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ALGEBRAIC SURFACES OF GENERAL TYPE

WITH SMALL c
2

1
IN POSITIVE CHARACTERISTIC

CHRISTIAN LIEDTKE

Abstract. We establish Noether’s inequality for surfaces of general type in

positive characteristic. Then we extend Enriques’ and Horikawa’s classification

of surfaces on the Noether line, the so-called Horikawa surfaces. We construct

examples for all possible numerical invariants and in arbitrary characteristic,

where we need foliations and deformation techniques to handle characteristic

2. Finally, we show that Horikawa surfaces lift to characteristic zero.

Introduction

The genus g and the degree of a canonical divisor KC of a smooth

projective curve are related by the well-known formula degKC = 2g − 2.

Already in 1875, Max Noether [Noe] has given the following general-

isation to surfaces: Given a minimal surface of general type X over the

complex numbers with self-intersection K2
X of a canonical divisor (playing

the role of the degree of a canonical divisor) and with geometric genus pg

then

K2
X ≥ 2pg − 4.

It is natural to classify surfaces for which equality holds, i.e., surfaces on the

so-called Noether line. Over the complex numbers, this has been sketched

in Enriques’ book [En, Capitolo VIII.11] and a detailed analysis has been

carried out by Horikawa [Hor2]. The result is that surfaces on the Noether

line, also called Horikawa surfaces, are double covers of rational surfaces

via their canonical map. Hence these surfaces may be thought of as a two-

dimensional generalisation of hyperelliptic curves.

Another point of view comes from Šafarevič’s book [S, Chapter 6.3]:

The 3-canonical map of a complex surface of general type is birational as

soon as K2
X > 3. Hence, by Noether’s inequality, surfaces with pg > 3

have a birational 3-canonical map. However, Horikawa surfaces with pg = 3
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provide examples of surfaces where the 3-canonical map is not birational.

Also this may be thought of as a generalisation of hyperelliptic curves.

In this article, we extend these results to surfaces of general type over

algebraically closed fields of arbitrary characteristic. We first show that

Noether’s inequality still holds. Our contribution here lies in skipping

through the literature to find a characteristic-free proof.

Theorem 2.1. Let X be a minimal surface of general type. Then

K2
X ≥ 2pg − 4.

If the canonical system is composed with a pencil and pg ≥ 3, then K2
X ≥

2pg − 2 holds true.

Definition 2.2. A Horikawa surface is a minimal surfaceX of general

type for which the equality K2
X = 2pg − 4 holds.

In order to extend the classification of Enriques and Horikawa of these

surfaces we need Clifford’s theorem on special linear systems for singular

curves. With this result we can avoid Bertini’s theorem in the classical

argumentation and obtain literally the same result, now valid in all charac-

teristics. As usual, there is an extra twist in characteristic 2.

Theorem 3.3 and Proposition 4.2. Let X be a Horikawa surface

and S := φ1(X) the image of the canonical map, which is a possibly singular

surface in P
pg−1.

Then φ1 is a generically finite morphism of degree 2 and we have the

following cases:

(1) If S is a smooth surface then we have the following possibilities

- S ∼= P
2 and pg = 3.

- S ∼= P
2 and pg = 6.

- S ∼= Fd and pg ≥ max{d+ 4, 2d − 2} and pg − d is even.

(2) If S is not smooth then it is the cone over the rational normal curve

of degree d := pg − 2. The minimal desingularisation of S is the

Hirzebruch surface Fd and 4 ≤ pg ≤ 6.



ALGEBRAIC SURFACES WITH SMALL c2
1

113

From this description we deduce that Horikawa surfaces are algebraical-

ly simply connected and that their Picard schemes are reduced, cf. Propo-

sition 3.7. Another byproduct is Proposition 3.9, which tells us that the

3-canonical map of a Horikawa surface with pg = 3 is not birational onto its

image.

Conversely, out of this data one can always construct a Horikawa sur-

face. In characteristic p 6= 2 this can be done along the lines of Horikawa’s

article [Hor2, Section 1], cf. Section 5.

Hence we are interested in Horikawa surfaces in characteristic 2. To ob-

tain such surfaces, we use quotients of minimal rational surfaces by p-closed

foliations. The main technical difficulty is that these vector fields necessar-

ily have isolated singularities so that we need to control the singularities of

the quotients.

The canonical map of such a surface is a purely inseparable morphism

onto a rational surface. In particular, these surfaces are inseparably uni-

rational. This is in contrast to curves, whose canonical maps are always

separable.

Theorem. (Horikawa [Hor2, Section 1], Section 5) All possible cases

of the previous theorem do exist in arbitrary characteristic. In characteristic

2, we may even assume the canonical map to be inseparable.

To get Horikawa surfaces in characteristic 2 with separable canonical

map, we use a deformation argument. Morally speaking, it says that surfaces

with inseparable canonical map should be at the boundary of the moduli

space. In particular, all possible numerical invariants for a Horikawa surface

in characteristic 2 do occur with surfaces that have a separable canonical

map.

Theorem 6.3. In characteristic 2, every Horikawa surface with insep-

arable canonical map can be (birationally) deformed into a Horikawa surface

with a separable canonical map, while fixing pg and the canonical image.

Since the classification looks the same in every characteristic, it is nat-

ural to ask whether Horikawa surfaces over an algebraically closed field of

positive characteristic k lift over the Witt ring W (k). I.e., we look for a

scheme X , flat over SpecW (k) and with special fibre the given surface over

k.
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Theorem 7.1. The canonical model of a Horikawa surface lifts over

W (k). For every Horikawa surface there exists an algebraic space, flat over

a possibly ramified extension of W (k), that achieves the lifting.

As a Horikawa surface is a double cover of a rational surface, the idea

of proving Theorem 7.1 is first to lift the rational surface and then the line

bundle associated with this double cover, which then defines a lifting of the

whole double cover and hence a lifting of the Horikawa surface in question.

