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UNIQUENESS PROBLEM FOR MEROMORPHIC

MAPPINGS WITH TRUNCATED MULTIPLICITIES

AND MOVING TARGETS

GERD DETHLOFF and TRAN VAN TAN

Abstract. In this paper, using techniques of value distribution theory, we give
a uniqueness theorem for meromorphic mappings of Cm into CP n with (3n+1)
moving targets and truncated multiplicities.

§1. Introduction

The uniqueness problem of meromorphic mappings under a condition

on the inverse images of divisors was first studied by R. Nevanlinna [6].

He showed that for two nonconstant meromorphic functions f and g on

the complex plane C, if they have the same inverse images for five dis-

tinct values, then f ≡ g, and that g is a special type of linear fractional

transformation of f if they have the same inverse images, counted with

multiplicities, for four distinct values. These results were generalized to the

case of meromorphic mappings of Cm into CP n by H. Fujimoto [1].

In the last years, this problem was continued to be studied by H. Fuji-

moto [2], [3], L. Smiley [10], S. Ji [5], M. Ru [9], Z. Tu [11].

Let f , a be two meromorphic mappings of Cm into CP n with reduced

representations f = (f0 : · · · : fn), a = (a0 : · · · : an). Set (f, a) := a0f0 +

· · ·+anfn. We say that a is “small” with respect to f if Ta(r) = o(Tf (r)) as

r → ∞ (outside a set of finite Lebesgue measure). Assume that (f, a) 6≡ 0,

denote by v(f,a) the map of Cm into N0 with v(f,a)(z) = 0 if (f, a)(z) 6= 0

and v(f,a)(z) = k if z is a zero point of (f, a) with multiplicity k.

Let a1, . . . , aq (q ≥ n + 1) be meromorphic mappings of Cm into CP n

with reduced representations aj = (aj0 : · · · : ajn), j = 1, . . . , q. We say

that {aj}
q
j=1 are in general position if for any 1 ≤ j0 < · · · < jn ≤ q,

det(ajki, 0 ≤ k, i ≤ n) 6≡ 0.
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For each j ∈ {1, . . . , q}, we put ãj = (aj0/ajtj : · · · : ajn/ajtj ) and

(f, ãj) = f0 · aj0/ajtj + · · · + fn · ajn/ajtj , where ajtj is the first element of

aj0, . . . , ajn not identically equal to zero.

Let M be the field (over C) of all meromorphic functions on Cm. Denote

by R
(
{aj}

q
j=1

)
⊂ M the subfield generated by the set {aji/ajtj , 0 ≤ i ≤

n, 1 ≤ j ≤ q} over C. Define R̃
(
{aj}

q
j=1

)
⊂ M to be the subfield over C

which is generated by all h ∈ M with hk ∈ R
(
{aj}

q
j=1

)
for some integer

k. These subfields are independent of the reduced representations aj =

(aj0 : · · · : ajn), j = 1, . . . , q, and they are of course also independent of

our choice of the ajtj , because they contain all quotients of the quotients

aji/ajtj , i = 0, . . . , n.

We say that f is linearly nondegenerate over R
(
{aj}

q
j=1

)
(respectively

R̃
(
{aj}

q
j=1

)
) if f0, . . . , fn are linearly independent over R

(
{aj}

q
j=1

)
(respec-

tively R̃
(
{aj}

q
j=1

)
).

Let f, g : Cm −→ CP n be two nonconstant meromorphic mappings and

{aj}
q
j=1 be q “small” (with respect to f) meromorphic mappings of Cm into

CP n in general position such that (f, aj) 6≡ 0, (g, aj) 6≡ 0, j = 1, . . . , q. Set

Ẽj
f := {z ∈ Cm : v(f,aj )(z) > 0}. Assume that:

i) v(f,aj) = v(g,aj) for all j ∈ {1, . . . , q}

ii) dim
(
Ẽi

f ∩ Ẽj
f

)
≤ m − 2 for all 1 ≤ i < j ≤ q, and

iii) f = g on
⋃q

j=1 Ẽj
f .

In [11] Z. Tu showed that:

Theorem A. If q = 3n + 1 and f is linearly nondegenerate over

R
(
{aj}

q
j=1

)
, then there exists a (n+1)× (n+1)-matrix L with elements in

R̃
(
{aj}

q
j=1

)
and det(L) 6≡ 0 such that L · f = g.

Theorem B. If q = 3n + 2 and f is linearly nondegenerate over

R̃
(
{aj}

q
j=1

)
then f = g.

These theorems (without conditions ii) and iii)) were first showed by

H. Fujimoto ([1]) for hyperplanes ({aj}
q
j=1 are constant).

In the above Theorems multiplicities are not truncated (we say that

multiplicities are truncated by a positive integer M if i) is replaced by the

following: min{v(f,aj ),M} = min{v(g,aj),M}). However, the uniqueness

problem with truncated multiplicities was studied in [2], [3], [5], [10] for

hyperplanes ({aj}
q
j=1 are constant) and in [9] for moving targets.
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For hyperplanes, in [10] L. Smiley proved Theorem B with multiplicities

are truncated by 1, and in [2], [3] H. Fujimoto gave some results related to

Theorem B with multiplicities are truncated by a positive integer M .

For moving targets, in [9] M. Ru gave some results related to Theorem B

with multiplicities are truncated by 1, but where the number q = 3n + 2 is

replaced by bigger one.

The main purpose of this paper is to give uniqueness theorems for the

case of 3n + 1 moving targets and multiplicities which are truncated by a

positive integer M . Our results are improvements of Theorems A–B where

the number q = 3n + 2 is replaced by smaller one, the multiplicities are

truncated and the condition iii) is replaced by weaker one. In particular,

we prove that for n ≥ 2 we get f = g already for q = 3n + 1.

The proofs of our results are applications of a generalized Borel Lemma:

For the case where multiplicities are truncated, our object does not satisfy

the assumption “nowhere vanishing holomorphic functions” of the (classi-

cal) Borel Lemma. So, first of all, using the techniques of value distribution

theory, we give Lemma 3.1, which is a generalization of the Borel Lemma

for meromorphic functions.

In order to show that under the conditions of our uniqueness theorems

the assumption of Lemma 3.1 is satisfied, we need some results of value

distribution theory of meromorphic mappings of Cm into CP n for mov-

ing targets. But the Second Main Theorem as in [8] (where multiplicities

are not truncated) or as in [11] (where multiplicities are truncated by a

positive integer `) seems to be not sufficient for our purpose. In order to

overcome this difficulty we establish a Second Main Theorem for meromor-

phic mappings of Cm into CP n for (n+2) moving targets with multiplicities

truncated by n.

Our main results are as follows:

Let f, g : Cm → CP n be two nonconstant meromorphic mappings and

{aj}
3n+1
j=1 be “small” (with respect to f) meromorphic mappings of Cm into

CP n in general position such that (f, aj) 6≡ 0, (g, aj) 6≡ 0, j = 1, . . . , 3n+1.

