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1. Introduction

Let D denote the unit disk \z\ < 1, aίld C the unit circle \z\ •*= 1. Corresponding

to any function / meromorphic in D we denote by-/* the spherical derivative

We write

and shall say that / e Ti(/) if

The functions / e Γi(/) are called Tsuji functions by Collingwood and Piranian

ill- Following their notation we call a rectilinear segment 5 lying in D except

for one end-point e19 on C a segment of Julia for / provided that in each open

triangle in D having one vertex at etQ and meeting S, the function / assumes

all values on the Riemann sphere except possibly two. A point eιQ is called a

Julia point for / provided that each rectilinear segment S lying except for one

endpoint etB in D is a segment of Julia for /.

Following Tsuji C3] Collingwood and Piranian [1] investigated the class

Ti(/) and provided a number of illuminating examples. They proved among

other results [1> Theorems 1, 51

THEOREM A. There exists a meromorphic Tsuji function for which each point

of C is a Julia point.

THEOREM B. The function
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is a regular Tsuji function with two segments of Julia at 2 = 1: Their examples

led Collingwood and Piranian to the following 3 conjectures concerning regular

Tsuji functions.

I. If / is a regular Tsuji function then at most finitely many points of C

are endpoints of segments of Julia for /.

II. If / is a regular Tsuji function then at most finitely many segments in

D are segments of Julia for /.

III. If / is a regular normal Tsuji function then / has no segments of Julia.

In this paper we shall give a counter-example to I and II by proving

THEOREM 1. There exist regular Tsuji functions with infinitely many Julia

points.

We shall prove elsewhere [2] that a normal meromorphic Tsuji function

necessarily remains continuous in \z\<*\ in the metric of the closed sphere so

that conjecture III holds even for meromorphic Tsuji functions. Also such a

function can have no point other than /U l θ ) in its range set at e'\ We shall

prove however

THEOREM 2. There exists a bounded Tsuji functions continuous in \z\<\ and

having zeros in each open triangle in D one of whose endpoints belongs to a certain

infinite set on C.

Thus the range at e'* need not be empty.

2. Preliminary results

We shall proceed by means of a series of lemmas We have first

LEMMA 1. Let Δ be the domain defined by w = ρeli\ where

2~n<p<Lifφ=~ή, n=h 2, . . .

0 < p < l , if Q<φ <7r, φ¥-4y^'

Then a function w = f(z) which maps ZXl, 1) conformally onto Δ is a bounded

Tsuji function which remains continuous on C and vanishes at a countable set of

points on C but no points of D.
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Clearly Δ is a simply connected domain whose boundary γ is rectifiable and

of length

Thus (see e.g [2, Lemmas 8 and 10])

so that / e 7i(4-f- π). Also / remains continuous on C and maps C onto γ in

such a way that each point of C corresponds in a (1, l) manner to a prime

end of γ. Since there are infinitely many prime ends of γ at the point w = 0,

namely those for which

2̂ Γf <Φ<~%n9 » = 0, 1, 2, . . . , and * = 0,

there exists a corresponding sequence of points z = £ f θ non C which are mapped

onto to = 0 by /(*). Further since J does not contain w = 0, /(z) =̂0 in Zλ This

proves Lemma 1.

Theorems 1 and 2 will be a consequence of

THEOREM 3. Suppose that f(z)eTι{l), f(z) $0, and that F is a finite or

countable set on C such that f(z) vanishes continuously at the points C of F. Then

there exists a sequence z^ of points in D such that

(i)

(ϋ) if

then βz)/Π(z) and f{z)Π(z) both belong to TAV) for some /'< + <».

(iii) Each point C e F is a Julia point for fiz)/Π(z), with zero as the only

possible exceptional value.

(iv) f{z)Tl(z) has infinitely many zeros in every triangle with vertex at C^F.

Also fiz)Π(z) remains continuous at every point CeF.

