1,mp−1) a

(1)(m1, n0) b
(0)(n0,m0)

· · · a(p−1)(mp−1, np−2) b
(p−2)(np−2,mp−2).

Summing up over 1 ≤ m0,m1, . . . ,mp−1 ≤ N , we get the second formula.

Now we apply the above lemma by taking V = V
(
π(λn,ζ)

)
for a fixed

ζ ∈ T̂ ′
n, and V (k) = V

(
π(λn,(ζS)kζ)

)
, 0 ≤ k ≤ p − 1, and U the identifica-

tion of V
(
π(λn,(ζS)kζ)

)
with V

(
π(λn,(ζS)k+1ζ)

)
through the order-preserving

correspondence τ(In,(ζS)kζ) = In,(ζS)k+1ζ for 0 ≤ k ≤ p − 1, and L = K(τ).

Then

W =
⊗

0≤k≤p−1

V (k) = V (ηn ⊡ ξn) = V (πn).

Put A(k) = π(λn,(ζS)kζ)(κ(ζS )kζ), then it is pulled back to a linear trans-

formation on V (0) as U−kA(k)Uk = π(λn,ζ)(τ−kκ(ζS)kζ τ
k). Since τp = 1,

we have

UA(p−1)UA(p−2) · · ·UA(1)UA(0)

= π(λn,ζ)
(
τκ(ζS)p−1ζ τκ(ζS)p−2ζ · · · τκ(ζS)ζ τκζ

)
.

Take a partition of T̂ ′
n in (8.7) into subsets of p elements of the form

Z(ζ) := {ζ, (ζS)ζ, . . . , (ζS)p−1ζ} with a complete set of representatives

∆n = ∆n,ζS , |∆n| = |T̂ ′
n|/p. The results in Case I and Case II together give

us the following. For simplicity, a representative σ′ of a coset in S[ηn]\Sn is

denoted as σ′ ∈ S[ηn]\Sn.
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Theorem 8.9. Suppose that, for IUR Πn = IndGn

Hn
πn, its restriction

ΠS
n = Πn|G S

n
onto the subgroup GS

n is reducible. Take a non-trivial ζS ∈
Z(πn) ⊂

(
T/S

)
̂ in (8.12), and τ = τn,ζS ∈ Sn such that τ(In,ζ) = In,ζSζ is

an order-preserving map for every ζ ∈ T̂ ′
n. Let L(ζS) be the corresponding

intertwining operator for ΠS
n . Then the virtual character χL(ζS)Π S

n
(gS) =

tr
(
L(ζS)ΠS

n (gS)
)

is given as follows.

Take a gS = (dS , σ) ∈ GS
n . A κ ∈ S[ηn] is decomposed as κ =

∏
ζ∈ bT ′

n
κζ

according to S[ηn] =
∏

ζ∈bT ′
n

SIn,ζ
. Then,

χL(ζS)Π S
n
(gS) = 0 if gS is not conjugate under G to an element in Hnτ ,

and

χL(ζS)Π S
n
(gS) =

∑

σ′∈S[ηn]\Sn

ηn

(
σ′(dS)

)
· tr
(
KU (σ′σσ′

−1
)
)

=
1

|S[ηn]|
∑

κ∈S[ηn]

∑

σ′∈Sn:
σ′σσ′−1=κτ

ηn

(
σ′(dS)

)
· tr
(
KU (κτ)

)

=
1

|S[ηn]|
∑

κ∈S[ηn]

∑

σ′∈Sn:
σ′σσ′−1=κτ

ηn

(
σ′(dS)

)

×
∏

ζ∈∆n

χπ(λn,ζ )

(
τκ(ζS)p−1ζ τκ(ζS)p−2ζ · · · τκ(ζS)ζ τκζ

)
.

We define the normalized virtual character as χ̃L(ζS)Π S
n

= χL(ζS)Π S
n
/

dimΠn. Then, since dim Πn = |Sn|/|S[ηn]| · dimπn, we get the following

corollary.

Corollary 8.10. The normalized virtual character χ̃L(ζS)Π S
n

=

χL(ζS)Π S
n
/dim Πn is given as follows: for gS = (dS , σ) ∈ GS = D S

n ⋊Sn,

χ̃L(ζS)Π S
n
(gS) =

1

|Sn|
∑

κ∈S[ηn]

∑

σ′∈Sn:
σ′σσ′−1=κτ

ηn

(
σ′(dS)

)

×
∏

ζ∈∆n

1
(
dimπ(λn,ζ)

)p−1 · χ̃π(λn,ζ)

(
τκ(ζS)p−1ζ τκ(ζS)p−2ζ · · · τκ(ζS)ζ τκζ

)
.

Now consider the situation in Theorem 8.6 (iii), where picking up Πn

with reducible ΠS
n = Πn|G S

n
, we have still a subsequence such that

limn→∞ χ̃Πn = fA.
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Theorem 8.11. Suppose that for these reducible Πn = IndGn

Hn
πn, the

groups Z(πn) ⊂
(
T/S

)
,̂ which generate intertwining operators of ΠS

n , be-

come stable along with a subsequence n = nq, q →∞ : n1 < n2 < · · · ր ∞,

or Z(πnq) = Z(πnq+1) for q ≫ 1. In particular, this is realized if T is finite

or S is open in T .

Then, the number of irreducible components of ΠS
n becomes stable as

equal to the order of the group Z = limn→∞Z(πn) along this subsequence

n = nq. Corresponding to each minimal projections Q = Qu1,u2,...,us in

(8.14) onto irreducible components, there exist a sequence Π
(Q)
n = Q ·ΠS

n ·Q
of IURs of GS

n , n = nq ր∞, with dimension dimΠ
(Q)
n = dim Πn/|Z|. The

limits of their normalized characters χ̃
Π

(Q)
n

= χ
Π

(Q)
n
/dim Π

(Q)
n are all the

same and equal to f S
A = fA|GS .

Taking into account Lemma 8.7 and its proof, we see that, to prove

this theorem, it is enough to prove that, for any non-trivial ζS ∈ Z, the

normalized virtual character χ̃L(ζS)Π S
n

= χL(ζS)Π S
n
(gS)/dim Πn tends to 0

as n → ∞. More than this, we prove that, for a fixed GS
k = Sk(T )S ,

χ̃L(ζS)Π S
n

= 0 on GS
k if n > k.

We give below an explicit evaluation of the absolute value |χ̃L(ζS)Π S
n
(gS)|

on GS
n . From this evaluation and a similar one for

∣∣χ̃Πn(gS) − f S
A (gS)

∣∣,
we can get an asymptotic evaluation of χ̃

Π
(Q)
n

around its limit f S
A =

limn→∞ χ̃
Π

(Q)
n

, or an evaluation of

(8.19) sup
G S

n

∣∣χ̃
Π

(Q)
n
− lim

n→∞
χ̃

Π
(Q)
n

∣∣ .

Proposition 8.12. Let ζS ∈ Z(πn) be non-trivial and let p be its or-

der, then n = pN . For gS = (dS , σ) ∈ GS = D S
n ⋊Sn, let σ = σ1σ2 · · · σm

be a cycle decomposition of σ, and put ℓj = ℓ(σj) the length of σj. Then

(8.20)
∣∣χ̃L(ζS)Π S

n
(gS)

∣∣ ≤ En(σ),

where En(σ) = 0 if | supp(σ)| =∑1≤j≤m ℓj < n or one of ℓj is not a multiple

of p, otherwise

En(σ) =
Mn(σ) · pm ·∏ζ′∈ bT ′

n
|In,ζ′ |!

n!
(8.21)

=
Mn(σ) · pm ·∏ζ∈∆n

(
|In,ζ |!

)p

n!
,
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where Mn(σ) denotes the number of partitions J = {Jζ}ζ∈∆n
of J =

{1, 2, . . . ,m} satisfying

(8.22)
∑

j∈Jζ

ℓj = |IZ(ζ)| = p |In,ζ | (∀ζ ∈ ∆n).

Proof. We use the explicit formula in Corollary 8.10 to evaluate the

absolute value of χ̃L(ζS)Π S
n
(gS) as

(8.23)
∣∣χ̃L(ζS)Π S

n
(gS)

∣∣ ≤ E
′
n(σ)

n!
, E ′n(σ) :=

∣∣{σ′ ∈ Sn ; σ′σσ′
−1 ∈ S[ηn]τ

}∣∣.

Recall that τ corresponds to ζS as τ(In,ζ′) = In,ζSζ′ (ζ ′ ∈ T̂ ′
n) with order

p. Put IZ(ζ) :=
⊔

ζ′∈Z(ζ) In,ζ′ with Z(ζ) = {ζ, ζSζ, . . . , (ζS)p−1ζ}, then

In =
⊔

ζ∈∆n

IZ(ζ),
∣∣IZ(ζ)

∣∣ = p |In,ζ |,
∑

ζ∈∆n

|In,ζ | = N.

We see that, for σ′ ∈ Sn, the condition σ′σσ′−1 ∈ S[ηn]τ is equivalent to

(8.24) σ′σσ′
−1

(In,ζ′) = In,ζSζ′ (ζ ′ ∈ T̂ ′
n).

The above condition is closed inside of each IZ(ζ) for ζ ∈ ∆n. Take a cycle

σj = (i1 i2 · · · iℓj
) of σ with i1 = min{i1, i2, . . . , iℓj

}, then σ′σjσ
′−1 =(

σ′(i1) σ
′(i2) · · · σ′(iℓj

)
)
, and the above condition says that

(⋆) if σ′(i1) ∈ In,ζ′, then σ′(i2) ∈ In,ζSζ′ , . . . , σ
′(ip) ∈ In,(ζS)p−1ζ′, and

so on, that is, σ′(ik′p+k), k
′p+ k ≤ ℓj (0 ≤ k ≤ p − 1), belongs to In,(ζS)kζ′

cyclically modulo p.

Now suppose the condition (8.24) holds. Put Kj := supp(σj), then

|Kj | = ℓj,
⊔

1≤j≤mKj = In, and σ′(Kj) ⊂ IZ(ζ) so that Kj ’s are grouped

up into |∆n| number of subsets as

(8.25) J = {1, 2, . . . ,m} =
⊔

ζ∈∆n

Jζ ,
⊔

j∈Jζ

σ′(Kj) = IZ(ζ) (ζ ∈ ∆n).

Denote by J = {Jζ}ζ∈∆n
a partition of J satisfying

(8.26)
∑

j∈Jζ

|Kj | = |IZ(ζ)| = p |In,ζ | (∀ζ ∈ ∆n),
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and pick up one σ′ ∈ Sn satisfying (8.25) and also (⋆), and denote it by σJ .