Put M = 6n(n + 1)[N 2(N − 1) + 1], where N =
(2n+2

n+1

)
.

Set Ej
f := {z ∈ Cm : 0 ≤ v(f,aj)(z) ≤ M}, ∗Ej

f := {z ∈ Cm : 0 <

v(f,aj )(z) ≤ M} and similarly for Ej
g , ∗Ej

g , j = 1, . . . , 3n + 1.

Assume that:

i) v(f,aj) = v(g,aj) on Ej
f ∩ Ej

g for all j ∈ {1, . . . , 3n + 1}.
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ii) dim
(∗Ei ∩ ∗Ej

)
≤ m−2 for all ∗Ei ∈

{∗Ei
f , ∗Ei

g

}
, ∗Ej ∈

{∗Ej
f , ∗Ej

g

}

and for all i 6= j with i ∈ {1, . . . , n + 3}, j ∈ {1, . . . , 3n + 1}.

iii) f = g on
⋃n+4

i=1

(∗Ei
f ∩ ∗Ei

g

)
for n ≥ 2.

This means in particular that in i), ii) and iii) we do not need to pay

attention to points where v(f,aj ) or v(g,aj) is bigger than M .

Theorem 1. 1) If n = 1 and f , g are linearly nondegenerate over

R
(
{aj}

4
j=1

)
then there exists a 2×2-matrix L with elements in R̃

(
{aj}

4
j=1

)

and det(L) 6≡ 0 such that L · f = g.

2) If n ≥ 2 and f , g are linearly nondegenerate over R
(
{aj}

3n+1
j=1

)
then

f = g.

We remark that in the case n = 1, we cannot omit the matrix L, as

can be seen easily as follows: Let f : C → C a nonconstant nonvanishing

holomorphic function, then consider the two functions f , 1/f and the four

values 0, ∞, 1, −1. Note also that condition i) is weaker than a truncated

multiplicities condition.

We give the following theorem for the case where multiplicities are

truncated.

Theorem 2. Let f, g : Cm → CP n be two nonconstant meromorphic

mappings and {aj}
3n+1
j=1 be “small” (with respect to f) meromorphic map-

pings of Cm into CP n in general position such that (f, aj) 6≡ 0, (g, aj) 6≡ 0,
j = 1, . . . , 3n + 1. Put M = 3n(n + 1)N 2(N − 1) + (3n + 4)n, where

N =
(2n+2

n+1

)
. Set ∗Ej

f := {z ∈ Cm : 0 < v(f,aj)(z) ≤ M}, j = 1, . . . , 3n + 1.

Assume that :

i) min{v(f,aj ),M} = min{v(g,aj ),M} for all j ∈ {1, . . . , 3n + 1}.

ii) dim
(∗Ei

f ∩ ∗Ej
f

)
≤ m − 2 for all i 6= j with i ∈ {1, . . . , n + 3},

j ∈ {1, . . . , 3n + 1}.

iii) f = g on
⋃n+4

i=1
∗Ei

f for n ≥ 2.

Then:

1) If n = 1 and f is linearly nondegenerate over R
(
{aj}

4
j=1

)
then there

exists a 2 × 2-matrix L with elements in R̃
(
{aj}

4
j=1

)
and det(L) 6≡ 0 such

that L · f = g.

2) If n ≥ 2 and f is linearly nondegenerate over R
(
{aj}

3n+1
j=1

)
then

f = g.
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We finally remark that in order to obtain uniqueness theorems with

fixed targets only, the authors showed in [13] that the number q = 3n + 1

of targets can be decreased and that one can use much smaller truncations.

Acknowledgements. The second author would like to thank Pro-
fessor Do Duc Thai for valuable discussions, the Université de Bretagne
Occidentale (U.B.O.) for its hospitality and for support, the PICS-CNRS
ForMathVietnam for support.

§2. Preliminaries

We set ‖z‖ =
(
|z1|

2 + · · · + |zm|2
)1/2

for z = (z1, . . . , zm) ∈ Cm and

define

B(r) := {z ∈ Cm : |z| < r}, S(r) := {z ∈ Cm : |z| = r} for all 0 < r < ∞.

Define dc :=
√
−1
4π (∂ − ∂), υ := (ddc‖z‖2)m−1 and

σ := dc log ‖z‖2 ∧ (ddc log ‖z‖2)m−1.

Let F be a nonzero holomorphic function on Cm. For each a ∈ Cm, ex-

panding F as F =
∑

Pi(z − a) with homogeneous polynomials Pi of degree

i around a, we define

vF (a) := min{i : Pi 6≡ 0}.

Let ϕ be a nonzero meromorphic function on Cm. We define the map

vϕ as follows: For each z ∈ Cm, we choose nonzero holomorphic func-

tions F and G on a neighborhood U of z such that ϕ = F/G on U and

dim
(
F−1(0) ∩ G−1(0)

)
≤ m − 2, and then we put vϕ(z) := vF (z). Set

|vϕ| := {z ∈ Cm : vϕ(z) 6= 0}.
Let k, M be positive integers or +∞. Set

≤Mv[k]
ϕ (z) = 0 if vϕ(z) > M and

≤Mv[k]
ϕ (z) = min{vϕ(z), k} if vϕ(z) ≤ M,

>Mv[k]
ϕ (z) = 0 if vϕ(z) ≤ M and

>Mv[k]
ϕ (z) = min{vϕ(z), k} if vϕ(z) > M.

We define
≤MN [k]

ϕ (r) :=

∫ r

1

≤Mn(t)

t2m−1
dt
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and
>MN [k]

ϕ (r) :=

∫ r

1

>Mn(t)

t2m−1
dt (1 ≤ r < +∞)

where

≤Mn(t) :=

∫

|vϕ|∩B(r)

≤Mv[k]
ϕ .υ for m ≥ 2,

≤Mn(t) :=
∑

|z|≤t

≤Mv[k]
ϕ (z) for m = 1,

>Mn(t) :=

∫

|vϕ|∩B(r)

>Mv[k]
ϕ .υ for m ≥ 2,

>Mn(t) :=
∑

|z|≤t

>Mv[k]
ϕ (z) for m = 1.

Set Nϕ(r) := ≤∞N
[∞]
ϕ (r), N

[k]
ϕ (r) := ≤∞N

[k]
ϕ (r).

We have the following Jensen’s formula (see [3, p. 177]):

Nϕ(r) − N1/ϕ(r) =

∫

S(r)
log |ϕ|σ −

∫

S(1)
log |ϕ|σ.

Let f : Cm → CP n be a meromorphic mapping. For arbitrary fixed

homogeneous coordinates (w0 : · · · : wn) of CP n, we take a reduced rep-

resentation f = (f0 : · · · : fn), which means that each fi is a holomorphic

function on Cn and f(z) = (f0(z) : · · · : fn(z)) outside the analytic set

{f0 = · · · = fn = 0} of codimension ≥ 2. Set ‖f‖ =
(
|f0|

2 + · · · + |fn|
2
)1/2

.

