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LIMITS OF CHARACTERS OF WREATH
PRODUCTS &,,(T) OF A COMPACT GROUP T
WITH THE SYMMETRIC GROUPS AND
CHARACTERS OF & (T), I

TAKESHI HIRAI, ETSUKO HIRAI anp AKIHITO HORA

Abstract. In the first half of this paper, all the limits of irreducible characters
of G, = G,(T) as n — oo are calculated. The set of all continuous limit
functions on G = G (T) is exactly equal to the set of all characters of G
determined in [HHG6]. We give a necessary and sufficient condition for a series
of irreducible characters of GG, to have a continuous limit and also such a
condition to have a discontinuous limit. In the second half, we study the
limits of characters of certain induced representations of G, which are usually
reducible. The limits turn out to be characters of G, and we analyse which of
irreducible components are responsible to these limits.

Introduction

In the present paper we first investigate limits of irreducible characters
of wreath products G,, := &,,(T) of a compact group 7" with the symmetric
groups &,, and thereby capture characters of its wreath product with the in-
finite symmetric group G := S (7). This constitutes an important step in
our program to develop harmonic analysis on such infinite wreath product
groups. Secondly we investigate limits of characters of induced represen-
tations of G, of certain standard type treated in [HH6] which are usually
reducible (cf. Section 10 for definition).

1. The group of all finite permutations on a set I is denoted by &;.
A permutation o on I is called finite if its support, supp(o) = {i € I ;
o(i) # i}, is finite. We call the permutation group &n on the set of
natural numbers N the infinite symmetric group. The index N is frequently
replaced by co. The symmetric group &,, of degree n is naturally embedded
in S, as the permutation group of the subset I,, := {1,2,...,n} C N.
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Let T be a compact group. We consider wreath product group & (7))
of T' with permutation group &; as follows:

(0.1)  &(T)=Dy(T)x&;, DIT)=[[ T, =T (i€,
i€l

where the symbol H/ means the restricted direct product, and ¢ € G acts
on Dy(T) as
(0.2) D](T) >5d= (ti)l'e_[ s O'(d) = (t;)iej € D[(T), t; = tgfl(z-) (Z S I)
Identifying groups D;(T") and & with their images in semidirect product
&/(T), we have 0 do~! = o(d). The groups Dy, (T) and &1, (T) are simply
denoted by D, (T") and &,(T) respectively. Then G = S (T) is an induc-
tive limit of G,, = &,(T) = D,(T) x &,. Since T is compact and hence
so is G, the inductive system is an example of a countable LCG induc-
tive system in [TSH]. We introduce in G its inductive limit topology Tinq.
Then G equipped with 7,4 becomes a topological group (cf. Theorem 2.7
in [TSH]), but not locally compact if T is not finite.

A natural subgroup of G = 6, (T) is given as a wreath product of T
with the alternating group s as G’ := oo (T) = Do (T') ¥ Ase. Moreover,
in the case where T is abelian, we put

(0.3) Pi(d) =[]t for d= (t;)icr € Di(T),
i€l

and take a subgroup S of 7', and define subgroup &;(T)° of &;(T) as
(0.4) &(T)° = Di(T)® x &; with Dy(T)° :={d = (t;)icr ; P(d) € S}.

If S = {er} is trivial (er denoting the identity element of T'), we simply
write it as &7(7). These kinds of groups, Guo(T) and S0 (T)° with T
abelian, contain the infinite Weyl groups of classical types: Wa_ = G
of type Ao, Wi, = G(Z2) of type Boo/Coo, and Wp_, = Go(Z2)° of
type Doo, and moreover the inductive limits G (Z,) = lim,, . G(r,1,n)
of complex reflection groups G(r,1,n) = &,,(Z,) (cf. [Kaw], [Sho]).

2. Seen from the viewpoint of developing harmonic analysis on big
groups, especially those which are not of type I, characters of such groups
play an important role as fundamental objects. In general, for a topological
group G, let K1(G) denote the set of invariant continuous positive definite
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functions f on G normalized as f(e) = 1 (e denoting the identity element
of G), and E(G) the set of all extremal (or indecomposable) elements in
K1(G). Then every f € E(G) gives canonically a character of a quasi-
equivalence class of factor representations of G of finite type ([HH4]), and
is called itself a character of G (see Section 2 below).

The first and the second authors have developed character theory of
wreath product groups in a series of papers, which extends celebrated
Thoma’s theory for G in [Tho]. When T is finite, Tjpg in G = Soo(T)
is discrete. In this case, the characters of G are given in [HH2]. When T'
is infinite compact, G equipped with 7,4 is not locally compact, and the
subset {(d,1) ; d € Do(T)} = Doo(T) is an open neighbourhood of the
identity element e of G, where 1 denotes the trivial permutation on IN. All
the characters of G are given in [HH5]-[HH6] with a general explicit charac-
ter formula for f4 € E(G) associated with a parameter A (see Theorem 2.3
below).

A nice realization of a finite factor representation of G of Vershik-Kerov
type corresponding to any character f € E(G) are constructed in [HHH1].

3. The purpose of the present paper is two-fold.

The first one is to show that all the characters of G = G (T') are ob-
tained as limits of characters of finite-dimensional irreducible unitary repre-
sentations (= IURs) of G,, = &,,(T). Furthermore we establish a necessary
and sufficient condition on a sequence of IURs p,, of G,, for existence of a
limit of their normalized characters X,, = X,,/dim p, as n — oo, and also
determine explicitly the limits. Asymptotic frequencies of Young diagrams
will appear in a more involved form than in [VK1] reflecting the effect of
compact group T

There exist also the cases where the limits obtained are nowhere con-
tinuous, and we clarify the situation in these cases too.

Moreover, for the subgroups G’ := . (T) and G° in the case of T
abelian, all the characters of them are obtained simply by restricting those
of G if S is open in T (see [HH6] and Theorem 2.4 below for G°). We prove
in Section 8 that all the characters of G° can be approximated by sequences
of irreducible characters of G := G, N G as n — oo.

The second purpose of the present paper is to analyse the original
method in [HH5]-[HH6] of getting the general character formula, from the
present stand point of approximation by irreducible characters of GG,,. The
method in [HH5]-[HHG6] is to use the induced representations IT = Ind%
of IURs 7 of a special kind of subgroups H of G. Taking a diagonal matrix
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element of Il and centralizing it with respect to G,, and then we take the
limit as n — oo to get f4. This method is briefly reviewed in Section 10,
then we can translate it as to approximate characters f4 of G by those of
induced representation II,, = Indgz m, of G, which are highly reducible in
almost all cases. We investigate which of irreducible components of II,, are
responsible to the limit or to approximate the character fa.

4. This paper is divided into three chapters. Chapter 1 consists of
Sections 1-2 and is devoted to preliminary preparations. Chapter 2 consists
of Sections 3-9 and is devoted to the first purpose, and Chapter 3 consists
of Sections 10-14 and is devoted to the second purpose. Details of each
section can be seen from the table of contents below.

In the present paper, which is Part I of our work under the same ti-
tle, we largely use methods of explicit calculations in the theory of group
representations. The subsequent Part II [HHH2] is devoted to an approach
by way of probabilistic methods, which is an extension of Vershik-Kerov’s
ergodic method in [VK1].

Chapter I. Review on the wreath product &S, (T)
and its characters
§1. Structure of wreath product groups So.(T) = Do (T) X S

For a set I, the group of finite permutations on I is denoted by &;. Fix
a compact group 7', and take the wreath product group &;(7) of T with
the symmetric group &y as

(L1)  &(T)=DyT)x &, DiT):=[ T, T,=T (i€,
el

where H;e ; T; denotes the restricted direct product of copies T; of T', and
o € & acts on d = (t;)ier € Di(T) as o(d) = (ty-1(;))ics- When [ = I, :=
{1,2,...,n} or I = N, the suffices I are replaced by n or oo respectively.

Put G,, = 6,,(T) and G = G (7). Then, G is an inductive limit of the
inductive system of compact groups Gg — --- — G, — Gpy1 — -+, and
we introduce in G the inductive limit topology 7;,q from the compact 74,
of G,. Then G4, becomes a topological group and is not locally compact if
T is not finite. For an element g = (d,0) € G with d = (¢;)ien, put

supp(g) = supp(d) U supp(o),
supp(d) = {i € N ;t; # er}, supp(o) ={i € N ;o(i) #i}.
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An element g = (d,0) € G = G (T) is called basic in the following two
cases:

CASE 1: o is cyclic and supp(d) C supp(o);
CASE 2: 0 =1 and for d = (t;)ien, tq # er only for one ¢ € N.

The element (d, 1) in Case 2 is denoted by &, = &,(t,), and put supp(&,) :=
supp(d) = {q}. For a cyclic permutation o = (i; iy --- i) of £ integers,
we define its length as ¢(o) = ¢, and for the identity permutation 1, put
/(1) = 1 for convenience. In this connection, &, is also denoted by (4, (q))
with a trivial cyclic permutation (¢) of length 1. In Cases 1 and 2, put
U(g) = L(o) for g = (d,0), and £(§;) = 1. For basic elements g = (d,0)
and &, = (t4,(¢)), their expressions in a form of matrices with entries from
{0} UT are displayed in [HH6, §3], and will be very helpful.

An arbitrary element g = (d,0) € G, is expressed as a product of basic
elements as

(1.2) 9=E080 €0 0192 Gm

with g; = (dj,0;) in Case 1, in such a way that the supports of these com-
ponents, q1,q2; - - ., ¢r, and supp(g;) = supp(c;) (1 < j < m), are mutually
disjoint. This expression of g is unique up to the orders of £, ’s and g;’s,
and is called standard decomposition of g as in [HH4|, [HH6]. Note that
0, ) =1for 1 <k <rand{(g;) =¥{(c;) >2for 1 <j <m, and that, for
S o-components, o = 0109 - - - 0y, gives a cycle decomposition of o.

To write down conjugacy class of g = (d, o), there appear products of
components t; of d = (t;), where the orders of taking products are crucial
when T is not abelian. So we should fix notations well.

We denotes by [t] the conjugacy class of ¢ € T, and by T/~ the set
of all conjugacy classes of T, and t ~ t' denotes that ¢,/ € T are mu-
tually conjugate in 7. For a basic component g; = (d;,o;) of g, let
05 = (Z'j71 Z'j72 Z'j’g].) and put Kj = Supp(aj) = {Z'j71, Z'j72,...,’l'j7gj}
with £; = £(0;). For d;j = (t;)ick;, we put

(1.3) Py (dy) = [ty,ty,_1 - tat)] € T/~ with tj =t;,, (1<k <)
Note that the product P, (d;) is well-defined, because, for t1,t2,...,t, €

T, we have tity-- -ty ~ tgtpy1---tety - - - tp—1 for any k, that is, the conjugacy
class does not depend on any cyclic permutation of (t,ta,...,%,).
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THEOREM 1.2. Let T be a compact group. Take an element g € G =
Soo(T) and let its standard decomposition into basic elements be g =
§nbas  €q, 9192 gm in (1.2), with &, = (tg,,(qk)), and g; = (dj,0;),
o; cyclic, supp(d;) C supp(cj). Then the conjugacy class [g] of g is deter-
mined by

(14) [l €T/~ A<k<r) and (Pr(dy),oy) (1<) <m),
where Py (dj) € T/~ and {(0}) > 2.

A factor representation of finite type is of type I,, or of type II;. For
the group G = G (T), finite-dimensional irreducible representations are all
one-dimensional (of type I;) as shown in [HH6, §3], and their characters are
contained in the general formula of characters given in Theorem 2.3 below.
The problem of approximating these characters by sequences of irreducible
characters of G, = 6,,(T) as n — oo is trivial in this case.

ProposITION 1.3. ([HH6, Lemma 3.4]) A finite-dimensional continu-
ous irreducible representation T of Goo(T') = Doo(T) X G 15 a one-dimen-
stonal character, and is given in the form m = m¢ . with

(1.5)  mce(g) = C(P(d)) (sgng)” (o) for g=(d,0) € Eoo(T),

where ¢ is a one-dimensional character of T, P(d) is a product of compo-
nents t; of d = (t;), and sgng (o) denotes the usual sign of o and e = 0, 1.
(Since ((P(d)) = [[;en C(ti), the order of taking product of t;’s for P(d)
has no meaning here, even if T is not abelian.)

§2. Characters of finite type of the wreath product &S, (T)

2.1. Characterization of characters for S (T)

Let G be a topological group. A unitary representation 7 of G is called
factorial if the von Neumann algebra i, := 7(G)" generated by 7(G) is a
factor. If U is of finite type, that is, type I,, n < oo, or IIy, then it has a
unique trace ¢, : U, — C everywhere defined and normalized as ¢, (I) =1
at the identity operator I. Put

f=(9) = ox(n(g)) (9 €@q).

Then it is a continuous positive definite function on G, invariant under inner
automorphisms, and normalized as fr(e) = 1 at the identity element e € G.
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This function f is called the character of the factor representation 7, and
determines the quasi-equivalence class of the factor representation 7.

The set of all characters f, is characterized as follows. Let K(G) be
the set of all continuous invariant positive definite functions on G, and put
Ki1(G) ={f € K(GQ) ; f(e) = 1}. The set E(G) of all extremal points of the
convex set K1(G) is exactly equal to the set of all characters fr (cf. [HH3,
Theorem 1.6.2]). In this sense, an element in F(G) is called a character of

G.

Now, in the case of the wreath product group G = &, (T), a character
of G has another characterization which plays very important role in our
present study.

DEFINITION 2.1. A positive definite function f on G = &, (7T') is called
factorizable if, for g1, g2 € G such that supp(g1) Nsupp(g2) = 0, there holds

(2.1) f(g192) = f(91)f(g2)

This condition is equivalent to the following:

(FTP) For g € G, let g = £4,&40 -+ €4, 91G92 - - - gm be its standard de-
composition into basic components in (1.2), then

(2.2) fo =TI r&)- I fl).

1<k<r 1<j<m
Let F(G) be the set of all f € K;(G) which are factorizable.

THEOREM 2.1. ([HH4, Theorem 12|, [HH6, Theorem 4.2]) An element
f € Ki(Q) is extremal if and only if it is factorizable. The set E(G) of all
characters coincides with F(G).

An invariant function is called also a class function because it is essen-
tially a function on the set G/~ of conjugacy classes [g] of g € G. Taking
into account Theorem 1.2, we see that, if an f € K;(G) is factorizable, then
the multiplicative factors f(&,, ) and f(g;) are given respectively as follows.

For t € T, let £(t) = (t,(¢)) be a basic element of Case 2 with ¢ at
q € N, and put

(2.3) Yi([t]) = f(&(t) for &(t) = (¢ (a))-
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For t € T and an £ > 2, let (d, o) be a basic element in Case 1 such that o
is a cycle with length ¢(0) = ¢ and P,(d) = [t], and put

(2.4) Yo([t]) == f((d,0)) for £(o) =¢, P,(d) = t].

For convenience we often write Y3 ([t]) and Yy([t]) simply by Yi(¢) and Y(¢)
respectively.

THEOREM 2.2. (i) For an f € F(QG), the functions Yy([t]), [t] € T/~,
are well-defined for £ > 1.

(ii) For g € G, let g = £4,&qg, -+ - 4, 9192+ - - gm be its standard decompo-
sition with §; = (t4,(q)), 9; = (dj,05), £; = £(0;), then

(2.5) flor= ] vt - T Yo (P (dy)).

1<k<r 1<j<m

2.2. Character formula for factor representations of finite type

Let T be the dual of T consisting of all equivalence classes of continuous
irreducible unitary representations (= IURs). For an IUR ¢, its equivalence
class is denoted by [(], and we identify the equivalence class [(] with its
representative ( if there is no fear of confusions. Thus ¢ € T is an IUR and
denote by x its trace character: x(t) = tr(¢(t)) (¢t € T), then dim( =
xc(er).

For a g € G, let its standard decomposition into basic components be

(26> g = £q1£q2 e gq,«glg2 o Gmy

where the supports of components, qi,¢2, ..., qr, and supp(g;) := supp(o;)
(1 £ j < m), are mutually disjoint. Furthermore, &, = (tq,, (qx)), tq, # €1,
with £(§,,) = 1 for 1 < k < r, and 05 is a cycle of length ¢(o;) > 2 and
supp(d;) C K; = supp(o;). For d; = (ti)icx; € Dk,;(T) — Do (T), put
Py, (dj) as in (1.3).

For one-dimensional characters of &,, we introduce simple notation as

(2.7) Xe(0) ==sgng(0)® (0 €6y ;e=0,1).
As a parameter for characters of G = G (T"), we prepare a set of

(2.8) ace (CeT, e€{0,1}) and p= (uc)cr
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of decreasing sequences o . of non-negative real numbers
Qe e = (aC,E,i)iEN7 Acel > Al e 2 > Ale3 > 2>0;

and a set of non-negative uc > 0 (¢ € T), which altogether satisfies the
condition

(2.9) Yo > el +lul=1,

with facell =Y acei. llull =D ne.
iEN ceT

THEOREM 2.3. ([HH4, Theorem 2], [HH6, Theorem 5.1])  Let G =
Suo(T) be a wreath product group of a compact group T with So. Then,
for a parameter

(2.10) A= ((acve)(c,@e?x{o,u ? “) !

n (2.8)=(2.9), the following formula determines a character fa of G: for
an element g € G, let (2.6) be its standard decomposition, then

fa= 11 D2 DO Z;ﬁng dlmg Xc(tq,)

1<k<r \¢eT \e€{0,1} ieN

Qe o)
AR S () v | xeraa b

1<jsm | ¢ceT \e€{0,1} ieN

where x:(0j) = sgng(0;)° = (—1)=¢@)=1),
Conversely, any character of G is given in the form of fa.

The functions Y7 and Yy, ¢ > 2, corresponding to f4, which we denote
by YZA are given respectively as follows: for ¢t € T,

(2.11) o= % Z;‘fnjé dlmc Xc(t)

¢ceT \e€{0,1} 1eN

(2.12) Ao => | > Z(i%g) (—1)FED | e (t)

¢ceT \e€{0,1} ieN
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Remark 2.1. When T is not discrete or equivalently not finite, the
equality condition (2.9) guarantees the continuity of the normalized function
fa(g) at the identity element g = e € G since fa(e) = 1, because Yy (er) =1
by (2.9).

By the same reason, the global character formula above is valid even
when t,, = er for some g, and in particular valid at the identity element

g=e.

Remark 2.2. When T is discrete or equivalently finite, if we discard the
validity at g = e of the above formula for f4(g), we can accept, in addition
to the equality condition (2.9), the following inequality condition:

(2.13) Yoo > llacel +lul < 1.

¢eT e€40,1}

In fact, we have a linear dependence on T* =T\ {er} as

L=x1, == ) (dim¢)xc,

CeT™

where 7% := T \ {17} with the trivial representation 17 of 7. However in
this case the parameter A for a character f4 is no more unique (cf. [HH6,
4.2)).

2.3. Characters of canonical subgroups of S (T") with T abe-
lian
When the compact group 7T is abelian, take a subgroup S of T, and
define a subgroup G° = G, (T)? of G = & (T) as follows:

(2.14) G% :={g=(d,0) € 6(T) ; P(d) € S},

where P(d) := [[;,cn ti for d = (t;)ien. In case S is not proper, or S =T,
we have G° = G.

With some additional discussions, the general character formula in The-
orem 2.3 gives us in the case of compact abelian group 7T the following char-
acter formula for G¥ = &, (T)°. In this abelian case, T is nothing but the
dual group consisting of all continuous one-dimensional characters of T', and
for each ¢ € T , its character x is identified with ¢ itself.

For a g € G¥, let its standard decomposition in G be as in (2.6), g =

€q1€q2"'€qrglg2"'gm7 with qu = (tqka(qk))7 tqk 7& er, for 1 S k S r,
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and g; = (dj,o;) for 1 < j < m. Note that each basic elements &,
g; are not necessarily in the subgroup GS. Put K; = supp(oj), and for

dj = (ti)iex; € Di;(T) = Doo(T), put ¢(d;) := [Tiex, C(t:)-

THEOREM 2.4. ([HH6, Theorem 7.1]) Assume a compact group T be
abelian, and take a subgroup S of T, not necessarily closed. Let G° be the
subgroup of the wreath product group G = S (T') defined in (2.14). Then,
for a parameter

A= ((aC,E)(C’g)Ej—\'X{Oyl} ; 'u)

satisfying the condition (2.9), the following formula determines a character
ff of G%: for a g € G3, let its standard decomposition be as above, then

FA@= 11 2 Do Do acei+nuc |ty

1<k<r CET ee{0,1} i€eN

< TT A1 Y0 D ()™ xe(oy) | ¢ldy) ¢

1<jsm | ¢ceT \e€{0,1} ieN

where x:(0;) = sgng(o;)° = (—1)eloi)=1),
Conwversely, if S is open in T, or in particular if T is finite, any char-
acter of G° is given in the form of f;f.

This theorem says that each character f4 of G has its restriction f f =
flas as a character of G, and conversely, if S is open in T, any character
of G¥ is obtained in this way by restriction.

The correspondence of the parameter A — f f is no more one-one when
S is proper. Introduce a translation R((p) on A by an element (y € T as

(2.15) R(Co)A = ((O/C,a)(g,g)efx{o’l} ) R(CO)N)
Wlth a/C,E = aCCQ_l,E ((CaE) € f X {07 1})7

R(CO):“ = (N,C)Ce’f’ ng = HCCO_L

PROPOSITION 2.5. ([HH6, Proposition 7.2]) Two parameters of char-
acters of G = G4o(T') = Doo(T') X G

A= ((anf)(q,e)efx{O,l} ip) and A= ((O/C,a)(q,e)efx{o,u 1)
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determine the same function on G°, that is, f;‘q = fﬁ, if and only if A’ =
R(CS)A for some ¢° € T which is trivial on S. In this case, as elements in
E(G) for the bigger group G, we have

far(g) =meso(9) - falg) (g9 € G),

where 7¢ o for ¢ € T denotes one-dimensional character of G given in (1.5)
with e = 0: ¢ o(g) = ((P(d)) for g =(d,0) € G =6 (T).

