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The equation y2 - x* 4- k, k an integer, has been discussed by many authors.

Mordell [1] has found many classes of k values for which the equation has no

integral solutions. Fueter [2], Mordell [3] and Chang [4] have found classes

of k values for which the equation has no rational solutions. The following

two theorems exhibit two more sets of conditions which give rise to classes

of k values for which the corresponding equations have no rational solutions.

THEOREM 1. The equation y2 = xz -f k has no rational solutions if k is a square

free positive integer and

(1) k = 2 or 3 (mod 4), k=ϊ - 3(mod 9),

i.e., k=Ξ6 or 15(mod 36),

(2) Z\H, H the class number of R(yj k ) ,

( 3 ) £/Ξ 3 or 6(mod 9) where ( T, U) is the fundamental solution of the Pellian

equation

(4) 3^hf h the class number of R( / — ~

(5) the integer solutions of pz + γq2 = 32H when Λ = Kmod 3), do not satisfy

q=5 ± l(mod 9), and when h= - l(mod 3), do not satisfy q= ± 2 ( y

(mod 9).

THEOREM 2. The equation y" = xz -h k has no rational solutions if k is a square

free positive integer and

(1') &Ξ5(mod 8) and A? = -3(mod 9),

i.e., &=i - 3 ( m o d 72),

(20 3 + # , H the class number of J?(V * ),

(30 C/ΞΞ 3 or 6(mod 9), U the least positive value of q satisfying the Pellian

equation
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p*-kq2= +4,

(40 3 + K h the class number of R[J - λ

(5') a, β and r, δ the respective integer solutions of the equations -,- (α2 -f

3-kβή = 2\ * ( r 2 + | ^ ) = f satisfy the conditions:

(a) (i) tfΐO(mod 9) when h is odd,

(ii) j3$0(mod 9) when h is even:

(b) when h = 3n+h [a ±β^-k2)δ^β ±2(mod9)

and <5ΞJΞ ± 2 ( m o d 9),

when h = 3n-l, [cc( *r k) ± β}δ$ ±2(mod 9)

y j (mod 9) were the signs are all independent of

each other.

Proof of Theorem 1. The set of conditions used in Theorem 1 arises from

a theorem proved by Mordell [3] upon replacing his condition (3), in which

he assumes that Z/φO, ± 1 (mod 9), by the condition (3) as shown in the

statement of Theorem 1. Hence it suffices to prove that at that point of the

argument where Mordell [3] obtains a contradiction by imposing the conditions

ί/ΐθ, ±l(mod 9) it is possible to obtain a contradiction by imposing instead

the conditions £/==0(mod 3) and C/$0(mod9) (i.e., [ / Ξ 3 or 6(mod9)). Upon

referring to the paper of Mordell [3] one sees that it is enough to show that

the equation

(6) F + V ^ Z 3 = (Γ± Uj~k){A + ByΓkΫ

cannot be solved in rational integers Γ, Z, A and B if (F, k) = 1 and ί/=*3

or 6 (mod 9).

Upon equating coefficients in (6) one obtains the two equations

(7) Z 3 = ±AU(A2+3kB2) + TB(3A2 + kB2), and

(8) Y = TA(A2 + 3 kB2) ± UkB(3 A2 + kB*).

Upon taking residues modulo 3 in equation (7) one obtains Z Ξ ± CM (mod 3).

Since it is being assumed that £/== 0(mod 3) it follows that Z Ξ 0(mόd 30. Again,

taking residues modulo 3 in equation (8) one obtains Y=B 7Ά(mod 3). Since

(F, k) = 1 it follows that ^ ΐ O d n o d 3) and Γ ί O ( m o d 3). Hence A*= ±1

(mod 9). Next, taking residues modulo 9 in equation (7) one obtains
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(9) OΞ ±U+ 3TB(A2 + 3 B2) (mod 9).

If 5 = 0 (mod 3) then 3TB{A2 + -* B2) =0 (mod 9)

which implies C/ΞO (mod 9) contrary to the assumption on U. If £ ΐ θ (mod

3) then B2 s l(mod 3). Since & = - 3(mod 9) it follows that *- s - l(mod 3).