Fix such a J . Then the deviation of general σ′ satisfying (8.25) and

σJ comes from σ′′ ∈ ∏ζ∈∆n
SIZ(ζ)

such that σ′ = σ′′σJ . To choose σ′(i1),

we first fix ζ ′ ∈ Z(ζ) such that σ′(i1) ∈ In,ζ′ and the number of choices are

p = |Z(ζ)|. Thus the total number of σ′ ∈ Sn satisfying (8.25) for J is

∏

ζ∈∆n

(
p|Jζ|

∏

ζ′∈Z(ζ)

|In,ζ′ |!
)

= pm ·
∏

ζ∈∆n

(
|In,ζ |!

)p
.

The sum over J gives the number E ′n(σ).

Corollary 8.13. Let ζS ∈ Z(πn) be non-trivial and let p be its order,

then n = pN , and

sup
gS∈G S

n

∣∣χ̃L(ζS)Π S
n
(gS)

∣∣ ≤ En, En =
N ! · pN ·∏ζ∈∆n

(
|In,ζ |!

)p−1

n!
.

Proof. In (8.21), the maximum En of En(σ) is achieved in the case where

m = N and all ℓj are equal to p. In that case, Mn(σ) = N !/
(∏

ζ∈∆n
|In,ζ |!

)
.

§9. Cases of infinite Weyl groups of type BC and of type D

Take T = Z2 and put Gn = Sn(Z2) = Dn(Z2)⋊Sn and G = Sn(Z2).

Then Gn is isomorphic to the Weyl group WBCn
of type BCn, and G is

called the infinite Weyl group WBC∞
of type BC. Take S = {eT } = {1} the

trivial subgroup of T , the subgroups GS
n and GS is defined as

(9.1) GS
n := {(d, σ) ∈ Gn ; P (d) ∈ S}, GS := {(d, σ) ∈ G ; P (d) ∈ S},

where P (d) :=
∏

i∈In
ti for d = (ti)i∈In . Then GS

n is isomorphic to the

Weyl group WDn of type Dn, and GS is called the infinite Weyl group WD∞

of type D.

As representative systems of cosets Gn/G
S
n and G/GS , we can take

{e, h0 = (d0,1)} with d0 = (−1, 1, 1, . . .). When n is odd, h0 can be replaced

by a central element h(1) = (d(1),1) with d(1) = (−1,−1, . . . ,−1).

The characters of infinite Weyl groups of type BC and of type D are

studied in detail in [HH1], and summarized in Section 6 of [HH4]. For

the stochastic discussions using the space of paths in Dynkin diagrams, see

Part II of the present work [HHH2].
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9.1. Case of Weyl groups WBCn
and WBC∞

For the infinite Weyl group G = S∞(Z2) ∼= WBC∞
, we have T̂ =

{ζ0, ζ1} with T = Z2 = {1,−1}, where ζs(ǫ) = ǫs (s = 0, 1) for ǫ ∈ Z2. All

characters on G are given as fA with parameters

(9.2)





A =
(
(αζ,ε)(ζ,ε)∈ bT×{0,1} ; µ

)
, µ = (µζ)ζ∈ bT , µζ ≥ 0,

αζ,ε = (αζ,ε,i)i∈N : αζ,ε,1 ≥ αζ,ε,2 ≥ αζ,ε,3 ≥ · · · ≥ 0,
∑

(ζ,ε)∈ bT×{0,1}
‖αζ,ε‖+ ‖µ‖ = 1.

We put as in [HH1] and [HH6, §6],

α := αζ0,0 , β := αζ0,1 , γ := αζ1,0 , δ := αζ1,1 ; κ := µζ0 − µζ1.(9.3)

Then ‖α‖ + ‖β‖ + ‖γ‖+ ‖δ‖ + |κ| ≤ 1.

A unique non-trivial ζS ∈ (T/S)̂ = T̂ is ζS = ζ1, and its action on

the parameter A defined by αζ,ε → αζSζ,ε, µζ → µζSζ is realized in the new

parameter as an exchange of (α, β) and (γ, δ), and κ→ −κ, that is,

(9.4) (α, β ; γ, δ ; κ) −→ (γ, δ ; α, β ; −κ).

The character fA of G is factorizable. For g ∈ G, take its standard

decomposition

g = ξq1ξq2 · · · ξqrg1g2 · · · gm,(9.5)

ξq = (tq, (q)), tq = −1 ∈ Z2, gj = (dj , σj), supp(dj) ⊂ supp(σj),

and σj is a cycle with length ℓj = ℓ(σj). Then, fA(g) is expressed as

(9.6) fA(g) =
∏

1≤k≤r

Φα,β;γ,δ;κ
1 (ξqk

) ·
∏

1≤j≤m

Φα,β;γ,δ;κ
ℓj

(
(dj , σj)

)
,

with factors Φα,β;γ,δ;κ
ℓ , ℓ ≥ 1, given as

Φα,β;γ,δ;κ
1

(
(tq, (q))

)
=
∑

i∈N

αi +
∑

i∈N

βi + µζ0 −
∑

i∈N

γi −
∑

i∈N

δi − µζ1

= ‖α‖ + ‖β‖ − ‖γ‖ − ‖δ‖ + κ,

Φα,β;γ,δ;κ
ℓj

(
(dj , σj)

)
=
∑

i∈N

(αi)
ℓj + (−1)ℓj−1

∑

i∈N

(βi)
ℓj

+ ζ1
(
P (dj)

)∑

i∈N

(γi)
ℓj + ζ1

(
P (dj)

)
(−1)ℓj−1

∑

i∈N

(δi)
ℓj .
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An IUR Πn = IndGn

Hn
πn of Gn

∼= WBCn are parametrized by a pair

of Young diagrams Λn = (λn,λ0, λn,λ1) since T̂ = {ζ0, ζ1}. Its normalized

character χ̃Πn is given explicitly by Theorem 4.5 as follows. Take g =

(d, σ) ∈ Gn and let its standard decomposition be as in (9.5), and put

Q = {q1, q2, . . . , qr} and J = {1, 2, . . . ,m}, then

χ̃Πn(g) =
∑

Q,J

c(Λn;Q,J )X
(
Λn;Q,J ; g

)
,(9.7)

c(Λn;Q,J ) =

∏
ζ∈bT |λn,ζ |

(
|λn,ζ | − 1

)
· · ·
(
|λn,ζ | − |Qζ | −

∑
j∈Jζ
|Kj |+ 1

)

n(n− 1)(n − 2) · · ·
(
n− |Q| − | supp(σ)|+ 1

) ,

X
(
Λn;Q,J ; g

)
= χ̃

(
λn,ζ0

; (ℓ(σj))j∈J
ζ0

)

× (−1)|Qζ1 | ·
∏

j∈J
ζ1

ζ1
(
P (dj)

)
× χ̃

(
λn,ζ1

; (ℓ(σj))j∈J
ζ1

)
,

where Q = (Qζ)ζ∈ bT and J = (Jζ)ζ∈bT run over partitions of Q and J

respectively, and χ̃
(
λn,ζ ; ∗

)
denotes the normalized character of IUR π(λn,ζ).

Proposition 9.1. The parameters for the limit fA = limn→∞ χ̃Πn are

given as

αi = lim
n→∞

ri(λ
n,λ0)

n
, βi = lim

n→∞

ci(λ
n,λ0)

n
;

γi = lim
n→∞

ri(λ
n,λ1)

n
, δi = lim

n→∞

ci(λ
n,λ1)

n
,

µζ0 = lim
n→∞

|λn,λ0|
n

, µζ1 = lim
n→∞

|λn,λ1|
n

.

9.2. Case of Weyl groups WDn
and WD∞

Characters of GS ∼= WD∞
are obtained by the restriction fS

A = fA|GS

of fA. If g belongs to GS , its standard decomposition (9.5) in G satisfies

(−1)r
∏

1≤j≤m

ζ1
(
P (dj)

)
= 1.

We proved in [HH4, §17] and [HH6, §15] that fS
A = fS

A′ with (α′, β′;

γ′, δ′;κ′) for A′ if and only if

(α′, β′; γ′, δ′;κ′) = (α, β; γ, δ;κ) or (γ, δ;α, β;−κ),
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and in these cases, we have fA′ = fA or fA′(g) = ζ1
(
P (d)

)
· fA(g) for

g = (d, σ).

The inverse image of the restriction fA → fS
A is unique if and only if

(α, β; γ, δ;κ) = (γ, δ;α, β;−κ), or

(9.8) αζ0,ε = αζ1,ε (ε = 0, 1), µζ0 = µζ1.

Proposition 9.2. The case (9.8) is exactly equal to the case where the

character fA is totally zero outside of GS
n .

Proof. The condition fA = 0 on Gn \GS
n is equivalent to

Φα,β;γ,δ;κ
1 = 0 and Φα,β;γ,δ;κ

ℓj

(
(dj , σj)

)
= 0 if P (dj) = −1.

In turn, these conditions are equivalent to

‖α‖ + ‖β‖ − ‖γ‖ − ‖δ‖ + κ = 0,
∑

i∈N

(αi)
ℓj + (−1)ℓj−1

∑

i∈N

(βi)
ℓj =

∑

i∈N

(γi)
ℓj + (−1)ℓj−1

∑

i∈N

(δi)
ℓj ,

for ℓj ≥ 2. Multiply by zℓj−2 both sides of the last equation and sum up

over ℓj ≥ 2. Comparing poles of obtained functions in z, we see αi = γi,

βi = δi (i ≥ 1). Then we get from the first equation that κ = µζ0 −µζ1 = 0.

By Lemma 8.4, the restriction ΠS
n = Πn|G S

n
of Πn = IndGn

Hn
πn is

reducible if and only if the group Z(πn) in (8.10) is not trivial. Here

Z(πn) = {ζS ∈ Ẑ2 ; λn,ζ1
= λn,ζSζ0}.

In the reducible case, we have Z(πn) = {ζ0, ζ1}, and for ζS = ζ1,

take a unique τ = τn ∈ Sn such that τ2 = 1 and τ(In,ζ0) = In,ζ1 in an

order-preserving manner. Then the intertwining operator L(ζS) = L(ζ1) ∈
L
(
V (Πn)

)
is defined by K(τ) = cU(τ) ∈ L

(
V (πn)

)
, where c = µGn(Hn)−1

= |Sn|/|S[ηn]|, and U(τ) is a simultaneous exchange through τ of factors

ζ0, ζ1 in ηn =
∏

i∈In
ζi with ζi = ζk (i ∈ In,ζk , k = 0, 1) for Dn = Z n

2 and

of factors V
(
π(λn,ζ0

)
)
, V
(
π(λn,ζ1

)
)

in the tensor product space V (ξn) =

V
(
π(λn,ζ0

)
)
⊗ V

(
π(λn,ζ1

)
)

for S[ηn] = SI
n,ζ0 ×SI

n,ζ1 .

From Theorem 8.6 (iii) together with the above facts, we have the fol-

lowing.
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Proposition 9.3. The case (9.8) is exactly equal to the case where a

sequence of reducible ΠS
n = Πn|G S

n
can attain f S

A as its limit.

In the case where the restriction ΠS
n = Πn|G S

n
is reducible, we have two

projections onto two irreducible components as

Q+ =
I + L(ζ1)

2
, Q− =

I − L(ζ1)

2
, L(ζ1) = Q+ −Q−.