Acknowledgements. I thank Stefan Schröer for many discussions

and help. Also, I thank Matthias Schütt and the referee for pointing out a

couple of inaccuracies.

§1. Singular hyperelliptic curves

In order to prove Theorem 2.3 below, we recall some facts about singular

hyperelliptic curves. In this section, curves will always be assumed to be

reduced and irreducible as well as proper over an algebraically closed field

k. We denote by pa(C) := 1 − χ(OC) the arithmetic genus of C.

Definition 1.1. A reduced and irreducible curve C is called hyperel-

liptic if pa(C) ≥ 2 and if there exists a morphism of degree 2 from C onto

P
1.

It follows that C is automatically Gorenstein, say with invertible du-

alising sheaf ωC . Clearly, a smooth curve is hyperelliptic in the sense of

Definition 1.1 if and only if it is hyperelliptic in the classical sense.

An immediate consequence that will be used later on is the following

result.

Lemma 1.2. Let L be an invertible sheaf on a hyperelliptic curve such

that L⊗2 ∼= ωC. Then |L| does not define a birational map.

Proof. Let φ : C → P
1 be a morphism of degree 2. The fibres of φ

provide us with an infinite number of smooth points x, y (possibly x = y)

such that h0(OC(x+ y)) ≥ 2.

First, suppose that φ is generically étale. Then we may assume x 6= y.

The long exact sequence in cohomology, Serre duality and the assumption

on L yield

0 −→ H0(L ⊗OC(−x− y)) −→ H0(L) −→ L/(mx ⊕ my) · L
δ

−→ H0(L ⊗OC(x+ y))∨ −→ H0(L)∨ −→ 0 .
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By the choice of x, y and [Hart, Lemma IV.5.5], we have

h0(L ⊗OC(x+ y)) ≥ h0(L) + h0(OC(x+ y)) − 1 ≥ h0(L) + 1,

which implies that the boundary map δ is non-trivial. In particular, |L|

fails to separate an infinite number of distinct points x and y and so the

associated map cannot be birational.

If φ is not generically étale, then its fibres provide us with an infinite

number of points where |L| fails to be an embedding (similar long exact

sequence as before). Again, |L| cannot be birational.

It is interesting that Clifford’s theorem on special line bundles remains

true in the singular case.

Theorem 1.3. (Clifford’s theorem) Let L be an invertible sheaf on a

reduced Gorenstein curve C. If both, h0(C,L) and h1(C,L) are non-zero

then

h0(C,L) ≤
1

2
degL + 1.

Moreover, if equality holds then L ∼= OC or L ∼= ωC or C is hyperelliptic.

Proof. [EKS, Theorem A], where even a version for torsion free sheaves

is given.

Although we do not need this result in the sequel we note that being

hyperelliptic can be rephrased in terms of the canonical map |ωC |, just as

in the smooth case. This is proved as in the classical case or along the lines

of the proof of Lemma 1.2.

Proposition 1.4. A Gorenstein curve C with pa(C) ≥ 2 is hyperel-

liptic if and only if |ωC | is not birational.

§2. Noether’s inequality and Horikawa surfaces

The results of this section are well-known over the complex numbers.

In order to extend them to positive characteristic we run through the clas-

sical arguments and have to find new ones whenever Bertini’s theorem or

vanishing results are used.

We start with Noether’s inequality [Noe, Abschnitt 11]. Probably it is

known to the experts that it holds in arbitrary characteristic.



116 C. LIEDTKE

Theorem 2.1. (Noether’s inequality) Let X be a minimal surface of

general type. Then

K2
X ≥ 2pg − 4.

If the canonical system is composed with a pencil and pg ≥ 3, then K2
X ≥

2pg − 2 holds true.

Proof. Since K2
X > 0 we may assume that pg ≥ 3. Thus, the canon-

ical system is non-empty and either is composed with a pencil or has a

2-dimensional image.

If the canonical linear system is composed with a pencil and pg ≥ 3,

we argue as in the proof of [BHPV, Theorem VII.3.1] to get the inequality

K2
X ≥ 2pg − 2 in this case.

If the canonical map has a 2-dimensional image, [E2, Proposition 0.1.3

(iii)] yields the desired inequality.

In view of this inequality it is natural to classify those surfaces where

K2
X attains the minimal value possible given pg. Over the complex numbers,

this classification has been sketched in Enriques’ book [En, Capitolo VIII.11]

and carried out in detail by Horikawa [Hor2].

Definition 2.2. A Horikawa surface is a minimal surface X of general

type for which the equality K2
X = 2pg(X) − 4 holds.

Sometimes these surfaces are referred to as even Horikawa surfaces as

K2
X is always an even number. Since Horikawa also classified surfaces for

which K2
X = 2pg − 3 holds and K2

X for such a surface is an odd number

these latter surfaces are sometimes called odd Horikawa surfaces. However,

we will only deal with even Horikawa surfaces in this article, and so we will

simply refer to them as Horikawa surfaces.

We now establish the structure result about the canonical map of a

Horikawa surface in positive characteristic. Although our proof is essentially

the same as the original one by Enriques and Horikawa, we have to be a

little bit careful applying Bertini’s theorem to the canonical linear system.

In fact, the Horikawa surfaces in characteristic 2 that we will construct in

Section 5 have the property that a generic canonical divisor is a singular

rational curve.
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Theorem 2.3. (Enriques, Horikawa) Let X be a Horikawa surface.

Then pg ≥ 3 and the canonical map φ1 is basepoint-free and without fixed

part. More precisely, φ1 is a generically finite morphism of degree 2 onto a

possibly singular surface of degree pg − 2 inside P
pg−1.

Proof. Since Noether’s inequality is an equality and since K2
X > 0 for a

minimal surface of general type we have pg ≥ 3. In particular, the canonical

system is not empty. By Theorem 2.1, the canonical system is not composed

with a pencil and hence the image of the canonical map φ1 is a surface.