Since ^4φO(mod 3) it follows that A2 = Kmod 3). Hence upon assuming

(mod 3) one finds that A2 4- | - £ 2 = 0(mod 3) so that once again 3TB[A2 + 3

Ξ=0(mod 9). Thus one obtains the contradiction ί/==0(mod 9) also in this

case.

Proof of Theorem 2. The set of conditions used in Theorem 2 arises from

a theorem proved by Chang C4] upon replacing his condition (3), in which he

assumes that £/$0(mod 3) and 17$ ±2(mod 9) by the condition (30 as shown

in the statement of Theorem 2. The Pellian equation p2 — kq2 = — 4 need not

enter the discussion of the theorem proved by Chang C4] or Theorem 2 since

this equation is insoluble whenever £ = 0(mod 3). It suffices to prove that at

that point of the argument where Chang M obtains a contradiction by imposing

the conditions £7^0 (mod 3) and ί/ΐ ±2 (mod 9) it is possible to obtain a

contradiction by imposing instead the conditions

U=0(mod 3) and U^Oimod 9) (i.e., C/=3 or 6(mod 9)).

Upon referring to the paper of Chang C4] one sees that it is enough to show

that the equation

(10) r+ zN'k = (\-τ± γ

cannot be solved in rational integers Y, Z, A and B if (Y, k) = 1 and U=3 or

6(mod 9). Here (T, U) is the fundamental solution of the Pellian equation

p2 - kq2 = + 4.

Upon equating coefficients in (10) one obtains the two equations

(11) 16Z3= ±AU{A* + 3kBt) + TB(3A* + kBt), and

(12) 16 Y= TA(A2 + 3 kB2) ± UkB(3 A2 + kB2).

Upon taking residues modulo 3 in equation (11) one obtains Z Ξ ± {7/4(mod 3).

Since it is being assumed that t/==0(mod 3) it follows that Z^=0(mod 3).
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Again, taking residues modulo 3 in equation (12) one obtains Y= TA (mod 3).

Since (F, k) - 1 if follows that A^Oimoά 3) and T^Oίmod 3). Hence Az = ± 1

(mod 9). Next, taking residues modulo 9 in equation (11) one obtains a

contradiction in the form £/Ξ=0(mod 9), just as in the proof of Theorem 1.

It seems natural to ask whether it is possible to make any progress when

one assumes &=l(mod 8) and simultaneously k=z - 3 (mod 9) i.e., k = 33 (mod

72). If one parallels the work of Chang [4] it is found that the equation

(13) Y2-kZ6=X3

can be obtained. The symbols Xy Y and Z have the meanings ascribed to

them by Chang [4] and the conditions (F, Z) = {X, Z) = 1 obtain. Upon as-

suming k to be square free one also obtains (F, k) = 1. Since k == 1 (mod 8)

both odd and even values for X are conceivable. If X= 1 (mod 2) then the

argument proceeds exactly as in Chang [4], provided (2) through (5) of Chang

[4] (or (2') through (5') of Theorem 2) are assumed. Hence in these two

cases one can conclude that there are no solutions of equation (13) with I Ξ I

(mod 2). It may therefore now be assumed that X = 0(mod2). Uponfactorizing

the lefthand side of equation (13) one obtains the ideal equation

(14) IY+ZH JΈY-z3ylΎl = ixy.

Let A be the greatest common divisor of the two ideals LY+ Z*y/ kl and

[ F - Z3V kl. Then it can be shown that A\[_2~\. To prove this fact it is enough

to show that 2 e i , since A|[2] can equivalently be expressed by saying that

A includes (as a set of algebraic integers from the field i?(V k)) [2]. By the

definition of A one has

(15) A

It will suffice to prove the existence of rational integers a, b, c and d having

the properties

2

(17) a Ξ ά(mod 2), c~ d{moά 2).

The form for the general integer of jf?(V k) follows from the assumption k = 1

(mod 4). Upon equating coefficients on both sides of equation (16) and sim-



CLASSES OF EQUATIONS OF THE TYPE y2 = X*-{-k 53

pϋfying, one obtains

(18) (a + c) F + (b - d)kZ* = 4, and

(19) (* + d)Y+(a-c)Zz=0.