From Lemma 8.7, the dimensions of two irreducible constituents Π
(±)
n :=

Q±ΠnQ± are equal and dim Π
(±)
n = 1

2 dim Πn.

PutN = n/2 = |In,ζ0| = |In,ζ1|, then S[ηn] = SI
n,ζ0×SI

n,ζ1
∼= SN×SN .

According to this decomposition, κ ∈ S[ηn] is decomposed as κ = κζ0 κζ1

with κζ ∈ SIn,ζ
. By applying Corollary 8.10, we get the following character

formula.

Proposition 9.4. For an even integer n = 2N > 0, normalized char-

acters of two irreducible components Π
(±)
n := Q±ΠnQ± of Πn are given as

follows. For a gS = (dS , σ) ∈ GS
n = D S

n ⋊Sn,

χ̃
Π

(±)
n

(gS) :=
1

dim Π
(±)
n

χ
Π

(±)
n

(gS) = χ̃Πn(gS)± χ̃L(ζ1)Πn
(gS),

and χ̃
Π

(+)
n

(gS) = χ̃
Π

(−)
n

(gS) if gS is not conjugate under Gn to an element

in Hnτ , and

χ̃
Π

(+)
n

(gS)− χ̃
Π

(−)
n

(gS) = 2 χ̃L(ζS)Π S
n
(gS)

=
2

n!

∑

κ∈S[ηn]

∑

σ′∈Sn:
σ′σσ′−1=κτ

ηn

(
σ′(dS)

)
· 1

dimπ(λn,ζ0)
· χ̃

π(λn,ζ0 )

(
τκζ1 τκζ0

)
.

By this result and the character formula for χ̃Πn , the normalized irre-

ducible characters χ̃
Π

(±)
n

are explicitly given, and so we can evaluate sepa-

rately asymptotic behaviors of χ̃
Π

(+)
n

(gS) and χ̃
Π

(−)
n

(gS) as n→∞.

Here we evaluate their difference:

∣∣χ̃
Π

(+)
n

(gS)− χ̃
Π

(−)
n

(gS)
∣∣ ≤ 2

n!
·
∣∣{σ′ ∈ Sn ; σ′σσ′

−1 ∈ S[ηn]τ
}∣∣

=: E0
n(σ) (put).
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If σ is not conjugate under Sn to an element in S[ηn]τ , τ = τn, then

E0
n(σ) = 0.

Otherwise, σ 6= 1 and for σ′ ∈ Sn,

σ′σσ′
−1 ∈ S[ηn]τ ⇐⇒ σ′σσ′

−1
(In,ζ0) = In,ζ1 and σ′σσ′

−1
(In,ζ1) = In,ζ0,

because In = In,ζ0 ⊔ In,ζ1. Let σ = σ1σ2 · · · σm be a cycle decomposition of

σ, then σ′σσ′−1 = σ′1σ
′
2 · · · σ′m with σ′j := σ′σjσ

′−1 is that of σ′σσ′−1. Take

a σj = (i1 i2 · · · iℓj
), then σ′j =

(
σ′(i1) σ′(i2) · · · σ′(iℓj

)
)
. The above

property of σ′σσ′−1 is equivalent to that, in this expression of σ′j, elements

of In,ζ0 and In,ζ1 appear alternately, for 1 ≤ ∀j ≤ m.

Therefore, in case where some length ℓj = ℓ(σj) is odd for σ, then

E0
n(σ) = 0. This is also true if σ contains a “cycle of length 1”, or∑

1≤j≤m ℓj = | supp(σ)| < n.

Suppose all ℓj are even and | supp(σ)| = n. Let i1 in σj be the minimum

of i1, i2, . . . , iℓj
, then we have two possibility: σ′(i1) ∈ In,ζ0 or σ′(i1) ∈

In,ζ1. Counting this for all σj , we get the number of σ′ satisfying the above

condition so that, with n = 2N ,

(9.9) E0
n(σ) =

2 · 2m (N !)2

(2N)!
.

Thus we get an evaluation for the difference of normalized characters

as follows.

Proposition 9.5. (i) For gS = (dS , σ) ∈ GS
n = D S

n ⋊Sn with n = 2N ,

∣∣χ̃
Π

(+)
n

(gS)− χ̃
Π

(−)
n

(gS)
∣∣ ≤ E0

n(σ),

where E0
n(σ) = 0 if σ contains a cycle of odd length or | supp(σ)| < n,

otherwise E0
n(σ) is given by (9.9) when σ is decomposed into m cycles.

(ii) For a fixed GS
k = Sk(T )S, we have χ̃

Π
(+)
n

(gS) = χ̃
Π

(−)
n

(gS) (gS ∈
GS

k ) if n > k. Moreover

(9.10) sup
G S

n

∣∣χ̃
Π

(+)
n
− χ̃

Π
(−)
n

∣∣ ≤ E0
n, E0

n =
2 · 2N (N !)2

(2N)!
.
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Chapter III. Analysis of limiting process of induced
characters of Sn(T ) as n → ∞
§10. Problem setting for limiting process of induced characters

of Sn(T )

10.1. Centralization of positive definite functions and their

limits

In the series of works [Hir2]–[Hir3], [HH1]–[HH2] and [HH4]–[HH5], to

get characters of G = S∞, those of G = S∞(T ) with T finite abelian group,

and of G = S∞(T ) with T finite group and then with T compact group in

general, we have applied the method of taking limits of centralizations of

the trivial inducing up F = IndG
H fπ of a diagonal matrix element fπ of a

unitary representation (= UR) π of a subgroup H of G. The limits thus

obtained turn out to be characters, and moreover all the characters of G

are obtained in this manner.

Let us compare this method with the present method of taking limits

of irreducible characters. To do so, first summarize our method in these

previous papers. It goes principally along the following steps. Here let

G = S∞(T ) with a compact group T .

Step I. We fix a subgroup H of G, and an irreducible unitary repre-

sentation (= IUR) π of H as follows. Take a partition of N as

(10.1) N =


 ⊔

(ζ,ε)∈bT×{0,1}

( ⊔

p∈Pζ,ε

Ip

)
 ⊔


⊔

ζ∈bT

Iζ


 ,

where each Pζ,ε is a countably infinite index set if not empty, and the subsets

Ip are infinite and so are Iζ if not empty. Corresponding to this partition,

we define a subgroup

H =


 ∏′

(ζ,ε)∈bT×{0,1}

( ∏′

p∈Pζ,ε

Hp

)
×


∏′

ζ∈bT

Hζ


 ,(10.2)

with Hp = SIp(T ), Hζ = DIζ
(T ) ⊂ SIζ

(T ) ,

where
∏′ denotes the restricted direct product. As an IUR π of H, we take

(10.3) π =


 ⊗b

(ζ,ε)∈ bT×{0,1}

(⊗bζ,ε

p∈Pζ,ε

πp

)

⊗


⊗b′

ζ∈bT

πζ


 ,
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omitting appropriately the factors for empty Pζ,ε and Iζ , where b, bζ,ε, b
′

are reference vectors. Here bζ,ε = (bp)p∈Pζ,ε
with bp ∈ V (πp), ‖bp‖ = 1

(p ∈ Pζ,ε), and an IUR πp of Hp = SIp(T ) is given as

(10.4)

πp

(
(d, σ)

)
=
(⊗ap

i∈Ip
ζi(ti)

)
I(σ) sgnS(σ)ε for d = (ti)i∈Ip , σ ∈ SIp ,

where ap = (ai)i∈Ip is a reference vector with ai ∈ V (ζi), ‖ai‖ = 1, and

ζi = ζ as an IUR of Ti = T (i ∈ Ip), and I(σ) is defined as

(10.5)

I(σ) : v =
⊗

i∈Ip
vi 7−→

⊗
i∈Ip

v′i , v′i = vσ−1(i) (vi ∈ V (ζi), i ∈ Ip) .

Moreover b′ = (bζ)ζ∈ bT with bζ ∈ V (ζ), ‖bζ‖ = 1, and for ζ ∈ T̂ , πζ of Hζ is

given as

(10.6) πζ(d) =
⊗aζ

i∈Iζ
ζi(ti) for d = (ti)i∈Iζ

∈ Hζ = DIζ
(T ),

where aζ = (ai)i∈Iζ
with ai ∈ V (ζi), ‖ai‖ = 1, and ζi = ζ for Ti = T (i ∈ Iζ).

Step II. Put b̂ :=
⊗

(ζ,ε)∈bT×{0,1}
bζ,ε, bζ,ε :=

⊗
p∈Pζ,ε

bp, and b̂′ :=
⊗

ζ∈bT bζ , bζ =
⊗

i∈Iζ
ai, then we have a unit vector w0 := b̂ ⊗ b̂′ ∈ V (π).

Take a diagonal matrix element for w0 as

fπ(h) := 〈π(h)w0, w0〉, fπ(e) = 1.

Denote by IndG
H fπ a trivial extension of fπ to G, which is, by definition,

equal to fπ on H and to zero outside H. Then F := IndG
H fπ is a positive

definite function on G normalized as F (e) = 1, and is continuous because

H is open in G.

Step III. For a continuous function F on G and a compact subgroup

G′ of G, we define a centralization FG′

of F with respect to G′ as

(10.7) FG′

(g) :=

∫

G′

F (g′g(g′)−1) dµG′(g′),

where µG′ denotes the normalized Haar measure on G′. Here we take F =

IndG
H fπ and G′ = SJ(T ) = DJ (T ) ⋊ SJ for a finite subset J ⊂ N , then

FG′

is a continuous positive definite function on G invariant under G′. We

calculate the centralization FG′

explicitly.

Step IV. We choose an increasing sequence JN , N = 1, 2, . . . , of fi-

nite subsets of N such that JN ր N , and the corresponding sequence of



LIMITS OF CHARACTERS OF WREATH PRODUCTS Sn(T ) 69

canonical subgroups G′
N := SJN

(T ), demanding an asymptotic condition

as

(10.8)
|Ip ∩ JN |
|JN |

−→ λp (p ∈ P ),
|Iζ ∩ JN |
|JN |

−→ µζ (ζ ∈ T̂ ),

where P :=
⊔

(ζ,ε)∈bT×{0,1} Pζ,ε is the union of index sets. For each (ζ, ε) ∈
T̂ × {0, 1}, let reorder the numbers {λp ; p ∈ Pζ,ε} in the decreasing order

and put it as αζ,ε := (αζ,ε,i)i∈N : αζ,ε,1 ≥ αζ,ε,2 ≥ · · · ≥ 0, and also put

µ := (µζ)ζ∈ bT . Then,

∑

(ζ,ε)∈ bT×{0,1}

‖αζ,ε‖+ ‖µ‖ ≤ 1 .

Pick up the case where the equality holds here, then by direct cal-

culations we have a compact-uniform limit of the sequence of centraliza-

tions FG′
N as N → ∞, which gives the character fA with a parameter

A =
(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
together with the general character formula in

Theorem 2.3.