We choose the sequence z* = p^e1^ to satisfy the following conditions

a) ( l-pv + i )/( l-Pv)< ]-. * = 1, 2, . . . , p, = ~ .

b) Every triangle in D with -vertex at a point C in F contains infinitely
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many of the points z^.

c) \f(reiθ)\<2'\ f o r 2 p v - K r < l , and \θ - ψ,\ <2V(1 - pv).

d) /Uv)*0.

3. Proof of Theorem 3

We prove Theorem 3 in two stages.

LEMMA 2. The conditions a), b), c), d) ar# compatible, i.e. a sequence 2V

satisfying them all.

We assume that /*, A = 1, 2,,. ... is a countable system of rays, such that

every h has one endpoint at a point C = elβ e F9 and further such that every

Stolz angle with vertex at such a point C contains infinitely many of the rays

/*. Since F is finite or countable we can clearly choose such a system-/*.

Next let tip be a sequence of positive integers such that tip assumes every

positive integral value k infinitely often. For this we may choose for instance

np = 1 + P ~ &p¥> where M denotes the integral part of x. We then choose

zp to lie on the ray /rtp. In this way condition b) is certainly satisfied. We

can also satisfy a) and c). Suppose in fact that ζ = ei9 is the vertex of /«p.

Then by hypothesis we have

\f(z)\<2~p, if \z-C\<sp, s a y a n d \z\<l.

We now choose βp so near 1, that

2* f 2 !C-* / , | = min{(l- j0/,-1), εp).

Then (1 — p/»)/(l — pp-ι) <2'p'\ so that a) holds. We also suppose that f{zp) # 0, so

thatd) holds. Further if 2 = reiψ, a n d 2 ^ - Kr<l,\Ψ - a r g ^ l <2*(1 '-pp)9 then

Thus \f(z)\<2~p and c) is also satisfied. This proves Lemma 2.

We have finally.

LEMMA 3. If the points 2V satisfy a), b), c) and d), /Λ̂ w /Λ̂  conclusions of

Theorem 3

In fact (i) is an immediate consequence of a). Again (iv) follows at once

from b) and the fact that | Π ( z ) | < l and so fiz)Π(z)~*0 as 2->CeF from
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We next prove (iii). We note that

_ •= ~ 2 / V

2-Zv

Thus

Suppose now that \z\ = r, where -j < r < l , and let q be the largest value of v

for which Uvi^2 r - 1. Then, for 0<t<q— 1, we have from a)

Also

so that

Thus

ι
JZ —

Again if p is the least value of v for which U v ! > y (1 + r), we have for t>Q

in view of a)

I (1 - r ) f -
Thus

Thus if Πi(z) denotes the product Π(z) with the omission of the factor cor-

responding to the value z», if any, for which

(1)

then we have on I z \ - r

IΠi
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i.e.

i4 1 <|Πi(z) |<l > (2)

where Ax = e~ίZ. We note that in view of a) there can be at most one v for

which Zv lies in the range (1).

Suppose now that zv is a zero of Π(z) and hence by d) a pole of f(z)/U(z)

and consider /(z)/Π(z) on the circle | z - z v | = 2" ( 1 / 2 ) v(l - p»). On this circle we

have in view of c)

f(z) ! _ 1 βz) i 1-zvZ ^ ^ . l o - v ( i - U v l 2 ) -Hz-Zvl l z j
Π U ) I ~ I Π ( ) ί# ' * 2 ' 1 " » ( l )ΠU) ' 2 ' 1 "»( l-p v )

^4l 2 V( 1 ~ fly) _ o Λ-19-(1/2)V

-<1/ |»(l-Pv) " ι

Hence jJL2 assumes every value M;, with |M;| >3^4f12" ί l /2)v equally often

inside this circle, i.e. exactly once, and if w is fixed and w^0t this condition

is satisfied for all sufficiently large v. It follows that, in any Stolz angle con-

taining one of the lines h,βz) assumes infinitely often all values except

possibly zero, and so these are all Julia lines. Since every Stolz angle at C e F

contains such lines /*, it follows that every ray with endpoint at C is a Julia

line, and so C is a Julia point.