Chapter II. Limits of irreducible characters of &,

as n — oo

§3. Construction of IURs of the wreath product group &, (T)
For the semi-direct product group G, = &,(T) = D,(T) x &,, with

D, (T) =2 T™, we can construct any IUR by a standard inducing-up method

(for the case where T is a finite group, see e.g. [JK, Chapter 4]). We explain

it briefly to prepare an explicit calculation of irreducible characters in the
next section.

3.1. Elementary IURs of G,, = &,(T) = D,(T) x &,

Before going into details we define an elementary IUR of G,, directly.
Put I, = {1,2,...,n} as before. First, for an IUR of D,(T) = [[;c1. Ts;
T; = T, we take IURs (; of T; = T acting on V((;), and an outer tensor
product 7 := Mer, ¢; on the space V(1) := @, V((), then we get an
IUR of D,, as

(31) n(d) = zgn Cz(tz) for d = (ti)iEIn € Dn(T)

Moreover for o € &, consider an IUR o(n) := ey, Co-1(s) of Dy on

V(o) = Qjer, V(C-1(:)), and an operator I(c) : V(n) — V(o(n)) given

(3.2) I(o) : V(1) 3 Qicr, Vi — Ricr, Vo1(i) € V(a(n)),

for v; € V((), i € I,.

On the other hand, through the action of &,, on D,,, we define an action
of ¢ on n as a representation “n on the same space V(n) given through
o~ldo = o7 (d) = (ts(s))ier, by

(m(d) == n(e""do) = B Glte(s))-
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Then, I(0) intertwines the representation °p on V' (n) with the one o(n) on
V(o(n)), that is,

(3:3) o(n)(d) - I(e) = I(o) - “n(d) (d € Dy).

From this fact, we see that “n is equivalent to n, or “n = 7, if and only
if i & () (i € I,), where the symbol ‘=’ denotes the equivalence of
representations.

Fix an IUR ¢ of T'. We put n¢ := Wier, G, ¢ = ¢ (¢ € I,), and, for
(d,0) € Dp(T) x &), = Gy,

(3.4) pc((d.@)) == nc(d)I (o).

Then o(n¢) = n¢ for o € &, and p¢ gives an IUR of G,, = &,(T).

LEMMA 3.1. Assume that an IUR 7 of Gy, = &,(T) is still irreducible
when it is restricted to the subgroup D,,. Then m is equivalent to p¢ or to

p¢ - sgng, for some ( € f, where sgng ~ denotes the sign character of &,.

Now take an IUR ¢ of the group &, = G, /D, and consider it as a
representation of Gy, trivial on D,,. We define an IUR of G,,, denoted by
me,e (or by ne[J€ in accordance with the later notation), by taking the tensor
product pe ® £, acting on V(p¢) ® V(§), as

Tee((d,0)) = pc((d,0)) ®&(0) ((d,0) € Gy).

LEMMA 3.2. Assume that an IUR 7 of Gy, = &,(T) contains an IUR
equivalent to n¢ for some ¢ € f, when it is restricted to the subgroup D,.
Then there exists an IUR & € é; such that m is equivalent to the tensor
product m¢ e = pc ® §.

3.2. Construction of general IURs of G,

Take the dual space D, = (f)" of D, = Dp(T'). Then &,, acts on it
as (“n)(d) = n(o~'(d)) for d = (t;)icr, and o(d) := (t,—1(;)). Firstly fix an
element [n] € D,,, where [] denotes the equivalence class of 1. Then take
the stationary subgroup Sy, of it in &y:

S =10 €& [l =} = {0 € &, ;= n}.
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Note that 7 is, modulo unitary equivalence, of the form n = Mi<;<,, (;
with [(;] € T. Let T' be the set of different [(;]’s. Hereafter we denote the
condition [¢] € T" simply by ¢ € T" to simplify the notation. Let

In = I—'CeT' Ing

be a partition of I,, such that [(;] = [(] if and only if i € I, .. Then,
arranging the order of components of the tensor product, we see that 7 is
unitary equivalent to

X ¢Mne, (o= RO with G = (6 € L)
CceT’ ZGIn,g

Replace 1 by this standard representation. Then the stationary subgroup
Spy of [n] € (T)" (— Dy) in &, is given as Sp,; = [1;c7 61, > and the
stationary subgroup H,, in the group G,, = D,, X G,, is given as H,, = D,, %
S = HCET’ &y, (T). For each component &y, (7)), taking into account
Lemma 3.1, we have an elementary IUR p¢ similarly as (3.1)—(3.4), and then
taking an outer tensor product, we have an IUR of H, as p:=[KX cedr Pe-

Secondly, taking into account Lemma 3.2, we take an IUR ¢ of the
group S[?ﬂ =] et G] I, = Hy /D,, and consider it as a representation of
H,, then take the tensor product 7 = p ® £ acting on V(n) ® V(&), which
we denote by n [ ¢&:

35)  w((d,0)) = (nLE)((d,0)) := p((d,0)) @ &(0)
((d, O') € Dn X S[m = Hn)

Note that the representation m = 7 [ £ consists of IURs of the type in
Lemma 3.2 for each components &y, (T'), ¢ € T

The induced representation II = Indg’; 7 from H, = D, % S[?ﬂ to Gy,
is realized as follows: for the representation space V (II), take the space of
continuous V (r)-valued functions ¢ on G, satisfying ¢(hg) = m(h)(¢(g))
(h € Hy, g € Gy,) with the space V(r) of 7, and introduce L?(H,,\G,,)-norm
as

lll? = / 1o @)y i @)

where g denotes the coset H,g and djup,\¢, denotes the normalized invari-
ant measure on H,\G,,. Note that, for the normalized Haar measure dug,,
on G, we have ug, (Hy) = |H,\Gn|™t = |S[n]\&,|7!, and that, accord-
ing to Gy, = D,, X G,,, the Haar measure dug,, is written as follows, with



LIMITS OF CHARACTERS OF WREATH PRODUCTS &,(T) 15

g = (d, o) and the normalized Haar measure dup, on D, for a continuous
function ¥ on G,

/¢ dug, (

We get a Hilbert space V(II), because actually dimIl < oo. In fact,
H,\Gp = S \&,,, and so dimIT = dim 7 x [S,;\&,| < oo.

The representation is given as (II(go)y)(9) = ¥(990) (90,9 € Gn).

We denote II also by II"¢ when the dependence on (n,&) should be
specified.

)) dpp,, (d).

THEOREM 3.3. (i) For an IUR m = nD & of H, of the form in (3.5),
the induced representation I1 = II"¢ = Indg: 7w of Gy, is irreducible.

(ii) Any irreducible representation of Gy, is equivalent to one of the
induced representations IS with [n] € D, €] € 3;1

Proof. (i) Denote by Z(II) the space of intertwining operators for II.
Then we should prove that dimZ(II) = 1. Since dimII < oo, any linear
transformation L on V(II) is expressed as follows as an integral operator
with a kernel K'(g,4") (9,¢' € Gy,) taking values in £(V (7)), the space of
linear transformations on V' (7), and satisfies the homogeneity condition

(3.6) K'(hg,b'g") = n(W)K'(g,¢\r (W)t (9,4 € Gpn, b, 1/ € Hy),
(3.7) Le(g) = / K'(g,9)¢(d) dumn. ()

Hp\Gn,

/ K'(9,9")e(d) dua, (d') (g9 € Gn).

The condition L € Z(II) or II(go) L = LII(go) (g0 € Gy) is equivalent to

(3.8) K'(990.9'90) = K'(9,9") (9.9',90 € Gr).

Put K(g9) = K'(g,e) with the identity element e € G, then K'(g,¢') =
K(g9'™"), and K (hgh') = m(R)K (g)m(h') (h,h' € Hy, g € Gy).

Now take a representative 7 € &, of a coset in H,\G,/H, =
S \Sn/ S

(3.9) m(h)K(7) = K(r)r(t7*hr) (h € Hy N TH,7 ).
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Let h = (d,0) € Hy, = Dy x S|, then,

nl

7 hr = (7Y (d), 7 o),

(3.10) m(r7thr) = p(T_l(d),T_IUT) @ &(t7oT).

Suppose that 7 represents a double coset different from H,,, then two
representations n(d) and n(r=1(d)) = ™(d) of D, C H, N7 'H,7 are not
mutually equivalent. Therefore, from the intertwining property (3.9) of
K(7), we have K(1) = 0.

For the representative 7 = 1 of H,,, we see that K(7) is a multiple of
the identity operator thanks to the irreducibility of .

Altogether we get dimZ(IT) = 1, and the irreducibility of II.

(ii) Let IT" be an IUR of G, on a Hilbert space V (IT'). Restrict IT' to the
subgroup D,, = T", then we have an IUR 7 acting on its subspace V' (n), and
n is, modulo unitary equivalence, of the form n = Xj<;<p, (; with [(;] € T.
Let 7" be the set of different [¢;]’s. Let a partition I,, = Ucesr Inc be as
above, and take 1, modulo unitary equivalence, as a standard representation

n= R (e, (nei= ROG o owith G=¢ (i € L)
CeT” i€lng

Then a g € Gy, acts on the normal subgroup D,,, and accordingly on n by
(“n)(d) := n(g~'dg). The stationary subgroup S, of [n] € (T (— Dy,)
in &, is S = II cef &1, ., and the stationary subgroup H,, in the group
Gn = Dn A Gn is Hn = Dn X S[U] = HCET’ GIn,C(T)‘

Now take the span of II'(H,)V (n) = I'(S},;)V (n) and pick up an irre-
ducible subspace V(m) under H,,, where 7 is the IUR of H,, acting on it.
Then, discussing for each component &y, . (T"), we see by Lemma 3.2 that,
modulo equivalence, 7w can be assumed to be of the form n[J¢ with an IUR
§ of Sy = ngf' CIApS

Let P be the orthogonal projection of V (IT') onto V(). For v € V(IT'),
consider a V(7)-valued function ¢ = ®(v) given as

(3.11) ©(g) = P(Il'(9)v) (g € Gn).

Then, ¢ belongs to the space V(II) of the induced representation II =
Indg’; m. In fact, ¢ is continuous in g, and

¢(hg) = P(IU'(hg)v) = P(IU'(h)IT'(g)v) = m(h)P(I'(g)v) = (k) (¢(g))-
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Thus we have a linear map ® : V(II') 5 v — ¢ € V(II). It intertwines the
representations. In fact,

I (go)v — P(I'(9)IT' (g0)v) = P(IT'(ggo)v) = ¢(g990) = (I(go)¢)(g)-

Moreover ® is injective. In fact, suppose ®(v) = ¢ = 0. Then, for any
w e V(m),

0= (p(g),w) = I'(g)v,w) = (v,IT'(g" " )w) (g€ Gn).

Hence v L II'(G,,)V (7), and so v = 0 since I’ is irreducible.
We know from the part (i) that II = Indg’; 7 is irreducible. Hence ®
should be surjective, and so gives an equivalence of II' to II. 0

Take an IUR 7 of Dy, and an IUR & of the stationary subgroup Si,.
Then a k € &, acts on 7 as ("n)(d) = n(k~(d)), and S, = KSpK~".
Define an IUR "¢ of S|, by

("6)(0) = £(5 oK) (0 € Spuy).

THEOREM 3.4. Two IURs "¢ and 1€ are mutually equivalent if
and only if there exists a k € &, such that ] = ["n] and [¢'] = [F¢].

§4. Characters of IURs of &,,(T) with T a compact group

In the previous section, we constructed IURs of Gy, = &,(T') = D, (T)
&, as induced representation from standard subgroups. Using this construc-
tion, we calculate explicitly characters of I[URs of GG,, and express them in
the form which fits to the later calculations of their limits as n — oco. For the
case where T is a finite group, a combinatorial construction of irreducible
characters is given in [Mac, Chapter I, Appendix A].

4.1. A formula for characters of induced representations

Before getting into explicit calculations, we prepare some generality.
For a continuous positive definite function f on a topological group G and
a compact subgroup G’ C G, we defined in [HH4]|, [HH6] a centralization of
f with respect to G’ as

(4.1) 19 (g) = / £(d'9¢ ™) ducr (e,
qg'eqG

where dug denotes the normalized Haar measure on G'.
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LEMMA 4.1. For an IURTI = Indg’; 7w of Gy, let Xr = Xr/ dim 7 (resp.
X = xu/dimII) be the normalized character of m (resp. II). Then Xy is
the centralization of the trivial extension of Xn to Gy, which equals, by
definition, to X. on H,, and to 0 outside H,.

From this we see that x(g) # 0 only when g is conjugate to some
h € H, in GG,,, and that for an h € H,,

(4.2) Su(h) = /G Se(ghg' ™) duc, (d),

where we put X-(¢’hg’ ') =0 if ¢hg’ ~' & H,.

4.2. Characters of elementary IURs ¢ ¢ = pe @ £ of G, =
D,, x &,(T)
For a finite-dimensional representation , its character tr (w(g)), g € Gy,
is denoted by xr(g), and its normalized character by X,. Then, for the
tensor product representation m; ¢ = p¢ ® &, we have

Xﬂg,g = ng *Xés %ﬂg,g = %pg : %ﬁ

Therefore we calculate x,.(g), g € G. The representation space V(p¢) is
nothing but the one V(1) = &,y V(¢) with ¢ = ¢ (i € I,).
For d = (t)icr,, we have pc(d) = n¢(d) = Mier, Gi(t:) and x,.(d) =
HieIn Xc(ti)-
For (d,0) € D, x &,,, we have for v; € V({), i € I,
pc((d,0)) (1 @V @ -+ @ vp)
= ((t1)vo-1(1) ® ((t2)Vg-1(2) ® *+* ® ((tn)Vo-1(n).-

Choose a complete orthonormal system {w, ; 1 < p < dim(} of V(¢), and
put i/ = o~ 1(i) for i € I,,, then

pg((d,a))(wp1 ® Wpy, @« -+ @ wWwp,,)
= ((t1)wp,, ® ((t2)wp, @ @ ((tn)wp,, -

Calculate the sum of diagonal matrix elements

<pC((d7 U)) (Wp, @ Wp, @ +++ @ Wp,, ), Wy, ® Wp, @+ @ Wp,,)
= HiEIn <C(ti)wpi/7wpi>7
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over p1,pa,...,pn € {1 <j <dim(}.

To do so, instead of the standard decomposition in (2.6) into basic
elements of g = (d,0) € G,, C G, we take a standard decomposition in the
wider sense as follows. For the part o of g, take its cycle decomposition as
0 = 0102 - 0y, and take basic elements g; = (d;, 0;), where d; = (t;)ick;
with K; = supp(oj). Put QY = I, \ supp(c), and let & = (t4,(q)) for
g € Q° be an element of D,, C G,, with element ty €T at q and er at other
1 € I,,. Then we have an expression of g as

(4.3) g=(d,0)= quQO 49192 Gm-

Note that the difference from the standard decomposition (2.6) is that we
accept in (4.3) here §,’s with ¢, = e, and so we call it standard decompo-
sition in a wider sense.

To calculate the above sum of diagonal matrix elements, we avoid su-
perficial complications of suffices with many levels, and can proceed with
typical examples. For example, if oy = (1 2 --- /), then 1’ = 01_1(1) =
0,2 =0, 12) =1,....0' = 0, '(f) = £ — 1. Put the matrix elements of
C(t) as Cap(t) = (C(t)wp, wy), then the partial summation over p;, i € K; =
{1,2,..., 0} gives us

Z e Z Cpipe (tl)cmm (t2)--- Cpepe (te)

1<pi<dim¢  1<p,<dim¢

= Z Cpepe (tetp—y---tot1) = X¢ (PU'I (dl))-

1<pe<dim¢

Moreover, for ¢ € Q° = I, \ supp(c), we have ¢ = 07!(¢) = ¢, and the

partial sum over 1 < p, < dim( gives us Zlgpquimcgpqpq(tq) = xc(tq)-
Thus, altogether we obtain the following character formula.

LEMMA 4.2. For g = (d,o) € G,, = D,, X &, let g = quQo &q -
§1G2 - - - gm be its standard decomposition in the wider sense, with QY =
I, \ supp(o), then

(4.4) Xp¢ ((d,0)) = H Xc(tq) - H X¢ (Poy(d))),
qeQ’ 1<j<m

45 xmee((d0)) = T xete) - T xe(Po,(dy)) % xe(o).

qeQo 1<i<m
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The dimension of 7¢ ¢ = p ® & is given as dim(?‘l'af) = dim p¢ X dim § =
(dim C)n x dim &. On the other hand,

n=1Q"| +[supp(o)| = [Q°| + > [supp(oy)l = QI+ D L(o)).
1<j<m 1<j<m
Thus we get the normalized character )A{W“ of the elementary IUR ¢ ¢ as

follows.

LEMMA 4.3. (i) For g = (d,0) € G, = Dy, x &, let g = HqEQo fq
9192 -+ gm be its standard decomposition in the wider sense, with Q°
I,\ supp( ) and g; = (d;,05), then

(4.6) o (( XC -1 MX%(U)-

seo 1<j<m (dim Qe

(ii) Let g = &qéqs - €q.9192 - gm be the standard decomposition in
(2.6) of g into a product of basic elements, so that &, = (tq,,(qr)) with
tg, #er. Put Q ={q1,9,...,¢-}, then

- (tq) X (Poy(dj)
(4.7) X7, ((d7 U)) Xa 730 X X&(U)-
¢t qel_£ dim ¢ 1<1j1m (dim ¢)*(@3)

4.3. Twist by 7 € &,(0) of irreducible character: X, (ThT~1)
We follow the notations in the part (ii) of the proof of Theorem 3.3.
For the partition I,, = |_|<E:;, I, ¢, we put

(48)  Hy =Dy xSy, Dp=Du(T)=Dr,(T), Sy =]] ;6.0

Hn = Hc 7 Hne Hue=61, (T) =Dy, (T) %6y,

49) 7=n3¢ n= K I, = K 7(\™),
cet cet

where A\™¢ is a Young diagram of size |I,, ;| and w(A\™¢) denotes the IUR of
&1, . determined by the Young diagram A We put IT =11, = Indg’; T

Denote by X(A™¢;0") (o' € &1, ) the normalized character of 7(A™¢). If
o' = ool -0’ is a cycle decomposition of o/, then Y(A\"¢; 0’) is determined
by the set {£;, = £(0;,) ; 1 < p < s} of lengths, and so it is also denoted by
%(}\n,g; (ﬁ;)lgpgs), that iS,

(4.10) Q(A"’C;(e;)lgpgs) =x(\":¢") if o' =alah .o, 0, = (o).
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Now take an h = (d,o0) € H,, C G,,, and let its standard decomposition
into basic elements be as in (2.6)

(4.11) h=(d,o)= §a18aqo €qr 9192 Ims
with § = (g, (9)) (@€ Q), g;=(dj,05) (j €J),
(412) Q:{QI)QQV'WQT}) J:{1727"'7m}7

where the supports Q and K := supp(g;) := supp(o;) (j € J) are disjoint
subsets of I,,, and o; a cycle of length ¢(c;) > 2 and supp(d;) C K; for
j € J. For &,-components, 0 = 0109 --0,, is a cycle decomposition of
o. For dj = (t;)ickx; € Dk,;(T) — Dn(T), put P, (d;) as in (1.3). Put
S(h) :={g € Gn; ¢hg " € H,}. Then, since D,, C S(h), the set S(h) is
a union of

D, with 7€ &,(0) := {7' €6,;7107 ' € Sty = HCET’ GIM}'

Moreover, since D,, C Hy, the integral in (4.2) is rewritten as

1
S|

(4.13) X, (h) > Xa(rhth,

TEGL(0)

with X, (h') = / Soldhd=Y dpup, (d) = (1) (W € Hy),

n

where dpup, (d) (d € D,,) denotes the normalized Haar measure on D,,. Here
we prefer the notation X, rather than Y, for simplicity. Put A’ = 7hr ™1,
then

(4.14) b =(d',0") =& &0, €, 9195 Gy d =7(d), o' = TOT,
§;k = qukT_l = (tq.» (7(qr))) : element t, at i =7(qx) € N,

{ gy = 7o = (d;,0%5), d = (tier(i,)s i = trriy, 0 7= TOyT

is a cycle decomposition of ¢’/. Since ' € H, =

/I ! ! /
Here o' = oy05---0,,

ngf, H,, ¢, there exist partitions of @ = {q1,¢2,...,¢-} and J = {1,2,...,
m} as

Q=(Q)cer with Q= | . Qc:

(4.15) .
T = (Je)eer With J = |_|CET, Je,
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such that for H, = Dy, (T) x &y, .

€ Hpe or supp(§) =7(q) € Ine  if g € Q¢;

(4.16) ; v o
g; € Hy¢ or supp(g;) = 7(K;) C L, ifjeJ.