10.2. Recapitulation of centralization of positive definite func-

tions

Note that, when T is not finite, the group G = S∞(T ) with the induc-

tive limit topology is no longer locally compact. However, since the quotient

space H\G ∼= SH\S∞ with SH := H ∩S∞ is countable, we can define an

induced representation Π := IndG
H π from H to G by a standard method,

on a vector-valued ℓ2-space on H\G ∼= SH\S∞. Then we see that the

trivial extension F = IndG
H fπ is a diagonal matrix element of Π. Therefore

the above method of centralizing F = IndG
H fπ and then taking limits is a

special case of the following method:

(I) take a diagonal matrix element F0 of a UR Π0 (not necessarily ir-

reducible), or simply a continuous positive definite function F0 on G (as in

§§1–5 of [Hir3]),

(II) take an increasing sequence of compact subgroups G′
N ր G, and

centralize F0 with respect to G′
N . Then take limN→∞ F

G′
N

0 if exists.

Then the pointwise limit limN→∞ F
G′

N

0 gives us an invariant positive

definite function on G, which may be continuous.
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Now, from the stand point of asymptotic approximation by normal-

ized (trace) characters of compact subgroups of G, we can reformulate the

method in 10.1 as follows.

As an increasing sequence G′
N ր G = S∞(T ) of compact subgroups,

we chose G′
N = SJN

(T ) = DJN
(T )⋊SJN

with JN րN . For centralization

FG′
N of a positive definite function F = IndG

H fπ, we have

(10.9) FG′
N (h) =

∫

G′
N

fπ(g′hg′
−1

) dµG′
N

(g′) (h ∈ H),

where the integrand fπ is extended outside H trivially. Put

H ′
N := G′

N ∩H, π′N := π|H′
N
, Π′

N := Ind
G′

N

H′
N
π′N , F ′

N := F |G′
N
.

The restriction fπ|H′
N

is a diagonal matrix element fπ′
N

of an IUR π′N of

H ′
N , and F ′

N = Ind
G′

N

H′
N
fπ′

N
is a diagonal matrix element of Π′

N , normalized as

F ′
N (e) = 1 since fπ(e) = 1. From the formula (10.9), we have the following.

Proposition 10.1. The restriction FG′
N onto G′

N is the centraliza-

tion of a diagonal matrix element F ′
N of the induced representation Π′

N =

Ind
G′

N

H′
N
π′N of G′

N with respect to G′
N , and is equal to the normalized char-

acter χ̃Π′
N

:= χΠ′
N
/dim Π′

N .

Remark 10.1. The induced representation Π = IndG
H π of the full group

G is irreducible if and only if all Iζ ’s are empty. This is proved as for the

infinite symmetric group S∞ in [Hir1].

However, at the stage of G′
N , almost all the induced representations

Π′
N = Ind

G′
N

H′
N
π′N of G′

N are not irreducible as is seen from the discussions

in Section 3.

10.3. Problem setting

The subgroup G′
N = SJN

(T ) is isomorphic to Gn = Sn(T ) with

n = mN := |JN | through a bijective correspondence JN ↔ In. By this

isomorphism, the induced representation Π′
N in Proposition 10.1 is inter-

preted as an induced representation Π′′
n of Gn with n = mN . Therefore

the result explained in 10.1 is that any character fA of G is obtained as

a limit of normalized characters of induced representations χ̃Π′′
n

of Gn as

n = mN →∞.
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Usually Π′
N and accordingly Π′′

n, n = mN , are not irreducible. Let

(10.10) Π′′
n =

∑⊕

1≤r≤Rn

mn(r) ·Π(r)
n

be an irreducible decomposition of Π′′
n, where Π

(r)
n is an IUR of Gn and

mn(r) denotes its multiplicity in Π′′
n. Then the normalized character is

expressed as

(10.11) χ̃Π′′
n

=
∑

1≤r≤Rn

mn(r) dim Π
(r)
n

dim Π′′
n

· χ̃
Π

(r)
n
.

Taking into account our result Theorem 7.1 in the present paper and

the result in [HH6] explained in 10.1 and 10.2, we ask naturally which part

of irreducible components in (10.10) or in (10.11) is responsible for having

limit limn=mN→∞ χ̃Π′′
n

= fA. Thus we can formulate the following problems.

Problem 2007-1. In what case, almost all induced representations

Π′
N = Ind

G′
N

H′
N
π′N of G′

N are irreducible as N →∞ ?

In this case, a character fA is obtained as pointwise limit of normalized

irreducible characters limN→∞ χ̃Π′
N

, and this is proved by direct calculations

without appealing to the evaluation (5.23) of Murnaghan or to the result

Theorem 5.1 quoted from [VK1]–[VK2].

Suppose now we are in an opposite situation of Problem 10.3. For each

n = mN , pick up an irreducible component Π
(rn)
n (1 ≤ ∃rn ≤ Rn) of Π′′

n in

(10.10), and we call such a sequence Π
(rn)
n , n = mN (N →∞) a generalized

path of IURs of Gn to infinity.

Problem 2007-2. For what kind of generalized paths Π
(rn)
n , n = mN

(N →∞), we have the same limit as limn=mN→∞ χ̃
Π

(rn)
n

= limN→∞ χ̃Π′
N

=

fA ? In addition, in what cases, the ratio
mn(r) dimΠ

(r)
n

dimΠ′′
n

do not vanish as

n = mN →∞ ?

Roughly speaking, this asks which irreducible components are responsi-

ble to the limit limN→∞ χ̃Π′
N

= fA. Does there exist ‘principal’ irreducible

constituents which take the whole responsibility?
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Remark 10.2. In some cases, it is also disputable if Problem 2007-2 is

well-posed. For example, consider the case where we have, at the limit,

µζ0 = 1 for a ζ0 ∈ T̂ and other factors in the parameter A of a character fA

in Theorem 2.3 are all zero and so

(10.12) Y A
1 (t) =

1

dim ζ0
χζ0(t) = χ̃ζ0(t), Y A

ℓ (t) ≡ 0 for ℓ ≥ 2 (t ∈ T ).

We get this character by the method explained in 10.1 by considering a

sequence JN ր N such that |JN ∩ Iζ0|/|JN | → 1. Simplify this situation,

then it is essentially very near to the case where we take Iζ0 = N and

JN = In, and so H = D∞ ⊂ G = D∞ ⋊ S∞. In this simplified case, we

take for H ′
N = G′

N ∩H and Π′
N = Ind

G′
N

H′
N
π′N respectively

Hn = Dn ⊂ Gn and Πn = IndGn

Dn
ηn, ηn = ⊠

i∈In

ζi with ζi = ζ0.

Then Πn = ηn ⊠ Rn for Gn = Dn ⋊ Sn, where Rn denotes the regular

representation of Sn. Then, for (d, σ) ∈ G, d = (tq)q∈N , and n sufficiently

large,

χ̃Πn(d, σ) =
∏

q∈In

χ̃ζ0(tq)× δSn

1
−→

∏

q∈N

Y A
1 (tq)× δS∞

1
= fA

(
(d, σ)

)
,

where δSn

1
and δS∞

1
are delta-functions on Sn and S∞ respectively, sup-

ported on the identity element 1. At the stage Gn, every IUR π ∈ Ŝn

contributes to χ̂Rn = δSn

1
as its own right with coefficient (dimπ)2/|Sn|

for χ̃π, and we cannot say which parts of Ŝn (n ≥ 2) are responsible to the

limit δS∞

1
, without introducing some other criterion.

Remark 10.3. In contrast with the above method, the above character

fA in (10.12) is also obtained as limits of characters of IURs Πn of Gn =

Dn⋊Sn as in Theorem 6.1. We can characterize some of such sequences of

IURs Πn. Take

(In,Λn), In = (In,ζ)ζ∈bT , Λn = (λn,ζ)ζ∈bT ,(10.13)

for IUR Πn = IndGn

Hn
πn in the beginning of Section 6 as In,ζ0 = In, In,ζ = ∅

(ζ 6= ζ0) and λn,ζ = ∅ (ζ 6= ζ0). Then, in (6.1) and (6.2), ηn = ⊠i∈In ζi,

ζi = ζ0, and so S[ηn] = Sn, Hn = Dn⋊S[ηn] = Gn. Accordingly Πn = πn =
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ηn ⊡ ξn = ηn ⊡ π(λn,ζ0
), where π(λn,ζ0

) is an IUR of Sn corresponding to a

Young diagram λn,ζ0
.

Assume that Young diagrams λn,ζ0
increase along with n. Denote by

rk(λ
n,ζ0

) (resp. ck(λ
n,ζ0

)) the length of k-th row (resp. k-th column) of λn,ζ0
.

Then the sequence of normalized irreducible characters χ̃Πn converges to the

character fA if and only if

r1(λ
n,ζ0

)/n −→ 0, c1(λ
n,ζ0

)/n −→ 0.(10.14)

Such sequences of Young diagrams are obtained by taking λn,ζ0
like

isosceles triangles or like regular squares, where r1(λ
n,ζ0

) and c1(λ
n,ζ0

) are

of the order
√

2n or
√
n respectively.

Comparing with Remark 10.2, we see that the above necessary and

sufficient condition (10.14) has something to do with “limit” of Plancherel

measures µn([π]) = (dimπ)2/|Sn|, [π] ∈ Ŝn, or a measure on the space of

paths of Young diagrams of infinite lengths explained in 5.1, which comes

from the projective system of measures (µn)n≥1 (cf. §2 of Part II of this

work [HHH2]).

§11. Limits of induced characters in irreducible cases

For Problem 2007-1, we can give an answer in this section, and for

Problem 2007-2, we can give only a partial answer by discussing examples.

Let the notation be as in Section 10. The subgroup H ′
N and its IUR π′N are

given as

H ′
N =


 ∏

(ζ,ε)∈ bT×{0,1}

( ∏

p∈Pζ,ε

Hp,N

)
×


∏

ζ∈bT

Hζ,N


 ,(11.1)

with Hp,N = SJN∩Ip, Hζ,N = DJN∩Iζ
(T ) ⊂ SJN∩Iζ

(T ) ,

π′N =


 ⊗

(ζ,ε)∈bT×{0,1}

( ⊗

p∈Pζ,ε

πp,N

)
⊗


⊗

ζ∈ bT

πζ,N


 ,(11.2)

where πp,N and πζ,N are IURs of Hp,N and Hζ,N respectively defined sim-

ilarly as (10.4)–(10.6) replacing Ip and Iζ by Ip,N := Ip ∩ JN and Iζ,N :=

Iζ ∩ JN . Here the products are actually finite since JN is finite.
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Proposition 11.1. (i) If the induced representation Π′
N = Ind

G′
N

H′
N
π′N

of G′
N = SJN

(T ) is irreducible, then for each (ζ, ε) ∈ T̂ × {0, 1},

(11.3)
∣∣{p ∈ Pζ,ε ; JN ∩ Ip 6= ∅

}∣∣ ≤ 1,
∣∣JN ∩ Iζ

∣∣ ≤ 1.