The characteristic function of f is defined by

Tf (r) =

∫

S(r)
log ‖f‖σ −

∫

S(1)
log ‖f‖σ, 1 ≤ r < +∞.

For a meromorphic function ϕ on Cm, the proximity function is defined by

m(r, ϕ) :=

∫

S(r)
log+ |ϕ|σ

and we have, by the classical First Main Theorem that (see [4, p. 135])

m(r, ϕ) ≤ Tϕ(r) + O(1).

Here, the characteristic function Tϕ(r) of ϕ is defined by considering ϕ as

a meromorphic mapping of Cm into CP 1.

We state the First and Second Main Theorem of Value Distribution

Theory (see e.g. [11], [2]):
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First Main Theorem. (Moving target version) Let a be a meromor-

phic mapping of Cm into CP n such that (f, a) 6≡ 0. Then for reduced

representations f = (f0 : · · · : fn) and a = (a0 : · · · : an), we have:

N(f,a)(r) ≤ Tf (r) + Ta(r) for all r ≥ 1.

For a hyperplane H : a0w0 + · · ·+anwn = 0 in CP n with im f * H, we

denote (f,H) = a0f0 + · · · + anfn, where (f0 : · · · : fn) again is a reduced

representation of f .

Second Main Theorem. (Classical version) Let f be a linearly non-

degenerate meromorphic mapping of Cm into CP n and H1, . . . ,Hq (q ≥
n + 1) hyperplanes of CP n in general position, then

(q − n − 1)Tf (r) ≤

q∑

j=1

N
[n]
(f,Hj)

(r) + o(Tf (r))

for all r except for a set of finite Lebesgue measure.

§3. Proof of our results

First of all, we give a generalization of the Borel Lemma for meromor-

phic functions.

Lemma 3.1. Let h0, . . . , ht (t ≥ 2) be nonzero meromorphic functions

on Cm and A be a subset of (1,+∞) with infinite Lebesgue measure. Assume

that

a) h0 + · · · + ht ≡ 0,

b)
∑t

v=0 N
[1]
hv

(r) +
∑t

v=0 N
[1]
1/hv

(r) ≤ 1
t(t+1)Tϕijk

(r), r ∈ A for all

{i, j, k} ⊂ {0, 1, . . . , t} such that hi/hj, hj/hk, hk/hi are all nonconstant,

where ϕijk := [hi : hj : hk] is a meromorphic mapping of Cm into CP 2.

Then there exists a decomposition of indices {0, . . . , t} = I1 ∪ · · · ∪ Is

such that :

i) #Iv ≥ 2 for all v ∈ {1, . . . , s},

ii) i, j ∈ Iv if and only if hi/hj is constant,

iii)
∑

j∈Iv
hj = 0, v ∈ {1, . . . , s}.
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Proof. We prove this lemma by induction on t.

+) If t = 2, we have

(1) h0 + h1 + h2 ≡ 0.

Case 1. If one of the meromorphic functions h0/h1, h1/h2, h2/h0 is con-
stant, then by (1), we have that h0 : h1 : h2 are constant. We get i), ii) and
iii).

Case 2. If h0/h1, h1/h2, h2/h0 are nonconstant, by Theorem 5.2.29 in [7],
we have

Tϕ012(r) = T[h0:h1:h2](r) ≤ T[h0:h1](r) + T[h0:h2](r) + O(1).

Without loss of generality, we may assume that T[h0:h1](r) ≥ T[h0:h2](r) for
all r ∈ A1, where A1 is a subset of A with infinite Lebesgue measure. Then

2∑

i=0

N
[1]
hi

(r) +

2∑

i=0

N
[1]
1/hi

(r) ≤
1

6
Tϕ012(r) ≤

1

3
T[h0:h1](r), r ∈ A1.

Let [h′
0 : h′

1] be a reduced representation of [h0 : h1] : Cm → CP 1, h′
0 and

h′
1 are holomorphic functions. Set h′

2 = h′
0h2/h0, then

h′
0 + h′

1 + h′
2 ≡ 0.

For each j ∈ {0, 1, 2}, we have that a zero of h′
j is a pole or a zero of some

hi (i ∈ {0, 1, 2}). On the other hand

dim{z : h′
0(z) = h′

1(z) = 0} ≤ m − 2.

Hence, we get

2∑

i=0

N
[1]
h′

i
(r) ≤ 2 ·

( 2∑

i=0

N
[1]
hi

(r) +

2∑

i=0

N
[1]
1/hi

(r)

)
≤

2

3
T[h0:h1](r), r ∈ A1.

By the Second Main Theorem, we have:

T[h0:h1](r) ≤ N
[1]
h′

0
(r) + N

[1]
h′

1
(r) + N

[1]
h′

0+h′

1
(r) + o

(
T[h0:h1](r)

)

=

2∑

i=0

N
[1]
h′

i
(r) + o

(
T[h0:h1](r)

)

≤
2

3
T[h0:h1](r) + o

(
T[h0:h1](r)

)
, r ∈ A1.
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This is a contradiction when r → ∞, r ∈ A1.
This completes the proof of the case t = 2.

+) Assume that our assertion holds up to t (t ≥ 2). Consider

(2) h0 + · · · + ht+1 ≡ 0.

We introduce an equivalence relation in {0, . . . , t + 1} as follows: i ∼ j if
and only if hi/hj is constant. Let

{I1, . . . , Is} = {0, . . . , t + 1}/∼.

By definition we have ii).
For the proof of i), we assume that there exists Iv containing only one

index, say Is = {t + 1}. Then hi/ht+1 (i = 0, . . . , t) are all nonconstant.
If s = 2 then I1 = {0, . . . , t}, I2 = {t + 1}.
By (2) we have

c · h0 + ht+1 ≡ 0, c ∈ C∗.

Thus h0/ht+1 is constant, this is a contradiction.
If s = 3, without loss of generality we may assume that 0 ∈ I1, 1 ∈ I2.

By (2) we have

c · h0 + d · h1 + ht+1 ≡ 0, c, d ∈ C.

* If c · d = 0, then t + 1 ∈ I1 or t + 1 ∈ I2, this is a contradiction.

* If c 6= 0, d 6= 0, we have:

T[c·h0:d·h1:ht+1](r) = T[h0:h1:ht+1](r) + O(1).

So by the basic step of induction, we have that h0 : h1 : ht+1 are constant.
This is a contradiction.

If s > 3, let Ψ := [h0 : · · · : ht] : Cm → CP t.
Let [h′

0 : · · · : h′
t] be a reduced representation of Ψ.

Set h′
t+1 = h′

t · ht+1/ht, then h′
0 + · · · + h′

t+1 ≡ 0.
For each j ∈ {0, . . . , t+1}, we have that a zero of h′

j is a pole or a zero
of some hi (i ∈ {0, . . . , t + 1}).