LEMMA 4.4. Let 7 € &,(0). Then there exist partitions Q = (QC)CET’
of Q and J = (JC)cef’ of J such that (4.16) holds. Then X,(Tht~') is
given with {; = {(0;) as

(4.17) X (tht™h)

X¢(tq) X (Poy (d)) /e
=11 ( I =% < [ 5= = X X(A™5 (4))je.)
L(oj) <
ceT’ \9€€¢ dim¢ J€J¢ (dim €77
Put Z,, = (I, C)CET and A" = (A”’C)CeT,

diagram of A™¢ is |I5,,¢| and, except a finite number of ¢ € T, I,¢c =10 and
accordingly \¢ = (). We denote the function on the right hand side of
(4.17) also as

where the size |\™¢| of Young

(4.18) X(A”; 0.7; h)

= H H 5 tq{ H )(é i])) x X\ (45) e

ceT q€Q< €Je

4.4. Character formula for IURs of &,,(T)

Now we come to the calculation of the sum of X (tht~1) over 7 € &,(0)
n (4.13). We divide the sum into partial sums depending on a pair (Q,J)
of partitions of @ = {q1,¢2,...,¢-} and J = {1,2,...,m} in such a way
that 7 satisfies

CONDITION ON 7 € &,(0):
(4.19) 7(q) € In¢ (¢ €Q¢); T(Kj) Clue (5 € J¢)

This kind of 7 exists for a pair (Q, ) if and only if the following in-
equalities hold:

(4.20) Il > 1Qcl+ D 1K =1Qcl+ D tloy) (VCeT).

jEJC jGJC
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For any 7 satisfying (4.19), the value X (7h7 1) coincides with the term
n (4.18). So we should calculate the number N(Z,;Q,J) of 7 € &,(0)
satisfying (4.19), where Z,, := (I, C)CET

Since 7(i) € I, ¢ can be chosen arbitrary inside I, ¢ for any i € Q¢ U
(|_|j€J< K;), and then, for any i € I, \ (Q Usupp(c)), 7(i) can be chosen
freely, we get the following, because supp(c) = | | ;s Kj and

11\ (QUsupp(0))| =n—>_|Qc| = > _|K;| =n—1|Q| — |supp(0)] :

CGT JjeJ
(421)  N(Z;Q.7)
=TTl (Tacl = 1) (el = 1@l = 3 11+ 1)

ceT jede

x (n —|Q[ — [supp(a)])!
(4.22) Z N(Z.;Q9,J)=n! for n>|Q|+ |supp(c)|.
Q.J

)

Here even for a pair (Q,J) which does not satisfy the inequality con-
dition (4.20), the above formula for N(Z,;Q,J) is valid, since it says
N(Z,;9,J)=0.

After these calculations we obtain finally the normalized character of
an IUR of the wreath product G,, = &,(T) = D,(T) x &,, of a compact
group T with the n-th symmetric group &,, as follows.

THEOREM 4.5. (i) Let Z,, = (I, C)CET be a partition of I,, and A" =

()\”’C)CGT be a set of Young diagrams such that A determines an IUR
7(A™€) of Sr, . = 61, |, where the size of A denoted by |\, is equal
to |I,¢|. Put

(4.23) n= K (e, &= R a(A\™), m=nE¢
CeT CeT

Then 7 is an IUR of H,, = D,(T) % Sy with Sy = HCET &1, ., and the

induced representation 11, = Ind%’;w is irreducible. Fvery IUR of G, is
equivalent to an induced representation of this type.

(ii) Take a g = (d,o) € G, which is conjugate to an element in Hy.
Let its standard decomposition be as in (4.11), and correspondingly define
Q=A{q,9,...,q-} and J = {1,2,...,m} as in (4.12). Then the value
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X1, (9) of the normalized character Xy, of the IUR 11, of Gy, is given as
follows:

(4.24) X, (9) = Y e(Zni Q. T) X (A Q, T3 9),
Q,J
N(Im Q7 \7)

with ¢(Z,;Q,J) = p

B ngf |In,C|(|In,C| - 1) T <|In,C| - |QC| - ZjeJC |KJ| + 1)
N n(n—1)(n—2)- (n— Q| — [supp(o)| + 1)

)

X(A"9,T:9)
XC(tq) % XC(PUj(dj)) NEY n,¢
= o T X X (A (U(o))jee) |
g et dim ¢ ng (dim ¢)¥(@3) j))ied;

where Q = (QC)Cef and J = (JC)Cef run over partitions of Q and J
respectively, and )Z()\”’C; *) denotes the normalized character of IUR m(\™¢)
of &1, . as in (4.10).

Here, except a finite number of ( € f, Q¢ =0 and J: =0, and then the
corresponding C-th factor in [] cet ® should be understood as equal to 1.

(iii) For a g = (d,0) € Gy, which is not conjugate to any element in Hy,
the character vanishes: xm,(g9) = 0. The above character formula (4.24)
is also valid for g in the sense that there is no pair of partitions (Q,J)
for which I, ¢| — |Q¢| — Zjng |K;| >0 (V¢ € T), or no J for which
Lol = e K| (V¢ € D),

Remark 4.1. The character formula in Theorem 4.5 (ii) is given for
g = (d, o) such that supp(d)\supp(c) = @, but it is valid even for ¢’ = (d’, o)
with the same o but with a D,-part d’ satisfying a weaker condition:

(4.25) supp(d') \ supp(o) C Q.
This validity can be seen from the continuity of the both sides of (4.24).

Remark 4.2. The partition Z,, of I,, is used to construct IUR II,,, but
in the character formula for xiy,, the property of the partition Z, itself has
disappeared, and there remains only the partition N,, = (n¢) cer of n = |15
given as n =3 zn¢, n¢ = [Ingl.

It is worth noting here that many related interesting things are going
on in the case where T is finite (see e.g. [AK], [Kaw] and [Sho]).
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§5. Towards limits of irreducible characters of &,,(T)

5.1. Conditions for existence of limits of irreducible charac-
ters

Let us study asymptotic behavior as n — oo of the characters of IURs
IT =11, of &,,(T) parametrized by a pair of a partition Z,, = (I"vC)CET of I,
and a set of Young diagrams A" = (A™¢) cet corresponding to Z,, by (4.23).
The present purpose is to determine a necessary and sufficient condition
for pointwise convergence according as both Z,,’s and A™’s are increasing so
that I, C I,y1c € -+ (and I, = |_|<E:; I,c /" N) and that, for n > ng,
A" A"t Here by definition
(51) A" = ()\ﬂ,()cef / An-l—l — ()\n-l-l,C)Cef
means that, for one ¢’ only, A¢ 7~ A\t1¢" and, for other ¢ # ¢/, \¢ =
A HLCand in turn, A 2 A\ means that the Young diagram of A™¢
increases to that of \"+1¢’ by adding one box to some possible position.

Admitting the empty set as a Young diagram of size 0, we put § =
(0¢) et In the second part [HHH2] of our present work, we will treat in
detail the spaces of paths

(An)nzoiAOZQ/‘AI/'"'/An/An+1/'"'

of infinite lengths on the set of Young diagrams and probability measures
on it, and discuss problems of limits of irreducible characters from the stand
point of stochastic processes in discrete time. However in this first part of
our present work we do not get into details in this direction, and restrict our-
selves to discuss these limit problems by explicit calculations in the theory
of group representations.

In this section we proceed step by step to get limits of irreducible char-
acters, and in the next section we obtain explicitly the limits and also de-
termine a necessary and sufficient condition on a sequence of irreducible
characters of &,,(T") to have a limit as n — oc.

Note that, in the case where the compact group T is finite, the limit
group G = Dy X 64 with the inductive limit topology 7,4 is discrete,
and so the continuity of the limit functions is not a problem. However,
in the case where the compact group T is infinite, G with 7;,4 is no more
locally compact, and the continuity of limit functions is an important point
to study. In this case, the group Doo = Doo(T') = limy, 0o Dy (T') embedded
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into G is an open subgroup, and accordingly positive definite functions
obtained as limits of irreducible characters of GG,, as n — oo are continuous
on G if and only if so are they on Dq.

Take an h = (d,0) € &,,(T) and consider it as an element of each
Gn(T) «— 6&,,(T), n > ny.

STEP 1. Case of h = (d,1), d = (t;)icr, € Dp, with 1 € &,, the identity
element.

In this case, Q = supp(d) = {g € N ; t; # er} and J = (), and so the
parameter J does not exist, and the character formula (4.24) in Theorem 4.5
reduces at h = (d, 1) as follows:

X, ((d, 1)) =) e(Zn; Q) X (95 (d, 1)),
Q

v Heer Bl (el = 1) -+ (Hngl = 1Qc[ +1)
(5.2) o(Zni Q) = nn—1)(n—2)-(n—|Q|+1) ’

X(2:(d1) =[] ( I1 ﬁﬁ‘?) (d € Dy).

ceT \a€Q¢

7

Note that Q = (Q¢) ce7 runs over all partitions of @ into subsets indexed
by f, and that

I, oy 1@l
(5.3) c(Zp;Q) =< H (%) ‘ (asymptotically equivalent as n — 00),
ceT

(54) > Zu =1, Y ]I (%)'QC =1 for any n > Q.
Q

Q ¢eT

Note that the first equality in (5.4) is for the case where we take a
number of |@| elements without repetitions, and the second one is for the
case with repetitions.

Note further that for a d € D4, there exists ng > 0 such that d is
contained in D,, and so h = (d,1) € Gy, for n > nyg.

LEMMA 5.1. If there exists the pointwise limit lim,,_ o Xx11,, ((d, 1)) on
Do, then the ratio |I, ¢|/n converges for every ¢ € T', or equivalently there
holds:

~

1,
(5.5) (CONDITION 1) the following limits exist: B¢ := lim Hnl (CeT).

n—oo N
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Proof. For a finite subset Q C IN, define a compact subgroup Dg of
D4, and its open subset Db as

Dg:={d= (ti)ien € Do ; t; = er (i € Q)},
D/Q = {d = (ti)iEN € DQ 3t 7& er (Z S Q)}

Then (5.2) is valid not only on D’ but also on the compact group Dq. Let
LQ(DQ) be the Hilbert space of square—summable functions with respect
to the normalized Haar measure on Dg. Take n sufficiently large so that
Do C D,. Put f(Q;d) = X(Q;(d,1)), d € Dg. Then they are mutually
orthogonal in L?(Dg), and have the lengths ||f(Q)|| = [1;c7(dim €)1l =
(dim ¢)~1€l.

On the other hand, the functions X1, n > ng, on Dg are uniformly

(5.6)

bounded by 1. Hence, if the sequence X1, converges pointwise on D, then
the inner product in L?(Dg)

(X11,., /(Q)) = e(Zy; Q) (dim ¢) !
will converge. This gives CONDITION 1. U

Under CoNDITION I, we have By > 0, and Zcef Be < 1.

Assume T be finite. Then the dual T is automatically finite, and we
get in the inequality above the equality: Z B =1.

Assume T be infinite. Then we con51der the following equality condi-
tion:

(5.7) (ConpITION E) » Be=1.
ceT

LEMMA 5.2. Assume CONDITION I. Then, under CONDITION E, the
limit positive definite function lim,_, o X11,, ((d, 1)) on Ds — G is given by

(5.8) F)=> 1T (1] BA dlmC H Fi(t

Q cef \4eQc

Fy(t) =) B X.C(t) (teT),

< > dim(
CeT

where QQ = supp(d) = {q¢ € N ; t, # er}. The convergence is uniform on
each Dy,.
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If T is infinite, the limit function F is continuous on Dy, under CON-
DITION E.

Proof. Take a finite subset F of partitions Q = (QC)CET of Q. Then,
X, ((d,1)) = F(d)] < Ju(03 F) + Jo(ni F) + Ja(F),

where, with ¢(Q) = limy oo ¢(Zo; Q) = [1,c7 B,%,

H(mF) =Y (79 - (@) [T I1 fﬁlﬁqg
QcF CeT I€Q¢
< Z ‘C(In; Q) — C(Q)‘ = JY (n; F),
QeF

and, under the similar evaluations,

B F) =3 eZ QT T % ’“ <3 eZa; Q) = J(n; F)
Q¢F g“eTqEQg Q¢F
Js(F) = > [T 11 B lmC <D clQ) = JK(F)
QFF ¢eT a€Qc¢ Q¢F
Note that
(59) Yz =1 Ye@=(Y5)" =1,
Q Q ceT

then we have

(510) > eZwQ =1-) ¢ => Q- c(Zn;Q)
(5.11) =) (Q) —cZn; Q) + ) Q)

and so, J9(n; F) < JV(n; F) + J(F). Hence

X, ((4,1)) = F(d)| < 270 (n; F) + 2J5(F).
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Now, for a given small € > 0, take a finite set F sufficiently large so
that J9(F) < e. Then, choose n sufficiently large so that J?(n; F) < e. So,
we have

X, ((d,1)) — F(d)| < 4e.

This proves that X, ((d, 1)) converges to F(d) uniformly on Dy.
The continuity of F' on Dy, is easy to see. U

In the case of infinite compact group 7', we have the following interesting
case of discontinuous limit functions. For a finite subset Q) of IN, define a
compact subgroup Dg of Dy, and its open subset D&) as in (5.6). Assume
ConpITION I holds, and using B¢ = limy, .o |1, ¢|/n, we put F(d) for d €
Dy, as in Lemma 5.2, if supp(d) = Q,

x¢(t)
dim ¢

(5.12) F(d) =[] Filty), Fi(t):==>_ B (teT).

q€Q ceT

Then the sum expressing F(¢) is uniformly convergent on 7', and F(d),
de D’Q, has a continuous extension fg onto Dg, with the same factorized
form.

Assume CONDITION E does not hold, or ZCET B < 1. In this case,
contrary to the case of Lemma 5.2 under CONDITION E, the function F,
presumably supposed to be the pointwise limit, is nowhere continuous on
Dy,. In fact, the system of functions fp on Dg are not consistent with
inclusion relations Dg D Dgo with @ D Q" as seen in Remark 5.1 below.
However we presume that F is the pointwise limit of Y, ((d,1)) in this
case too. Here we only show that F' is a kind of weak limit in the following
lemma (also cf. Example 6.1).

LEMMA 5.3. Let T be an infinite compact group. Assume that CONDI-
TION I in (5.5) holds, but CONDITION E in (5.7) does not hold. For each
finite subset QQ of N, take a compact subgroup Dg of Do,. Then the restric-
tion X, ((d, 1)), d € Dgq, of irreducible character X, converges weakly in
L%(Dq) to a positive definite function

fo(d) = H Fi(tg) (d=(tg)eeq € Dq)-
q€@

Proof. For a finite subset @, the function fg on Dg is continuous
and positive definite. Then, CONDITION I says that (X, ((d,1)) — fo(d),
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f(Q;d)) — 0 as m — oo in L?*(Dg). On the other hand, for the sub-
space LQ(DQ)O consisting of functions invariant under inner automorphisms,
{f(Q)} gives a complete orthogonal system. Therefore (xm, — fg,f) — 0
for any f € L*(Dg)?, that is, X1, converges weakly to fq. 0

We also wonder if X1, ((d,1)) converges strongly to fo(d) in L*(Dg).

If so, X1, ((d, 1)) converges on Dy, to F' ‘almost everywhere’ pointwise. The
strong convergence is equivalent to || X, || — | foll?, that is,

> elTn, @ (dim )29 — 3 (T] B'CQ<‘)2(dim )2l

e Q ¢eT
QI
or ZC(In, 0)? — (Z Bg) .
Q ceT

Remark 5.1. In the situation of Lemma 5.3, we have B := ZCET B <
1, since CONDITION E does not hold. Note that the system of functions fg
is not consistent with the inclusion of the groups Dg O Dgo as @ D Q°,
In fact, take a g¢o € @ and put Q° = Q \ {q}, and let an open subset
D&) of Dg be as above. Then, when ty, — er in d = (t;)ien € Db, we
have d — d' := (t})ienN € DEQO with t;o =er and t, = t; (i # qo), and for
tgo — €T,

fa(d) = (3 Be) - TI Filte) = B foold) # fgo(d).

ceT qeQ0

For each compact subgroup Dg C D, the weak limit function F| Dy In
L*(Dg), a measurable positive definite function on D¢, has a continuous
version fg. However, on the whole D, which is no more locally compact,
F' is a measurable positive definite function which is nowhere continuous
and has no continuous version.

Remark 5.2. A reason why we have inconsistency at the boundary Dg\
Dy, of Dq can be seen as follows. By Remark 4.1, the formula (5.2) for the
character value xry,, ((d, 1)) is valid not only on D’Q but also on the compact
group Dg.

Take a ¢° € @ and a boundary point d° € Dg \Dé2 given as d° = (t4)4e0
with t0 = er and t; # er (¢ € Q" = Q\ {¢"}), where, outside Q, t; = er
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for all i ¢ Q and these are omitted. Then d° € Dbo, and the proper formula
for Dé?“ gives us

X, ((d°,1)) = e(Zo; @°) X (2% (4%, 1)),

QO
HCET ‘Iné“‘(un C‘ - 1) (‘Imd - |Q2‘ + 1)
n(n—1)(n—2)--- (n—|Q° + 1) ’

x(@%5@0) =111 11 ﬁinﬁqg 7

¢eT \a€Q?

c(Tn; Q") =

where Q° = (Qg) ce7 runs over all partitions of QY.

Now compare this expression with the expression of Xy, (d°) in the
formula (5.2), extended from Dg to Dq. In the above expression for
(d,1) € D’QO, the monomial terms X (QO; (d°, 1)) are mutually orthogo-
nal. On the other hand, in the extended formula (5.2), each monomial term
X (QO; (d°, 1)) appears in many places corresponding to different partitions
Q so as to realize B = ZCET B < 1.

The situation is similar to the following simple example. Consider for
each n an expression of b, =1 as

1 1
E ank, bn=1, apg:=— (n times of —).
n n
1<k<n

Then, starting from lim,, oo b, =1#0 = Zl§k<oo limy, o0 @ ;-

STEP 2. Limits of the coefficients ¢(Z,; Q, T ).
Assume the above limit condition CONDITION I. Since

2 1Qcl+ > los) = [supp(h)

ceT JE€J¢
for a fixed h = (d, o), we get from the formula of ¢(Z,; Q,J) in (4.24)
(5.13) nh_)ngo c(Zp;9,T) =c(Q,T) := H (BC\QU . H BCE(Uj))-

CeT Je€J;

STEP 3. Limits of ¢(Z,; Q, j)X(A”; Q,j;h) in case B¢ = lim, .o
| In¢c|/n = 0.
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For a pair of partitions (Q, J), assume that M := [Q¢| +Zj€=7< |K;| >

0. Then, from the above formula, lim, ., ¢(Z,; Q,J) = ngf BCMC = 0.
On the other hand, | X (A™; Q,J;h)| < 1, whence

c(Zn; Q,T) X (A" Q,T;h) — 0.

Put 7+ = {¢ € T ; B¢ > 0}. Then the subset T+ C T is at most
countably infinite. For ¢ € T, put I ¢ = limy—oo In¢ = U,>1 In¢. Then
I ¢ is infinite for ¢ € T+. We have |—|C€f+ I C N, whereas I—lCGf Ioc =
N. Even in the case where T is infinite (and compact), there exists at most
a countably infinite number of ¢ for which I ¢ # 0.

STEP 4. By Step 3, we need to consider only such (Q,J) that M, =
1Qc| + ZjeJ< |Kj| > 0 only for ¢ € T+. We fix such a (Q, ). Then, by
Step 2, the coefficient ¢(Z,,; Q, J) converges to a positive constant as n — oo,
and so the point to study is the convergence of the factor X (A"; Q,7;h).
It is given as

Xc(tq) XC(PUj(d')) ~(yn,C.
(5.14) H 11 dl—ch X g W < XA (U(0j))jes)
CeT+ \9€¢ J&J¢

The moving factor in it is only the normalized character of IUR 7(\™¢) of
S, .

(5.15) X (U0g))jer) = RO Tes, 95)-

This term moves along with a weakly increasing sequence of Young diagrams
A6 together with I, ¢/ Ino ¢ such that |I, | = [A™C].
Since I ¢ is infinite, we have an order-preserving bijection

(5.16) ®: I — N suchthat ®(I,¢) =1y,
with N, = |I,,¢| /" 00, and through ® an isomorphism ¢ such that
(5.17) cp:G[oo_(90—>90(a):<13000q)_1661\]:600

and accordingly a consistent sequence of isomorphisms &y, . — Sy, with
N, / oo. Correspondingly, the Young diagram \™¢ for & 1, . is mapped
to such a one ®(\™¢) for Gy, , and the ITUR 7(A™¢) of ®(A\™¢) to an IUR
mT(®(A™C)) of Gy, .
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Thus, we arrive at a situation where, for an increasing sequence of
pairs of symmetric groups Sy, and their IURs 7(®(A™¢)), we look for a
necessary and sufficient condition for the existence of the pointwise limits
of the normalized characters YX(®(A\™"¢)) of 7(®(A\™¢)), and then calculate
the limit of irreducible characters.

This problem has been settled in [VK1] and [VK2]. Only a difference
from the present situation is that here Gy, is weakly increasing up to &,
but there &,, goes up to &, one by oneasn - n+1—-n+2 — ---.

5.2. Known results on limits of irreducible characters for
S, " S
The infinite symmetric group &, is an inductive limit of the n-th sym-
metric group &,,. An equivalence class of IURs of the latter is parametrized
by a Young diagram
(5.18) A =AM AP Ay A > A s s A >,

n

of size n = |A|, which is by definition the number of boxes in A(™. The
normalized character corresponding to it is denoted by Y(A™); ) (o € &,,).
Denote by 7,(A(™) and ¢, (A™) the length of k-th row and k-th column of
A" Then 7,(A\(") = A,gn) and

(5.19) YoMy =n, Y (™) =n

1<k<n 1<k<n

Consider the case of an increasing sequence of Young diagrams A\ as
I, / N. In[VK2, Theorem 1], the following is asserted (cf. also Theorems 1
and 2 in [VK1]):

THEOREM 5.4. ([VK1], [VK2]) The point-wise limit lim,, ., X(A™); o)
exists for each o € G if and only if there exist limits of relative lengths of
the rows and columns as

(n) (n)
(5.20) fm A g w =B (k=1.2,...).

n—oo n n—oo
In this case, the limit is the character of & corresponding to the

Thoma parameter o = (ag)k>1, 5= (Br)e>1-

Let by, := riy(A™) — k, aj, := ¢x(A™) — k be the lengths of k-th row
and k-th column of A counted off diagonal. Suppose ai > 0, b > 0, only
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for 1 <k <r. Thena; >as > - >a, >0,by >by>--->b. >0,
Ysai+Y bi=n—r, and

a Qr_1 “ee aq
5.21 -
( ) <br br—l o b1>
is taken as a parameter for the irreducible character x\») of &, and called
‘Characteristik’ (of rank r) by Frobenius in his paper [Frob], where irre-
ducible characters of symmetric groups have been first studied (the num-

bering of a; and that of b; are reversed here from that in [Frob]). Frobenius
dimension formula is given as

I
(5.92) dimw()\(")) _ n.Agal,ag,...,a:ﬂ) A(by,ba, ..., by) ,
[Li<icrai! - Tlicj<r 050 Thi<i j<r (@i + b5 + 1)

where A denotes the difference products. The ratios by /n, ai/n have the
same limits as ag, G in (5.20).