(ii) The induced representation Π′
N = Ind

G′
N

H′
N
π′N of G′

N is irreducible, if

and only if for any ζ ∈ T̂ ,

(11.4)
∣∣{p ∈ Pζ,0 ⊔ Pζ,1 ; JN ∩ Ip 6= ∅

}∣∣+
∣∣JN ∩ Iζ

∣∣ ≤ 1.

Proof. Proof for (i) is given by showing the existence of non-trivial

intertwining operators for π′N . The discussion is standard as in Section 3.

Proof for (ii) needs some more detailed explicit calculation of intertwin-

ing operators for the induced representation Π′
N , similarly as in the proof

of Theorem 3.3 (i) (cf. discussions in 12.2).

Since we are interested in the asymptotic behavior as JN ր N , it

is enough to treat the case where (slightly modifying the setting) Pζ,ε’s

are one point sets and Iζ ’s are all empty. This case contains the case for

Problem 2007-1, as seen from Proposition 11.1 (ii).

So, we take a partition IN = (Iζ,ε)(ζ,ε)∈bT×{0,1} of N given as N =⊔
(ζ,ε)∈ bT×{0,1} Iζ,ε, and define newly a subgroup H of G = S∞(T ) as

H =
∏′

(ζ,ε)∈bT×{0,1}

Gζ,ε = D∞(T )⋊ SIN
,(11.5)

Gζ,ε := SIζ,ε
(T ) = DIζ,ε

(T )⋊SIζ,ε
, SIN

:=
∏′

(ζ,ε)∈ bT×{0,1}

SIζ,ε
.

First define an IUR πζ,ε of Gζ,ε. For d = (ti)i∈Iζ,ε
∈ DIζ,ε

(T ), put

⊗aζ,ε

i∈Iζ,ε
ζi with ζi = ζ for Ti = T (i ∈ Iζ,ε)

with respect to a reference vector aζ,ε = (ai)i∈Iζ,ε
, ai ∈ V (ζi), ‖ai‖ = 1, on

the tensor product space Vζ,ε =
⊗aζ,ε

i∈Iζ,ε
V (ζi). For σ ∈ SIζ,ε

, put

(11.6)

I(σ)
(⊗aζ,ε

i∈Iζ,ε
vi

)
:=
⊗aζ,ε

i∈Iζ,ε
vσ−1(i) with vi ∈ V (ζi), vi = ai (i≫ 1).

Then, for g = (d, σ) ∈ Gζ,ε, d = (ti)i∈Iζ,ε
,

(11.7) πζ,ε(g) = πζ,ε

(
(d, σ)

)
:=
(⊗aζ,ε

i∈Iζ,ε
ζi(ti)

)
I(σ) sgn(σ)ε.
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For the subgroup H =
∏′

(ζ,ε)∈ bT×{0,1}
Gζ,ε, we define an IUR π =

⊗b
(ζ,ε)∈ bT×{0,1}

πζ,ε as a tensor product acting on V =
⊗b

(ζ,ε)∈ bT×{0,1}
Vζ,ε

with a reference vector b.

For In = {1, 2, . . . , n}, put Gn = SIn
(T ) and Hn = H ∩Gn as before,

and

(11.8)





In,ζ,ε = In ∩ Iζ,ε, In,ζ =
⊔

ε=0,1 In,ζ,ε,

Gn,ζ,ε = Hn ∩Gζ,ε, Gn,ζ = SIn,ζ
(T ),

T̂n = {ζ ∈ T̂ ; In,ζ 6= ∅}.

Then Hn =
∏

ζ∈bT n
Hn,ζ with Hn,ζ =

∏
ε=0,1Gn,ζ,ε ⊂ Gn,ζ , and we have an

IUR πn of Hn on a space Vn as

(11.9)





πn = ⊠
ζ∈bT n

πn,ζ with πn,ζ = ⊠
ε=0,1

πn,ζ,ε,

Vn =
⊗

ζ∈bT n

Vn,ζ with Vn,ζ =
⊗

ε=0,1
Vn,ζ,ε,

where, for each (ζ, ε) ∈ T̂n×{0, 1}, πn,ζ,ε is an IUR of Gn,ζ,ε = DIn,ζ,ε
(T )⋊

SIn,ζ,ε
on a tensor product space Vn,ζ,ε =

⊗
i∈In,ζ,ε

V (ζi) given similarly as

πζ,ε on Vζ,ε in (11.7).

The normalized character of a finite-dimensional UR Π is defined as

χ̃Π = χΠ/dim Π. Then χ̃Πn for Πn = IndGn

Hn
πn is given by the centralization

of the normalized character χ̃πn := χπn/dimπn of πn with respect to the

normalized Haar measure dµGn on Gn. Though the induced representation

Πn is not necessarily irreducible here, we get an explicit character formula

for its normalized character χ̃Πn quite similar to that in Theorem 4.5 for

irreducible induced representations (cf. Sections 4–6, and cf. [HH5, §14] or

[HH6, §12]).
For g = (d, σ), let

(11.10) g = ξq1ξq2 · · · ξqrg1g2 · · · gm, ξq =
(
tq, (q)

)
, gj = (dj , σj),

be a standard decomposition and put

(11.11) Q = {q1, q2, . . . , qr}, J = {1, 2, . . . ,m}.

Proposition 11.2. The normalized character of the induced representa-

tions Πn = IndGn

Hn
πn of Gn is given as follows. Let I ′n := (In,ζ,ε)(ζ,ε)∈ bT×{0,1}
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be the partition of In corresponding to Πn. For g = (d, σ) ∈ Gn = Dn(T )⋊

Sn above, let Q′ = (Qζ,ε)(ζ,ε)∈ bT×{0,1}
and J ′ = (Jζ,ε)(ζ,ε)∈bT×{0,1}

be parti-

tions of Q and J respectively. Then

χ̃Πn(g) =
∑

Q′,J ′

c′(I ′n;Q′,J ′)

×
∏

(ζ,ε)∈bT×{0,1}

( ∏

q∈Qζ,ε

χζ(tq)

dim ζ
·
∏

j∈Jζ,ε

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)
sgn(σj)

ε

)
,

with coefficients c′(I ′n;Q′,J ′) given by

∏
(ζ,ε)∈bT×{0,1}

|In,ζ,ε|
(
|In,ζ,ε| − 1

)
· · ·
(
|In,ζ,ε| − |Qζ,ε| −

∑
j∈Jζ,ε

|Kj |+ 1
)

n(n− 1) · · ·
(
n− |Q| − | supp(σ)|+ 1

) ,

where Q′ and J ′ run over all partitions of Q and J respectively.

Take a g ∈ G. Then, starting from a certain n = n0, g is contained in

Gn, and so we can consider the limit of the normalized character χ̃Πn(g) for

g ∈ Gn0 ⊂ Gn as n ≥ n0 tends to ∞.

Theorem 11.3. (i) The sequence of unitary representations Πn =

IndGn

Hn
πn of Gn = Sn(T ) given above is determined by a partition IN =

(Iζ,ε)(ζ,ε)∈ bT×{0,1} of N . Put In,ζ,ε = In ∩ Iζ,ε and assume that the following

limits exist :

(11.12) Bζ,ε = lim
n→∞

|In,ζ,ε|
n

(
(ζ, ε) ∈ T̂ × {0, 1}

)
.

Then, there exists a pointwise limit of normalized characters FIN
:= limn→∞

χ̃Πn on G = S∞(T ). For a g = (d, σ) ∈ G with standard decomposition in

(11.10)–(11.11),

FIN
(g) =

∏

q∈Q

( ∑

(ζ,ε)∈bT×{0,1}

(
Bζ,ε

dim ζ

)
χζ(tq)

)

×
∏

j∈J

( ∑

(ζ,ε)∈bT×{0,1}

(
Bζ,ε

dim ζ

)ℓ(σj)

χζ

(
Pσj

(dj)
)
sgn(σj)

ε

)
.

(ii) The limit function FIN
is the character fA in Theorem 2.3, for

which αζ,ε = (Bζ,ǫ, 0, 0, . . . ), µζ = 0 for (ζ, ε) ∈ T̂ × {0, 1} in A =(
(αζ,ε)(ζ,ε)∈bT×{0,1} ; µ

)
.
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Sketch of Proof. The limits limn→∞ χ̃Πn can be calculated directly from

the explicit formula for χ̃Πn . The calculations go on similarly as in Sec-

tion 5, but in the present case, we need not to appeal to Theorem 5.4 since

irreducible representations of symmetric groups to be induced up are all

one-dimensional here.

This theorem contains the case of a sequence of IURs (of a degenerate

form) of Gn = Sn(T ) which answers Problem 2007-1. It gives limits of

irreducible characters of Gn by direct calculation (cf. [HH4, §12] and [HH6,

13.3]).

Answer to Problem 2007-1:

In the limiting process FG′
N → fA explained in 10.1–10.2, the restric-

tion FG′
N |G′

N
is the normalized character χ̃Π′

N
of the induced representation

Π′
N = Ind

G′
N

H′
N
π′N (Proposition 10.1). Suppose that there exists an infinite

subsequence of Π′
N which are irreducible. Then it is essentially the case in

Theorem 11.3, where

In,ζ,ε = ∅ (∀n) for ε = 0 or = 1 for any ζ ∈ T̂ .

The characters fA obtained as limN→∞ FG′
N in this irreducible case are

given in (ii) of Theorem 11.3.

Remark 11.1. In the special case where Iζ,ε = N for a fixed (ζ, ε),

all Πn are irreducible and we have the following characters as limits of

irreducible characters χ̃Πn . For g = (d, σ) ∈ G as in Theorem 11.3,

(11.13) Fζ,ε(g) =
∏

q∈Q

χζ(tq)

dim ζ
×
∏

j∈J

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)
sgn(σj)

ε,

which is equal to fA with αζ,ε = (1, 0, 0, . . . ). Especially when ζ = 1T ∈ T̂ ,

the trivial representation of T , we have F1T ,ε(g) = sgn(σ)ε for g = (d, σ) ∈
G, one-dimensional character. So, for any ζ ∈ T̂ , Fζ,ε(g) = Fζ,0(g)F1T ,ε(g)

(g ∈ G).

§12. Irreducible decomposition of the induced representations Πn

12.1. Towards a partial answer to Problem 2007-2 by exam-

ples

For Problem 2007-2, we can only give a partial answer by giving some

examples of sequences of reducible induced representations Πn of Gn satis-

fying:
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(12-1) each Πn splits into irreducible components Π
(r)
n , 1 ≤ r ≤ R,

where R is a power of 2 (in the extreme case, R =∞),

(12-2) one can form several natural sequences Π
(rn)
n , n → ∞, of irre-

ducible components of Πn for which the sequences of normalized irreducible

characters χ̃
Π

(rn)
n

have the same limits as the original one limn→∞ χ̃Πn .