4. Proof of (ii)

It remains to prove (ii) and this is by far the hardest part of the argument.

We proceed in a number of stages.

LEMMA 4. Ifγ<tr<li and ΠiU) is formed from Ώ(z) by omitting the

factor corresponding to that zero zv, if any, for which (1) holds, then if

F(z) =/U)/ΠiU) or F(z) =/(z)Πι(z), we have

where h is independent of r.

Consider first F(z) =/(z)Π ι(z). We have

\F'lz)\ | / 'Πi l , |/Πίl
1 + ! F | 2 - 1+1/111 I2 + Ί+I/Πi l 1 '

In view of (2) we have | / Π i | > A | / | , and so if | / | > 1 . we have
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_ J < 1...... < _2 _, (4)

I - H / Γ L I 2 iΛiί2i/i2 ϊ i i d + i / i 2 ) '

while if | / | < 1

1 <i< - 2

Γ < 1 < : - 1 + | / | »
Thus (4) holds in all cases and

o ϊ+ι/(rBf )Πi(fβ'β)iΓ- Λ JO Y+ι/(«ί;r)iJO
, ,

if r is sufficiently near 1.

We now consider the second term on the right hand side of (3>. In view

of (4) we may write

J/πίL <_2 I/I m Ί < 2 i/i i π;
l+ί/Πi | 2 ~ A\ l + l / P I 1 X I 1 - Λf 1 + l/P ' Π.

Also

| Π ί

We therefore proceed to estimate

Suppose first that | z v ! > -2-(l + r). Then if z = re1", z, = pve
I ! ί v, we have

Uv - zi2 = ίp v - r> 3+ 2 pv^Cl - cos (0 - tf*)H> i ( l - r ) 2 + (> " ^ ,

for 0v

Thus

ff. Thus

1

I/I i

3

_ _

in view of a).

Next suppose that k !<2 r - 1. Then we have
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since pv > y r> ~ By c) we have, for | ψ - φv \ < 21/2 v(1 - pv),

Thus

i ~ri \~F\i ~\ ΊT~ I dz I < At2~ ( 1 / 2 ) v '. (9)
i f j - ^ v i < 2 t / 2 v ( i - p , ) -L + l y l l ^ v — ^ j

Again if | ψ ~ 0 v | > 2 α / 2 ) v ( l - p v ) , then

1 ^ 2 ^ 2

and so

On combining (9) and (10) we deduce t h a t if | z v | < 2 r - l ,

ί l|{}[2 l ^ l ^ Γ \dz\<Λδ2~ω2)\ (11)

Now using (6), (7) and (11) we see that

From this and (5) Lemma 4 follows for the case F=f Hi, when we apply (3)

and (4).

The case F=f/Ώi is similar. We write

\F'\ < \rτiΛ . i/π i A\ \r\ 1/1 ι m i \
1+iFi2 s iπίi + i/i2

 IΠΪI + i/i2 7^ i+1/i2"+ i+1/i2 ' Π t ' y

in view of (2). We now obtain our result as before, using (6), (7) and ( I D .

5. To complete the proof of Lemma 3 and so of Theorem 3 we now con-

sider the possible effect of the single factor in H(z) corresponding to a zero

* v, for which 2r- 1< | z v | < γ(l + r).

We consider first

F(z)=f(z)τii(z), G(z)

where a(z) = (z - zj/(l - z*z) and z^ = p»0M\
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\G«z)\ \FHzH\all
ί+\aF\2 + l+|αF| 2

If \z-zj> γ ( l - lzvl)» then we see from (8) that

and β '

Hence if £ is the range of φ, for which \re'f -ρ^,e'^\>-^-{\ - p»), we have

J B 1 + ΓαF]2 ~ J B i 1 2

\Ξ
say, while

f \qΨ\dφ
J«"l+|βF!