A basis of the above theorem is an asymptotic evaluation of the normal-
ized irreducible character Y(A\(™);0) as n — oo. For instance, let o) € &,
be a cycle of length £. Then we have the following evaluation deduced from
a formula due to F. Murnaghan ([Mur], [VK1]):

~(\(n). (O _ b\ -1 ag\*t 1
(5.23)  Y(\™;00) _zk:<g> +(~1) §(;) +O<E>.

5.3. Thoma’s character formula revisited

We revue here Thoma’s character formula for &,. In his paper [Tho],
a character of G, is, by definition, an extremal element in K;(S,) or
an element in E(S) (cf. 2.1). As a parameter for a character, he takes
(o, B) with o = (a3)i>1, B = (8i)i>1, a pair of two decreasing sequences of
non-negative real numbers such as

ap>az>az3>---2>20, B >0>p3>--2>0;
(5.24) ol + 18l <1 with [lall ==Y o, 18] = 5
i>1 i>1

For a 0 € &, let 0 = 0109 -0, be a cycle decomposition, and let
ne(o) denotes the number of o; such that ¢(o;) = ¢ for £ > 2. Then Thoma’s
formula for the character f, g is given as

635  Juslo) = [(XC ol + 0 8)"7 (0 e o)

0>2 i>1 i>1
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We rewrite this in the form of our formula for & (7") in Theorem 3.3.
Here we take T as the trivial group T' = {er}, and T = {17}, where 17 is
the trivial representation of the trivial group 7', and put with { = 17 and
e=0,1,

o=, 0cni =i, ace = (0cei)ieN;

pei=1="llacel; xe(0) = (sgne(0))” (0 € 6).
e=0,1

For a cycle o; in the cycle decomposition of o, we have sgng(o;) =
(=1)%@)=1and the formula above is rewritten as

(5.26) faplo)= 1] (Z Z(ac,a,o“f’f)-xE(aj)).

1<j<m \e=0,1 ieN

Remark 5.3. In [Hir2]-[Hir3], it is shown that all these characters f, 3
are obtained as various limits of centralizations of one matrix element F' =
Indg fr= of a unitary representation p = Indg 7, induced from one-dimen-
sional character 7 of a certain subgroup H of wreath product type (cf. [Hir3,
§15] in particular).

This fact means also that f, g can be obtained as a limit of a sequence
of characters of certain standard induced representations (not irreducible in
general) of &, as n — oo.

5.4. Limits of monomial terms of irreducible characters of
Sn(T)
Let us continue the discussions in 5.1.

STEP 5. We apply Theorem 5.4 to the (-factor in (5.15), or more
exactly to the increasing sequence of IURs 7(®(\"¢)) of Gy, /" Guo, Where
Ny = |In¢| = [A™] is the size of A™¢. Then, coming back to 7(A™¢) of
S1,. /61, = 6, we get the following.

LEMMA 5.5.  The normalized character X(A\™¢) of IURs w(A™°) of &, .
converge pointwise if and only if there exist the following limits for any
kE>1:

(™)
2 1 —= -
(5 7) n1—>n;o ‘In,d ag‘,k 7 nSoo |I ’<|
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In that case, put o = (ag;)i>1, B = (B¢ ;)i1- Then, the limit is given
through a bijection ® : I — N in (5.16) and ¢ : &1, , — S in (5.17)
as

(5.28) lim Y(A"7) = far 5 (0(7)) (7 €61,,),

n—oo

where (1) = ®oTod L,

STEP 6. We assume CONDITION I holds, that is, that for each ( € T
there exists limy, oo |Inc|/n = Bc > 0. Put Tt = {¢ € T ; B; > 0}. For
¢ € T*, we assume that the limits (5.27) exist for 1 < k < oco. Introduce a
parameter € = 0,1 corresponding to a one-dimensional character (sgng ),
and put

QC0k = nh_l}go T Q¢ 1k = nh_{lgo a7

(5.29) '
pei=Bc— Y llage]l with ace = (ageq)iz1.
e=0,1

Then, ac o = Bg/(\)/gk, acak = B¢ By, for C € T+, and acor =0, acip =
0, uc =0 for ¢ ¢ TT. Since B = ZCGfBC <1, we have

pe >0, lagoll + llacall + pe = Be,

S llacel + llull < 1

Cef e=0,1
with 1= (uc)eers Ilull =D ne.
¢eT
Let 7 = HJEJ@ o; be a cycle decomposition of 7, then (1) = HJ'EJC (o)

is a cycle decomposition of ¢(7), and £(p(0;)) = £(c;). Hence we see from
(5.26) that, with a/C,O,i = a’m., 0/47171. = 522

(5300 Ja (o) = 11| 2 D xelonlale )™

jede \e=0,1 icN

Thus, taking into account (5.13) and (5.14), we get the following con-
vergence lemma.
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LEMMA 5.6. Let 7, = (InvC)geT be a partition of I, increasing along
with n — oo in such a way that I, C I4q1¢ C ---. Assume CONDITION I
holds, and put T+ = {Ce f; B¢ > 0}. Moreover assume that the limits in
(5.27) ewist for € T™.

Take an h = (d,0) € Hyp, C Gy = 6y, (T). Then h € H, C G, for
n = ng. Let h = 48 §q, 9192+ gm with & = (tq7 (Q)); g; = (dj, o)
be a standard decomposition of h as an element of G = S (T). Then
0 = 01090 18 a cycle decomposition of o. Put Q = {q1,q92,...,¢} =
supp(d) \supp(o) and J = {1,2,... ,m}. Take a pair (Q,T) of partitions of
Q and J. Then, for the term corresponding to (Q, J) in (4.24) of irreducible
characters of Gy, the limit is given as follows.

(i) The limit of coefficients is given as

lim ¢(Z,;9,J) =¢(Q,J) := H (BC\QA ‘ H BCE(UJ-))

n—oo . :
ceT JeJ¢

(i) If Q¢ # 0 or J: # O for some ¢ & T+, then
lim ¢(Z,;Q,J) X(A";Q,J;h) =0,

n—oo

otherwise, |—|Cef+ Qc=Q, UCET+ =J, and

lim X(A";Q,7;h)

T, dj / o
= H < o dlmg X H % xa(aj)Z(%m)é( ]));
q€Q;

ceT+ J€J; e=0,1 ieN

nlLHgOC(In; Q.J)X(A";Q,T;h)
B o o Xc(tq)
_41}{1‘@[ (lacall + llagall + o) X602
o Py, (d;)
T3 St S0

je€Je \e=0,1 ie N

§6. Limits of irreducible characters of &, (T)

By Lemma 5.6 above, we get the limit of each monomial term ¢(Z,,; Q, 7)
X(A";9,T;h) of x11,,(h) of G,, = &,(T) in (4.24) as n — oo, and then
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summing up these limits, we obtain the limit function lim,,_, X1, (h) on
G = 6 (T) as follows.

Let Z,, = (I”K)ce’f be a partition of I,, and A" = ()\”’C)Cef a set
of Young diagrams such that A™¢ has the size |I,,,c| and determines IURs
m(A™€) of the subgroup Sy, of &,. Take a subgroup H,, of G, and its

IUR 7, given as
(6.1) Hyp=Dy xSy, Dn=Duy(T)=Dr,(T), Sp,=]] .

ceT

(62) Tn = Mn ] £n7 T = ‘XIA CIH’CJ {n - ‘XIA W()\H,C%
CeT” CeT’

and consider a sequence of IURs II,, = Indg’; 7 of Gy (n=3,4,5,...).

Assume that the pair (Z,,, A™) increases along with n — oo in such a way
that I, 0 € I,4q,¢c € --- and A6 C AHLS C ... Moreover assume that the
sequence (Z,,, A™), n — oo, satisfies CONDITION I on Z,,, and CONDITION TA
on (Z,,A™) given below:

I ~
(ConDITION 1) the following limits exist: B¢ := lim Hnl (Cel).
n—oo N

(CoNDITION IA) For each ¢ € T+ :={C € T ; B¢ > 0}, there ewist

limats
ATL?C An7c

(6.3) lim O™ by, lim ck(A") =Bl (1<k<oo)

n—oo |In7<| ’ n—oo |ITL,C|

Put, for ¢ € f,

NS S
a0k = lim re(A"7) s ac1k = lim (") ;
n—oo n n—oo n
(6.4) A e = (Oéc7g7k)k21 for = 0, 1;

p¢ := B¢ — ZOIHO%H’ p= (pa¢) e
e=0,

Then, for ¢ € f—i_, acok = BC O/g,kv ac 1k = BC ﬁé,k’ and for ( ¢ T+,
acokr =0, ac1,=0,and pec =0, with B, = 0.

With these data, we define a parameter A as A = ((ac,.)
,u), then,

(6.5) Yo > llacel+ =) B <1

¢eT e€{0,1} CeT

(¢.e)eTx{0,1} 7
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Corresponding to this parameter A, we define a function F4 on G. Take
an element g = (d,0) € G. Let g = &g &3, 9192 - gm With & =
(tq, (q)), gj = (dj,0;), be a standard decomposition of g. Put @ = supp(d)\
supp(o) ={q1,92,...,¢-} and J = {1,2,...,m}, then

66 P9 =TI | 30 el e | o0

a€Q \¢eT \e€{0,1}

d
IS S S @ntoy) 20200 )

JeJ ¢ceT \e€{0,1} ieN

where x.(0j) = sgng(o;)° = (=1)f“@)=Y and for o; = (i iz --- ;)
Wi,th, gj = E( ) and dj‘: ,(ti)iEKj with Kj = Supp(aj), Paj(dj) =
[ty th,—1 ] € T/~ with t}, = t;,.

THEOREM 6.1. Assume that the sequence (Z,,A™), n — oo, satisfies
CONDITION I on Z,, and CONDITION IA on A™.
(i) In the case where T is finite, we have

(6.7) Jim X, (9) = F(9) (9€6),

and the limit function F* is equal to the character fa in Theorem 2.2 with
a parameter A = ((QCvE)(Q,e)efx{O,l} ; ,u) given above, which satisfies the
equality condition (2.9), that is, 3 .7 > ccqoy lacell + lull = 1.

The set of limits lim, .o X11,, 0f normalized characters of IURs of Gy,
is exactly equal to the set of all characters of factor representations of finite
type of G.

(i) In the case where T is infinite, the function FA is continuous if
and only if the equality condition (2.9) holds for A, or if and only if the
following CONDITION E holds:

(ConpITION E) Z B =1.
CeT

In that case, lim,, .o X1, (9) is given by FA(g) as in (6.7), and the limit
function FA equals the character fa in Theorem 2.2, and the convergence
s uniform on every compact subset of G.

The set of limit functions lim, ..o X11,, 0f normalized characters of IURs
of Gy, which are continuous on G is exactly equal to the set of all characters
of factor representations of finite type of G.
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Proof. Let us prove the convergence X, (g) — F4(g) as n — oc.
Fix ng and take g = (d,0) € G,, C G, then g € G, for n > ny. Let
its standard decomposition be g = &£;,&g, -+ &g, 9192 - - gm as in (4.11), and
correspondingly put Q = {q1,q2,...,¢-} and J = {1,2,...,m} as in (4.12).
By Theorem 4.5,

(6.8) X, (9) = D eZn; Q. T) X(A"Q,T:19),
(2,7)

where, for a pair (Q,J) of partitions Q = (QC)CET of @ and J = (JC)CET
of J,

gl (el = 1) -+ (1Tl = 1Qc] = Ljey 1K1+ 1)

C(InQQyj):Cel_[f n(n—l)(n—z)"'(n_|Q‘_|SUPP(U)‘+1) ’
X(A™Q,7:9)
_ Xclte) o Xe(Poy(d)  —vne, )
_ Xclta) (i) 5. (tos))ens) | -
CEHT (QEQ( dim ¢ jgg (dlmC)e( i) .

The target function F4(g) is expressed in a similar way as

(6.9) Fig) =Y ¢(Q,7)X(Q,T39),
(2,7)

where (Q,J) runs over pairs of partitions Q = (QC)Cef+ of @ and J =
(‘]C)CET+ of J, and

(6.10)  «(Q7) = lim c(Z;Q.7) = [] (Bgch\. 11 Bf("ﬂ),
CeT+ jEJe
X(9,T;9) = JEEOX(AH? Q,7;9)

_ xelty) |, 17 Xe(Pry(d))
C!;L <QEQ< dim ¢ jg( (dimoe(aj)

X ( X (05) Z(a/q,e,i)a‘”))) :

=0,1 iEN
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Since By = 0 for ¢ € T\ T*, we can extend the summation in (6.9) over
pairs (Q,J) of partitions Q = (Q¢)c7 of @ and J = (J¢) 7 of J, just as
n (6.8), by extending the definitions of ¢(Q,J) and X(Q, J;¢g) naturally,
where for the latter the parameters (0/47 6’Z-) can be taken arbitrary since the
term ¢(Q, J) X(Q, J;g) are understood naturally as equals 0.

So doing, we evaluate the difference of two corresponding terms of the
same kind by separating into two factors as

|e(Zn; Q. T) X (A Q, T19) — ¢(Q,T) X(Q,T:9)|
<I(n;Q,J)+ II(n; Q,7),

where

I(n;Q,7) = |c(Z0;Q,T) — ¢(Q, T,
H(n;Q,7) :=¢c(Q,J)

X H H %(An,C;(f(Jj))jeJC) - H H Z Xs(Uj)Z(ag,m)e(Uj) )

Ce’f+ jGJC Ceff+ jEJC e=0,1 iEN

Here we put II(n; Q, J) = 0 in accordance with ¢(Q, J) = 0, when some of
Q¢ and J; are not empty for a ¢ € T'\ T, and we have used the evaluation
of monomial terms given as

"o 7. X¢(tg) Xc (Fo, (d5))
X (A" Q,T:9)| <1, 11 dl—mCXHW <L
¢eT \9€Q¢ J€J¢

The difference between 1, (¢) and F4(g) is evaluated as follows. Let
F = FQ x F’ be a finite subset of pairs (Q,J) of partitions of Q and .J,
with finite subsets F? of Q and F/ of J , then

X, (9) — FA9)| < Y I Q0) + ) T(n;Q,7);
(9,9) (2,9)
where
> Im;Q,9) < JP(ni F) + J5(n: F) + J5(F),
(9,9)

R F) = Y |elZi Q. 7) - e(Q, 7)),
(Q,J)eF
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B F) = Y T Q.J)

(Q,T)¢F
BF = Y o= Y [I(B I BM)
(Q,T)¢F (QINEF ¢eT Jjede
and, since
_ : ._ @l (o)
3 Q. T) = e(T) with o(J) = (Z B<> 1 I1 B,
Q ¢eT ceT 1€J¢

Y I Q7)< Ty F)+ JH(F),

(2,7)
R 7y = Y { VLTI 20 toien)
JeFJI ceT+I€J¢
— T IT 3 eton) Do) }
CET+ j€J: €=0,1 i€EN
JNF7) Z 2-¢(J (ZBC)‘Q‘ Z H HBE(UJ
Jer’ ¢eT TEFI ¢eT jelc
Note that
N T T)=1 (from (4.22)),
(2,7)
Z «(Q,7) = Z H B!Qd—‘rszJC (o) _ (Z Bg)lQlHSllpp(U)\'
Q) (@) cet =

Now assume that CONDITION E holds, or def B: = 1. Then, in the
last equality, we have 2(97 7) ¢(Q,J) =1, and so the evaluation similar to
(5.10) is possible and gives us J9(n; F) < JP(n; F) + JI(F). Hence

i, (9)) — FA(g)| < 200 (0 F) + 2J9(F) + IS (m; F) + T2 (F7).

Now, for a given small € > 0, take a finite set F = F?@ x F/ sufficiently
large so that JY(F) < ¢ and JY(F’) < e. Then, choosing n sufficiently
large, we have J(n,F) < ¢ by (6.10), and J{(n;F’) < ¢ by Lemma 5.6.
So, we obtain

|XHn FA( )‘ < 6e.
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This proves that Y, (g) converges to F4(g) uniformly on Ggo = Dgo
G ko with a fixed finite set K D supp(g) = QU K, K = supp(o) =
|_|jeJ supp(;)-

Thus the convergence i, (9) — F“(g) is uniform on each G,,. Since
any compact subset of G in the inductive limit topology 7,4 is contained
in some G, the convergence is uniform on every compact subsets of G.

The rests of the theorem are easy to prove. a

Remark 6.1. In the case where CONDITION I holds but CONDITION E
does not, the function F4 is nowhere continuous. However it is continuous
on every Dy D x {0} with K = supp(c). Therefore I 4 is Borel measurable
on G in the topology Ting-

PROBLEM 6.1. We suspect that F4 is a weak limit in a certain sense,
and also a pointwise limit “almost everywhere”, of normalized irreducible
characters xi, of &,. At least, the restriction F4l|g, is the weak limit of
Xi, |G, in each L%(Gy).

EXAMPLE 6.1. To give examples of discontinuous limits lim,,_,c X11,,(9)
on G, we take G = G (T) with T = T! one-dimensional torus. The dual
of T is given as T = {(j, ; k € Z}, where (4(t) = t¥ (t € T). For a fixed no,
we take h = (d,0) with d = (t1,te,...,tny, €7, €1,...). For n > ng, take a
partition I,, = I—'cef I, ¢ given as

In,g“s = @ (1 < s < no),
Ingoy = Ing U{no+2p+1;0<p<[(n—no—1)/2]},

~ JA{no+2u}  ifng+2u<n
moCno+u 0 if ng + 2u > n.

Then, B, =1/2 and B =0 for ¢ # ¢, and deTBC =1/2.

The normalized character i, of irreducible representation Il = Indgz ™
is given for h = (d,1) with d € Db by (5.2). In particular, if h =
(t1,er,er,...), t1 # ep, we have Q = {1}, J = (), and since dim¢ = 1,

_ |In,<n0|

611 R, () =

1
! XCTLO (tl) + Z E : XCn0+u (tl)'

1<u<(n—nop)/2
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Hence we get a discontinuous pointwise limit function as

.~ 1
lim X, (h) = 5 - X¢o, (f1)  for th # er;
n—o00 2
lim X, (e) =1 for the identity element e € G.
n—oo

Similarly we have the restriction F4| Dy, 38 pointwise limit of xr, ((d,1)),
d € Dgy.

Another simpler example is given as follows. Fix an integer p > 0, and
I¢ = {k}if k =sp, 1 <s <n, and I, = 0 otherwise. Then, for
h= (d, 1) with t1 =1t 75 er,

1 1 £Pe — £ P41
_ - if ¢t ,
T = S St ==x{ w1 #
n .
1<s<n n if tP =1.
Hence
o [0 i #£1,
X, () = { 1 if =1

One more example: we put

Inc, ={2k+1} for 0<k < (n—1)/2;
Inc , = {2k} for 1<k <n/2.

Then, for h = (d, 1) with t; =t # er,

P _ P
1 1 ] if n=2p,
X, (h) = Z n Cr(t) = e w1l _ 4
—n/2<k<(n—1)/2 -1 if n=2p+1.

Put t = ¢ (0 < 6§ < 27) and f(t) = X1, (h), then for n = 2p+ € (e = 0,1),

0y _ l (e—1)i6/2 sin(nb/2) . ¢ if
Je) =e smgz) 0 (T AL

and nf(e?) — 6, (J-distribution on T supported by 1 € T).
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87. Necessary and sufficient condition for existence of a limit of
irreducible characters of &,,(T)

To construct explicitly IURs II,, = Indg’; T of G, = 6,(T), we have
used in Section 3 a partition (I”K)cef of I, = {1,2,...,n}. However,
to parametrize irreducible characters xir,, the essential thing is not the
partition (I ) 7 itself but the partition (n¢). 5 of n given by n¢ = [In¢| =
|A™€|, as seen in Remark 4.2. Therefore we rewrite CONDITION I on Z,’s
and CONDITION IA on (Z,,A™)’s together in one condition as follows: for
increasing sequence A" = (A™¢) cef of sets of Young diagrams \™¢ with

n= def |)\n,{|’
(CONDITION A) there exist limits: B¢ := lim ——

and for each ¢ € T+ .= {Ce T ; Be > 0}, there exist limits
rk()\n,C)

A6

(1<k< o).

For later use in the second part [HHH2] of our present work, we sum-
marize the results in the preceding section as in the following form. We put
also for (e T\ T"

)\n,{ ATIHC
ack = lim ) _ 0, a¢ir:= lim &) (1 <k <o)
n—oo n n—00 n
and put for e = 0,1, a¢, = (ag,a,k)kzla and
(7.2) p¢ = B¢ — Z lacell, w:= (NC)QGT'
e€{0,1}
Then we have
S5 Jagel +lul = S B < 1.
ceT £€{0,1} CeT

THEOREM 7.1. Let G = G (T), G, = 6,(T) with T any compact
group. Let the normalized characters of xt, of IURs I, of Gy, be parame-
trized by A™ as in Theorem 6.1.