We take an open subgroup H of G again as in (11.5). For the subgroup

Gn = SIn
(T ), the subgroup Hn = H ∩ Gn and the IUR πn in (11.9) are

factored according to (11.8)–(11.9) as follows:

Hn =
∏

ζ∈ bT n

Hn,ζ , Hn,ζ =
∏

ε=0,1

Gn,ζ,ε ⊂ Gn,ζ ;

(πn, Vn) = ⊠
ζ∈bT n

(πn,ζ , Vn,ζ).

To study the space I(Πn) of intertwining operators between Πn =

IndGn

Hn
πn and itself, we first remark that, as can be proved by direct calcula-

tions of intertwining operators for Πn = IndGn

Hn
πn, a non-trivial intertwining

operator originates only from the inside of each “ζ-component” Ind
Gn,ζ

Hn,ζ
πn,ζ ,

where πn,ζ = ⊠ε=0,1 πn,ζ,ε.

Therefore, for our study, we can restrict ourselves to the case where

only one fixed ζ appears, and we pursuit this fundamental case further on.

In this reduced case, each induced representations Πn of Gn split into

two irreducible components Πn,0 and Πn,1. The character χΠn = χΠn,0 +

χΠn,1 has been given in Proposition 11.2. For a certain intertwining op-

erator Ũ = Ũn, the virtual character χeUΠn
:= tr(ŨΠn) is calculated in

Theorem 13.7. Thus the explicit formula for characters χΠn,γ , γ = 0, 1,

are obtained from Proposition 11.2 and Theorem 13.7 through the equality

(12.12).

Both sequences of the normalized irreducible characters χ̃Πn,γ , γ = 0, 1,

have the same limit as n → ∞ as the original one limn→∞ χ̃Πn (Theo-

rem 14.2).

Using these results, we can analyse through Theorem 14.1 the asymp-

totic behavior of the difference χ̃Πn,0 − χ̃Πn,1 as n → ∞. This gives an

evaluation of fluctuations of χ̃Πn,0 and χ̃Πn,1 around the common limit (The-

orem 14.3).
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12.2. Combinatorial lemmas and irreducible decomposition of

Πn

Now we put newly for Gn = Sn(T ) = Dn(T )⋊Sn,

(12.1)

In = In,0 ⊔ In,1, Hn = Hn,0 ×Hn,1, Hn,ε = SIn,ε(T ) (ε = 0, 1),

πn = πn,ζ = ⊠
ε=0,1

πn,ζ,ε, Vn =
⊗

ε=0,1

Vn,ζ,ε,

where, for g = (d, σ) ∈ Hn,ε = DIn,ε(T ) ⋊SIn,ε , d = (ti)i∈In,ε , we put as in

(11.7)

(12.2) πn,ζ,ε(g) = πn,ζ,ε

(
(d, σ)

)
:=
(⊗

i∈In,ε
ζi(ti)

)
I(σ) sgn(σ)ε.

To fix the situation more exactly, we put In,0 = {1, 2, . . . , n0}, In,1 = {n0 +

1, n0 + 2, . . . , n0 + n1 = n} with n0, n1 > 0, and Sn0,n1 := SIn,0 ×SIn,1
∼=

Sn0 × Sn1 . For σ = κ0κ1 ∈ Sn0,n1 with κ0 ∈ SIn,0 , κ1 ∈ SIn,1 , we put

sgn1(σ) := sgn(κ1).

We determine the space I(Πn) of intertwining operators for Πn =

IndGn

Hn
πn by a similar method as in the proof of Theorem 3.3, preparing

several lemmas successively as follows. Recall the formulas (3.6)–(3.9).

Lemma 12.1. (i) Let τi = (n0 − i + 1 n0 + i) be the transposition of

element n0 − i+ 1 ∈ In,0 and n0 + i ∈ In,1. Then the space of double cosets

Hn\Gn/Hn has a complete set of representatives given by

(12.3) T :=
{
1, τ1, τ1τ2, . . . , τ1τ2 · · · τN

}
for N = min{n0, n1}.

(ii) Let τ = τ1τ2 · · · τp ∈ T , 1 ≤ p ≤ N . Then Hn ∩ τHnτ
−1 = Dn(T )⋊

Sτ , where Sτ = Sn0,n1 ∩ τSn0,n1τ
−1 consists of permutations expressed by

blockwise diagonal matrices diag(σ1, κ1;κ2, σ2), where σ1, κ1, κ2 and σ2 are

respectively permutations on

{1, 2, . . . , n0 − p}, {n0 − p+ 1, n0 − p+ 2, . . . , n0};
{n0 + 1, n0 + 2, . . . , n0 + p}, {n0 + p+ 1, n0 + p+ 2, . . . , n0 + n1}.

Lemma 12.2. Let τ = τ1τ2 · · · τp ∈ T , 1 ≤ p ≤ N . Then a linear

transformation K(τ) on Vn satisfying

πn(h)K(τ) = K(τ)πn(τ−1hτ) (h ∈ Hn ∩ τHnτ
−1)(12.4)

is necessarily 0 for p ≥ 2.
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Lemma 12.3. (i) Let τ1 = (n0 n0 + 1) ∈ T . Then, Hn ∩ τ1Hnτ1
−1 =

Dn(T ) ⋊ Sτ1 with Sτ1 the centralizer of τ1 in Sn0,n1 consisting of permu-

tations expressed as diag(σ1, 1; 1, σ2), where σ1 and σ2 are respectively per-

mutations on

{1, 2, . . . , n0 − 1} (⊂ In,0), {n0 + 2, n0 + 3, . . . , n0 + n1} (⊂ In,1).

The transformation h 7→ τ1
−1hτ1 for h = (d, σ) ∈ Dn(T ) ⋊ Sτ1 is given as

τ1
−1hτ1 = (τ1

−1(d), σ).

(ii) The operator K(τ1) which satisfies (12.4) is a constant multiple of

the following operator on Vn =
⊗

1≤i≤n0+n1
V (ζi) with ζi = ζ (∀ i)

(12.5) U = I(τ1) :
⊗

1≤i≤n0+n1
vi 7−→

⊗
1≤i≤n0+n1

vτ1−1(i),

where vi ∈ V (ζi), and πn(τ1
−1hτ1) = U−1πn(h)U (h ∈ Hn ∩ τ1Hnτ1

−1).

Here U = I(τ1) permutes vn0 ⊗ vn0+1 as vn0+1 ⊗ vn0 in the middle of con-

secutive tensor product ⊗ vi.

(iii) The dimension of the space of intertwining operators is 2:

dimI(Πn) = 2.

We omit proofs of these lemmas, since they follow standard processes.

Take an intertwining operator in Lemma 12.3 (ii) as

K(τ1) = c(Hn)−1U = c(Hn)−1I(τ1)

with c(Hn)−1 := µGn(Hn) =

(
n

n0

)
=

(
n

n1

)
.

Lemma 12.4. An intertwining operator Ũ for Πn is defined as follows

by an L(Vn)-valued function

K(g) =

{
c(Hn)−1πn(h1)Uπn(h2) for g = h1τ1h2 ∈ Hnτ1Hn,

0 for g 6∈ Hnτ1Hn,
(12.6)

(Ũϕ)(g) =

∫

Gn

K(gg′
−1

)ϕ(g′) dµGn(g′).(12.7)

Let si = (i i+ 1), 1 ≤ i ≤ n− 1, be simple reflexions of Sn.

Lemma 12.5. (i) The double coset Sn0,n1τ1Sn0,n1 consists of n0n1

number of left Sn0,n1-cosets with representative elements (a b) with a ∈ In,0,
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b ∈ In,1. This double coset consists of elements σ ∈ Sn such that its cycle

decomposition contain cycles in Sn0,n1 and one of the cycles given as

(a1 a2 · · · ap b1 b2 · · · bq), p ≥ 1, q ≥ 1, with ai ∈ In,0, bj ∈ In,1.

The order of the subset is |Sn0,n1τ1Sn0,n1 | = n0!n1! · n0n1.

(ii) The subgroup Sn0,n1 ∩ τ1Sn0,n1τ1
−1 is equal to the centralizer

(Sn0,n1)
τ1 of τ1 in Sn0,n1, and is given as follows:

(12.8)
{
σ ∈ Sn0,n1 ; σ(i) = i (i = n0, n0 + 1)

} ∼= Sn0−1 ×Sn1−1.

A complete set of representatives of
(
Sn0,n1 ∩ τ1Sn0,n1τ1

−1
)
\Sn0,n1 is given

by the following set of products in Sn0,n1
∼= Sn0 ×Sn1:

{
1, sn0−1, sn0−1sn0−2 , . . . , sn0−1sn0−2 · · · s1

}

×
{
1, sn0+1 , sn0+1sn0+2 , . . . , sn0+1sn0+2 · · · sn−1

}
.

(12.9)

Lemma 12.6. (i) The subset Sn0,n1τ1Sn0,n1τ1Sn0,n1 consists of three

Sn0,n1 ×Sn0,n1 double cosets with the following representative elements:

1 , τ1 = (n0 n0 + 1), τ ′1 := τ1τ2 = (n0 n0 + 1)(n0 − 1 n0 + 2).

(ii)
(
Sn0,n1τ1Sn0,n1

)
∩
(
Sn0,n1τ1Sn0,n1τ1Sn0,n1

)
= Sn0,n1τ1Sn0,n1.

Using the combinatorial results such as Lemmas 12.5 and 12.6, we can

determine the square Ũ2 by elementary but rather lengthy calculations for

convolution of integral kernels.

Lemma 12.7. Ũ2 = n0n1 I + (n0 − n1) Ũ or
(
Ũ − n0I

)(
Ũ + n1I

)
= 0.

12.3. Virtual character associated to the intertwining opera-

tor Ũ

We know from Lemma 12.3 (iii) that Πn decomposes into two inequiva-

lent irreducible components, denoted by Πn,γ , γ = 0, 1, and accordingly the

intertwining operator Ũ is a linear combination of orthogonal projections

Pγ = PΠn,γ onto them:

(12.10) Πn =
∑⊕

γ=0,1

Πn,γ = Πn,0 ⊕Πn,1, Ũ = d0P0 + d1P1 (d0 6= d1).
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Lemma 12.8. The pair of coefficients (d0, d1) is one of (n0,−n1) and

(−n1, n0).

The proof of the lemma comes from Lemma 12.7. Exchanging the names

of irreducible components Πn,0 and Πn,1 if necessary, we may assume that

(d0, d1) = (n0,−n1).

For the trace character χΠn(g) = tr
(
Πn(g)

)
and the virtual character

χeUΠn
(g) := tr

(
ŨΠn(g)

)
(g ∈ Gn), we have

χΠn = χΠn,0 + χΠn,1 , χeUΠn
= n0χΠn,0 − n1χΠn,1,(12.11)

χΠn,0 =
n1χΠn + χeUΠn

n
, χΠn,1 =

n0χΠn − χeUΠn

n
.(12.12)

Moreover, from (12.6)–(12.7), we have tr(Ũ ) = 0 and so χeUΠn
(e) = tr(Ũ ) =

0.