It follows from [E2, Proposition 0.1.2 (iii)] that φ1 is basepoint-free and

either birational or of degree 2 onto a (possibly singular) ruled surface.

Suppose that φ1 is birational. Let D be a canonical divisor, which we

can assume to be irreducible by Bertini’s theorem [Jou, Théorème I.6.10].

Being birational, φ1 is generically unramified, which implies that D is re-

duced over an open and dense subset (loc. cit.). We may thus assume that

D is a reduced and irreducible curve. Arguing as in [Hor1, Lemma 2] we get

2pg − 4 ≤ D2 ≤ K2
X and by our assumptions we have equality everywhere.

Also, it is shown in (loc. cit.) that L := ωX ⊗OD is an invertible sheaf on D

with non-vanishing h0 and h1 for which Clifford’s inequality is an equality.

By Theorem 1.3, the curve D is hyperelliptic in the sense of Definition 1.1.

We see L⊗2 ∼= ωD from the adjunction formula on X and so the map de-

fined by |L| is not birational by Lemma 1.2. However, this contradicts the

birationality of φ1. Hence the canonical map cannot be birational.

Thus, deg φ1 = 2 and the image of φ1 is an irreducible but possibly

singular surface of degree at most pg − 2 in Ppg−1. However, pg − 2 is

the lowest degree possible for a non-degenerate surface in P
pg−1 and so the

image of φ1 has degree equal to pg − 2. We write |KX | = |M | + F , where

F denotes the fixed part and M denotes the movable part of the canonical

system. As KX is nef, we have 2pg − 4 = M2 ≤ K2
X , and hence equality

by our assumptions. From MF + F 2 = KXF ≥ 0 and MF ≥ 0 together

with K2
X = M2 it is not difficult to deduce F 2 = 0 and KXF = 0. Since

K2
X > 0 and KXF = F 2 = 0, the Hodge index theorem implies that F is

numerically trivial. On the other hand, F is an effective divisor and being

numerically trivial we see that F is the zero divisor.

Remark 2.4. A surface in P
n that spans the ambient space has degree

at least n− 1. Surfaces of minimal degree have been classified by del Pezzo

(see [EH] for a modern account) and consist of P
2, Hirzebruch surfaces, as

well as cones over rational normal curves.
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§3. Classification of Horikawa surfaces

In this section we give a more detailed description of Horikawa surfaces

similar to [En, Capitolo VIII.11] and [Hor2, Section 1]. In order for this to

work also in presence of inseparable maps and wild ramification, we do not

use the language of branch divisors but use the description of flat morphisms

of degree 2 in terms of their associated line bundles.

Let π : X → S be a flat double cover, i.e., a finite, flat and surjective

morphism of degree 2. Via

(1) 0 −→ OS −→ π∗OX −→ L∨ −→ 0

we obtain a sheaf L∨ on S, which is invertible by our assumptions on π. In

this case, we define L to be its dual.

Definition 3.1. We refer to L as the line bundle associated with π.

Flat double covers of smooth varieties are automatically Gorenstein by

[CD, Proposition 0.1.3] and the dualising sheaf ωX of X is given by

(2) ωX
∼= π∗(ωS ⊗ L).

Using the projection formula and (1), we obtain an extension

(3) 0 −→ ωS ⊗ L −→ π∗ωX −→ ωS −→ 0.

Remark 3.2. If pg(S) = 0, then the canonical map of X factors as π

followed by the map from S associated with ωS ⊗ L.

For a natural number d ≥ 0, we denote by Fd the Hirzebruch surface

PP1(OP1 ⊕ OP1(d)). This P
1-bundle over P

1 has a section ∆0 with self-

intersection number ∆2
0 = −d, which is unique if d is positive. We denote

by Γ the class of a fibre of this P
1-bundle.

We now state and prove the structure result for Horikawa surfaces.

Theorem 3.3. Let X be a Horikawa surface and S := φ1(X) its canon-

ical image in P
pg−1.

(1) If S is smooth then φ1 factors as

φ1 : X −→ Xcan
π

−→ S,

where Xcan denotes the canonical model of X and where π is a finite

and flat morphism of degree 2. Let L be the line bundle associated

with π. Then we have the following possibilities:
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- S ∼= P
2, pg = 3 and L ∼= OP2(4),

- S ∼= P
2, pg = 6 and L ∼= OP2(5),

- S ∼= Fd, 0 ≤ d ≤ pg−4, pg−d is even and L ∼= OFd
(3∆0 + 1

2(pg +

2 + 3d)Γ).

(2) If S is not smooth then it is the cone over a rational normal curve

of degree pg − 2 in P
pg−1. Also pg ≥ 4 and the minimal desingu-

larisation ν : S̃ → S is isomorphic to Fpg−2. There exists a partial

desingularisation X ′ of the canonical model Xcan such that φ1 factors

as

φ1 : X −→ X ′ π
−→ Fpg−2

ν
−→ S,

where π is a finite and flat morphism of degree 2. If L denotes the

line bundle associated with π then L ∼= OFd
(3∆0 + 1

2(pg + 2 + 3d)Γ).

Remark 3.4. We will see in Proposition 4.2 that there are further re-

strictions on pg and d.

Proof. By construction, φ1 factors over the canonical model Xcan. We

know from Theorem 2.3 that S is a surface of degree pg − 2 in P
pg−1, i.e.,

a surface of minimal degree. Such a surface is a smooth rational surface or

the cone over the rational normal curves of degree pg − 2 by [EH]. Thus,

if S is not smooth its minimal desingularisation is the Hirzebruch surface

Fpg−2.

In any case, we denote by ν : S̃ → S the minimal desingularisation of S.

Copying the proof of [Hor2, Lemma 1.5] we see that φ1 factors over S̃. Let

ψ be the induced morphism X → S̃, which is generically finite of degree 2

by Theorem 2.3. Let X ′ be the Stein factorisation of ψ and denote by π the

induced morphism π : X ′ → S̃, which is finite of degree 2. Moreover, π is

flat since X ′ is Cohen-Macaulay (being a normal surface) and S̃ is regular.