(i) The following is a necessary and sufficient condition for the existence
of the pointwise limit of X1, as n — 00, as a continuous function on G in
case T is infinite.
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(i-1) In the case where T is finite, the limit lim,,_, o X11,, exists if and
only if CONDITION A holds. Here CONDITION E holds automatically, or
2erBe=1

(i-2) In the case where T is infinite, the limit im,,_, o Y11, €xists and is
continuous on G, if and only if both CONDITION A and CONDITION E hold.
Here the convergence is compact uniform on G.

(ii) In both cases (i-1) and (i-2), the set of all the limits lim, o X11,
coincides with the set of all characters (of factor representations of finite
type) of G. The parameter A = ((anf)(c,a)eTx{o,l} ; ,u) for a character of
G thus obtained is given by (7.1) and (7.2).

§8. Case of canonical subgroups G° for T abelian

Let T be a compact abelian group and ' its subgroup, not necessarily
closed. Define subgroups of G = G (T) = Doo(T) % 6, and G, =
Sn(T) = Dp(T') x 6, which are called canonical as follows:

G® = 64(T)° = Do (T)° % Goe, G2 =6,(T)° = Dp(T)° x &,
with Doo(T) = D2 == {d = (t;)ien € Doo(T) ; P(d) := [L;enti € S}
Do (T)° = D := {d = (t;)icr1, € Dn(T) ; P(d) € S}.

Then, by Theorem 2.4, the restriction of a character of G onto G°
gives a character of G°, and in case S is open in T any character of G° is
obtained by this restriction. Note that in the case of G¥ the factorizability
of positive definite functions in Definition 2.1 used to characterize characters
is no longer well-fitted to the situation because the canonical decomposition
in (2.6) of g € G should be considered in the bigger group G.

In this section we study, for G° = lim,_.o Gf , limits of irreducible
characters of Gf , and in particular ask if all characters of G can be ob-
tained as limits of irreducible characters of G .

8.1. Restriction of IURs of G,, on its subgroup G;:"

Let us first study the structure of the restriction II, |4 s of an IUR 1L,
of G,, on its subgroup Gqf , and in particular, study if I, |4 s remains still
irreducible or not. As is proved in Section 3, every IUR II,, is realized as
an induced representation as II,, = Indg’; m,. We keep here notations in

Section 3:
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I, = (I"vC)CET : a partition of I,
A" = ()\"’C)Cef . a set of Young diagrams such that [\"¢| = |I,, (|,
7(A%¢) : an IUR of &y, . C 6, determined by A

a subgroup H,, C G, and its IUR 7, : with ﬁ; ={Ce T i Lo # 0},

Hy, =Dy, xSy, ., Dy=Dy(T)=Dr,(T), Sp,= H (ST
CeTy,

Tn =N L&, Mn= & CI"’C, &n = E\ W()\n’g).
CETy,

o~
m
=3

Moreover the space V(II,,) of II,, = Indgz Ty, consists of V(m,)-valued con-
tinuous functions on G, satisfying ¢(hg) = mn(h)(¢(9)) (h € Hy, g € Gy),
and the representation operator is given by (Hn(go)go) (9) = v(99°) (9,4° €
Gr).

Let us examine the algebra of intertwining operators Z(II,, |4 f) of the
representation I, [ s of G with itself.

STEP 1. Since dim V (II,,) < oo, any linear transformation L of V(II,,) is
given as follows by an E(V(Wn))—valued continuous kernel K'(g, ¢') satisfying

K'(hg,W'g') = mn(h) K'(g,9' ) mn(h))~"  (h,h' € Hy, g,9' € G),
Le(g) = /H \G K'(9,9") o(g") dpmnc, (9) = /G K'(9,9") (d") duc, (g"),

where gA’ = H,¢'. Suppose J be an intertwining operator of G -module
p|gs. Then it is expressed as an integral operator with a kernel K’(g, g')
satisfying

K'(99°,9'9°) = K'(9,9") (9,9 € Gn, g° € GS).

Note that H, G,:? = Gy, then we see that K'(g,¢’) is uniquely determined
by K(g) := K'(g,e) as

(81)  K'(g,1'¢°%) = K(9(g°) ma(W) (9 €G, I € Hy, g° € G).

The latter K(g) is determined by the system {K(7)}, where 7 runs over a
complete system of representatives of double coset space

(8.2) H\Gy/(Hn N G®) 2 S\ /S0
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with Sp, 1= H, NG, = ngf, &1, ., and for a fixed 7,
K(hth') = my(R)K (T)mp (W) (h € H,, b € H, N G%).

Noting that H,NG® = DS xS}, 1 and H,N7(H,NG%)771 = D% (5,,N
TS[%]T_I), we obtain the following lemma.

LEMMA 8.1.  For a representative T of a double coset in Sp, 1\& /S,
the operator K(1) € L(V(my,)) intertwines two representations of Hy N
T(H, NG~ =D x (S[nn} N TS[nn}T_l) as

T (h) K (1) = K(7) (77" h7) - (h € DY % (Spy) 07877 )).

STEP 2. Let us first study D,”-module structure. For h = (d,1) with
d = (ti)icr, € D, we have P(d) = [];c;, ti € S, and

mn(h) = mn(d) D& (1), ma(d) = [ ] &)
CG'ﬁQ i€l ¢
with ¢; = ¢ for i € I,¢. Furthermore thr~! = (7(d),1) with 7(d) =
(tr—1(5))ieLns

Ta(rht ™) = i (r(d)) B&a(1), ma(r(@) = [ ] Gltr10)-

ceTy €lng

Hence, supposing K (1) # 0, we have 1,(d) = n,, (7(d)) or

(83) I ¢t =] ¢opt) it J] ties.
iely i€ly iely

On the other hand, consider characters of D,, = HiEIn T, T, =T,
which are trivial on D;7. A character of T is trivial on S if and only if so
is on the closure S, and so it is naturally considered as a character of T/S.
Since D,,/D = T/S, characters of D,, vanishing on D,? are of the form
X ¢! with ¢/ = ¢ (Vi) for some ¢¥ € (T/S)".

IASY %

Therefore we see from (8.3) that (. ;) = ¢5¢; (Vi) for some ¢° € (T/E)A, and
so (¢%)" = 1. Denote by KC the underlying set of integers of I, ¢, then we
have T(m) = I,, ¢s¢c. By adjusting the representative 7 of a double coset
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St \Gn/ S, We have 7(I, ) = I, ¢s¢ as ordered sets, that is, 7(i) > (i)
in I, ;s if i > 4" in I, .. Hence the map

-1
(8.4) S, 20— 70T € GIn,CSC

gives a mnatural isomorphism between components of S|, ;, and those of
-1 _
Span) VTSl T = Spya)-
Now turn to study the module structure for Sy, ;. Then we get the
following lemma.

LEMMA 8.2. (i) Suppose K(1) # 0. There exists a unique ¢° € (T/S)"
such that 7(Inc) =1, csc (¢ € T}), and

8.5 ATC = \mC5C (e T as abstract Young diagrams).
n

(ii) Normalize a representative T of double coset in Sj, \&, /S, such
that

(8.6) T(Inge) = Lycse (CE€ T))  (as ordered sets).

Then the intertwining operator K(7) is a scalar multiple of the unitary
operator U(T) of exchange of the order of components in the exterior tensor
product &, = &Cef/ 7(A™C) for Sin = HCET/ &y, . by replacing 7(A™C)

with w(A™¢°¢ together with the same exchange in n, =X ._=, (In< for D,.
CeTy,

Let p = p(¢®) be the order of ¢¥. Take a partition of ﬁ; into subsets
of p elements of the form Z(¢) := {¢, (¢9)¢, ..., (¢5)P~1(}, and a complete
set of representatives A, = A, s = {C}, |Ayn| = |T},|/p, then

(8.7) T,= || 2(¢), n=pN with N:= > |Lc

(8.8) A= (¢! ¢ e Z(¢))  (as abstract Young diagrams).

Accordingly the operator U (7) for the normalized representative 7, asso-
ciated to ¢¥, is of order p, and if we determine well the positive multiplicative
scalar, the operator L(¢®) with the integral kernel K'(g,g') given by (8.1)
through K (g), which corresponds to K (7) and zero outside H,,7Hy, is uni-
tary and of order p and intertwines II, [ s with itself. Here K’ (hrg® W g°) =
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(WK (7)mn (W) (b, € Hy,g% € GF) and K'(g.¢') = 0 if g(g)" ¢
H,7H,, and L(¢®) is given as follows: for g = (d,a) =do € Gy,

/ K'(g9,9") ¢(g") duc, (g

) ()

o'e6,
= nn )
o'e6n
LEMMA 8.3. For K(1 ) U(7), ¢ > 0, the associated operator L(()
is unitary if ¢ = pg, (Hy) ™ |6 /1Sl Put KY(g) := ¢ 'K (g), then
KY(g) is associated to U(t) and
(8.9) Lel) =m(d) - Y K00 p(o).
' €511 \Gn

Proof. Define ¢*¥ € V(II,,) for 0 € &,, and v € V(m,) as ¢ (ho) =
mo(R)v (h € H,), and ¢%¥(ho) := 0 outside H,o. Then |¢”?|? =
pG, (Hy) |v]|?, and

L(CS)QOU’U —c- NGn(Hn) QOTO',U(T)’U'
Comparing lengths of vectors in both sides, we have ¢ - ug, (Hy) = 1. U
Let Z(m,) be the set of all (° € (T//S) which satisfy (8.5):
(8.10) Z(my) = {¢5 € (T/S) 5 A = ¢ (¢ e T))}

Then it is a subgroup of order < n consisting of elements of orders dividing
n. From the structure theory for abelian groups of finite orders, we see that
Z(my,) is a direct product of cyclic groups as Z(m,) = [[1<;<, Zp,-

PROPOSITION 8.4.  The algebra Z(Il,|¢s) of intertwining operators for
the restriction 11, |gs of IUR 11, = Ind " T 0T G is isomorphic to the
group algebra of Z(my), and there corresponds to a group element 5 the
operator L(¢%) € L(V(IL,)).

Since (g s) is abelian, the irreducible decomposition of I, |q s is of
multiplicity free, and the number of irreducible components equals the order
2 (7).

In particular, the restriction of IUR I, of Gy, on its subgroup G re-
mains irreducible if there exists no non-trivial character ¢° € (T/g)’\for
which (8.5) holds.
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Conversely, now consider an TUR p, of G2 and ask if it appears in
a restriction of an IUR II,, of G,. Note that the map G° > g — p,(g)
is uniformly continuous and can be uniquely extended by continuity to an
IUR p,, of the closure G—Tf which is equal to G7. From the general theory of
representations of compact groups, we extract Frobenius reciprocity given in
the following lemma, and from it we know that every irreducible component
of the induced representation Indg% Pr. contains a multiple of p,, when it is

restricted on G§ and naturally a multiple of p,.
Leaia 85, [Id%s oy 1L, | = [l : 7).

8.2. Limits of irreducible characters of G;:" as n — oo

DEFINITION 8.1. For IURs II} of G and IL? ; of G2, suppose that
they are restrictions of IURs II,, of G, and Il,y; of G,41 respectively.
Then we say 11 increases to IL7 ; (notation: ILY I, ) if and only if
II,, increases to I, 4.

Taking increasing sequences of IURs II,, of G,,, n — 00, we restrict their
each terms to subgroups Gf , and apply the results in 8.1. Then, with the
help of Theorem 2.4, we obtain from Proposition 8.4 the following results
on limits of irreducible characters of G and on characters of G°.

THEOREM 8.6. (i) Every character of G° is a limit of characters of
sequence of increasing IURs of G2 asn — co. In this case, the convergence
18 compact uniform.

(ii) Take an increasing sequence I, of IURs of Gy, for which the nor-
malized characters X, converge to a character fa of G. Then, their re-
strictions T1) = Hn|G7§ remain irreducible for an infinite number of n, and
thus obtained sequence of normalized characters %Hf of IURs of G2 (even
though it may have an infinite number of n of lacks or defects) converges
compact uniformly to the character ff = falgs of GS.

(iii) In the case of (ii), suppose an infinite number of IS = s
are reducible. Then, for the sequence consisting of reducible I1?, their nor-
malized characters )ZH;? also converge compact uniformly to the character
i = falgs of G5 as n — o0.

In this case, the character fa of G is characterized by the property that,
for some non-trivial ¢° € (T/g)A,

~

(8.11) Qee=Qesee, e =ese (€T, e=0,1)
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Proof. If the restriction I1% = I,|gs is reducible, there hold (8.6)

and (8.8) or |I,¢| = [I,, ¢s¢| and A™¢ = AmC"C. These conditions can not
occur consecutively for n. Moreover, for any character fa of GG, we can
find a sequence of II,, for which none of II, satisfies these conditions and
fa = lim, .o Xm,,. This gives us a sequence of ITURs II7 for which f f =
limy, o0 X115, and so the assertion (i).

Taking into account the above conditions (8.6) and (8.8), we can deduce
other assertions easily from Proposition 8.4. b

Remark 8.1. For another type of subgroups 2,,(T) := D, (T) x 2, of
Gn(T) and Ao (T') := Doo(T) X Use 0f Goo(T), we can study the analogous
problem. By Theorem 16.1 [HHS6], all the characters of 2 (7') are obtained
as restrictions of those of G, (T'), and conversely the restriction of any
character of the latter is also a character of the former.

8.3. Characters of irreducible components of the restriction
Han;?

Analysis of reducible restrictions II, |~ s of IURs II,, = Indg’; my, of Gy,
is interesting, and necessary to study further the situations of G and G°
independently from G, and G, for instance, to extend Definition refdefn8.1
to general IURs of G2, and to clarify the situation in Theorem 8.6 (iii).

The algebra Z(Il,|;s) of intertwining operators for the restriction

I, | s of IURII, = Indgz 7, is abelian and isomorphic to the group algebra
of

(812)  Z(m) ={¢¥ e (T/S) ;A =xvC (e} [ Zo
1<k<b

The set of operators L(¢®) on V(II,) is isomorphic to the above group in
such a way that L(z2") = L(z)L(2') (2,7 € Z(m,)), and we can construct
from them projections onto each irreducible subspaces. Then we can also
determine characters of irreducible constituents of IL,,|¢ s.

Take an Lj, = L(¢°) corresponding to the generator ¢° of k-th cyclic
component Z,, in the right hand side of the above isomorphism. Put L =
Ly, p = py, for a moment, and for cyclic group Z,, we solve L? = I (the
identity operator) to get p orthogonal projections corresponding to different
minimal idempotents in the group algebra of Z,. Put o, = exp(27i/p) a
p-th elementary root of 1, then [[o., (L — a;I) = 0. Differentiate the
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identity X? —1 = [Jo<,,(X — apI) in an indeterminate X, and then

multiply by X, we have

1
(813) ) QuX)=X" with Qu(X)==-X- J[] X-q).
0<u<p p 0<s<p, s#u
Put Qy := Qu(L), then Q, - Q, = 0 (u # v). Take firstly the square of the
first identity in (8.13) with X = L, and secondly multiply @, to it, then we
obtain

Y. Q= =1,
0<u<p

2{: QLL'CQU:: l})'cyv L 623 ::Cgv'

0<u<p

Therefore @, 0 < u < p, are projections (not necessarily self-adjoint)
mutually orthogonal. Note that, in the expression @, = ag .l + a1 L +
ag,uL2 + -4 ap_LuLp_l, the “constant terms” are the same: ag ./ = %I.

Come back to the notations with indices k. Let Qq(tk), 0 <u < pg, be
the projection constructed from Li. Then the set of possible products

(814) Qul,ug,...,us = H Q'(u,k,? (]- S U S pk)

1<k<s

are all of minimal projections onto different irreducible components of
I, | o s» and so the total number of irreducible components equals p1ps - - - py

n

= |Z(m,)|. Note that the common “constant term” of Qu; wo....u
1,U2;...y

1
to m[

is equal

£l

Now let us calculate the trace of L(¢)ILY(¢%), ¢° € G2, which is called
virtual character of L(¢5)ILY, and is denoted by Xr(cs)yms- On the space
V (I1,,), the operator L(¢)ILY (¢%) = L(¢%)I1,(g°) is given with an integral
kernel as

(LCHTLS (6%)) o(g) = / K "Vold"s%) dumnc, (6")
H,\Gn
= / K'(g',q"(g°) ")eld") dpm, (9"
H,\Gn

= / K'(g'9%, 9" elg") dum,\c, (d")-
H,\Gn
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Therefore its trace is given by an integral, and then by a sum as
tr(L(CHIL (9°)) = /H . tr(K'(¢'9%,9") dpm,nc,(9)

=5 X U@ = 3 (K ).

o'eGy ' €8y \Gn

because, for h € Hp, = Dy X Sy, 1, we have

K/(hU,gS7 hJ/) = ﬂn(h)K/(J/gS7 O-/)ﬂ-n(h)_l
= (WK (0'g50" mn(h) L.

Let ¢° = (d°,0) € G2 = DS x &, and we identify d° and o with their
images in G,,. Then oS¢’ " = (a’(ds),a’aa’_l), and so

KU(J/gSU/—l) -7, (U/(dS))KU(U/O_U/—l)’
(815)  w(LEMIEN) = Y w(m(o @)K (000 )).

o'€S\G,,

Here, with an element 7 = 7.5 € &,, determined by ¢ 9 such that 7.9 [nn}v'_l =
Siy,) and 7 # 1, the kernel is given as

KU (o) = Tn(R)KY (770, (K) for o' = k7K', K, K € Sy,
7 0 outside of Sy, 17S5},.) = Sy, T

Case I. Case of ¢ = (d,0), where o is not conjugate to any x7 with
Kk € S}, (in particular o = 1):

tr(L(¢7)ILY) ((d, o)) = 0.

LEMMA 8.7. For each minimal projection Q@ = Qu; us,...u, i (8.14),
let H&Q) =Q - Hns - @ be the corresponding irreducible component of II,,.

Then their dimensions are all equal and

£l

1
dim @ = —— . dim IL,,.
| Z ()
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Proof. Express Q = Quju,,...us i (8.14) as a linear combination of
the identity operator I and L(¢®) for non-trivial ¢° € Z(m,) as Q = aol +
>cs acsL(gs). Then, as remarked before, ag = 1/|Z(m,)].

On the other hand, tr(L(¢%)IL,(e)) = 0 as above for non-trivial ¢*, and
SO

dim I1(@) = tr(HgQ)(e)) = ag - tr(Il,(e)) = ag - dimIL,,.

0

Case II. Case of g = (d,0), where o is conjugate to k7, kK € S, :

From o’oo’ ! = k7, we have
T (0" (d%) KY (a'00" 1) = (0 (d°)) mn () U (7)
= (1 (0'(@%) B&u(0) ) U (7).

Here 7n,(-) is a one-dimensional character given as

816)  m(0'(d”) = ] Glto-10) = [] Grw(ts) for @ = (t:).

1€ly, 1€ly,

Decompose x € S}, as k = HCET’ k¢, ke € 61, ., then

€nlr) = B m(A™)(k¢).
CeTy,

Moreover K (7) sends each component m(A™¢) of &, to m(A™¢"¢).
To compute the trace, we apply the following lemma.

LEMMA 8.8. Let V be a Hilbert space of finite dimension, and take its
copies VIF), 0 <k <p—1. Let U be a cycle of linear isomorphisms of v (k)
onto VY coming from the identity map on'V for 0 < k < p—1 such that

voO _Lyv@® .y V(O),

where superfices k are considered modulo p, that is, superfix p is understood
as 0. In another expression, U s a linear map on X := @nggp_l sending
VE) =V onto VD =V through the identity map on V. Let L be a
linear transformation of tensor product space W = ®0§k§p_1 VE) given by
permuting components by U as

L: ®0§k§p—1 k) ®0§k§p—1 Upk=1) (v(k) c V(k)).
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Let A®) be a linear transformation on V) for 0 < k < p — 1. Then the
trace of linear transformation (®0§k§p_1 A(k)) - L on W is given by

(8.17) trW(( R A(k)) : L)

0<k<p—1
= try (UAPDUAP=D ... yAOTAO)
= try (AP~ AP-2) .. A A0

where, on the last right hand side, try denotes the trace on V, and each
A®) on V&) is pulled back as a linear transformation on V = V*),

Let A®) and B®) be two linear transformation on V). Then the trace
of linear transformation (®0§k§p_1 A(k)) - L (®0§k§p_1 B(k)) on W is
given by

(8.18) trW<( X A(k))-L.( 0% B(k)))

0<k<p—1 0<k<p—1
= try) (A(O) UB®—D A= 7B(—=2) g(P-2) ;7 =3 . .. A(l)UB(O))
= try (A(O)B(p—l)A(p—l)B(p—2)A(p—2)B(p—3) . A(l)B(O))‘

Proof. Let N = dimV, and take an orthonormal basis {e,,, 1 < m <

N} of V, and take its copy in V*) as an orthonormal basis {e,(ﬁ), 1 <
m < N}, for 0 < k < p—1. Take an orthonormal basis of W given by
®0§k§p—1 eﬁ,’i,l, 1 < my < N. Then, by definition, L maps ®0§k§p_1 egii

to @o<r<p-1 eﬁ,’;{fl. Put matrix elements of A% as a*) (m,m’) = (A(k)eg:/),

e,(ﬁ)>. Then

(@ 49)-1) @ ol & )

0<k<p—1 0<k<p—1 0<k<p—1
k k k
(@ ) ® . @ )
0<k<p—1 0<k<p—1 0<k<p—1
— a(o) (m07 mp—l) a(l) (m]J mo) “ e a(p_l) (mp—la mp_2)_
Summing up over 1 < mg,my,...,mp—1 < N, we get try (A(p_l)A(p_2) e

A(l)A(O)) )
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Put matrix elements of B*) as (%) (m, m/) = <B(k)e( ,), eﬂ?) Then

(@ )0 (@ m) @ . @ i)

0<k<p—1 0<k<p—1 0<k<p—1 0<k<p—1

= <<®A(k)) -L Z Hb (ng, myg) ef{? , ®e,(fil)€>
k 1<ng,n1,....np—1<N k k k

- <(® A(k)) DR | IR e gm
k no,MN1,-.sNp—1 k k k

— E: IIb( (g, mp) IIa (Mg, ng—1)

no,MN1,sNp—1 k
= Z a©® (mo, np—1) b(p_l)(np_l,mp_l) a(l)(ml,no) b (ng, mp)
NnQE,M1,..sNp—1

.a@FJ)Onp_l,np_2)yp—%(np_2ﬂﬂp_2)

Summing up over 1 < mg,m1,...,my_1 < N, we get the second formula.

a

Now we apply the above lemma by taking V = V(W(A"’C)) for a fixed
¢eTl and V® = V(z(AC€*)), 0 <k < p—1, and U the identifica-
tion of V(W(A"’(Cs)kc)) with V(W(A”’(Cs)k+1<)) through the order-preserving
correspondence 7(I, (¢sykc) = I, (¢syprie for 0 <k <p—1, and L = K(7).
Then

= Q) VP =vV@0E) =V(m).
0<k<p—1

Put A% = W(A”’(Cs)kc)(m(@)kc), then it is pulled back to a linear trans-
formation on V(0 as U=FAKR Uk = W()\n’g)(T_kH(CS)kC 7%). Since 77 = 1,
we have

UAP-Da®=2) ... 7AW 7 A0)
= 7T()\"’<) (7'/1(45);7_14 THR(¢cSyp-2¢ " TR(¢S)¢ 7‘/@() .
Take a partition of T 7 in (8.7) into subsets of p elements of the form
Z(¢) = {¢, (CS)(,../;, (¢5)P~1¢} with a complete set of representatives
Ap = A, ¢s,]An| = |T,|/p. Theresults in Case I and Case IT together give

us the following. For simplicity, a representative ¢’ of a coset in S[nn]\Gn is
denoted as o’ € S}, 1\G.
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THEOREM 8.9. Suppose that, for IUR 1I,, = Indg: Ty, its restriction
e = I,|gs onto the subgroup Gj is reducible. Take a non-trivial ¢° €

Z(mn) C (T/S) in (8.12), and 7 = 7, cs € &, such that T(Iy¢) = I, cs¢ is
an order-preserving map for every € T v. Let L((S ) be the corresponding
intertwining operator for 117, Then the virtual character XL(CS)HnS(gS) =
tr(L(¢9)ILT (g°)) is given as follows.