Hence, we get

N
[1]
h′

j
(r) ≤

t+1∑

i=0

N
[1]
hi

(r) +

t+1∑

i=0

N
[1]
1/hi

(r)

≤
1

(t + 1)(t + 2)
Tϕkpq

(r)

≤
1

(t + 1)(t + 2)
TΨ(r), r ∈ A
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where k ∈ I1, p ∈ I2, q ∈ I3.

If Ψ is linearly nondegenerate, by the Second Main Theorem we have:

TΨ(r) ≤
t∑

i=0

N
[t]
h′

i
(r) + N

[t]
h′

0+···+h′

t
(r) + o(TΨ(r))

=
t+1∑

t=0

N
[t]
h′

i
(r) + o(TΨ(r)) ≤ t ·

t+1∑

i=0

N
[1]
h′

i
(r) + o(TΨ(r))

≤
t(t + 2)

(t + 1)(t + 2)
TΨ(r) + o(TΨ(r))

=
t

t + 1
TΨ(r) + o(TΨ(r)), r ∈ A.

This is a contradiction when r → ∞, r ∈ A.

Thus, Ψ is linearly degenerate, so there exist constants (C0, . . . , Ct) 6=
(0, . . . , 0) such that

(3) C0h0 + · · · + Ctht = 0.

We may assume that C0 = 1. By (2) and (3) we have

(C1 − 1)h1 + · · · + (Ct − 1)ht − ht+1 ≡ 0.

It can be written in the form:

(4) a1hi1 + · · · + akhik + at+1ht+1 ≡ 0

such that ai ∈ C∗, at+1 = −1, hp/hq is nonconstant for all p 6= q ∈
{i1, . . . , ik, t + 1} and k ≤ t − 1.

+) If k = 1, by (4) we have that hi1 : ht+1 is constant. This is a
contradiction.

+) If k ≥ 2, for {p, q, v} ⊂ {i1, . . . , ik, t + 1} we have

T[aphp:aqhq :avhv ](r) = T[hp:hq:hv ](r) + O(1).

By the induction hypothesis (since k+1 ≤ t) there exists p ∈ {i1, . . . , ik}
such that aphp : at+1ht+1 is constant. Thus hp : ht+1 is constant, this is a
contradiction.

So #Iv ≥ 2 for all v ∈ {1, . . . , s}, we get i).
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Finally we show iii). We choose an index v ∈ Iv and set

∑

i∈Iv

hi = cv · hv , cv ∈ C.

Then (2) can be written as

s∑

v=1

cv · hv ≡ 0

By i) and the induction hypothesis, we infer like above that cv ≡ 0. This
shows iii). We have completed the proof of Lemma 3.1.

We give the Second Main Theorem of meromorphic mappings of Cm

into CP n with (n + 2) moving targets.

Lemma 3.2. Let f, g : Cm → CP n be nonconstant meromorphic map-

pings and {aj}
n+2
j=1 be “small” (with respect to g) meromorphic mappings of

Cm into CP n in general position.

a) Denote the meromorphic mapping,

F =
(
c1 · (f, ã1) : · · · : cn+1 · (f, ãn+1)

)
: Cm −→ CP n

where {ci}
n+1
i=1 are “small” (with respect to g) nonzero meromorphic func-

tions on Cm. Then we have

TF (r) = Tf (r) + o(Tg(r)).

Moreover, if

f = (f1 : · · · : fn+1),

ai = (ai1 : · · · : ai(n+1)),

F =
(c1 · (f, ã1)

h
: · · · :

cn+1 · (f, ãn+1)

h

)

are reduced representations, where h is a meromorphic function on Cm,

then

Nh(r) ≤ o(Tg(r))

and

N1/h(r) ≤ o(Tg(r)).
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b) Assume that f is linearly nondegenerate over R
(
{aj}

n+2
j=1

)
. Then we

have

Tf (r) ≤
n+2∑

j=1

N
[n]
(f,aj)

(r) + o(Tf (r)) + o(Tg(r))

for all r except for a set of finite Lebesgue measure.

Proof. a) Set

Fi =
ci · (f, ãi)

h
, i ∈ {1, . . . , n + 1}.

So we have

(5)





c1a10f0 + · · · + c1a1nfn = h · F1 · a1t1

. . . . . . . . . . . .

cn+1a(n+1)0f0 + · · · + cn+1a(n+1)nfn = h · Fn+1 · a(n+1)tn+1

Since (F1 : · · · : Fn+1) is a reduced representation of F , codim{F1 = · · · =
Fn+1 = 0} ≥ 2. Hence, by (5) we see:

N1/h(r) ≤
n+1∑

i=1

Naiti
(r) +

n+1∑

i=1

N1/ci
(r) = o(Tg(r)).

Set

P :=




c1a10 . . . c1a1n
...

. . .
...

cn+1a(n+1)0 . . . cn+1a(n+1)n


 ,

and matrices Pi (i ∈ {1, . . . , n+1}) which are defined from P after changing
the ith column by 


F1a1t1

...
F(n+1)a(n+1)tn+1


 .

Put u = det(P ) and ui = det(Pi), i ∈ {1, . . . , n + 1}. It is easy to see
that:

u

a1t1 · · · a(n+1)tn+1

∈ R
(
{aj}

n+2
j=1

)

and

N1/ui
(r) ≤ O

( n+1∑

j=1

N1/cj
(r)

)
= o(Tg(r)), i = 1, . . . , n + 1.
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By (5) we have

(6)





f0 =
h · u1

u
. . .

fn =
h · un+1

u

On the other hand (f0 : · · · : fn) is a reduced representation of f . Hence,

Nh(r) ≤ Nu(r) +
n+1∑

i=1

N1/ui
(r)

≤ Nu/(a1t1 ···a(n+1)tn+1
)(r) + Na1t1 ···a(n+1)tn+1

(r) +

n+1∑

i=1

N1/ui
(r)

= o(Tg(r)).

We have

TF (r) =

∫

S(r)
log

( n+1∑

i=1

|Fi|
2

)1/2

σ + O(1)

(7)

=

∫

S(r)
log

( n+1∑

i=1

∣∣∣ci · (f, ãi)

h

∣∣∣
2
)1/2

σ + O(1)

=

∫

S(r)
log

( n+1∑

i=1

|ci(f, ãi)|
2

)1/2

σ −

∫

S(r)
log |h|σ + O(1)

≤

∫

S(r)
log ‖f‖σ +

∫

S(r)
log

(
n+1∑

i=1

|ci|
2

(∣∣∣ ai0

aiti

∣∣∣
2
+ · · · +

∣∣∣ ain

aiti

∣∣∣
2
))1/2

σ

− Nh(r) + N1/h(r) + O(1)

≤ Tf (r) +

∫

S(r)
log+

(
n+1∑

i=1

(∣∣∣ci ·
ai0

aiti

∣∣∣
2
+ · · · +

∣∣∣ci ·
ain

aiti

∣∣∣
2
))1/2

σ + o(Tg(r))

≤ Tf (r) +
n+1∑

i=1

n∑

j=0

m
(
r, ci

aij

aiti

)
+ o(Tg(r))

= Tf (r) + o(Tg(r))
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(note that ci · aij/aiti ∈ R
(
{aj}

n+2
j=1

)
).