Moreover, since flat double covers of smooth varieties are Gorenstein, it

follows that X ′ is Gorenstein.

The morphism X → X ′ is birational. Since φ1 factors over Xcan, it is

not difficult to see that the canonical morphism X → Xcan factors over X ′.

In particular, X ′ has at worst rational singularities, which are Gorenstein by

what have already proved, i.e., X ′ has at worst Du Val singularities. As ϕ :

X ′ → Xcan is a birational morphism and X ′ has only Du Val singularities,

Xcan is also the canonical model of X ′ and hence ϕ partially resolves the

singularities of Xcan.
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A smooth surface S of minimal degree is either P
2 embedded via |H|

or |2H| into projective space or a Hirzebruch surface Fd embedded into

projective n-space via |∆0 + 1
2(n− 1 + d)Γ|, where n− d− 3 is an even and

non-negative integer (see for example [Hor2, Lemma 1.2]). Thus, if X is a

Horikawa surface and φ1(X) is a smooth surface S, the canonical system of

X factors over ωS ⊗L on S, where ωS ⊗L is one of the linear systems just

described. This yields the first list, cf. also [Hor2, Section 1].

If S is a singular surface of minimal degree, then S̃ ∼= Fpg−2 and the

embedding of S is given by |∆0 +dΓ| on S̃. Proceeding as before, we obtain

the description of L in this case. Again, we refer to [Hor2, Section 1] for

details.

Before proceeding we need (or recall) a simple vanishing result.

Lemma 3.5. We have H1(P2,L) = 0 for every line bundle on P
2.

On the Hirzebruch surface Fd we have H1(Fd,OFd
(a∆0 + bΓ)) = 0 if

(1) a ≥ 0 and b ≥ 0 or

(2) a ≤ −2 and b ≤ −(d+ 2).

Proof. We leave the assertion about line bundles on P
2 to the reader.

We consider the exact sequence

0 −→ OFd
((a− 1)∆0) −→ OFd

(a∆0) −→ O∆0
−→ 0.

Taking cohomology and noting that the statement is clear for a = b = 0 we

obtain the assertion for a ≥ 0 and b = 0 inductively. Using this result, an

induction on b shows the vanishing for a ≥ 0 and b ≥ 0. Applying Serre

duality we obtain the remaining vanishing result.

The following result is crucial to prove that Horikawa surfaces are simply

connected as well as to show that there are further dependencies between

pg and d in Theorem 3.3.

Lemma 3.6. Let L be as in Theorem 3.3. Then h1(L) = h1(L∨) = 0.

Proof. This follows immediately from inspecting the list of possible L’s

given in Theorem 3.3 and then applying Lemma 3.5.

As an application of Theorem 3.3 we obtain
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Proposition 3.7. A Horikawa surface fulfills h01(X) := h1(OX) = 0

and is algebraically simply connected, i.e., has a trivial étale fundamental

group. In particular, its Picard scheme is reduced.

Proof. We use the notations of Theorem 3.3. If the canonical image

φ1(X) is a smooth surface, the long exact sequence of cohomology applied to

(1) together with Lemma 3.6 yields h1(OXcan
) = 0. Since Xcan has at worst

rational singularities, the Grothendieck-Leray spectral sequence associated

with the push-forward of the structure sheaf yields h1(OX) = 0. The case

where the canonical image φ1(X) is a singular surface is similar and left to

the reader.

From h1(OX) = 0 it follows that the Picard scheme of X is reduced.

To prove that X is algebraically simply connected we use the idea of

[Bo, Theorem 14]: Let X̂ → X be an étale cover of degree m. Then we

compute χ(O
X̂

) = mχ(OX) and K2
X̂

= mK2
X . Using Noether’s inequality

(Theorem 2.1), we obtain

m(1 + pg(X)) = 1− h1(O
X̂

) + pg(X̂) ≤ 1 + pg(X̂) ≤
1

2
K2

X̂
+ 3 =

m

2
K2

X + 3.

We assumed X to be a Horikawa surface and so this inequality holds for

m = 1 only. Thus, every étale cover is trivial and hence X is algebraically

simply connected.

Remark 3.8. Over the complex numbers, even the topological funda-

mental group of a Horikawa surface is trivial [Hor2, Theorem 3.4].

Surfaces with K2 = 2 and pg = 3, i.e., Horikawa surfaces with pg = 3,

have also been studied in Šafarevič’s book [S, Chapter 6.3]. The emphasis

there is on the fact that these complex surfaces are the only surfaces besides

those with K2 = 1 and pg = 2 where |3KX | does not define a birational

map.

Proposition 3.9. The 3-canonical map of a minimal surface of gen-

eral type with K2 = 2 and pg = 3 is a morphism but not birational.

Proof. From Theorem 3.3, we see that the canonical map of X exhibits

the canonical model Xcan as a flat double cover π : Xcan → P
2 with asso-

ciated line bundle L ∼= OP2(4). Using (2), we see that ω⊗3
Xcan

∼= π∗(OP2(3)).

By the projection formula, the pushforward π∗(ω
⊗3
Xcan

) is an extension of



122 C. LIEDTKE

OP2(−1) by OP2(3). Taking global sections, we see that all global sections

of ω⊗3
Xcan

are pull-backs of global sections of OP2(3). Hence the 3-canonical

map of X is a morphism and factors over π. In particular, it is not bira-

tional.

§4. The canonical double cover

We now take a closer look at the canonical double cover of a Horikawa

surface. In particular, we will see in Proposition 4.2 that there are more

restrictions on the line bundle L in Theorem 3.3.