Lemma 12.9. For Πn, Πn,0 and Πn,1, we have

dim Πn = (dim ζ)n · |Sn/Sn0,n1| = (dim ζ)n ·
(
n

n0

)
,

dim Πn,0 =
n1

n
dim Πn = (dim ζ)n ·

(
n− 1

n0

)
,

dim Πn,1 =
n0

n
dim Πn = (dim ζ)n ·

(
n− 1

n1

)
.

12.4. Identification of irreducible components Πn,0, Πn,1

In [JK, Chapter 2, §2.8], the irreducible components of induced repre-

sentations of Sn from subgroups of type Sn0,n1 are studied. Let λn0;r and

λn1;c be Young diagrams with one row of length n0 and with one column

of length n1 respectively for which the corresponding representations are

π(λn0;r) = the trivial one, and π(λn1;c) = sgn. Applying the general theory

to our case, we get the following.

Proposition 12.10. Induced representation IndSn

Sn0,n1
π(λn0;r)⊠π(λn1;c)

is decomposed into two irreducible components. Their Young diagrams λ
(0)
n

and λ
(1)
n are obtained from λn0;r and λn1;c by connecting them in possible

ways to get Young diagrams of hook type, so that

λ(0)
n = (n0 + 1, 1, 1, . . . , 1), λ(1)

n = (n0, 1, 1, . . . , 1, 1),
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where a Young diagram λ is expressed by lengths of rows as λ =
(
r1(λ),

r2(λ), . . .
)
.

Frobenius ‘Charakteristik’ for them are of rank 1 and given respectively

by

(12.13)

(
a1

b1

)
=

(
n1 − 1

n0

)
and

(
n1

n0 − 1

)
.

In general, let
(a1

b1

)
be a Frobenius ‘Charakteristik’ of rank 1 of an IUR of

Sn, and denote this IUR and its character by π
(
a1
b1

)
and χ

(
a1
b1

)
respectively.

Then, a1 + b1 = n − 1, and π
(a1

b1

)
= sgn ⊗ π

(b1
a1

)
with one-dimensional

character sgn, and by Frobenius dimension formula (5.22),

dimπ

(
a1

b1

)
=

(
n− 1

a1

)
=

(
n− 1

b1

)
,

∴ dimπ(λ(0)
n ) =

(
n− 1

n0

)
, dimπ(λ(1)

n ) =

(
n− 1

n1

)
.

Moreover irreducible characters for ‘Charakteristik’ of rank 1 can be

calculated as follows [Frob, §5]. For an element σ ∈ Sn, let its cycle de-

composition be σ = σ1σ2 · · · σm, and put nℓ(σ) be the multiplicity of cycles

of length ℓ ≥ 2. Then the set of these numbers define the equivalence class

[σ] of σ. Let n1(σ) be the number of cycles of length 1 (or of trivial cycles)

and put with an indeterminate x

F (x) = F[σ](x) = (1− x)n1(σ)−1
∏

ℓ≥2

(1− xℓ)nℓ(σ),

then F (x) =
∑

0≤a≤n−1

(−x)a · χ
(

a

n− 1− a

)
(σ).

Lemma 12.11. Let σ = (p q) be a transposition in Sn. Then the

character value at σ is given as follows:

χ

(
a

n− 1− a

)
(σ) =

(n− 2)! (n − 2a− 1)

a! (n − a− 1)!

= dimπ

(
a

n− 1− a

)
· n− 2a− 1

n− 1
.
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Comparing dimensions in Lemma 12.9 and those in (12.4), we can iden-

tify irreducible components Πn,0, Πn,1 in case n0 6= n1 as given in Proposi-

tion 12.13 below.

However, in case n0 = n1, two Frobenius ‘Charakteristik’ for Πn,0, Πn,1

or two Young diagrams show us Πn,1 = sgn ⊗ Πn,0, and we need to check

character values for a transposition σ ∈ Sn. We apply Lemma 12.11, and

we get, for g = (eDn , σ) with the identity element eDn ∈ Dn(T ), the value

χ̃Πn(g) from Proposition 11.2 and the one χ̃eUΠn
(g) = χeUΠn

(g)/dim Πn from

Theorem 13.7.

Lemma 12.12. (i) For normalized characters, there hold

χ̃Πn =
n1

n
χ̃Πn,0 +

n0

n
χ̃Πn,1 , χ̃eUΠn

=
n0n1

n

(
χ̃Πn,0 − χ̃Πn,1

)
,

χ̃Πn,0 = χ̃Πn +
1

n1
χ̃eUΠn

, χ̃Πn,1 = χ̃Πn −
1

n0
χ̃eUΠn

(ii) For g = (eDn , σ) with a transposition σ ∈ Sn,

χ̃Πn(g) =
1

dim ζ

(
n0(n0 − 1)

n(n− 1)
− n1(n1 − 1)

n(n− 1)

)
, χ̃eUΠn

(g) =
1

dim ζ

2n0n1

n(n− 1)
;

χ̃Πn,0 =
1

dim ζ

n0 − n1 + 1

n− 1
, χ̃Πn,1 =

1

dim ζ

n0 − n1 − 1

n− 1
.

In this way, we arrive at the following identification.

Proposition 12.13. Let ηn = ⊠i∈In ζi, ζi = ζ (∀i). Then irreducible

components of Πn are identified as

Πn,0
∼= IndGn

Hn

(
ηn ⊡ π(λ(0)

n )
)
, Πn,1

∼= IndGn

Hn

(
ηn ⊡ π(λ(1)

n )
)
.(12.14)

§13. Explicit determination of irreducible characters χΠn,0
, χΠn,1

13.1. Integral formulas for the virtual character χ eUΠn

Lemma 13.1. For the virtual character χeUΠn
(g) := tr

(
ŨΠn(g)

)
(g ∈

Gn) associated to Ũ for Πn = IndGn

Hn
πn, we have χeUΠn

= n0χΠn,0 −n1χΠn,1

and

χeUΠn
(g) =

∫

(Hn∩τ1Hnτ1−1)\Gn

tr
(
πn(g′gg′

−1
τ1)U

)
dµ(Hn∩τ1Hnτ1−1)\Gn

(g′)

=
1

|Sn0,n1 ∩ τ1Sn0,n1τ1
−1|

∑

σ′∈Sn

tr
(
πn(σ′gσ′

−1
τ1)I(τ1)

)
,
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where dµ(Hn∩τ1Hnτ1−1)\Gn
is an invariant measure on (Hn ∩ τ1Hnτ1

−1)\Gn

such that each point has unit measure, and πn(g′′) = 0 by definition if

g′′ 6∈ Hn.

Noting that

|(Hn ∩ τ1Hnτ
−1

1 )\Gn|
|Hn\Gn|

=
|Sn0,n1|

|(Sn0,n1 ∩ τ1Sn0,n1τ
−1

1 )|
= n0n1,

we have similarly to the normalized character χ̃Πn = χΠn/dim Πn the fol-

lowing formula for ‘normalized’ virtual character χeUΠn
(g)/dim Πn:

χ̃Πn(g) =
χeUΠn

(g)

dimΠn
= n0n1 ·

∫

Gn

tr
(
πn(g′gg′−1τ1)U

)

dimπn
dµGn(g′)(13.1)

=
n0n1

|Sn|
∑

σ′∈Sn

tr
(
πn(σ′gσ′−1τ1)I(τ1)

)

dimπn
(g ∈ Gn),

where dim Πn =
∣∣Sn0,n1\Sn

∣∣ · dimπn, dimπn = (dim ζ)n.

Lemma 13.2. For a g = (d, σ) ∈ Gn with d = (ti)1≤i≤n, assume that

gτ1 = (d, στ1) is in Hn. We have στ1 = κ′0κ
′
1 with κ′0 ∈ SIn,0 , κ

′
1 ∈ SIn,1 .

Put sgn1(στ1) := sgn(κ′1) by definition, and let I(σ′) for σ′ ∈ Sn be as in

(3.2), then

πn(gτ1)I(τ1) = ηn(d) · I(κ′0)I(κ′1) · sgn1(στ1).

Moreover let κ′0 =
∏

j∈J ′
0
σj , κ

′
1 =

∏
j∈J ′

1
σj, be cycle decompositions of

κ′0, κ
′
1 respectively, then

(13.2)
tr
(
πn(gτ1)I(τ1)

)

dimπn
=
∏

q∈Q′

χζ(tq)

dim ζ
·
∏

j∈J ′
0⊔J ′

1

χζ

(
Pσj

(dj)
)

(dim ζ)ℓ(σj)
·
∏

j∈J ′
1

sgn(σj),

where Q′ = In \
⊔

j∈J ′
0⊔J ′

1
Kj with Kj = supp(σj), and dj = (ti)i∈Kj

.

Here, for the calculation of trace, we utilized the following elementary

general lemma.

Lemma 13.3. Let σ = (1 2 · · · ℓ) be a cycle and ζi = ζ for i ∈ K :=

{1, 2, . . . , ℓ} = supp(σ). On the tensor product space
⊗

i∈K V (ζi) = V (ζ1)⊗
· · ·⊗V (ζℓ), the operator I(σ) is defined as I(σ)

(⊗
i∈K vi

)
:=
⊗

i∈K vσ−1(i)

)

(vi ∈ V (ζi)). Then

(13.3) tr
(⊗

i∈K ζi(ti) · I(σ)
)

= χζ(Pσ(d)), d = (ti)i∈K ∈ DK(T ).
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Remark 13.1. It follows from (4.2) that, for the character of Πn =

IndGn

Hn
πn, χΠn(g) 6= 0 only when g is conjugate to an element of Hn. On the

other hand, we see from (13.1) that χeUΠn
(g) 6= 0 only when g is conjugate

to an element of Hnτ1. By Lemma 13.4 below, we see that every element

g ∈ Gn except elements of Dn is conjugate under Gn to an element of Hnτ1.

13.2. Explicit calculation of virtual characters χ eUΠn
(g) =

tr
(
ŨΠn(g)

)

For a g = (d, σ) ∈ Gn = Sn(T ), let

(13.4) g = ξq1ξq2 · · · ξqrg1g2 · · · gm, ξq =
(
tq, (q)

)
, gj = (dj , σj),

be a standard decomposition and put Q = {q1, q2, . . . , qr}, J = {1, 2, . . . ,
m}. For σ′ ∈ Sn, we study the condition that σ′gσ′−1τ1 ∈ Hn. This

condition is equivalent to σ′σσ′−1 ∈ Sn0,n1τ1 since τ 2
1 = 1. Put

I ′n,0 := In,0 \ {n0} = {1, 2, . . . , n0 − 1},
I ′n,1 := In,1 \ {n0+1} = {n0 + 2, . . . , n− 1, n}.