(6) can be written as




f0 = h ·
n+1∑

j=1

bj0Fj

. . . . . . . . .

fn = h ·
n+1∑

j=1

bjnFj

where bji ∈ R
(
{aj}

n+2
j=1

)
.

So we get

Tf (r) =

∫

S(r)
log ‖f‖σ + O(1)(8)

=

∫

S(r)
log

( n∑

i=0

∣∣∣
n+1∑

j=1

bjiFj

∣∣∣
2
)1/2

σ +

∫

S(r)
log |h|σ + O(1)

≤

∫

S(r)
log ‖F‖σ +

∫

S(r)
log

(∑

i,j

|bji|
2

)1/2

σ

+ Nh(r) − N1/h(r) + O(1)

≤ TF (r) +

∫

S(r)
log+

(∑

i,j

|bji|
2

)1/2

σ + o(Tg(r))

≤ TF (r) +
∑

i,j

m(r, bij) + o(Tg(r))

= TF (r) + o(Tg(r)).

By (7) and (8), we have

TF (r) = Tf (r) + o(Tg(r)).

This finishes the proof of part a).

b) We use a) for a special set of ci: Set

Nn+2 :=




a10 . . . a(n+1)0

a11 . . . a(n+1)1
...

. . .
...

a1n . . . a(n+1)n
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and matrices Ni, i ∈ {1, . . . , n + 1}, which are defined from Nn+2 after
changing the ith column by




a(n+2)0
...

a(n+2)n


 .

Set

ci =
aiti

a1t1 · · · a(n+2)tn+2

· det(Ni), i ∈ {1, . . . , n + 2},

then
ci ∈ R

(
{aj}

n+2
j=1

)
, i ∈ {1, . . . , n + 2}.

It is easy to see that:

(9)

n+1∑

i=1

ci · (f, ãi) = cn+2 · (f, ãn+2).

F is a linearly nondegenerate meromorphic mapping, since f is linearly
nondegenerate over R

(
{aj}

n+2
j=1

)
and since the aj (j = 1, . . . , n + 2) are in

general position.
Thus, by the First and the Second Main Theorem, we have

Tf (r) + o(Tg(r)) = TF (r) ≤
n+1∑

j=1

N
[n]
Fj

(r) + N
[n]
F1+···+Fn+1

(r) + o(TF (r))

(9)
=

n+2∑

j=1

N
[n]
cj ·(f,ãj)/h(r) + o(Tf (r)) + o(Tg(r))

≤
n+2∑

j=1

N
[n]
(f,ãj )(r) +

n+2∑

j=1

Ncj
(r)

+ (n + 2)N1/h(r) + o(Tf (r)) + o(Tg(r))

=
n+2∑

j=1

N
[n]
(f,ãj )(r) + o(Tf (r)) + o(Tg(r))

=

n+2∑

j=1

N
[n]
(f,aj )(r) + o(Tf (r)) + o(Tg(r)).

This completes the proof of Lemma 3.2.
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Proof of Theorem 1. Without loss of generality, we may assume that
there exists a subset A of (1,+∞) with infinite Lebesgue measure such that

(10) Tf (r) ≥ Tg(r), r ∈ A,

(note that if Tg(r) ≥ Tf (r) for all r except for a set of finite Lebesgue
measure then {aj}

3n+1
j=1 are “small” with respect to g). Define functions

hj =
(f, aj)

(g, aj)
, j ∈ {1, . . . , 3n + 1}.

We choose an arbitrary subset Q = {j1, . . . , j2n+2} of the index set
Q0 := {1, . . . , 3n + 1}.

We now prove that:

For each I ⊂ Q, #I = n + 1, there exists some J ⊂ Q with I 6= J ,
#J = n + 1 such that

(11)
hI

hJ
∈ R

(
{aj}

3n+1
j=1

)
, where hI =

∏

i∈I

hi.

We have

{
aj0f0 + · · · + ajnfn = hj(aj0g0 + · · · + ajngn)

j ∈ Q

=⇒

{
ajs0f0 + · · · + ajsnfn − hjsajs0g0 − · · · − hjsajsngn = 0

1 ≤ s ≤ 2n + 2

Therefore, we get

det(ajs0, . . . , ajsn, hjsajs0, . . . , hjsajsn, 1 ≤ s ≤ 2n + 2) ≡ 0.

For each I = {js0 , . . . , jsn} ⊂ Q, 1 ≤ s0 < · · · < sn ≤ 2n + 2, we define

AI =
(−1)

n(n+1)
2

+s0+···+sn · det(ajsk
i, 0 ≤ k, i ≤ n) · det(ajs′

k
i, 0 ≤ k, i ≤ n)

aj1tj1
. . . aj2n+2tj2n+2

where {s′0, . . . , s
′
n} = {1, . . . , 2n + 2} \ {s0, . . . , sn}, s′0 < · · · < s′n. We have

AI ∈ R
(
{aj}

2n+2
j=1

)
and AI 6≡ 0, since {aj}

2n+2
j=1 are in general position.

Set L = {I ⊂ Q,#I = n + 1}, then #L = N :=
(2n+2

n+1

)
.
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By the Laplace expansion Theorem, we have

(12)
∑

I∈L

AIhI ≡ 0.

Let I, J , K be distinct in L. It is easy to see that:

(
(I ∪ J) \ (I ∩ J)

)
∩
(
(J ∪ K) \ (J ∩ K)

)
∩
(
(K ∪ I) \ (K ∩ I)

)
= φ.