Let π : X → S be a flat double cover where X is a normal and S is a

smooth variety. Let L be the associated line bundle and consider the short

exact sequence (1). If the characteristic of the ground field is different from

2 then the extension of function fields k(X)/k(S) is Galois with a cyclic

Galois group of order 2. The Galois action extends to an action on π∗OX

and decomposing into the ±1-eigensheaves we obtain a splitting of (1).

If the characteristic of the ground field is p = 2 then there is no reason

for (1) to split. Of course, this sequence has to split if ext1(L∨,OS) =

h1(L) = 0. By Lemma 3.6, this condition is fulfilled for Horikawa surfaces.

If π is a flat double cover as above such that (1) splits then there exist

global sections f ∈ H0(L) and g ∈ H0(L⊗2) such that the cover π : X → S

is globally over S given by

(4) z2 + fz + g = 0,

where z is a fibre coordinate on L. Moreover, if the characteristic p is

different from 2 or if p = 2 and π is purely inseparable, we may even assume

f = 0.

Lemma 4.1. Let π : X → S be a flat double cover where X is normal

and S is smooth. In characteristic p = 2 we assume moreover that the

associated sequence (1) splits.

(1) If p 6= 2 or p = 2 and π is purely inseparable then L⊗2 has a reduced

section.

(2) If p = 2 and π is separable then there exist sections f and g of L and

L⊗2, respectively such that div(g) has no component of multiplicity

≥ 2 along a component of div(f).
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Proof. We may assume that π is given by (4).

In the first case we may assume f = 0. If h2 divides g then, by the

Jacobian criterion, X is singular along the divisor {π∗(h) = 0}. However,

this contradicts the normality of X.

In the second case, if h divides f and h2 divides g then, again by the

Jacobian criterion, X is singular along π∗(h) = 0. Again, this contradicts

the normality of X.

This result imposes further restrictions on the line bundle L of Theo-

rem 3.3 and we obtain the same result as in [Hor2, Section 1], now valid in

arbitrary characteristic.

Proposition 4.2. Let X be a Horikawa surface and S be the image of

its canonical map.

(1) If S is the smooth Hirzebruch surface Fd, then pg ≥ 2d− 2.

(2) If S is singular, then pg ≤ 6.

Proof. Let S̃ be the minimal desingularisation of S and consider the

finite and flat double cover π : X ′ → S̃ induced by φ1 as in Theorem 3.3.

Let L be the line bundle associated with π and L be its class in NS(S̃). We

know from Lemma 3.6 that H1(L) vanishes and so the short exact sequence

(1) associated with π splits.

We may assume that d > 0 (else there is nothing to prove), in which

case the divisor ∆0 is unique. We claim that 2L · ∆0 ≥ −d. If not then

every section of L⊗2 vanishes with multiplicity ≥ 2 along ∆0. Hence every

section of L vanishes along ∆0. This however, contradicts Lemma 3.6 in all

possible cases.

If S = Fd then the inequality just shown together with Theorem 3.3

yields pg ≥ 2d − 2. In case S is the cone over the rational normal curve of

degree d we obtain pg ≤ 6.

§5. Inseparable canonical maps

Theorem 3.3 and Proposition 4.2 restrict the numerical invariants of a

Horikawa surface. Conversely, we now establish the existence of Horikawa

surfaces for all remaining invariants. If the characteristic is different from

2, this can be done along the classical arguments of Enriques and Horikawa.
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In characteristic 2, we will first treat existence for surfaces with insepa-

rable canonical map. In the next section we get the remaining case by a

deformation argument.

A converse to Theorem 3.3 and Proposition 4.2 in characteristic p 6= 2

can be proved along the lines of [Hor2, Section 1]. We only sketch the

argument here.

Theorem 5.1. (Horikawa) Let S̃ be a minimal rational surface in char-

acteristic p 6= 2 and L a line bundle on S̃. Assume moreover, that S̃ and L

are as in Theorem 3.3 and that the additional inequalities of Proposition 4.2

are fulfilled. Then there exists a Horikawa surface X such that S̃ resolves

the singularities of φ1(X) and such that L is the line bundle associated with

the flat double cover π of Theorem 3.3.

Proof. Given a line bundle L on S̃ as above, there exists a reduced

section of L⊗2 with at worst normal crossing singularities. A double cover

of S̃ branched along the divisor of this section yields a surface with at worst

Du Val singularities, whose desingularisation is a Horikawa surface with the

stated properties, cf. [Hor2, Section 1].

Henceforth we shall assume that the characteristic of the ground field

is p = 2. To obtain examples with inseparable canonical maps, we use quo-

tients by foliations as described in [Lie]. We note that this is a feature that

does not occur for curves, where the canonical map can never become insep-

arable. Also, these surfaces of general type are automatically (inseparably)

unirational, which cannot happen in dimension 1 by Lüroth’s theorem.

Although we only present examples we note that all Horikawa surfaces

with inseparable canonical map can be obtained this way. In fact, the canon-

ical morphism is inseparable if and only if the morphism π in Theorem 3.3

is purely inseparable. Using the Frobenius morphism and Hirokado’s re-

sult [Hir1, Proposition 2.6], that singularities of p-closed vector fields on

surfaces can be resolved by blow-ups in characteristic 2, we conclude that

Horikawa surfaces with inseparable canonical morphism are quotients of ra-

tional surfaces by p-closed vector fields. In particular, these surfaces are all

(inseparably) unirational.

Theorem 5.2. Given non-negative integers g, d with g ≥ max{2d −

2, d + 4} and g − d even, there exists a Horikawa surface with pg = g such

that its canonical morphism maps inseparably onto Fd.



ALGEBRAIC SURFACES WITH SMALL c2
1

125

Proof. We use the coordinates of [Hir2] to express Fd and its morphism

onto P
1 as

(
Proj k[X1, Y1]×Speck[t1]

)
∪

(
Proj k[X2, Y2]×Speck[t2]

)
−→ Proj k[T1, T2].