Take a g° = (d°,0) € G2. Ak € Sy, 8 decomposed as k = HCEﬁQ K¢
according to Sp,,| = HCETJL &1, .- Then,

XL(¢S)IS (gs) =0 if g° is not conjugate under G to an element in H,,

and

Xpesms(®) = Y. m(0'(@)) tr(KY (o'’ ™)
O'/ES[nn]\Gn

CE YT ) ()

X H Xr(An:€) (T“(csw—lc Th(¢Syp=2¢ " TR(¢S)¢ Thc)-
(EAR

We define the normalized virtual character as Xpsyms = Xr(csyms/
dimII,,. Then, since dimIl, = |&,|/|S},,| - dimm,, we get the following
corollary.

COROLLARY 8.10. The normalized wvirtual character Xpsyns =
Xr(cs)yns/ dimlIl, is given as follows: for ¢°=(d% o) eG¥=D5 x6&,,

- 1
XL(gS)HnS(QS) = 1G] Z Z ﬁn(UI(ds))
" KES[nn] U’Egn:

1
X
cea, (dimm(An<))P

5 Xnans) (TR(e 10 TR 2 - TR(ES)¢ THG) -

Now consider the situation in Theorem 8.6 (iii), where picking up II,,
with reducible IS = Hn|Gns, we have still a subsequence such that

limn_)oo %Hn = fA.
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THEOREM 8.11. Suppose that for these reducible 11, = IndG" Ty, the
groups Z(m,) C (T/S)", which generate intertwining operators of H;? , be-
come stable along with a subsequence n =mng, ¢ — 00 :ny1 <ng <--- / 00,
or Z(mpn,) = Z(Tn,,) for > 1. In particular, this is realized if T is finite
or S is open inT.

Then, the number of irreducible components of IL° becomes stable as
equal to the order of the group Z = lim, . Z(m,) along this subsequence
n = ng. Corresponding to each minimal projections Q = Qu; us,... us i
(8.14) onto irreducible components, there exist a sequence HgQ) =Q- H;? -Q
of IURs of G2, n = ng /' 00, with dimension dimH&Q) =dimII,/|Z|. The
limits of their normalized characters inng) = XH%Q)/dimH,(lQ) are all the

same and equal to f5 = falgs.

Taking into account Lemma 8.7 and its proof, we see that, to prove
this theorem, it is enough to prove that, for any non-trivial ¢° € Z, the
normalized virtual character Xpsyns = Xr(cs)ns (¢°)/ dimII,, tends to 0
as n — oo. More than this, we prove that, for a fixed G]f = G(T)7,
Xr(¢cs)yms = 0 on GP ifn > k.

We give below an explicit evaluation of the absolute value |y L(¢CSTLS (g°)]

on G,. From this evaluation and a similar one for |y, (¢°) — 5 (g%)|,
we can get an asymptotic evaluation of XH(Q) around its limit f f =
limy oo X Xpp(@), Or an evaluation of

(8.19) sup[Xp) — Jim Ko

PROPOSITION 8.12. Let ¢° € Z(m,) be non-trivial and let p be its or-
der, then n = pN. For ¢° = (d°,0) € G5 = D5 x &, let 0 = 5109+ o,
be a cycle decomposition of o, and put {; = (o) the length of ;. Then

(8.20) IXzesyms (97)] < &nl(o),

where E,(0) = 0 if |supp(o)| = 321 <<, £ < n or one of £; is not a multiple
of p, otherwise
My (o) - p™ - Hg/eﬁ/l ‘In,C’“

n!

My(o)-p™ - H(eAn (|In7C|!)p
n!

(8.21) Enlo) =

)
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where My, (o) denotes the number of partitions J = {Jc}cen, of J =
{1,2,...,m} satisfying

(8.22) Sl =Iz0l=plcl (VCEA,).
jEJC

Proof. We use the explicit formula in Corollary 8.10 to evaluate the
absolute value of X (csyrs (¢°) as
(8.23)
&,(0)

n!

WL(CS)HE(QSM < , &)= |{o" € By; o'oo’ ! € SinalT -

Recall that 7 corresponds to (5 as 7(Inc) = I, cs¢r (¢ € T) with order
p. Put IZ UC’EZ n Ny with Z( ) = {C? <S<7 sy (CS)p—1<}7 then

L= || Iz Mzl =plncls D el =N

We see that, for o/ € &,,, the condition o’oo’ ' € Siy,)T 1 equivalent to

(8.24) 0'00"  (Lne) = Lyeser (¢ €Th).
The above condition is closed inside of each Iz for ¢ € A,. Take a cycle
oj = (i1 ig -+ ig;) of o with iy = min{iy,4a,...,4,}, then a’aja’_l =

(o'(i1) o'(ig) --- o'(ig,)), and the above condition says that

(%) if o'(i1) € L, then o'(iz) € I, ¢sery ..oy 0'(ip) € Iy (¢syp-1¢r, and
so on, that is, o'(ippyr), K'p+k < €; (0 <k <p—1), belongs to I, (csyrer
cyclically modulo p.

Now suppose the condition (8.24) holds. Put K; := supp(o;), then
K| = 4, Lh<j<pm Kj = In, and o'(K;) C Iz so that Kj’s are grouped
up into |A,| number of subsets as

825)  J={L2,....m}= || J, |](K)=1Iz0 (C€A).
CEA, jEJC

Denote by J = {J¢}cea,, a partition of J satisfying

(8.26) STIK | =zl =pncl (V€ Ay),
jGJC
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and pick up one ¢’ € &, satisfying (8.25) and also (), and denote it by o 7.

Fix such a J. Then the deviation of general ¢’ satisfying (8.25) and
o7 comes from 0" € [[cpn, &1, such that o’ = 0”0 7. To choose o'(i1),
we first fix ¢ € Z(() such that ¢'(i1) € I, - and the number of choices are
p =1|Z(¢)|. Thus the total number of o’ € &,, satisfying (8.25) for J is

IT (27 T tclt) =p™ - TT (Zacl)”

CEAR ¢'eZ(¢) CEAR

The sum over J gives the number &/ (o). [

COROLLARY 8.13. Let (S € Z(my,) be non-trivial and let p be its order,
then n = pN, and
; N9 T, ()™
sup [Xpesng(9°)] < & En= ce = '
g°eGS ol

Proof. In (8.21), the maximum &, of &, (o) is achieved in the case where
m = N and all /; are equal to p. In that case, M, (o) = N!/(HceAn [Lncl!).

89. Cases of infinite Weyl groups of type BC and of type D

Take T'= Z, and put G,, = 6,,(Z2) = D,,(Z2) ¥ &, and G = &,,(Z3).
Then G, is isomorphic to the Weyl group Wgc,, of type BC,, and G is
called the infinite Weyl group Wgc,_ of type BC. Take S = {er} = {1} the
trivial subgroup of T, the subgroups G;7 and G is defined as

9.1) G2 :={(d,0) €eG,;P(d) eS8}, G°:={(d,o)eG;P)esS},

where P(d) = [[;cg, ti for d = (t;)ier,. Then G2 is isomorphic to the
Weyl group Wp, of type D,,, and G° is called the infinite Weyl group Wp__
of type D.

As representative systems of cosets G, /G2 and G/G°, we can take
{e, h% = (d°,1)} with d® = (—1,1,1,...). When n is odd, h° can be replaced
by a central element h() = (dV) 1) with dV) = (-1, -1,...,-1).

The characters of infinite Weyl groups of type BC and of type D are
studied in detail in [HH1], and summarized in Section 6 of [HH4]. For
the stochastic discussions using the space of paths in Dynkin diagrams, see
Part IT of the present work [HHH2].
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9.1. Case of Weyl groups Wgc,, and Wgpc__

For the infinite Weyl group G = 64(Z2) = Wpc,, we have T =
{¢0¢tY with T = Zy = {1, -1}, where (s(¢) = € (s =0,1) for € € Z5. All
characters on G are given as fa with parameters

A= ((ac,a)(g,a)efx{o,n ) N) I (NC)<€T7 pe =0,
(9.2) ace = (Qcei)ieN t Qee1 = Qgen > e3> >0,

Z(Cvf)GfX{O,l} llogell + [|ul| = 1.
We put as in [HH1] and [HH6, §6],

(93) = Oé<O70, ﬂ = Oé<O71 , Y i= Oé<170, 0= Oé<171 , R i= ,Ltco - Ncl
Then [l + 18I+ {1yl + 101 + [] < 1.
A unique non-trivial ¢5 € (T/S)™ = T is ¢5 = ¢!, and its action on

the parameter A defined by a¢ . — aes¢ oy ¢ — pies is realized in the new
parameter as an exchange of (o, 3) and (v,6), and kK — —&, that is,

(9.4) (@, 857,65 k) — (7,05 , B; —K).

The character fa of G is factorizable. For g € G, take its standard
decomposition

(95> g = £q1£q2 e quQIQQ o Gmy
&g = (tg,(q)), tg=—1€ Zy, g; = (dj,0;), supp(d;) C supp(a;),

and o; is a cycle with length ¢; = £(0;). Then, fa(g) is expressed as
857,63 857,63
9:6)  falg) = T o0& - TI 2077 ((d;,0)),
1<k<r 1<j<m
with factors @a’ﬁw’am, ¢>1, given as

@’67’6'(” tq, ZaZ—I—Zﬁz-l-,uco—Z%—Z(Si—uo

ieN 1€EN 1€EN 1€EN
= llall + 18I = lIv Il = 1181l + &,
»95 757 ]
@577 (g 03) = D)+ (<15 3 (8)"

€N iEN

+CHP)) Y () + CHP)) (—D)5 S (6))

€N iEN
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An IUR II,, = Indg’; m, of G, = Wpc, are parametrized by a pair
of Young diagrams A™ = (A" A"M) gince T = {¢°,¢1}. Its normalized
character Yy, is given explicitly by Theorem 4.5 as follows. Take g =
(d,o) € G, and let its standard decomposition be as in (9.5), and put
Q={q1,9,.-.,¢:} and J ={1,2,...,m}, then

(9.7) Ti(9) = 37 (A" Q,.7) X (A" Q, 71 g),
Q.J
e WS NS] = 1) - (10 = Q] = Yy 1G] + 1)
- n(n—1)(n—2)- (n— Q| — [supp(0)| + 1) |
X(A"Q,7:9) = X\ (¢(0))) je,0)
x (=)l TT ¢ (Pdy) x XM (Uoy))sess ),

jEJC1

(A" Q,T)

where Q = (QC)cef and J = (JC)Cef run over partitions of ¢ and J
respectively, and Y ()\”’C; *) denotes the normalized character of IUR W(A"’g).

PROPOSITION 9.1.  The parameters for the limit fa = lim, o X11, a7€
given as

(A0 (A0
a; = lim ril ), G; = lim 702( );
n—oo n n—oo n
. )\717)\1 . )\n,)\l
v; = lim rif ), §; = lim 762( ),
n—oo n n—oo n
— l |)\n7)\0| _ ]. |)\n7)\1|
,Ltco = Im ——, /Lcl = 11m .
n—oo n n—00 n

9.2. Case of Weyl groups Wp,, and Wp__
Characters of G° = Wp__ are obtained by the restriction f;? = falgs
of fa. If g belongs to G¥, its standard decomposition (9.5) in G satisfies

1 II ¢(Py) =1.

1<j<m

We proved in [HH4, §17] and [HH6, §15] that f5 = f5, with (o/,3';
v, 8" k") for A’ if and only if

(0/75,;/}/75,;"1/) = (aa/B;Va 5) ﬁ) or (775;a7/8;_"€)7
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and in these cases, we have fa = f4 or fa(g) = Cl(P(d)) - fa(g) for
g = (dv U)'

The inverse image of the restriction f4 — ff is unique if and only if
(av 67 Y, 5) ’%) = (’77 5? a, ﬁa _’%)7 or

(98) 044075 = 064175 (E = O, 1), ,Ltco = /,Lcl

PROPOSITION 9.2. The case (9.8) is exactly equal to the case where the
character fa is totally zero outside of Gf.

Proof. The condition f4 =0 on G, \ G, is equivalent to
GO =0 and @I ((dj,05)) =0 if P(d;) = —1.
In turn, these conditions are equivalent to

el + 11811 = [lvll = lIol] + & = 0,

D @)+ (=1ETEY (B) =Y ()5 (DY (@),

€N i€EN i€EN i€EN

for £; > 2. Multiply by 2472 both sides of the last equation and sum up
over ¢; > 2. Comparing poles of obtained functions in z, we see o; = ;,
Bi = 6; (i > 1). Then we get from the first equation that x = pco — per = 0.

0

By Lemma 8.4, the restriction H;? = Hn|GnS of II,, = Indg’; T 1S
reducible if and only if the group Z(m,) in (8.10) is not trivial. Here
Z(mn) = {C5 € Zy ; A" = A,

In the reducible case, we have Z(m,) = {¢° ¢'}, and for ¢° = (1,
take a unique 7 = 7, € &, such that 72 = 1 and 7(I, c0) = I, 1 in an
order-preserving manner. Then the intertwining operator L(¢%) = L(¢1) €
L(V(I,)) is defined by K(7) = cU(r) € L(V (7)), where ¢ = g, (Hp) ™
= [&,]/[Sp, |, and U(7) is a simultaneous exchange through 7 of factors
¢% ¢t inmy = [Tieg, G with G = ¢* (i € I, or, k = 0,1) for D,, = ZJ* and
of factors V(W(A”’CO)), V(W(A"’Cl)) in the tensor product space V(&,) =
V(x(Am)) @ V(7 (™)) for S, =61, x &1 -

From Theorem 8.6 (iii) together with the above facts, we have the fol-
lowing.
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PROPOSITION 9.3. The case (9.8) is exactly equal to the case where a
sequence of reducible TIY = Mp|gs can attain f5 as its limit.

In the case where the restriction ITY = I1,,| s is reducible, we have two
projections onto two irreducible components as
I—L(¢Y)

1
IHME) g JIEMO) ey, —q

Q—i— 9 ) 9 )

From Lemma 8.7, the dimensions of two irreducible constituents H%i) =
Q+IL,Q+ are equal and dim H,(li) = %dim 1L,.

Put N =n/2 = |In7<0| = |In7<1|, then S, | = 6[%(0 XGIn,gl = Gy XxBy.
According to this decomposition, k € &, is decomposed as £ = ko K¢
with k¢ € &y, .. By applying Corollary 8.10, we get the following character

formula.

PROPOSITION 9.4. For an even integer n = 2N > 0, normalized char-

acters of two irreducible components H%i = Q+IL,Q+ of 11, are given as
follows. For a ¢° = (d°,0) € GY = D2 x &,

- 1 - -
X0 (9%) = ——5 X (9%) = X1, (9%) £ Xeoym, (97),
" dim IT,, "
and %H%+)(QS) = %H%_)(gs) if g° is not conjugate under Gy, to an element
m Hyr, and

X (9°) - X (9°) =2Xn(csyms(9”)
2 ; 1 N
ol Z Z tin(0'(7)) dim 7 (A™<%) .XW()\"’CO)(THCI Tho).

KES,)  o'€Gu:
1

o'oo’ T =kT

By this result and the character formula for yri,, the normalized irre-
ducible characters )A{H(i) are explicitly given, and so we can evaluate sepa-
) and Ty (6°)

rately asymptotic behaviors of )ZH(H (g as n — oo.

Here we evaluate their difference:

- - 2 _
|XH£L+) (9°) - XH;—)(QSM < {o' €&, ;000 'e S[nn}TH

i) |
n!
=:&n(0) (put).
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If o is not conjugate under &,, to an element in Sy, 7, 7 = 75, then
E%o) = 0.
Otherwise, 0 # 1 and for ¢/ € &,,,

ooo’ ! e Sipa]T = O'/UO'/_I(Imgo) =1, and O'/O'U,_I(In’cl) = I, co,

because I, = I, co U I, c1. Let 0 = 0102 - 0y, be a cycle decomposition of
o, then o’co’ ! = )0l - o), with 0 = o'ojo’ " is that of o’oo’ . Take
ao0j = (i1 ig -+ i), then o = (o'(i1) o'(ia) -+ 0'(ig;)). The above
property of o’oo’ ! is equivalent to that, in this expression of a;-, elements
of I, co and I, ;1 appear alternately, for 1 <Vj < m.

Therefore, in case where some length ¢; = ¢(0;) is odd for o, then
E%c) = 0. This is also true if o contains a “cycle of length 17, or
21<j<m tj = |supp(o)] < n.

Suppose all ¢; are even and |supp(c)| = n. Let 41 in o; be the minimum
of i1,iz,...,7¢;, then we have two possibility: o'(i1) € I, c0 or o'(i1) €
I, 1. Counting this for all o, we get the number of o’ satisfying the above
condition so that, with n = 2N,

.om 2
(9.9 o) = 2T

Thus we get an evaluation for the difference of normalized characters
as follows.

PROPOSITION 9.5. (i) For g% = (d%,0) € GJ = DS xG,, withn = 2N,
|>?H;+)(QS) - ?Hg;>(95)\ < &)(o),

where EX(a) = 0 if o contains a cycle of odd length or |supp(c)| < n,
otherwise E9(a) is given by (9.9) when o is decomposed into m cycles.

(i) For a fived G = &4(T)S, we have Ty (9°) = Xy (9°) (95 €
GP) if n > k. Moreover

- - 2. 2N (N1)?
9.10 —Xao| <& =
( ) SC?SP‘XHS—) XH; )‘ = O n (QN)'

n
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Chapter III. Analysis of limiting process of induced
characters of &,,(T) as n — oo

§10. Problem setting for limiting process of induced characters

of &, (T)
10.1. Centralization of positive definite functions and their
limits

In the series of works [Hir2]-[Hir3], [HH1]-[HH2] and [HH4]-[HH5], to
get characters of G = G, those of G = G, (T) with T finite abelian group,
and of G = G, (T) with T finite group and then with 7' compact group in
general, we have applied the method of taking limits of centralizations of
the trivial inducing up F = Indg fr of a diagonal matrix element f; of a
unitary representation (= UR) 7 of a subgroup H of G. The limits thus
obtained turn out to be characters, and moreover all the characters of G
are obtained in this manner.

Let us compare this method with the present method of taking limits
of irreducible characters. To do so, first summarize our method in these
previous papers. It goes principally along the following steps. Here let
G = 64 (T) with a compact group 7.

STEP 1. We fix a subgroup H of GG, and an irreducible unitary repre-
sentation (= IUR) 7w of H as follows. Take a partition of IN as

(10.1) N = | ] <|_| Ip> ([ x|

(¢,e)eTx{0,1} \PEF¢ e ceT

where each F; . is a countably infinite index set if not empty, and the subsets
I, are infinite and so are I if not empty. Corresponding to this partition,
we define a subgroup

(10.2) H= T T Hp> < | IT He | -
(Ce)eTx{0,1} WP ceT
with  H), = &1,(T), H¢= D (T) C &1(T),

where H/ denotes the restricted direct product. As an IUR 7 of H, we take

(10.3) T = ®b (®b<’5wp) ® ®b/w< ,

(¢,e)eTx{0,1} PEPc.e CeT
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omitting appropriately the factors for empty P, and I¢, where b, b¢ ., V/

are reference vectors. Here bee = (by)pep, . with b, € V(mp), [|bp]| = 1
(p € Pre), and an IUR 7, of H, = &1,(T) is given as
(10.4)

m((d.0)) = (@2, (1)) 1) sng (@) for d = (e, o € S,
where a, = (a;)er, is a reference vector with a; € V(¢;), [la;|| = 1, and

G=CasanIUR of T; =T (i € I), and I(0) is defined as
(10.5)
I(U) U= ®ie]p Vj ®iejp U7/;7 Ué = Ug—1(4) (UZ' € V(Cz)v (&S Ip) .