So, CIJ ∪ CJK ∪ CKI = {1, . . . , n + 2}, where CIJ = {1, . . . , n + 2} \
(
(I ∪

J)\ (I ∩J)
)
. Since dim

(∗Ei ∩ ∗Ej
)
≤ m−2 for all i 6= j, i ∈ {1, . . . , n+3},

j ∈ {1, . . . , 3n + 1}, ∗Ei ∈
{∗Ei

f , ∗Ei
g

}
, ∗Ej ∈

{∗Ej
f , ∗Ej

g

}
, and f = g on⋃n+2

i=1

(∗Ei
f ∩ ∗Ei

g

)
(note that in the case n = 1 we also have f = g on⋃3

i=1

(∗Ei
f ∩ ∗Ei

g

)
), we have:

N
[1]
hI/hJ−1(r) + N

[1]
hJ/hK−1(r) + N

[1]
hK/hI−1(r)(13)

+
∑

j∈Q

>MN
[1]
(f,aj )(r) +

3n+1∑

k=1

>MN
[1]
(g,ak)(r) ≥

n+2∑

i=1

≤MN
[1]
(f,ai)

(r)

Indeed, for i ∈ {1, . . . , n + 2}, we may assume that i ∈ CIJ . Let

z0 ∈ ∗Ei
f . If z0 is not taken into account by

∑
j∈Q

>MN
[1]
(f,aj )(r) or by

∑3n+1
k=1

>MN
[1]
(g,ak)(r) (this means that v(f,aj)(z0) ≤ M and v(g,ak)(z0) ≤ M

for all j ∈ Q, k ∈ {1, . . . , 3n + 1}) then z0 ∈ ∗Ei
g and by omitting an

analytic set of codimension ≥ 2, we may assume that (f, aj)(z0) 6= 0 and
(g, ak)(z0) 6= 0 for all j ∈ Q \ {i}, k ∈ {1, . . . , 3n + 1} \ {i}. In particular
(f, aj)(z0) 6= 0, (g, aj)(z0) 6= 0 for all j ∈ (I ∪ J) \ (I ∩ J).

On the other hand, f(z0) = g(z0). Hence, hI/hJ (z0) = 1, this means

that z0 is taken into account by N
[1]
hI/hJ−1(r), so we get (13). By Lemma 3.2

and the First Main Theorem, we have:

Tf (r) ≤
n+2∑

i=1

N
[n]
(f,ai)

(r) + o(Tf (r))

≤
M

M + 1

n+2∑

i=1

≤MN
[n]
(f,ai)

(r) +
n

M + 1

n+2∑

i=1

N(f,ai)(r) + o(Tf (r))

≤
Mn

M + 1

n+2∑

i=1

≤MN
[1]
(f,ai)

(r) +
n(n + 2)

M + 1
Tf (r) + o(Tf (r)).
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Thus, we have

(14)
M + 1 − n(n + 2)

nM
Tf (r) ≤

n+2∑

i=1

≤MN
[1]
(f,ai)

(r) + o(Tf (r)).

By (13) and (14) we have:

N
[1]
hI/hJ−1(r) + N

[1]
hJ/hK−1(r) + N

[1]
hK/hI−1(r) ≥

M + 1 − n(n + 2)

nM
Tf (r)(15)

−
∑

j∈Q

>MN
[1]
(f,aj )(r) −

3n+1∑

k=1

>MN
[1]
(g,ak)(r) − o(Tf (r)).

We introduce an equivalence relation on L: I v J if and only if hI/hJ ∈
R
(
{aj}

3n+1
j=1

)
.

Set {L1, . . . , Ls} = L/v, (s ≤ N :=
(2n+2

n+1

)
).

In order to prove (11), we show that #Lv ≥ 2 for all v ∈ {1, . . . , s}.
For each v ∈ {1, . . . , s}, choose Iv ∈ Lv and set

∑

I∈Lv

AIhI = BvhIv , Bv ∈ R
(
{aj}

3n+1
j=1

)
.

Then (12) can be written as

(16)

s∑

v=1

BvhIv ≡ 0.

+) If Bv ≡ 0 for all v ∈ {1, . . . , s}, then #Lv ≥ 2 for all v ∈ {1, . . . , s}
by AI 6≡ 0, I ∈ L. We get (11).

+) If there exists some Bv 6≡ 0, then by (16) there are at least 3 of
the B1, . . . , Bs different from zero since hI 6≡ 0, hIi

/hIj
/∈ R

(
{aj}

3n+1
j=1

)
,

(1 ≤ i 6= j ≤ s, I ∈ L).

We want to apply Lemma 3.1 to (16), without loss of generality we may
assume that Bv 6≡ 0 for all v ∈ {1, . . . , s}.

For each {i, j, k} ⊂ {1, . . . , s}, set

T (r) = TBi/Bj
(r) + TBj/Bk

(r) + TBk/Bi
(r)

then T (r) = o(Tf (r)) as r → ∞.
It is clear that hIi

/hIj
− 1 6≡ 0, hIj

/hIk
− 1 6≡ 0, hIk

/hIi
− 1 6≡ 0.
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By (10), (15), Theorem 5.2.29 in [7] and the First Main Theorem, we
have:

3 · T[BihIi
:BjhIj

:BkhIk
](r) + O(1)(17)

≥ TBihIi
/BjhIj

(r) + TBjhIj
/BkhIk

(r) + TBkhIk
/BihIi

(r)

≥ ThIi
/hIj

(r) + ThIj
/hIk

(r) + ThIk
/hIi

(r) − T (r)

≥ NhIi
/hij

−1(r) + NhIj
/hIk

−1(r) + NhIk
/hIi

−1(r) − o(Tf (r))

(15)

≥
M + 1 − n(n + 2)

nM
Tf (r) −

∑

j∈Q

>MN
[1]
(f,aj )(r)

−
3n+1∑

j=1

>MN
[1]
(g,aj)

(r) − o(Tf (r))

≥
M + 1 − n(n + 2)

nM
Tf (r) −

1

M + 1

∑

j∈Q

N(f,aj )(r)

−
1

M + 1

3n+1∑

j=1

N(g,aj )(r) − o(Tf (r))

≥
M + 1 − n(n + 2)

n · M
Tf (r) −

2(n + 1)

M + 1
Tf (r)

−
3n + 1

M + 1
Tg(r) − o(Tf (r))

≥
(M + 1 − n(n + 2)

nM
−

5n + 3

M + 1

)
Tf (r) − o(Tf (r)), r ∈ A.

Since v(f,aj ) = v(g,aj) on Ej
f ∩ Ej

g , j = 1, . . . , 3n + 1, we have

{z ∈ Cm : hI(z) = 0 or hI(z) = ∞}

⊂
⋃

j∈I

{z ∈ Cm : v(f,aj ) > M or v(g,aj)(z) > M}

for all I ⊂ {1, . . . , 3n + 1}, #I = n + 1. Thus, we get

N
[1]
hI

(r) + N
[1]
1/hI

(r) ≤
∑

j∈I

>MN
[1]
(f,aj)

(r) +
∑

j∈I

>MN
[1]
(g,aj)

(r)

≤
1

M + 1

(∑

j∈I

N(f,aj)(r) +
∑

j∈I

N(g,aj)(r)

)
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≤
n + 1

M + 1

(
Tf (r) + Tg(r)

)
+ O(1)

(10)

≤
2(n + 1)

M + 1
Tf (r) + O(1), r ∈ A.

So, we have

s∑

v=1

N
[1]
BvhIv

(r) +

s∑

v=1

N
[1]
1/BvhIv

(r)(18)

≤
s∑

v=1

N
[1]
hIv

(r) +

s∑

v=1

N
[1]
1/hIv

(r) +

s∑

v=1

N
[1]
Bv

(r) +

s∑

v=1

N
[1]
1/Bv

(r)

≤
s∑

v=1

(
N

[1]
hIv

(r) + N
[1]
1/hIv

(r)
)

+ o(Tf (r))

≤
2s(n + 1)

M + 1
Tf (r) + o(Tf (r))

≤
2(n + 1)N

M + 1
Tf (r) + o(Tf (r)), r ∈ A.