We set xi := Xi/Yi and yi := Yi/Xi for i = 1, 2. Then

x1 = x2/t
d
2 ∂/∂x1 = td2∂/∂x2

yi = 1/xi ∂/∂xi = −y2
i ∂/∂yi

t1 = 1/t2 ∂/∂t1 = −dx2t2∂/∂x2 − t22∂/∂t2.

The elements of |Γ| are given by {ti = const} and the section ∆0 is defined

by {y1 = 0} ∪ {y2 = 0}, whereas {x1 = 0} ∪ {x2 = 0} is linearly equivalent

to ∆0 + dΓ.

We will first assume that g and d are even integers. For an arbitrary

integer m ≥ 0 we choose an integer ℓ ≥ 0 such that 0 ≤ 2ℓ − 2m + 2 ≤

5d. Then we choose pairwise distinct elements a1, . . . , aℓ, b1, . . . , bm in the

ground field k and define the rational function

ψ(t1) :=
ℓ∏

i=1

(t1 − ai)
−2

m∏

j=1

(t1 − bj)
2 ∈ k(t1).

Then we define the vector field

η := x−4
1

∂

∂x1
+ ψ(t1)

∂

∂t1

which is additive in characteristic 2, i.e., η[2] = 0. Considered as a derivation

of k(x1, t1) over k it extends to a rational vector field on Fd with divisor

(η) ∼ −4∆0 − (2m− 2 + 4d)Γ.

If 5d − 2ℓ + 2m − 2 = 0 then η has ℓ + m isolated singular points. More

precisely, the quotient X ′ := Fd/η has ℓ singular points of type D8 and m

singular points of type D12, where we use [Lie, Proposition 2.3] to determine

the singularities. Using the results of [Lie, Section 4] we see that X ′ has

an ample canonical sheaf if g ≥ d + 4, i.e., X ′ is the canonical model of a

surface of general type. We find pg = 2m − 2 + 2d ≥ 2d − 2 and that X ′

is a Horikawa surface. Using Remark 3.2, we see that the canonical map

of X ′ factors over F
(−1)
d , cf. also [Lie, Section 7]. This construction yields
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all examples of Horikawa surfaces with all possible values of g and d where

both are even integers.

If 5d−2ℓ+2m−2 = 4 then the quotient X ′ := Fd/η acquires an elliptic

singularity of type (19)0 at the point lying below P := {x2 = t2 = 0} by

[Lie, Proposition 2.3]. The other singular points of X ′ are again Du Val

singularities of type D8 and D12. Desingularising X ′ we obtain a Horikawa

surface X ′′ with pg = 2m− 3 + 2d. By construction, the canonical image of

X ′′ equals the image of Fd under the morphism that is defined by imposing a

simple base point at P in the linear system |∆0 + 1
2 (g−2+d)Γ|. Blowing up

P resolves the indeterminacy and since P does not lie on ∆0, the induced

morphism on the blow-up of Fd factors over Fd−1. Hence the canonical

system of X ′′ factors over Fd−1. With this construction we obtain examples

of Horikawa surfaces with all possible values of g and d where both are odd

integers.

Theorem 5.3. For every 4 ≤ g ≤ 6 there exists a Horikawa surface

with pg = g such that its canonical morphism maps inseparably onto the

cone over a rational normal curve of degree pg − 2 in P
pg−1.

Proof. To get an example with pg = 4 (resp. pg = 6) we take d = 2

(resp. d = 4), m = 1 (resp. m = 0) and ℓ = 4 (resp. ℓ = 9) in the series of

surfaces constructed in the proof of Theorem 5.2.

To get an example with pg = 5 we take d = 4, m = 0 and ℓ = 7. The

quotient F4/η has a singularity of type (19)0 and a desingularisation yields

the desired surface.

Theorem 5.4. There exist Horikawa surfaces with pg = 3 and K2 = 2

as well as pg = 6 and K2 = 8 such that their canonical morphisms map

inseparably onto P
2 and the Veronese surface in P

5, respectively.

Remark 5.5. By a theorem of Bloch, there are no smooth and insep-

arable double covers of P
2, cf. [E, Proposition 2.5]. Hence the canonical

model of a surface of Theorem 5.4 cannot be smooth.

Proof. We use the Zariski surfaces constructed by Hirokado [Hir2, Ex-

ample 3.2]. On F1, the blow-up of P
2 in one point, the vector field ∆1 with

ℓ = 0 and n = 3 (resp. n = 4) is multiplicative with isolated singularities

of multiplicity 1. The quotient X := F1/∆1 is a minimal surface of general
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type with at worst A1 singularities having the invariants we are looking for,

cf. [Hir2, Example 3.2] and [Hir2, Example 3.5].

The canonical map of X factors over F
(−1)
1 followed by the map defined

by the linear system |L+ E| (resp. |2L+ 2E|), where L is the class of line

pulled back from P
2 and E is the exceptional (−1)-curve on F1. Hence the

canonical map of X is a purely inseparable morphism onto P
2 (resp. onto

the Veronese surface in P
5).

Remark 5.6. Alternatively, we can consider δ := (x2+x−4) ∂
∂x

, which is

a rational and additive vector field on P
1. The quotient X ′ := (P1×P

1)/(δ+

δ) has an elliptic singularity of type (19)0 and nine Du Val singularities of

typeD4. Resolving these, we obtain another surface with pg = 3 andK2 = 2

such that the canonical map exhibits Xcan as a purely inseparable double

cover of P
2.

§6. Deformations to the separable case

To obtain Horikawa surfaces with separable canonical map in charac-

teristic 2, we show that every Horikawa surface with inseparable canonical

map can be deformed into such a surface with a separable canonical map.

Morally speaking, the Horikawa surfaces with inseparable canonical map

should be boundary components of the moduli space (if it exists in some

sense) of all Horikawa surfaces with fixed pg and fixed image of the canonical

map.

First, we establish a result about deformations of proper surface with at

worst rational singularities. If resolution of singularities in positive charac-

teristic were known to hold, we could probably argue along the lines of [El]

to prove that every deformation of a rational singularity is again rational.