Moreover b/ = (bC)ceT with be € V((), ||b¢]| = 1, and for ¢ € T, mec of He is
given as

(10.6) me(d) = ®z€l€ Gi(ti) for d = (t;)ic1, € He = D1 (T),
where a¢ = (a;)ier, with a; € V(G;), [la;l| =1, and §; = (for T; = T' (i € I¢).
STEP II. Put b := Q(coretxfo beer bee = Qpep,, bp, and Vo=

Qcerbe: be = ®Z€I a;, then we have a unit vector wy 1= b® b/ € V().
Take a diagonal matrlx element for wy as

fr(h) == (7 (h)wo,wo), fr(e) =1

Denote by Indg fr a trivial extension of f, to GG, which is, by definition,
equal to f; on H and to zero outside H. Then F := Indg fr is a positive
definite function on G normalized as F(e) = 1, and is continuous because
H is open in G.

STEP III. For a continuous function F on G and a compact subgroup
G’ of G, we define a centralization FC' of F with respect to G as

(10.7 ()= [ Flgole) ) ducr(s)

where u¢ denotes the normalized Haar measure on G’. Here we take F' =
nd$ fr and G = &;(T) = D;(T) x & for a finite subset .J C N, then
F% is a continuous positive definite function on G invariant under G'. We
calculate the centralization FC explicitly.

STEP IV. We choose an increasing sequence Jy, N = 1,2,..., of fi-
nite subsets of N such that Jy N, and the corresponding sequence of
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canonical subgroups Gy = &, (T), demanding an asymptotic condition
as
|1, N Jn| e N Jn| -
(10.8) LN\, (peP), =% pe (CeT),
I I

vzhere P .= u(c,a)efx{o,l} Pr . is the union of index sets. For each ((,¢) €
T x {0,1}, let reorder the numbers {\, ; p € F;.} in the decreasing order
and put it as ¢ = (Q¢ei)ieN: Qe > Oce2 > -+ > 0, and also put

W= (”C)CET' Then,

> llecel +lul <1

(¢,e)eTx{0,1}

Pick up the case where the equality holds here, then by direct cal-
culations we have a compact-uniform limit of the sequence of centraliza-
tions F~ as N — oo, which gives the character f4 with a parameter
A= ((ag,g)(w)efx{o’l} : ,u) together with the general character formula in
Theorem 2.3.

10.2. Recapitulation of centralization of positive definite func-
tions

Note that, when T is not finite, the group G = S, (T') with the induc-
tive limit topology is no longer locally compact. However, since the quotient
space H\G = 6 \G4 with &y := H N S is countable, we can define an
induced representation II := Indgﬂ from H to G by a standard method,
on a vector-valued #?-space on H\G = Sy\Ss. Then we see that the
trivial extension F = Ind$ f, is a diagonal matrix element of II. Therefore
the above method of centralizing F' = Indg f= and then taking limits is a
special case of the following method:

(I) take a diagonal matriz element Fy of a UR Ily (not necessarily ir-
reducible), or simply a continuous positive definite function Fy on G (as in
815 of [Hir3]),

(IT) take an increasing sequence of compact subgroups G’y /" G, and
centralize Fyy with respect to G'y. Then take imy_ o FOG N if exists.

. . T G . . . L.
Then the pointwise limit limy_.oo F{; ¥ gives us an invariant positive
definite function on G, which may be continuous.
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Now, from the stand point of asymptotic approximation by normal-
ized (trace) characters of compact subgroups of G, we can reformulate the
method in 10.1 as follows.

As an increasing sequence Gy /" G = S (T) of compact subgroups,
we chose G’y = &5, (T) = D, (T)x &, with Jy /" N. For centralization
FGN of a positive definite function F = Indg fr, we have

(10.9) FO(h) = /G elghg N e (o) (h e H),
N
where the integrand f, is extended outside H trivially. Put
Hy:=GNyNH, 7fy:= 7| 1y Iy = Indgg i, Fiy = Flg, .

The restriction f| Y, 1s a diagonal matrix element f”?v of an IUR 7y of

G, . . . .
Hj, and Fiy = Ind Y [z, is a diagonal matrix element of IT;, normalized as
N

F}(e) =1 since fr(e) = 1. From the formula (10.9), we have the following.

PROPOSITION 10.1.  The restriction FCN onto Gy is the centraliza-
tion of a diagonal matriz element Fy of the induced representation IIy =

Indgf,\’ 'y of G'y with respect to G'y, and is equal to the normalized char-
N
acter X, = XH;\{/ dim IT)y.

Remark 10.1. The induced representation IT = Indg 7 of the full group
G is irreducible if and only if all I;’s are empty. This is proved as for the
infinite symmetric group G« in [Hirl].

However, at the stage of G’y, almost all the induced representations
Iy = Indg% my of G'y are not irreducible as is seen from the discussions
in Section 3.

10.3. Problem setting

The subgroup G’y = &,,(T) is isomorphic to G, = &,(T) with
n = my := |Jy| through a bijective correspondence Jy < I,,. By this
isomorphism, the induced representation IT'y in Proposition 10.1 is inter-
preted as an induced representation II/! of G,, with n = mpy. Therefore
the result explained in 10.1 is that any character f4o of G is obtained as
a limit of normalized characters of induced representations X of Gpn as
n=mpy — o0.
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Usually IT’y and accordingly II/, n = my, are not irreducible. Let

(10.10) = 3" () - 1)
1<r<Rn

ns, Where HSLT) is an IUR of G,, and
my(r) denotes its multiplicity in II/. Then the normalized character is
expressed as

be an irreducible decomposition of II”

o T
- my(r)dim I, "
10.11 = Yy DS 5.
(10.11) XL dimty, X0
1<r<Rn

Taking into account our result Theorem 7.1 in the present paper and
the result in [HH6] explained in 10.1 and 10.2, we ask naturally which part
of irreducible components in (10.10) or in (10.11) is responsible for having
limat limy,—p, y — 0o 521‘[;; = fa. Thus we can formulate the following problems.

PROBLEM 2007-1. In what case, almost all induced representations
N = Indfli; mly of G\ are irreducible as N — oo ?

In this case, a character f4 is obtained as pointwise limit of normalized
irreducible characters lim y_, oo %HGV’ and this is proved by direct calculations
without appealing to the evaluation (5.23) of Murnaghan or to the result
Theorem 5.1 quoted from [VK1]-[VK2].

Suppose now we are in an opposite situation of Problem 10.3. For each
n = mpy, pick up an irreducible component H,(f") (1 <3r, <R, of IT! in

)

(10.10), and we call such a sequence Hq(f" ,n=mpy (N — o0) a generalized

path of IURs of G,, to infinity.
PROBLEM 2007-2. For what kind of generalized paths Hg”), n=my
(N — 00), we have the same limit as limy—p, oo )ZH;TH) =limpy_eo iH?\/ =

; (r)
fa? In addition, in what cases, the ratio % do not vanish as

n=my— 007

Roughly speaking, this asks which irreducible components are responsi-
ble to the limit limy_ %HN = fa. Does there exist ‘principal’ irreducible
constituents which take the whole responsibility?
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Remark 10.2. In some cases, it is also disputable if Problem 2007-2 is
well-posed. For example, consider the case where we have, at the limit,
peo =1 for a e T and other factors in the parameter A of a character fa
in Theorem 2.3 are all zero and so

1

dim

(10.12) Y{(t) = Tmed Xeo(t) = Xeo(t), YA(t)=0 for £>2 (teT).
We get this character by the method explained in 10.1 by considering a
sequence Jy " N such that [Jy N Ieo|/|Jx| — 1. Simplify this situation,
then it is essentially very near to the case where we take Ico = N and
Jnv =1,,and so H = Dy, C G = Dy X S. In this simplified case, we
take for Hy, = Gy N H and Iy = Ind?,; Ty respectively

H,=D,CG, and T, =d%"n,, 1, = X ¢ with ¢ = ¢O.

Then II,, = n, X R, for G,, = D, x &,, where R,, denotes the regular
representation of &,,. Then, for (d,0) € G, d = (t4)qen, and n sufficiently
large,

Xi (d,o) = J] Xeolty) x 657 — J[ Yi'(tg) x 07> = fa((d,0)),
qeln qeEN

where 516 ™ and (516 >~ are delta-functions on &,, and S, respectively, sup-
ported on the identity element 1. At the stage G,, every IUR 7« € é\n
contributes to Yr, = 0v" as its own right with coefficient (dim7)2/|&,|
for X, and we cannot say which parts of 6/5; (n > 2) are responsible to the

limit (516 >~ without introducing some other criterion.

Remark 10.3. In contrast with the above method, the above character
fa in (10.12) is also obtained as limits of characters of IURs II,, of G,, =
D, x &, as in Theorem 6.1. We can characterize some of such sequences of
IURs II,,. Take
(10.13) (Zn, A", In=(ng)eeps A" = ()‘n’c)cef’
for IURIL,, = Indgz Ty in the beginning of Section 6 as I,, o = I, In¢ = 0
(¢ # ¢ and A< 2 0 (¢ # (7). Then, in (6.1) and (62), 1, = Rier, G

G = ¢ and so Sina] = Gn,y Hy = Dy xSy, = Gy Accordingly 11, = m, =
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N B & = np Dr(A™6), where m(A™<") is an IUR of &,, corresponding to a
Young diagram A6’

Assume that Young diagrams A6 increase along with n. Denote by
(A" (resp. ci(A™S")) the length of k-th row (resp. k-th column) of <",
Then the sequence of normalized irreducible characters X1, converges to the
character fa if and only if

(10.14) (") fn — 0, e (A"¢")/n — 0.

Such sequences of Young diagrams are obtained by taking An6? like
isosceles triangles or like regular squares, where r1(A™¢") and ¢; (A™¢") are
of the order v/2n or \/n respectively.

Comparing with Remark 10.2, we see that the above necessary and
sufficient condition (10.14) has something to do with “limit” of Plancherel
measures p,([7]) = (dim7)?/|&,|, [7] € S, or a measure on the space of
paths of Young diagrams of infinite lengths explained in 5.1, which comes
from the projective system of measures (i,),>1 (cf. §2 of Part II of this
work [HHH2]).

811. Limits of induced characters in irreducible cases

For Problem 2007-1, we can give an answer in this section, and for
Problem 2007-2, we can give only a partial answer by discussing examples.
Let the notation be as in Section 10. The subgroup H); and its IUR 7y are
given as

(11.1) Hly = 11 (H H,N> < | T[ Hew | -

(¢,e)eTx{0,1} \PEP; ceT

with Hy, v = & ynr,, Hen = Diynr (T) C & ynr (T),

(11.2) Ty = & (@wp,N> @ [ Q) mew |

(¢,e)eTx{0,1} \PEF¢ e ceT

where 7, v and 7 n are IURs of H), v and H¢ y respectively defined sim-
ilarly as (10.4)—(10.6) replacing I, and I by I, y := I, N Jy and I¢ y :=
I; N Jy. Here the products are actually finite since Jy is finite.
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PROPOSITION 11.1. (i) If the induced representation Iy, = Ind%\’ Ty
N
of Gy = &, (T) is irreducible, then for each (¢,e) € T x {0,1},

(11.3) {pePei INNL, #0}| <1, [InnI <L

(ii) The induced representation Iy, = Indggv ' of G'y is wrreducible, if
N
and only if for any C € T,
(11.4) Hp€PoUPey; v, #0} +[IvNI| <1

Proof. Proof for (i) is given by showing the existence of non-trivial
intertwining operators for 7. The discussion is standard as in Section 3.

Proof for (ii) needs some more detailed explicit calculation of intertwin-
ing operators for the induced representation IT'y, similarly as in the proof
of Theorem 3.3 (i) (cf. discussions in 12.2). U

Since we are interested in the asymptotic behavior as Jy , N, it
is enough to treat the case where (slightly modifying the setting) P .’s
are one point sets and I:’s are all empty. This case contains the case for
Problem 2007-1, as seen from Proposition 11.1 (ii).

So, we take a partition Iy = UQE)((,&)ETx{O,l} of N given as N =
u(c,a)efx{o,l} I¢ ., and define newly a subgroup H of G = G (T) as

/
(11.5) o= H Gee = Doo(T) % Sty
(¢,e)eTx{0,1}
/
Gee =61 (T)=D; (T)x 6., Sry:= |[ 6.

(¢,e)eTx{0,1}

First define an IUR 7¢ . of G¢ . For d = (t;)ier. . € Dy, (T), put

Qier G with G =( for T, =T (i € I.)

with respect to a reference vector ac e = (ai)ier, ., @i € V(Gi), llaill = 1, on
the tensor product space V¢ . = ®fé;€s V(¢i). For o € &, , put
(11.6)

1(0)(®jer, . vi) = Qe Vo1 With v € V(G), vi = a; (i > 1).

Then, for g = (d,0) € G¢e,d = (ti)ielg,g7

(1L.7) meelg) = 7o ((d,0)) = (RS Glt) (o) sen(o).
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For the subgroup H = H,(C,E)efx{o,l} G¢e, we define an IUR 7 =
b . b
®(c,a)e’fx{0,1} T¢e as a tensor product acting on V = ®(<’€)Efx{07l} Vee

with a reference vector b.
For I, ={1,2,...,n}, put Gy, = &1,(T) and H, = H NG, as before,
and
In7<78 = In m IC?‘E’ In7< = I—lE:O,l In7<75’
(118) Gn,{,a = Hn N GC,Ev Gn,{ = Glnyg (T)7

Tp={CeT; ILic#0}.

Then H, = HCETn H, . with H, ; = HEZO’1 Gnce C Gy, and we have an
IUR m, of H, on a space V,, as

Tn = X 7I‘nc with 7Tn<: X 7Tn§87
ceTn ® =01
11.9 .
(11.9) Vo= @ Vo with Vie= & Vige,
=0,1

¢eTn €

where, for each (¢,) € Ty, x {0,1}, Tnce is an IUR of Gy, ¢ o = D, . (T') %
&1, .. on a tensor product space V, ¢ = ®ieln,¢,s V(¢;) given similarly as
mee on Ve o in (11.7).

The normalized character of a finite-dimensional UR II is defined as
X1 = x1/ dim II. Then xyy, for I, = Indg’; T, is given by the centralization
of the normalized character X, := Xr,/dimm, of m, with respect to the
normalized Haar measure dug, on G,. Though the induced representation
II,, is not necessarily irreducible here, we get an explicit character formula
for its normalized character X, quite similar to that in Theorem 4.5 for
irreducible induced representations (cf. Sections 4-6, and cf. [HH5, §14] or
[HH6, §12]).

For g = (d,0), let

(11.10) 9=8u8 60,9192 Gm, &g = (tm(q))v g; = (dj,05),
be a standard decomposition and put
(1111) Q:{q17q277q7“}7 J:{1727>m}

PRroOPOSITION 11.2. The normalized character of the induced representa-

tions I1,, = Indg’; T of Gy, is given as follows. Let I/ = (In,C,a)(g )P x{0.1}



76 T. HIRAI E. HIRAI AND A. HORA

be the partition of I,, corresponding to 11,,. For g = (d,o) € Gy, = Dy, (T) x

S,, above, let Q' = (nge)(ﬁ,a)efx{o,l} and J' = (nge)(c,a)efx{o,l} be parti-
tions of Q and J respectively. Then

Xi(9) = ) d(T,: Q.7
oLTJ!

X¢(tq) x¢ (P (d;)) )
X H (H T H 29 son(o)° |,
d £(oj) J
(C,e)eTx{0,1} \EQc e im ¢ edc. (dim ¢)*\es
with coefficients c/(Z,,; Q', J") given by
icojernqony Hncel (Tngel = 1) - (\In,g,e\ —1Qcel = Xjes. . K 1+ 1)
n(n—l)...(n—|Q‘_‘Supp(0)|+1) ,

where Q' and J' run over all partitions of Q and J respectively.

Take a g € G. Then, starting from a certain n = ng, ¢g is contained in
G, and so we can consider the limit of the normalized character X1z, (g) for
g € Gp, C Gy, as n > ng tends to oo.

THEOREM 11.3. (i) The sequence of unitary representations I, =
Indgz n of Gy = S,(T) given above is determined by a partition Iy =
(IQE)((,E)eTx{O,l} of N. Put I, ¢. = I,N1;. and assume that the following
limits exist:

In 5 =
(11.12) B¢ = lim % ((¢,e) e T x {0,1}).

n—oo

Then, there exists a pointwise limit of normalized characters Fry, = lim,_,
X1, on G = 6 (T). For a g = (d,o) € G with standard decomposition in
(11.10)—(11.11),

B
Fry(9) = H( > ﬁ xc(tq)>
2 (@)

q€Q eTx{0,1}
Be. £(05)
I T (5%) @) sy,
J€JT \(¢,e)eTx{0,1}

(ii) The limit function Fr, is the character fa in Theorem 2.3, for
which a¢. = (B¢e,0,0,...), pe = 0 for ((,e) € T x {0,1} in A =

((O‘C,s)(g,e)efx{o,u )
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Sketch of Proof. The limits lim,,_,~ X11,, can be calculated directly from
the explicit formula for xiy,. The calculations go on similarly as in Sec-
tion 5, but in the present case, we need not to appeal to Theorem 5.4 since
irreducible representations of symmetric groups to be induced up are all
one-dimensional here. [

This theorem contains the case of a sequence of IURs (of a degenerate
form) of G, = &,(T) which answers Problem 2007-1. It gives limits of
irreducible characters of Gy, by direct calculation (cf. [HH4, §12] and [HH6,
13.3)).

Answer to Problem 2007-1:

In the limiting process FGv — fa explained in 10.1-10.2, the restric-
tion FCN |G§v is the normalized character SZH& of the induced representation

Iy = Indff)’ mly (Proposition 10.1). Suppose that there exists an infinite
N

subsequence of IT’y which are irreducible. Then it is essentially the case in
Theorem 11.3, where

In¢ce=0 (Vn) fore=0or =1 forany ¢ € T.

The characters f4 obtained as limy_. o F G'N in this irreducible case are
given in (ii) of Theorem 11.3.

Remark 11.1. In the special case where Io. = N for a fixed ((,¢),
all II,, are irreducible and we have the following characters as limits of
irreducible characters xiy,,. For g = (d,0) € G as in Theorem 11.3,

(11.13) Fee(g) = dl( C) H% sgn(o;)°,

which is equal to fa with a¢. = (1,0,0,...). Especially when ¢ = 17 € CF,
the trivial representation of 7', we have F1T «(9) = sgn(o)® for g = (d,0) €
G, one-dimensional character. So, for any ¢ € 7T, Fee(g) = Feo(g) Fir£(9)
(9 € G).

8§12. Irreducible decomposition of the induced representations I1,,

12.1. Towards a partial answer to Problem 2007-2 by exam-
ples

For Problem 2007-2, we can only give a partial answer by giving some

examples of sequences of reducible induced representations Il,, of G,, satis-

fying:
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(12-1) each II, splits into irreducible components H,(f), 1 <r <R,
where R is a power of 2 (in the extreme case, R = o),

(12-2) one can form several natural sequences Hgn"), n — oo, of irre-
ducible components of 11, for which the sequences of normalized irreducible

characters %H(T") have the same limits as the original one lim,_ . X11,, -

We take an open subgroup H of G again as in (11.5). For the subgroup
G, = 6, (T), the subgroup H,, = H N G, and the IUR 7, in (11.9) are
factored according to (11.8)—(11.9) as follows:

Hn = H HﬂvC’ Hn7< = H GTL,C,E - Gn7<;
CETTL e=0,1

To study the space Z(II,,) of intertwining operators between II,, =
Indgz 7, and itself, we first remark that, as can be proved by direct calcula-
tions of intertwining operators for II,, = Indg’; T, & non-trivial intertwining

operator originates only from the inside of each “(-component” Indg:z Tn,Cs
where 7Tn7< = |X5:071 Wn,(,a'

Therefore, for our study, we can restrict ourselves to the case where
only one fixed { appears, and we pursuit this fundamental case further on.

In this reduced case, each induced representations II,, of G,, split into
two irreducible components II, o and II,, ;. The character xm, = xm,, +
XI1,, has been given in Proposition 11.2. For a certain intertwining op-
erator U = U,, the virtual character Xpm, = tr(lj' I1,,) is calculated in
Theorem 13.7. Thus the explicit formula for characters xi, ., v = 0,1,
are obtained from Proposition 11.2 and Theorem 13.7 through the equality
(12.12).

Both sequences of the normalized irreducible characters x11, ., v = 0,1,
have the same limit as n — oo as the original one lim, .. X1, (Theo-
rem 14.2).

Using these results, we can analyse through Theorem 14.1 the asymp-
totic behavior of the difference X, , — Xm,, as n — oo. This gives an
evaluation of fluctuations of x11, , and X1, , around the common limit (The-
orem 14.3).
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12.2. Combinatorial lemmas and irreducible decomposition of
I1,,
Now we put newly for G,, = &,,(T) = D, (T) x &,
In = 4in,0 U In,la Hn = Hn,O X Hn,l7 Hn,a = GIn,g (T) (E = 07 1)7
(12.1)

Tin = Tp¢ = a% 17-‘-”7(757 Vo = ® Vn,C,&
- e=0,1

where, for g = (d,0) € H,. = Dy, .(T) x &y, ., d = (t;)icr, ., We put as in
(11.7)

(12.2) Tnce(9) = Tnce((d,0)) = (®ieln,s Gi(ti))I(o) sgn(o)®.
To fix the situation more exactly, we put I, o = {1,2,...,n0}, In1 = {no +
Lng+2,...,n0 +n1 = n} with ng,n1 > 0, and &y p, := &1, , X &y, =

Gy X Gp,. For o0 = rok1 € Gpyny With ko € &1, 4, k1 € &1, ,, We put
sgn; (o) = sgn(ky).