By (17), (18) we have

s∑

v=1

N
[1]
Bvhv

(r) +

s∑

v=1

N
[1]
1/Bvhv

(r)(19)

≤
6n(n + 1)NM

(M + 1)2 − n(n + 2)(M + 1) − n(5n + 3)M

× T[BihIi
:BjhIj

:BkhIk
](r) + o

(
T[BihIi

:BjhIj
:BkhIk

](r)
)

<
1

N(N − 1)
Tϕijk

(r) ≤
1

s(s − 1)
Tϕijk

(r), r ∈ A,

where ϕijk := [BihIi
: BjhIj

: BkhIk
].

Then by applying Lemma 3.1 to (16) we get: For each i ∈ {1, . . . , s}
there exists j ∈ {1, . . . , s}, j 6= i such that BihIi

/BjhIj
is constant.

So hIi
/hIj

∈ R
(
{aj}

3n+1
j=1

)
, this means that Li ∩ Lj 6= ∅. This is a

contradiction.

We have completed the proof of (11).

Let M∗ be the abelian multiplication group of all nonzero meromorphic
functions on Cm. Define H ⊂ M∗ by the set of all h ∈ M∗ with hk ∈
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R
(
{aj}

3n+1
j=1

)
for some positive integer k. It is easy to see that H is a

subgroup of M∗.
We have

M∗ ∩R
(
{aj}

3n+1
j=1

)
⊂ H ⊂ R̃

(
{aj}

3n+1
j=1

)
,

and the multiplication group G := M∗/H is a torsion free abelian group. We
denote by [h] the class in G containing h ∈ M∗. Consider the subgroup G̃ of
G generated by [h1], . . . , [h3n+1] and choose suitable functions η1, . . . , ηt ∈
M∗ such that [η1], . . . , [ηt] give a basis of G̃. Then each hj can be uniquely

represented as hj = cjη
`j1
1 · · · η

`jt
t , cj ∈ H, `jr ∈ Z. For these integers

`jr we can choose suitable integers p1, . . . , pt satisfying the condition: For
integers `j = p1`j1 + · · · + pt`jt , (1 ≤ j ≤ 3n + 1), `i = `j if and only if
(`i1 , . . . , `it) = (`j1 , . . . , `jt), or equivalently

hi

hj
∈ H.

We now show that:

There is a subset I0 = {j0, . . . , jn} ⊂ Q0 such that

(20)
hi

hj
∈ H for all i, j ∈ I0.

We assume that, after a suitable change of indices, we have `1 ≤ · · · ≤ `3n+1.
Take the subset Q = {1, . . . , n + 1, 2n + 1, . . . , 3n + 1} of Q0 which

contains (2n + 2) elements and apply (11) to the h′
j (j ∈ Q) to show that

there is a subset {i0, . . . , in} of Q satisfying the condition that {i0, . . . , in} 6=
{1, . . . , n + 1}, i0 < · · · < in and

hi0 · · · hin

h1 · · · hn+1
∈ R

(
{aj}

3n+1
j=1

)
.

From this, it follows that

(`i0 − `1) + · · · + (`in − `n+1)

=

t∑

s=1

ps(`i0s
+ · · · + `ins

− `1s − · · · − `n+1s) = 0.

Since `i0 ≥ `1, . . . , `in ≥ `n+1, this is possible only if `n+1 = `in so `n+1 =
· · · = `2n+1 (note that in ≥ 2n + 1). Then take I0 = {n + 1, . . . , 2n + 1}, so
we get (20).
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Let ui = hji
/hj0 ∈ H ⊂ R̃

(
{aj}

3n+1
j=1

)
, i ∈ {0, . . . , n}. Then we have:

(21)

{
aji0f0 + · · · + ajinfn = uihj0(aji0g0 + · · · + ajingn)

i = 0, . . . , n.

+) Assume n = 1.

Set A =

(
aj00 aj01

aj10 aj11

)
, B =

(
u0 0
0 u1

)
.

By (21),

A.

(
f0

f1

)
= hj0 .B.A.

(
g0

g1

)
=⇒ A−1.B−1.A.

(
f0

f1

)
= hj0 .

(
g0

g1

)
.

We get 1) of the Theorem 1 (with L = A−1.B−1.A).

+) Assume n ≥ 2.

Set F =
(
(f, ãj0) : · · · : (f, ãjn)

)
and G =

(
(g, ãj0) : · · · : (g, ãjn)

)
. They

are meromorphic mappings of Cm into CP n. Take meromorphic functions h,
u on Cm such that F =

(
(f, ãj0)/h : · · · : (f, ãjn)/h

)
, G =

(
(g, ãj0)/u : · · · :

(g, ãjn)/u
)

are reduced representations. By Lemma 3.2 we have Nh(r) =
o(Tf (r)), Nu(r) = o(Tf (r)), N1/h(r) = o(Tf (r)) and N1/u(r) = o(Tf (r)).

Put Fi := (f, ãji
)/h, Gi := (g, ãji

)/u, i ∈ {0, ..., n}.
Since ui ∈ H, i ∈ {0, . . . , n}, we can choose a positive k such that

(ui)
k ∈ R

(
{aj}

3n+1
j=1

)
for all i ∈ {0, . . . , n). By (21) we have





Fi =
uihj0uGi

h
i = 0, . . . , n

Since G = (G0 : · · · : Gn) is a reduced representation and Fi (i =
1, . . . , n) are holomorphic functions, we have:

N1/hj0
(r) ≤

n∑

i=0

Nui
(r) + Nu(r) + N1/h(r)(22)

≤
n∑

i=0

N(ui)k(r) + Nu(r) + N1/h(r)

≤
n∑

i=0

T(ui)k(r) + O(1) + Nu(r) + N1/h(r) = o(Tf (r)).
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Suppose that F 6≡ G, then there exist 0 ≤ s < v ≤ n such that:

∣∣∣∣
Fs Fv

Gs Gv

∣∣∣∣ 6≡ 0 =⇒
( h

uhj0uv
−

h

uhj0us

)
FsFv 6≡ 0.

Define the meromorphic mapping

F ∧ G :=

(
· · · :

∣∣∣∣
Fi Fj

Gi Gj

∣∣∣∣ : · · ·

)
: Cm −→ CP N2 ,

(0 ≤ i < j ≤ n, N2 =
(n+1

2

)
− 1).

Take µF∧G a holomorphic function on Cm such that

(
· · · :

1

µF∧G

∣∣∣∣
Fi Fj

Gi Gj

∣∣∣∣ : · · ·

)

is a reduced representation of F ∧ G.
It is easy to see that there exists a subset Isv ⊆ {1, . . . , n +4} \ {js, jv}

such that

#Isv = n + 2, #
(
{1, . . . , n + 3} \ (Isv ∪ {js})

)
≤ 1, and(23)

#
(
{1, . . . , n + 3} \ (Isv ∪ {jv})

)
≤ 1.