E q u a t i o n (19) c a n b e sat i s f ied b y p u t t i n g a~c a n d & = -d. T h e n e q u a t i o n

(18) b e c o m e s

(20) aY+bkZ3 = 2.

Now since X=0(mod 2) by assumption, it is necessary to have Y=Z= Kmod

2). Then it follows that F = * Z 3 = Kmod 2) from which it follows that if (a,

b) is to be a solution of equation (20) then a = ZKmod 2) is necessary. This

last condition is in accord with equation (17). Equation (20) is a linear

diophantine equation in the two quantities a and b and has solutions in a and

b since (F, kZs) = l |2 . Finally, since a = b(moά 2) is required by equation

(20) the previously imposed conditions a — c and b- -d imply that b^d{vaoά

2). Hence it follows that it is possible to find rational integers a, b, c and d

satisfying equations (16) and (17) and so A\[_2l as stipulated.

It will be of use in the sequel to know the canonical decomposition of the

ideal [2] in the field R{^ k). Since it is being assumed that k = Kmod 4) it

follows (Theorem 872, page 172, Landau [5]) that the discriminant Δ of R( V k )

is given by Δ = k = Kmod 8). Hence A is a quadratic residue modulo 8. From

Theorem 879, page 178, Landau [6] with p = 2 it follows that [2] = PQ where

P=C2, R + ωl and Φ = C2, R + ω'l for a suitable rational integer R. Here

ω= —^-h- and ωf = ̂ ~ϊ~. Also since 2 +J it follows from Theorem 880,

page 180, Landau E73 that P*Q. P and Q are prime ideals.

It can be shown that one can choose the prime ideal factors of [2] as

P = [2, ωl and Q = C2, ω'l Upon writing PQ = [2, α)]C2, α/] = C4, 2 ω, 2α>', ωωQ

one sees that 4, 2 ω, 2 ^ f and ωωf are integral (algebraic) multiples of 2 and

so t2l\PQ. The element ωω' has the value —-r— and since ^ = l(mod 8) it

follows that ωω1 is an even rational integer. Also 2 = 2 ω + 2 ω' so that PQIC2].

Hence PQ = [2].

The next step is to determine under what conditions P and Q are principal

ideals. In order that P and Q be principal ideals it is necessary and sufficient

that the number 2 have a non-trivial representation of the form
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k \ ( u -4- v\l k

where a, b} u and v are rational integers satisfying the conditions a = b(mod 2),

& = #(mod 2). The term non-trivial refers to the requirement that

a n d ILt^K n o t be units of

From the ideal equation corresponding to equation (21) it follows that one can

identify P with [-^g—] a n d Q w i t h [ ~ 2 ~ ] " N o w lt i s k n o W n t h a t

N{P)=N(Q)=2, and so, using the fact that N{ίβl) = \N(β)\ where β is any

integer of i?(VT), one sees that the two equations

(22) \a2-kb2\=8

(23) \u~-kv2\ = 8

must be satisfied. Since #2-&y2= + 8 is insoluble whenever & = 0(mod 3),

equations (22) and (23) become

(24) a2-kb°=- - 8 ,

(25) u2-kv2= - 8 .

Upon equating coefficients on both sides of equation (21) one obtains the two

equations

(26) a

(27) av + bu = 0.

If one multiplies equation (26) by v and substitutes for av from equation (27)

it is found, using equation (25), that b = v. Hence also u=- —a and thus

equation (21) becomes

(28) 2 .

It is seen that, since k = 1 (mod 4), the parity restrictions on a, b, u and v

must be met if equations (24) and (25) are to be satisfied.

Since k = 1 (mod 4) and since 7 = Z 3 Ξ 1 (mod 2) it follows that Σ±j£ίλ.

and X ~ | - ^ L are integers of 2?(V~*). In other words KUCF+ZV £ ] and

[2] I Π r - ZV'ft 1 Putting this fact together with the previous result that A\{2~]

shows that A = [2]. From equation (14), using the fact that X = 0(mod 2)
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one obtains the equation

where the two ideals on the left-hand side of equation (29) are relatively prime.