For our purposes, it is enough to consider deformations over a 1-dimensional

and normal base. We prove the result in wider generality in order to apply

it to lifting problems later on as well.

Proposition 6.1. Let f : X → SpecR be a flat and proper family of

surfaces where R is a normal and 1-dimensional Nagata ring. Assume that

the geometric fibre over some closed point t ∈ SpecR is a normal surface

with at worst rational (resp. Du Val) singularities. Then there exists an

open set U ⊆ SpecR containing t such that the geometric generic fibre as

well as every geometric fibre above points of U is a normal surface with at

worst rational (resp. Du Val) singularities.
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Proof. By [EGA IV, Thm. 12.2.4], there exists an open and dense

subset U of C := SpecR over which the fibres are geometrically normal.

Since U and the fibres of f above U are normal then so is XU , cf. [EGA IV,

Cor. 6.5.4]. Since any localisation of a normal ring remains normal, also the

generic fibre XK is normal.

The generic fibre XK → SpecK is a surface over a field K whose sin-

gularities can be resolved by a sequence of normalised blow-ups YK → XK

at closed points. If YK is regular but not smooth over K we pass to a finite

extension L of K where the singularities become visible. Base-changing to

this field and resolving the singularities of YL, we eventually obtain a reg-

ular surface. After possibly extending this field further, base-changing and

resolving singularities we finally obtain a regular surface that is also smooth

over its ground field. We may thus assume that there exists a finite field

extension L of K and a finite sequence of normalised blow-ups YL → XL

such that YL is a smooth surface over L.

Let D be the normalisation of C in L. We choose a point s ∈ D lying

above t ∈ C. Then the discrete valuation ring OD,s dominates OC,t. We

denote their respective residue fields by k and ℓ. Let X ′
D be the normalisa-

tion of X ⊗OC,t
OD,t. By the valuative criterion of properness the sequence

of normalised blow-ups νL : YL → XL extends to a sequence of normalised

blow-ups ν ′D : Y ′
D → X ′

D. This induces a partial desingularisation of the

special fibre X0 ⊗k ℓ. Since this special fibre has at worst rational singulari-

ties, the flat base-change theorem shows that R1(ν ′D)∗OY ′

D
and R1(νL)∗OYL

have to vanish. In particular, XL has at worst rational singularities, which

implies that also the geometric generic fibre and XK have at worst rational

singularities.

There exists an open neighbourhood V of s ∈ D over which Y ′
D →

X ′
D → SpecOD,s spreads out flatly. We have thus a sequence of normalised

blow-ups νV : YV → XV over V which coincides with νL after tensorising

with L. Since YL is smooth over L, i.e., geometrically regular, there exists

a non-empty and open subset W of V over which the fibres of YV → V are

geometrically regular, cf. [EGA IV, Thm. 12.2.4]. Since D is 1-dimensional,

the set W ∪ {s} is still open in D and we replace V by it. There exists a

neighbourhood of t such that the geometric fibres of XV → V are normal

(same argumentation as beginning of the proof) and we replace V by it.

After possibly shrinking even further we may assume that R1(νV )∗OYV
is

zero since this is true generically. This open set V now has the property

that every geometric fibre of XV → V is a normal surface with at worst
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rational singularities.

Since R is a 1-dimensional and normal Nagata ring the map D → C

is a finite morphism between regular schemes and hence flat. Thus, the

image W of V in C is open and contains t. We replace U from above by

its intersection with W , which yields an open set of C containing t. The

geometric fibres of X → C over U are normal surfaces with at worst rational

singularities.

Now, suppose that the geometric fibre above t has at worst Du Val

singularities. These singularities are precisely the rational Gorenstein sin-

gularities. The special fibre is Gorenstein and since the maximal ideal of

t ∈ C is generated by a regular sequence, it follows that the generic fibre

is Gorenstein and there are points of X whose local rings are Gorenstein.

This argument also shows that the property of a fibre being Gorenstein is

stable under generisation. The set S of points of X such that OX ,b is not

Gorenstein is a proper closed subset of X . The image of S in C is a con-

structible set and hence so is its complement, which we have already seen

to be stable under generisation. Hence that the set of points in C whose

fibres are Gorenstein schemes is open and contains t. Intersecting U with

this open set we obtain an open set of C containing t such that every ge-

ometric fibre above points of it is a normal surface with at worst rational

Gorenstein, i.e., Du Val, singularities.

The only point in the proof where we have used that we deal with

surfaces was when we used resolution of singularities of the generic fibre.

For example, if the field of fractions of R is of characteristic zero we can

apply Hironaka’s resolution of singularities and the proof works in arbitrary

dimensions.

Hence if we define a weak rational singularity of a variety X in positive

characteristic (naively) by requiring that Rif∗OY = 0 for every resolution

f : Y → X and every i ≥ 1 we obtain the

Corollary 6.2. Let k be a perfect field of positive characteristic and

W (k) its associated Witt ring. Assume that X is a normal variety over k

with at worst weak rational (Gorenstein) singularities and that there exists

a flat lifting f : X → SpecW (k) of X. Then the generic fibre of f is a

normal variety with at worst rational (Gorenstein) singularities.

We now apply the previous proposition to deform a given Horikawa sur-

face with inseparable canonical morphism into one with a separable canoni-



130 C. LIEDTKE

cal morphism. This is achieved by deforming the canonical map while fixing

(the desingularisation of) the canonical image.

Theorem 6.3. Let X be a Horikawa surface in characteristic 2 and

assume that the canonical map φ1 : X → S := φ1(X) is inseparable.

(1) If S is smooth then the canonical model of X can be deformed into the

canonical model of a Horikawa surface with separable canonical map

and with the same canonical image.

(2) If S is singular, then the surface X ′ of Theorem 3.3 can be deformed

into the Y ′ of a Horikawa surface Y with the same canonical image

but with a separable canonical map.