Lemma 13.4. For σ = σ1σ2 · · · σm, the condition σ′σσ′−1 = σ′1σ
′
2 · · · σ′m

∈ Sn0,n1τ1 for a σ′ ∈ Sn, where σ′j := σ′σjσ
′−1

, is equivalent to the follow-

ing : there exists a subset J1  J and a j′ ∈ J \ J1 such that

σ′j′ = (a1 a2 · · · au n0 b1 b2 · · · bv n0 + 1)

with ai ∈ I ′n,0, bi ∈ I ′n,1, u ≥ 0, v ≥ 0, or

σ′j′τ1 = (a1 a2 · · · au n0)(b1 b2 · · · bv n0 + 1);
∏

j∈J0

σ′j ∈ SI′n,0
,
∏

j∈J1

σ′j ∈ SI′n,1
, with J0 = J \ ({j′} ⊔ J1).

Every non-trivial element σ ∈ Sn is conjugate to an element in

Sn0,n1τ1.

Proof is omitted. Put

(13.5) κ0 = (a1 a2 · · · au n0), κ1 = (b1 b2 · · · bv n0 + 1),

then, σ′j′τ1 = κ0κ1, κ0 ∈ SIn,0 , κ1 ∈ SIn,1 , and κ0 = 1 if u = 0, and κ1 = 1

if v = 0.

From this lemma we see that any conjugacy class of Sn except the class

of the identity element 1 has a representative in Sn0,n1τ1.
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For g = (d, σ) above, let d = (ti)i∈In , and Kj = supp(gj) = supp(σj),

dj = (ti)i∈Kj
. The condition σ′gσ′−1τ1 ∈ Hn for σ′ ∈ Sn is equivalent to

σ′σσ′−1τ1 ∈ Sn0,n1, and this can be written down by Lemma 13.4 as follows.

Lemma 13.5. Let σ′ ∈ Sn. Then, σ′σσ′−1τ1 ∈ Sn0,n1 if and only if

there exists a partition of J as J = {j′} ⊔ J0 ⊔ J1 such that, with σ′j =

σ′σjσ
′−1

,

(S1) σ′j′ = (a1 a2 · · · au n0 b1 b2 · · · bv n0 + 1) with u ≥ 0, v ≥ 0,

and ai ∈ I ′n,0 := In,0 \ {n0}, bi ∈ I ′n,1 := In,1 \ {n0 + 1} ;

(S2) σ′j ∈ SI′n,0
(j ∈ J0), σ

′
j ∈ SI′n,1

(j ∈ J1).

The condition (S2) is equivalent to

(S2′) σ′(Kj) ⊂ I ′n,0 (j ∈ J0), σ
′(Kj) ⊂ I ′n,1 (j ∈ J1).

Lemma 13.6. For g = (d, σ) ∈ Gn, and σ′ ∈ Sn, with the same nota-

tions as above,

πn(σ′gσ′
−1
τ1)I(τ1) = πn(σ′(d)) I(σ′σσ′

−1
τ1)I(τ1) · sgn1(σ

′σσ′
−1
τ1)

= πn(σ′(d)) I(σ′σσ′
−1

) · sgn(κ1)
∏

j∈J1

sgn(σj).

tr
(
πn(σ′gσ′−1τ1)I(τ1)

)

dimπn
=
∏

q∈Q

χζ(tq)

dim ζ
·
∏

j∈J

χζ

(
Pσj

(dKj
)
)

(dim ζ)ℓ(σj)
· (−1)v

∏

j∈J1

sgn(σj).

Noting that dimΠn =
∣∣Sn0,n1\Sn

∣∣ · dimπn, we get an explicit formula

for the normalized virtual character χ̃eUΠn
= χeUΠn

/dim Πn.

Theorem 13.7. Take g = (d, σ) ∈ Gn and let its standard decomposi-

tion be as in (13.4). If g is in Dn or σ = 1, then g is not conjugate under

Gn to an element of Hnτ1, and χ̃eUΠn
(g) = 0. If g ∈ Gn \Dn, then

χ̃eUΠn
(g) =

∑

J1 J

c′′(σ, J1) ·
∏

q∈Q

χζ(tq)

dim ζ
·
∏

j∈J

χζ

(
Pσj

(dKj
)
)

(dim ζ)ℓ(σj)
·
∏

j∈J1

sgn(σj),

c′′(σ, J1) =
(n− |σ|)!

n!

∑

j′∈J\J1

d(j′, J1), J0 := (J \ J1) \ {j′} ,
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in the case where
∑

j∈J1
ℓj < n1,

∑
j∈J0

ℓj < n0,

d(j′, J1) = ℓj′ ·
∑

u+v=ℓj′−2: u,v≥0

(−1)v

×
{
n0(n0 − 1)(n0 − 2) · · ·

(
n0 −

∑

j∈J0

ℓj − u
)

× n1(n1 − 1)(n1 − 2) · · ·
(
n1 −

∑

j∈J1

ℓj − v
)}

,

otherwise d(j′, J1) = 0.

Note that the summation for d(j′, J1) actually runs over (u, v) satisfying

(♣) u+ v = ℓj′ − 2, 0 ≤ u < n0 −
∑

j∈J0

ℓj , 0 ≤ v < n1 −
∑

j∈J1

ℓj .

However, outside of this condition the corresponding summands are auto-

matically equal to zero. When u (and v) can run over all 0, 1, . . . , ℓj′ − 2,

by using a formula

∑

0≤r≤m

(−1)r
(
n

r

)
= (−1)m

(
n− 1

m

)
, and putting

(
n

a

)
= 0 (a < 0),

we can reduce the expression for d(j′, J1) in a little more simpler form but

not so much.

Lemma 13.8. Suppose n0−
∑

j∈J0
ℓj ≥ ℓj′−1, n1−

∑
j∈J1

ℓj ≥ ℓj′−1,

then

d(j′, J1) =
n0!n1!

(n− |σ|)! ℓj′

×
{(

n− |σ|
n0 −

∑
j∈J0

ℓj − ℓj′

)
+ (−1)ℓj′

(
n− |σ|

n0 −
∑

j∈J0
ℓj − 1

)}

=
n0!n1!

(n− |σ|)! ℓj′

×
{(

n− |σ|
n0 −

∑
j∈J0

ℓj − ℓj′

)
− sgn(σj′)

(
n− |σ|

n1 −
∑

j∈J1
ℓj − ℓj′ + 1

)}
.
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§14. Limits and asymptotic behavior of the irreducible characters

χ̃Πn,0
, χ̃Πn,1

By Lemma 12.12 (i), we have for the virtual character χ̃eUΠn
,

χ̃eUΠn
=

χeUΠn

dimΠn
=
n0n1

n
·
(
χ̃Πn,0 − χ̃Πn,1

)
.

We get from the formula for χ̃eUΠn
in Theorem 13.7, an asymptotic evalua-

tion of the difference χ̃Πn,0 − χ̃Πn,1 as follows.

Theorem 14.1. Assume n0/n → B0, n1/n → B1 (n → ∞). Then

B0 +B1 = 1, and we have as a limit a continuous invariant class function

on G = S∞(T ) as follows. On the subgroup D ⊂ G, the virtual character

χeUΠn
is always zero. For g ∈ G \D, let its standard decomposition be as in

(13.4), then

lim
n→∞

χeUΠn
(g)

dim Πn
= lim

n→∞

n0n1

n

(
χ̃Πn,0 − χ̃Πn,1

)

= cJ (B0, B1) ·
∏

q∈Q

χζ(tq)

dim ζ
·
∏

j∈J

χζ

(
Pσj

(dKj
)
)

(dim ζ)ℓ(σj)
,

cJ(B0, B1) =
∑

{j′}⊔J0⊔J1=J

ℓj′
(
B

ℓj′

0 B1 −B0B
ℓj′

1 sgn(σj′)
)

×
∏

j∈J0

B
ℓj

0

∏

j∈J1

B
ℓj

1 sgn(σj) .

For the normalized character χ̃Πn , we have

(14.1) χ̃Πn =
dim Πn,0

dimΠn
χ̃Πn,0 +

dimΠn,1

dim Πn
χ̃Πn,1 =

n1

n
· χ̃Πn,0 +

n0

n
· χ̃Πn,1 .

Thus we can determine finally the limits of normalized characters of

two irreducible components Πn,0, Πn,1 of Πn, using Theorem 14.1.

Theorem 14.2. Assume that n0/n → B0, n1/n → B1. Then B0 +

B1 = 1 and

lim
n→∞

χ̃Πn,0 = lim
n→∞

χ̃Πn,1 = lim
n→∞

χ̃Πn .

We obtain also another evaluation of the difference χ̃Πn,0 − χ̃Πn,1 as

follows, and this, together with Proposition 11.2, Theorem 11.3 and (14.1),

will contribute to evaluate fluctuations of each χ̃Πn,0 , χ̃Πn,1 around their

common limit.
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Theorem 14.3. The difference χ̃Πn,0 − χ̃Πn,1 is evaluated as

(14.2) sup
g∈Gn

∣∣χ̃Πn,0(g) − χ̃Πn,1(g)
∣∣ ≤ | supp(σ)|

(
| supp(σ)| − 1

)

n− 1
.

Proof. From (13.1) and Lemma 13.2, we have for a g = (d, σ) ∈ Gn,

∣∣χ̃Πn,0(g) − χ̃Πn,1(g)
∣∣ =

n

n0n1

∣∣χeUΠn
(g)
∣∣

dimΠn

≤ n

|Sn|
∑

σ′∈Sn

∣∣tr
(
πn(σ′gσ′−1τ1)I(τ1)

)∣∣
dimπn

≤ 1

(n− 1)!
·
∣∣{σ′ ∈ Sn ; σ′σσ′

−1
τ1 ∈ SIn,0 ×SIn,1

}∣∣.

Then, by (S1) in Lemma 13.5, we have an upper bound for the numerator

in the right hand side as

≤
( ∑

1≤j′≤m

ℓj′(ℓj′ − 1)
)
· (n− 2)! ≤ | supp(σ)|

(
| supp(σ)| − 1

)
· (n− 2)! .

References

[AK] S. Ariki and K. Koike, A Hecke algebra of (Z/rZ) ≀ Sn and construction of its

irreducible representations, Adv. in Math., 106 (1994), 216–243.

[Bia] P. Biane, Minimal factorization of a cycle and central multiplicative functions on

the infinite symmetric groups, J. Combin. Theory, Ser. A, 76 (1996), 197–212.

[BS] M. Bo.zejko and R. Speicher, Completely positive maps on Coxeter groups, de-

formed commutation relations, and operator spaces, Math. Ann., 300 (1994),

97–120.

[Dix] J. Dixmier, Les C∗-algèbres et leurs représentations, Gauthier-Villars, Paris,

1964.

[Far] J. Faraut, Infinite Dimensional Harmonic Analysis and Probability, Proceedings

of the CIMPA-TIFR on Probability Measures on Groups, 2002, TIFR, Mumbai,

to appear.
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