We determine the space Z(II,) of intertwining operators for II,, =
Indgz m, by a similar method as in the proof of Theorem 3.3, preparing
several lemmas successively as follows. Recall the formulas (3.6)—(3.9).

LeEMMA 12.1. (i) Let 7; = (ng — i+ 1 ng + i) be the transposition of
element ng —i+1€ I,,0 and ng+1i € I, 1. Then the space of double cosets
H,\G,/H, has a complete set of representatives given by

(12.3) T := {1, L, TIT2, .., TIT2 - --TN} for N = min{ngy,n1}.

(ii) Let t =mimp--- 1, €T,1 <p < N. Then H,NTH, 77! = D,(T)
Sy, where S; = Gpypy N TGnO,an_l consists of permutations expressed by
blockwise diagonal matrices diag(o1, k1; k2, 02), where 01, K1, ko and oy are
respectively permutations on
{1,2,...,n0—p}, {no—p+1l,no—p+2,...,n0};
{nog+1,n0+2,....,n0+p}, {no+p+1lnog+p+2,...,n0+n1}.

LEMMA 12.2. Let 7 = mimo---7, € 7, 1 < p < N. Then a linear
transformation K (1) on V,, satisfying

(12.4) (WK (1) = K(t)m,(r 'hr) (h€ HyNTH, 7 1)

is necessarily 0 for p > 2.
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LEMMA 12.3. (i) Let 1 = (ng mo +1) € T. Then, H, N1 H,71 ! =
Dy, (T) x Sy, with Sy, the centralizer of 11 in Gy, p, consisting of permu-
tations expressed as diag(o1, 1;1,09), where o1 and oy are respectively per-
mutations on

{1,2,...,mn9 =1} (C Inp), {no+2,n0+3,...,n0+n1} (C Ip1).

The transformation h +— 71 thTy for h = (d,0) € D,(T) x S;, is given as
1 thr = (117 1(d), 0).

(ii) The operator K(11) which satisfies (12.4) is a constant multiple of
the following operator on Vi, = @1<;<pgin, V (Gi) with ¢ = ¢ (Vi)

(12.5) U=1I(n): ®1§i§no+n1 Vi ®1§i§no+n1 Ur—=1(3)>

where v; € V(¢;), and m,(117 hm) = U lm, (W)U (h € Hy, N Hym ).
Here U = I(11) permutes Up, @ Upg4+1 aS Ung+1 @ U, in the middle of con-
secutive tensor product @ v;.

(iii) The dimension of the space of intertwining operators is 2:
dimZ(I1,,) = 2.

We omit proofs of these lemmas, since they follow standard processes.
Take an intertwining operator in Lemma 12.3 (ii) as

K(m1) = c¢(H,) U = c(H,) *I(r)
with ¢(H,) ™! = e, (Hy) = <”> - (”)

o ni

LEMMA 12.4. An intertwining operator U for 1L, is defined as follows
by an L(V,)-valued function

_171' - _ - :
(12.6) K(g) = { ¢(Hp)'mn(h1)Umn(h2)  for g =himihy € Hymi Hny,
0 f07’ g g HnTlHn,
(12.7) Up)9) = | K(gd ) elg)duc,(d).

Gn

Let s, = (i i1+ 1), 1 <i<n—1, be simple reflexions of &,,.

LEMMA 12.5. (i) The double coset Spy . T1Gnn, consists of nong
number of left Sy n, -cosets with representative elements (a b) with a € I, ¢,
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b€ I,1. This double coset consists of elements o € &,, such that its cycle
decomposition contain cycles in &y, n, and one of the cycles given as

(al az -+ Qp by by --- bq)v p>1,q>1, with a; € In,07 bj € In,l-

The order of the subset is |Gy n, T1Gngn, | = nolni! - nony.
(ii) The subgroup Spyn, N 7'16”0,”17'1_1 18 equal to the centralizer
(Gnon)™ of 71 in Spy oy, and is given as follows:

(12.8) {0 €Gnym ;0(i) =i (i=no,no+1)} = Gpy_1 x Sy _1.

A complete set of representatives of (Gno,nl ﬂ7'16n07n17'1_1)\6n0,n1 18 given
by the following set of products in Gpypny = Gpy X Gy

(129) {17 Sng—1y Sng—15ng—25--+5 Sng—1Sng—2""" 31}

X {17 Sng+1y Sng+1Sng+25- -+ 5 Sng+1Sng+2 " "~ Sn—l}-

LEMMA 12.6. (i) The subset SpynyT1Gng.ni T16ngm, consists of three
Gnoni X Gpg,ny double cosets with the following representative elements:

1, 1= (’I’Lo ng + 1), ’7’{ =T1To = (’I’Lo ng + 1)(710 —1 ng+ 2).
(ii) (Gno,nﬂ'l@no,nl) N (67107“17—16710,”17—16“07"1) = 6”0,n17—16no7n1'

Using the combinatorial results such as Lemmas 12.5 and 12.6, we can
determine the square U? by elementary but rather lengthy calculations for
convolution of integral kernels.

LEMMA 12.7. U? = ngny I + (ng —n1) U or (U —nol) (U +niI) = 0.

12.3. Virtual character associated to the intertwining opera-
tor U
We know from Lemma 12.3 (iii) that II,, decomposes into two inequiva-
lent irreducible components, denoted by II,, 5, v = 0,1, and accordingly the
intertwining operator U is a linear combination of orthogonal projections
P, = Py, ., onto them:

[$3) ~
(1210) M= > py =T ® Ty, U=doPy+diPy (do# dy).
v=0,1
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LEMMA 12.8.  The pair of coefficients (dy,dy) is one of (ng, —n1) and
(_nlynO)‘

The proof of the lemma comes from Lemma 12.7. Exchanging the names
of irreducible components II,, o and II,, 1 if necessary, we may assume that
(do,d1) = (no, —n1).

For the trace character x,(g) = tr(Il,(g)) and the virtual character

X, (g9) :== tr(l?Hn(g)) (9 € Gy), we have

(12.11) XM, = XTlo + Xlo1s  Xgr, = P0XTlo — P1XTL, 1
niXi, + X, NoXT, — X,
(12.12) X1, o0 = -, XMp1 = -,

Moreover, from (12.6)-(12.7), we have tr(U) = 0 and so xg (e) = tr(U) =
0.

LEMMA 12.9. For II,,, 11, o and II,, 1, we have
dimII, = (dlm C)n ’ ‘6n/6no,n1| = (dlm C)n . <Tl0>a

dim L, = 2 dim I, = (dim ()" - <" N 1),
n no

1
dim L, 1 = -2 dim I, = (dim ¢)" - <” >
n n

12.4. Identification of irreducible components II,, o, I1,, 1

In [JK, Chapter 2, §2.8], the irreducible components of induced repre-
sentations of &,, from subgroups of type &, ,, are studied. Let A"%" and
A™Mi¢ be Young diagrams with one row of length ny and with one column
of length n; respectively for which the corresponding representations are
w(A"0") = the trivial one, and 7(A™¢) = sgn. Applying the general theory
to our case, we get the following.

PROPOSITION 12.10. Induced representation Indgzo nzr()\”o”)gw()\”“c)

is decomposed into two irreducible components. Their Young diagrams )\,(10)

and )\7(11) are obtained from A% and \"V¢ by connecting them in possible
ways to get Young diagrams of hook type, so that
A = (ng+1,1,1,...,1), AW =(ng,1,1,...,1,1),

n
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where a Young diagram X is expressed by lengths of rows as A = (7“1()\),

7’2()\),...).

Frobenius ‘Charakteristik’ for them are of rank 1 and given respectively
by

(12.13) (Zi) - <"1n; 1> and <n0"i 1).

In general, let (Zi) be a Frobenius ‘Charakteristik’ of rank 1 of an TUR of
S,,, and denote this IUR and its character by w(zi) and X(Zi) respectively.
Then, a1 + b1 = n — 1, and W(Zi) = sgn ® 77(21) with one-dimensional
character sgn, and by Frobenius dimension formula (5.22),

dim ap\  (n—1\ (n-—1
m b1 B aq N bl ’
T oy _ (n—1 . 1y (n—1
. dim7w(Ay) = , dimw(\,’) = .
no ni

Moreover irreducible characters for ‘Charakteristik’ of rank 1 can be
calculated as follows [Frob, §5]. For an element o € &, let its cycle de-
composition be o = 0103 - - - o4, and put ny(o) be the multiplicity of cycles
of length ¢ > 2. Then the set of these numbers define the equivalence class
[0] of 0. Let ni(o) be the number of cycles of length 1 (or of trivial cycles)
and put with an indeterminate x

F(r) = F[cr] () =1 —a)" -1 H W(U
>2
then F(z) = 0<;_1<—x>“ : x<n L a) (0).

LEMMA 12.11. Let 0 = (p q) be a transposition in S,. Then the
character value at o is given as follows:

X< a >(U):(n—2)!(n—2a—1)

n—1-—a al(n —a—1)!

di a n—2a—1
=dimmw —_—
n—1—a n—1
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Comparing dimensions in Lemma 12.9 and those in (12.4), we can iden-
tify irreducible components II,, o, II,, 1 in case ng # n; as given in Proposi-
tion 12.13 below.

However, in case ng = n1, two Frobenius ‘Charakteristik’ for II,, o, IL,, 1
or two Young diagrams show us II,, ; = sgn ® 11, 9, and we need to check
character values for a transposition ¢ € G,,. We apply Lemma 12.11, and
we get, for g = (ep,,, o) with the identity element ep, € D,(T), the value
X1, (9) from Proposition 11.2 and the one Xz (9) = Xy, (9)/ dimII, from
Theorem 13.7.

LEMMA 12.12. (i) For normalized characters, there hold

L, = 2 X, + 2§ % D% .,
11, — 11, 11, T - II,0 — XII,

n ,0 n ;17 UIl, n ,0 1/
- S 1 _ - 1
II,, 0 — XII, — X771 II,1 — XII,, — — X7
XM, o = X o X, XTI, = X o Xom,

(ii) For g = (ep,,,0) with a transposition o € G,,,

- 1 no(no—1) mni(ny —1) ~ 1 2nony
Xt (9) = dim ¢ < nin—1)  n(n—-1) > » X, (9) = dim ¢ n(n—1) ;
~ 1 no—n1+1 ~ 1 no—n1—1

Moo = Hm¢ n-1 Mot = fim¢ n-1

In this way, we arrive at the following identification.

PROPOSITION 12.13.  Let n, = Wier, G, ¢ = ¢ (Vi). Then irreducible
components of I, are identified as

(214) T2 Gy (1, O0), Ty = (3 D7),

§13. Explicit determination of irreducible characters xm,, o5 X11,, 1
13.1. Integral formulas for the virtual character Xom,,
LEMMA 13.1. For the virtual character xgy (9) = tr(ﬁHn(g)) (g €

G,) associated to U for1l, = Indg’; T,, we have X, = MOXTI,0 — MIXIT,
and

Xgm, (9) = / tr(m(g'99" " T)U) At at, o ptm 106 ()
(HnﬂTlHnTlfl)\Gn
1 ;-1
- 2w (mleer I

(G Nnn6 T
‘ no,n1 199n0,m171 o'cG,
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where d,u(H Am Hari—\G, 18 GN invariant measure on (H,N 7‘1Hn7‘1_1)\G

such that each point has unit measure, and m,(¢") = 0 by definition if
g// € Hn
Noting that
|(HnﬂT1HnT1_1)\Gn| o |6n0,n1| .
= 1N noni,
| Hn\Gn| [(Snoni N 7160, 7))

we have similarly to the normalized character x1,, = x11,,/ dimII,, the fol-
lowing formula for ‘normalized’ virtual character xgp (¢)/ dim Ily:

Xgm, (9) - / tr(wn(g’gg’_lTl)U)
dimI, e, dim 7,

_ nony Z tr(wn(a’ga’_lﬁ)l(ﬁ)) (g e

dim 7,

(13.1)  Xm.(9) = dpa,(9')

|6n| o'eGy,

where dimII,, = |6n0,n1\6n| -dim 7, dim7,, = (dim ¢)".
LEMMA 13.2. For a g = (d,o0) € G,, with d = (t;)1<i<n, assume that
g1 = (d,om) is in Hy,. We have 011 = KoKy with ky € &1, ,, K7 € 61, ;.

Put sgn,(o71) := sgn(k}) by definition, and let I(o’) for o’ € &,, be as in
(3.2), then

Ta(gr)I(11) = 1 (d) - I(r0)I (K1) - sguy (o71).
Moreover let k{, = HjeJ() oj, Ky = HjeJ{ oj, be cycle decompositions of
Ky, K respectively, then

tr(wn(gn XC
(13.2) I | | | e I | sgn(o;),
d1m7rn eQ' eI (dlmC jent

where Q' =1, \ LljeJ()uJ{ K; with Kj = supp(o;), and dj = (t;)ick, -

Here, for the calculation of trace, we utilized the following elementary
general lemma.

LEMMA 13.3. Leto= (12 --- {) be a cycle and (; = ¢ fori € K :=

{1,2,...,4} = supp(o). On the tensor product space Q,;cr V(Gi) = V(1) ®

@V ((), the operator 1(o) is defined as I(0)(@;er vi) == Qicxe 'Ua—l(i))
(vi € V(). Then

(13.3) tr(®yex Giti) - 1(0)) = x¢(Po(d)), d= (ti)iex € Di(T).
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Remark 13.1. It follows from (4.2) that, for the character of II,, =
Indg’; T, X11, (9) # 0 only when ¢ is conjugate to an element of H,,. On the
other hand, we see from (13.1) that xz; (g9) # 0 only when g is conjugate
to an element of H,7. By Lemma 13.4 below, we see that every element
g € Gy, except elements of D,, is conjugate under GG, to an element of H,, 1.

13.2. Explicit calculation of virtual characters xg (9) =

tr(UIL,(g))
For a g = (d,o0) € G,, = 6,(T), let

(13.4) 9=608p  Ca G2 gm, &= (tg,(0), g;j = (d;,0)),

be a standard decomposition and put @ = {q1,q2,...,¢-}, J = {1,2,...,
m}. For ¢ € &,, we study the condition that o’go’ '7; € H,. This
condition is equivalent to o’co’ "' € Gy, 71 since 72 = 1. Put

11/1,0 = ITMO \ {’I’Lo} = {17 2,...,n0— 1}7
Iy =TI\ {no+1} ={no +2,...,n—1,n}.

/
m

€ Gny,niT1 for a o’ € &y, where o’ = U’aja’_l, 18 equivalent to the follow-
ing: there exists a subset Jy & J and a j' € J\ Jy such that

LEMMA 13.4. Foro = o109 - 0, the condition oo’ = 0'105 SRR

oj = (a1 ag -+ ay ng by by -+ by mo+1)
with a; € I, o, b; € I, 1, u>0,v >0, or
0;-/7'1 = (a1 ag -+ ay no)(by by -+ by mo+1);
[[o5eern,. [lojedn,, with Jo=J\{i' un).
Jj€Jo JeEN

Every non-trivial element o € &, is conjugate to an element in
6no,n17-1~

Proof is omitted. Put
(13.5) ko= (a1 ag -+ ay ng), K1 =(by b --- b, ng+1),

then, 09/7'1 = Kok1, ko € 61,4, k1 € 61, ,, and kg =1 ifu =0, and k1 =1
if v =0.

From this lemma we see that any conjugacy class of &,, except the class
of the identity element 1 has a representative in &, n,71.
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For g = (d,o0) above, let d = (t;)ier,, and K; = supp(g;) = supp(c;),
dj = (t;)iex;- The condition a’ga’_ln € H, for ¢/ € G, is equivalent to
oo’ € Gro.n1, and this can be written down by Lemma 13.4 as follows.

LEMMA 13.5. Let o’ € &,. Then, o'o0’ "1 € Gpypy if and only if
there exists a partition of J as J = {j'} U Jo U J1 such that, with o} =
U'Uja’_l,

(S1) U;, = (a1 ag -+ ay ng by b -+ by ng+1) withu >0, v >0,

and a; € IAO = TIn0 \ {no}, b; € I;LJ = In1 \ {no+1};

(82) U;- € 6[;170 (] S Jo), U;- S 6]7/1’1 (] S Jl).

The condition (S2) is equivalent to
(52) o'(Kj) C I, 0 (4 € o), o'(Kj) C Iy (G € 1)

LEMMA 13.6. For g = (d,0) € Gy, and o' € &,,, with the same nota-
tions as above,

(0’90’ ) I(11) = a0’ (d)) I(0” 00" 1) I(1) - sgny (0’00’ 1)
= mu(0'(d)) 10’00’ ") - sgn(s) [] sen(oy).

jEJl

rﬂna’a'l P,
t( (o'g HX( HXC( ( Hsgncr]

dim jes (dmQ) jen

Noting that dimII,, = ‘Gno,m\Gn‘ -dim 7, we get an explicit formula
for the normalized virtual character Xz = xgp /dimIL,.

THEOREM 13.7. Take g = (d,0) € G,, and let its standard decomposi-
tion be as in (13.4). If g is in D,, or o = 1, then g is not conjugate under
G, to an element of H,m1, and )Zﬁnn(g) =0. Ifg € G, \ Dy, then

~_ o XC tq . G'J dK
XUHn(g) = Z dim ¢ ]]g:] (dlmC E(aj H sgn O']

J1§J q€Q JEJ1

o) =" ST g ), de= VR

J'eI\J1
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in the case where Zjejl 4 < nq, ZjeJo l; < ng,

d(j', Ju) = ;- > (="

u+v:ﬂj/ —2:u,v>0

X {no(no— 1)(ng—2)--- (no— ij —u)

J€Jo

xnl(nl—l)(nl—Q)---(m—zfj—v)}a

NS
otherwise d(j', J1) = 0.

Note that the summation for d(j’, J1) actually runs over (u,v) satisfying

() u+v:€j/—2,0§u<n0—Z€j,0§v<n1—Z€j.
j€Jo jeS

However, outside of this condition the corresponding summands are auto-
matically equal to zero. When u (and v) can run over all 0,1,...,¢; — 2,
by using a formula

O;m(—l)v«(:f) = (—1)™ <nn—l 1>’ and putting <Z> —0 (a<0),

we can reduce the expression for d(j, J;) in a little more simpler form but
not so much.

LEMMA 13.8. Suppose ng— ZjeJo ;>0 —1,n— Zjeh ;>0 —1,
then

. - ’I’Lo!nll
d(j's i) = =o'
n—|o| > g.( n—|o| >}
X + (—1)%
{ <n0 - zjeJO Ej - Ej/ o — Zje]o gj -1
’I’L()!Tll'

Aot 6) (s )]
no — Y ieso i — Uit PN = Yen it +1) )
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§14. Limits and asymptotic behavior of the irreducible characters
in:n”()’ inﬂql
By Lemma 12.12 (i), we have for the virtual character 5(“[71.[”,

~ B Xﬁnn . noni - ~
X, = dimTI, (XHn,o XHn,l)‘

We get from the formula for iﬁnn in Theorem 13.7, an asymptotic evalua-
tion of the difference X1, , — X1, , as follows.

THEOREM 14.1. Assume ng/n — By, n1/n — By (n — o0). Then
By + B1 =1, and we have as a limit a continuous invariant class function
on G = 6 (T) as follows. On the subgroup D C G, the virtual character
Xgm, S always zero. For g € G\ D, let its standard decomposition be as in
(13.4), then

lim XL"(Q) = lim nony (~ = )
n—0o0 dlmHn o n—oo XHTL,O XHnJ
x¢(tq) x¢(Ps, (dk;,))
ZCJ(BO7BI)' —_ = I
qel_é dim ¢ E (dim ¢)*(@5)
Ly £y
CJ(B()7B1) = Z 6]/ (B()] Bl - BOBIJ Sgn(o'jl))
{4 Yo i=J
% 0.
Jj€Jo JEJ1

For the normalized character i, , we have
dimHn’o ~ + dimHn,l ~ ni
dim L, o T qim 1, A

Thus we can determine finally the limits of normalized characters of
two irreducible components I, o, 11, 1 of IL,,, using Theorem 14.1.

~ ~ no
(14.1) Xm, = XMpo + = XML

n

THEOREM 14.2.  Assume that no/n — By, ni/n — Bi. Then By +
By =1 and
lim i, , = lim Xm,, = lim Xi,.
n—~0o0 n—~o0 n—~0o0
We obtain also another evaluation of the difference X1, , — X11,, as
follows, and this, together with Proposition 11.2, Theorem 11.3 and (14.1),
will contribute to evaluate fluctuations of each X1, o, X1, around their
common limit.
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THEOREM 14.3.  The difference X1, o — X11,., 1S evaluated as

(14.2)

sup i, (0) i, )] < (PPN PRIO) 1)
geGp, n

Proof. From (13.1) and Lemma 13.2, we have for a g = (d,0) € Gy,

X1, (9) — X1, (9)| =

Then,

n |Xﬁ1‘[n (g) |
nony dimlII,

< 1y [almles i)
6, ol dim 7y,
< 7(” i 01 . HU' €6, ; U'UJ’_lﬁ € 6y, X GIM}‘.

by (S1) in Lemma 13.5, we have an upper bound for the numerator

in the right hand side as

<

[AK]
[Bia]

[BS]

[Dix]

[Far]

[Frob]

[Hir1]

Z Cir(Ljr — 1)) - (n—2)! < |supp(o)|(]supp(o)| — 1) - (n — 2)!.

1<j'<m
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