Proof. We do the case where S is a smooth surface and leave the other

case to the reader. Let X be a Horikawa surface with inseparable canonical

map, S its canonical image and L be the line bundle associated withXcan →

S as in Theorem 3.3. We know from Lemma 3.6 that Xcan
∼= SpecA with

A := OS ⊕ L. The algebra structure on A is given by z2 + t = 0 for some

section t of L⊗2.

We choose a non-zero global section s of L, which exists by the descrip-

tion of L in Theorem 3.3. Then we define the OS -algebra Aλ to be the

OS-module A with multiplication

z2 + λsz + t = 0.

For λ = 0 we obtain the original algebra A.

We define Xλ := SpecAλ and consider these surfaces as a flat family

of surfaces over the affine line A
1
k with parameter λ. Then, every surface

in this family is a finite and flat double cover πλ : Xλ → S with associated

line bundle L. The fibre X0 is the surface X we started with.

There exists an open set U ⊆ A
1 containing λ = 0 such that Xλ for

λ ∈ U is a normal surface with at worst Du Val singularities, cf. Proposi-

tion 6.1. Using ωXλ
∼= π∗λ(ωS ⊗ L) (cf. formula (2)) it is not difficult to see

that the canonical sheaves of these surfaces are ample, i.e., that all surfaces

in this family above U are canonical models of Horikawa surfaces. By Re-

mark 3.2, their canonical morphisms factor as πλ followed by the morphism

of S associated with the complete linear system |L|.

As explained in the beginning of Section 5, the zero set of λs determines

the branch divisor of the double cover πλ : Xλ → S̃. If λ 6= 0, then the

morphism πλ, i.e., the canonical morphism, is separable.
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We can summarise the results of Section 5 and Section 6 as follows.

Theorem 6.4. Theorem 5.1 also holds in characteristic p = 2. More-

over, these surfaces exist with separable as well as inseparable canonical

maps.

§7. Lifting to characteristic zero

We now prove that Horikawa surfaces lift projectively over W (k). By

Theorem 3.3, giving a Horikawa surface is the same thing as giving a rational

surface, a line bundle on it and two sections. It is not difficult to see

that all this data lifts to characteristic zero from which we obtain a lift

of the canonical model of any given Horikawa surface. To achieve a lifting

of the desingularisation we use Artin’s result on simultaneous resolution

of singularities, which provides us with an algebraic space over a possibly

ramified extension of W (k) achieving the lift.

Let k be an algebraically closed field of characteristic p > 0 and W (k)

its associated Witt ring. The following results is probably folklore but

worthwhile being stated explicitly.

Lemma 7.1. Let S be a smooth rational surface over k and L a line

bundle on S. Then S lifts to a surface over W (k) and L lifts to a unique

line bundle L̃ on this lift.

In case h1(L) = 0 we have furthermore hi(L) = hi(L̃) for all i. In

particular, sections of L lift as well in this case.

Proof. The first assertions follow from Grothendieck’s existence the-

orem and elementary deformation theory. That smooth rational surfaces

lift projectively over W (k) is for example explained in [Ill, Section 8.5.26].

From [Ill, Corollary 8.5.6] and h1(S,OS) = h2(S,OS) = 0 we get the unique

lifting of line bundles.

Let L̃ be the unique lift of L on S and assume that h1(L) = 0. From

the upper semicontinuity theorem we get h1(L̃) = 0. Since χ(L) = χ(L̃)

and h1 of both line bundles is zero, we conclude hi(L) = hi(L̃) for i = 0, 2,

again using upper semicontinuity.

We now come to the main result of this section.

Theorem 7.2. Let X be a Horikawa surface over a field k of positive

characteristic. Then the canonical model of X lifts over the Witt ring W (k).
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Also, X can be lifted in the category of algebraic spaces, i.e., there exists an

algebraic space, flat over a possibly ramified extension of W (k), with special

fibre X.

Proof. We first do the case where the canonical image S of X is a

smooth surface.

Let π : Xcan → S the canonical flat double cover with associated line

bundle L as in Theorem 3.3. As an OS-algebra Xcan is isomorphic to A :=

OS ⊕ L by Lemma 3.6. The map π is globally given in the form (4) for

sections s, t of L, L⊗2, respectively.

By Lemma 7.1, we can lift S, L and L⊗2 over W (k). Let S → W (k)

be the lift of S and SK the generic fibre. Using Lemma 3.6 and Lemma 7.1

again, we also lift the sections s and t. Out of this data we construct

a flat double X ′ → S with special fibre Xcan → S. By Proposition 6.1

the generic fibre X ′
K of X ′ → W (k) is a normal surface with at worst

Du Val singularities. Using the explicit description it follows that XK is a

possibly singular Horikawa surface with at worst Du Val singularities and

with canonical image SK . Hence, we have lifted the canonical model of X

over W (k).

We have to resolve the singularities in the special fibre. However, to

achieve a simultaneous resolution of singularities, we may have to base-

change to an algebraic space of finite type over W (k), cf. [Ar, Theorem 1].

That this resolution is in fact possible after a finite extension ofW (k) follows

from the fact that W (k) is Henselian, cf. [Ar, Theorem 2].

In case the canonical image is singular we proceed as before to obtain

a lift of X ′ (in the notation of Theorem 3.3) over W (k) and to get a lift

of X over a possibly ramified extension of W (k). The pluri-canonical ring

associated with the lift of X ′ specialises to the canonical model of X and

generalises to a normal surface with at worst Du Val singularities. This

achieves a lifting of the canonical model of X also in the case of a singular

canonical image.
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Birkhäuser, 1983.

[Lie] C. Liedtke, Uniruled Surfaces of General Type, arXiv:math.AG/0608604

(2006), to appear in Math. Z.

[Noe] M. Noether, Zur Theorie der eindeutigen Entsprechungen algebraischer

Gebilde, Math. Ann., 8 (1875), 495–533.
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