If I r— pvl < -j (1 — Pv), we see that i# — ^>J> -j- (1 - pv) in our range so that the

righthand side is bounded by an absolute constant. If \r — p v | = -j-(l — pv), then

f (1 - pi)dφ __ < p (l-p2y)rfy rr(l-pl> «
J E (0-0v) 2 +(r-pv) 2 J-»Λr2+(r-pv)1 | r - p v | ~

Thus in either case

\G'(z)\

where Ci is independent of r.

Consider finally the range E' where \z- ρ^ei*"\ < y ( l - pv). It follows from

c) that in this range and even for C in a disk centre z and radius y ( l — pv),

we have | / ( C ) | < -^ and so also | G ( C ) | < y * so that

Thus if r is sufficiently near one, we have
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On combining (12) and (13) we have Lemma 3 for G(z) = f(z)Tl(z).

It remains to consider the case where

Π U ) "

and F(z) =βz)/ΐlι(z). We consider now the two ranges E, where

U - 2 v i > y ( 1 - U v ! ) and E\ where \z- zΛ < ~ (1 - | * v | ) . Since

\G'\ a a

F

we prove just as before that (12) holds.

However in E1 our argument is different. We note that — — has a pole

of residue n = F(z^) (1 - Uv I
2) at z = 2V, and write

G(z) = -τ'/_\— =

Thus

i+|GT

In view of c) and (2) \F\z)\, \G(z)\ and so|Gi(2)| are small for \z-zv\ = -^-(l - kvl)

when v is large and since Gι(z) is regular in |z - z^\ < -A-(1 - | z v | ) , we deduce

that for large v we have on E\

Since the length of Ef is at most (1 - U v |) for large v we deduce that

\G[{reiφ)\dφ<\ (15)

for large ZΛ

To estimate the other term in (14) we let E" be the part of.E' where

\dz)\>2.

Then in E" we have

\G(z)\>\c(z)\-±\c{z)\= ~\c(z)l
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\C(z)\ 4\C'\

Since the length of E" is at most 2\r<,\ for large v, we deduce that

Finally if Em is the part of E' outside E"t then

J S Λ U < ( |c'(r.">l*-ί -ί^t- 117)

We have in E'» z = re**9 z, = ,ow^\ where

Suppose first that I r - pv | > -y | ro|. Then since r > 2» Pv> 2~
 w e h a v e

<4τr3. (18)

If on the other hand | r - p v ! ^ 4 In I, then we must have in Enf 4rp v

. * > ( < δ " ~ * φ v ' 1 1 i2 i t i

smw—--<ς — >-Q-1nl » so that

Thus in this case

7r21 r01Λc 9 2. i 4Γ ko |rf0 .of50 7r21 r01Λc 9

n I
β 2

= 8 7Γ ,

so that (18) still holds. On combining (14) to (18) we deduce

if r is sufficiently near one. On combining this with (12) we deduce Lemma 3.

6. Proof of Theorems 1 and 2. By choosing the function /(2) of Lemma

1 and for F the corresponding countable set we see that Theorem 3 yields a

non-zero Tsuji function /U)/ΠU) having every point of F as a Julia point.
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Then the function Π(z)/f{z) satisfies the conclusions of Theorem 1. Also

ΊJ(z)f(z) satisfies the conclusions of Theorem 2.

In fact to see this we have only to show that Π(z)f(z) remains continuous

on C. This is obvious at all points of C which are not limits of zeros of Π(-ε),

since Π(z) remains continuous at such points. The only other points of C are

the points where f(z) vanishes continuously and so Π(z)f(z) vanishes and so

remains continuous also at these points, since | Π U ) | < 1 .

I should like to thank the referee for pointing out two mistakes in the

original argument.
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