In fact, we take Isv = {1, . . . , n + 2} if {js, jv} ∩ {1, . . . , n + 3} = φ,
Isv = {1, . . . , n + 3} \ {js, jv} if #

(
{js, jv} ∩ {1, . . . , n + 3}

)
= 1 and Isv =

{1, . . . , n + 4} \ {js, jv} if {js, jv} ⊂ {1, . . . , n + 3}.
By assumptions ii) and iii) we have:

N 1
FsFv

µF∧G
(r) ≥

∑

i∈Isv

≤MN
[1]
(f,ai)

(r) −
∑

j∈{js,jv}

>MN
[1]
(f,aj )(r)(24)

−
∑

i∈Isv

>MN
[1]
(g,ai)

(r).

Indeed, for i0 ∈ Isv, let z0 ∈ ∗Ei0
f be a generic point of a component

D of ∗Ei0
f . If z0 is not taken into account by

∑
j∈{js,jv}

>MN
[1]
(f,aj)

(r) or

by
∑

i∈Isv

>MN
[1]
(g,ai)

(r) (this means that v(f,aj )(z0) ≤ M , j ∈ {js, jv} and

v(g,ai)(z0) ≤ M , i ∈ Isv) then z0 ∈ ∗Ei0
g (which implies f(z0) = g(z0)).

Since z0 ∈ D is generic, we can omit an analytic set of codimension ≥ 2, so
we may assume that (f, ajs)(z0) 6= 0, (f, ajv)(z0) 6= 0 (note that by (23) we
cannot have {i0, js} ⊂ {n+4, . . . , 3n+1} or {i0, jv} ⊂ {n+4, . . . , 3n+1}),
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which implies Fs(z0) 6= 0, Fv(z0) 6= 0. Since we have f(z0) = g(z0) on D,
we get µF∧G(z0) = 0 on D. This means that z0 is taken into account by
N 1

FsFv
µF∧G

(r), so we get (24).

So, we have

N 1
FsFv

µF∧G
(r)(25)

≥
∑

i∈Isv

≤MN
[1]
(f,ai)

(r) −
1

M + 1

(
∑

j∈{js,jv}
N(f,aj)(r) −

∑

i∈Isv

N(g,ai)(r)

)

≥
∑

i∈Isv

≤MN
[1]
(f,ai)

(r) −
2

M + 1
Tf (r) −

n + 2

M + 1
Tg(r)

≥
∑

i∈Isv

≤MN
[1]
(f,aj )(r) −

(n + 4)

M
Tf (r), r ∈ A.

By Lemma 3.2 and the First Main Theorem, we have:

Tf (r) ≤
∑

i∈Isv

N
[n]
(f,ai)

(r) + o(Tf (r))

≤
M

M + 1

∑

i∈Isv

≤MN
[n]
(f,ai)

(r) +
n

M + 1

∑

i∈Isv

N(f,ai)(r) + o(Tf (r))

≤
Mn

M + 1

∑

i∈Isv

≤MN
[1]
(f,ai)

(r) +
n(n + 2)

M + 1
Tf (r) + o(Tf (r)).

=⇒

(
M + 1 − n(n + 2)

Mn

)
Tf (r) ≤

∑

i∈Isv

≤MN
[1]
(f,ai)

(r) + o(Tf (r)).

So, by (25) we have:

(26)

(
M + 1 − 2n(n + 3)

Mn

)
Tf (r) ≤ N 1

FsFv
µF∧G

(r) + o(Tf (r)), r ∈ A.

By the definition of µF∧G, we have:

N 1
FsFv

µF∧G
(r) ≤ N 1

FsFv

˛

˛

˛

Fs Fv

Gs Gv

˛

˛

˛

(r) = N( h
uhj0

uv
− h

uhj0
us

)(r) + N1/u(r)

≤ N( 1
uv

− 1
us

)(r) + N1/hj0
(r) + Nh(r) + N1/u(r)

(22)

≤ N( 1

(uv)k
− 1

(us)k

)(r) + o(Tf (r))
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≤ T( 1

(uv)k
− 1

(us)k

)(r) + o(Tf (r))

≤ T 1

(uv)k
(r) + T 1

(us)k
(r) + o(Tf (r)) = o(Tf (r)).

This contradicts to (26). Thus F = G ⇒ f = g, so we get 2) of
Theorem 1. This completes the proof of Theorem 1.

We can obtain Theorem 2 by an argument similar to the proof of The-

orem 1 with the following remarks:

+) We do not need the assumption (10).

+) Similarly to (13) we have:

N
[1]
hI/hJ−1(r) + N

[1]
hJ/hK−1(r) + N

[1]
hK/hI

(r) +
∑

j∈Q

>MN
[1]
(f,aj )(r)

≥
n+2∑

i=1

≤MN
[1]
(f,ai)

(r) for all r.

So, similarly to (17) we have,

3 · T[BihIi
:BjhIj

:BkhIk
](r)(17′)

≥

(
(M + 1) − n(n + 2)

nM
−

2(n + 1)

M + 1

)
Tf (r) + o(Tf (r)),

+) Since min{v(f,aj ),M} = min{v(g,aj ),M}, j ∈ {1, . . . , 3n + 1}, we

have

{z ∈ Cm : hI(z) = 0 or hI(z) = ∞} ⊂
⋃

j∈I

{z ∈ Cm : v(f,aj )(z) > M}

for all I ⊂ {1, . . . , 3n + 1}, #I = n + 1.

Thus, we get

N
[1]
hI

(r) + N
[1]
1/hI

(r) ≤
∑

j∈I

>MN
[1]
(f,aj )(r) ≤

1

M + 1

∑

j∈I

N(f,aj)(r)

≤
n + 1

M + 1
Tf (r) + O(1).

So, similarly to (18) we have,

(18′)
s∑

v=1

N
[1]
BvhIv

(r) +
s∑

v=1

N
[1]
1/(BvhIv )(r) ≤

N(n + 1)

M + 1
Tf (r) + o(Tf (r)) for all r.
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By (17′) and (18′) we have:

s∑

v=1

N
[1]
BvhIv

(r) +

s∑

v=1

N
[1]
1/(BvhIv )(r) ≤

1

s(s − 1)
Tϕijk

(r) for all r.

+) Similarly to (24) we have:

N 1
FsFv

µF∧G
(r) ≥

∑

i∈Isv

≤MN
[1]
(f,ai)

(r) −
∑

j∈{js,jv}

>MN
[1]
(f,aj)

(r).

So, similarly to (25) we have:

N 1
FsFv

µF∧G
(r) ≥

∑

i∈Isv

≤MN
[1]
(f,ai)

(r) −
2

M
Tf (r).
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