Upon using the unique factorization of ideals in an algebraic number field, one

obtains the two equations

(30)

(3D

Where 7i, Λ, A and A are ideals in i?(V k) which satisfy the conditions

(/ , ,/ 2 )=[ l l

/Ji = β ] , (A, A) = D] and [

If it is now assumed that the Pellian equation a2 - kb2 = - 8 can be solved,

it follows that the ideals Λ and 72 are principal ideals in every case, according

to remarks made previously. Then from equations (30) and (31) it follows

that D\ and D\ are also principal ideals. Finally, the assumption Z\H leads

one to conclude that A and A are principal ideals. Thus, in particular, one

can write /, = \^±^A J a nd A = [ ̂ t ^ A j . From equation (30) one obtains

the equation

(32) 1̂  j^ j^ 2 JL 2—J

From equation (32) one obtains the equation

\(c + d>Γk\*
A 2 )

Y — Zz\lk
where ε is a unit of the field Λ(v ^ ). It follows that one can write g —
in the form

(34) i ^ A . .(-Z*V*J( ĉ WT

and a corresponding equation in ideals would be

( 3 5 )
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From equations (31) and (35) one obtains the equation

(36) ΛD

From equation (36) one has I —— 2 —Jj A for if there were a prime ideal JR

with the properties R\[~—?> — j and R\Dι then one would necessarily have

R*\h, which is impossible since / 2 | [2]. In the same way, one finds that

JDaj["—2V~-J since the conditions on [^—g j Ώiake it impossible to have

the cube of a prime ideal dividing [ - ^ — ] • Hence a = [ ^ = ^ - * ] and

z|f* J. since one now has u% = [*±ψl\[lίZ*fl\ = [2], the

two possibilities h = Cl3 and Ix = [2] cannot arise.

If one parallels the treatment of Mordeli [3] the following equations result

in those cases where the unit cannot be totally absorbed

(37) xiψk

(38) C2-kD2= - 2 1 .

In those situations where total absorption of the unit factor is possible, equation

(38) still applies but equation (37) is replaced by the equation

W) 2 - \ 2 A 2 ) '

From equation (39) one obtains, upon equating coefficients, the equation

(40) 8 Y = aC{C2 + 3 kD*) + bkD(3 C2 + kD2).

Upon taking residues modulo 9 in equation (40) it is found, using the fact that

C$0(mod 3), that F Ξ ±α(mod 9). Now if it is assumed that 4sO(mod 3)

then the equation ά*-~kb2= -8 forces the condition α2==l(moά 9). Thus F 2

s l(mod 9) and upon referring back to equation (13) it can be seen that Z = 0

(mod 3) is necessary. Upon equating coefficients of ^~k in equation (39) one

obtains the equation

(41) 8 Z 3

Upon taking residues modulo 9 in equation (41) it is found that 6 = 0 (mod 9)

is required. Thus one cannot find rational integers F, Z, C and D whicfi
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satisfy equation (39) if it is assumed that b = 0(moά 3) and simultaneously

#ΞJΞθ(mod 9).

From equation (37) one obtains, upon equating coefficients of k, the equation

(42) 16 Z 3 - (Ta ± Ubk) (3 C2 + kD2)D

In equation (42) it is enough to consider the positive sign, upon replacing b

by - b, D by - D and leaving a and C unchanged. This replacement has the

effect of changing 7 to —Y. Hence one can replace equation (42) by the

equation

(43) 16 Z 3 = {Ta + Ubk) (3 C3 + kD2)D

Upon taking residues modulo 9 in equation (43) one obtains the relation

(44) -2Z3== ±(Tb+Ua)(mod 9).

With the assumptions on U and b it follows that Z^0(mod 3) so that one

would require TbΛ ί/β = 0(mod 9).

The following result has been established

THEOREM 3. The equation y2 = x3 -f k has no rational solutions if k is a square

free positive integer and if the following conditions obtain:

(a) k = l(mod 8) and k= - 3(mod 9),

i.e., k== 33(mod 72),

(b) the conditions (20 through (50 of Theorem 2,

(c) the Pellian equation X2 — kY2 = — 8 is soluble and possesses a solution

(a,b) for which 6==0(mod 3) and #ΞJΞθ(mod 9),

i.e., £Ξ=3 or 6(mod 9).

(d) Tb+Ua^0{moά 9).
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