CLASSES OF EQUATIONS OF THE TYPE $y^2 = x^3 + k$ HAVING NO RATIONAL SOLUTIONS

HUGH M. EDGAR

The equation $y^2 = x^3 + k$, k an integer, has been discussed by many authors. Mordell [1] has found many classes of *k* values for which the equation has no integral solutions. Fueter [2], Mordell [3] and Chang [4] have found classes of *k* values for which the equation has no rational solutions. The following two theorems exhibit two more sets of conditions which give rise to classes of *k* values for which the corresponding equations have no rational solutions.

THEOREM 1. The equation $y^2 = x^3 + k$ has no rational solutions if k is a square *free positive integer and*

- (1) $k \equiv 2 \text{ or } 3 \pmod{4}$, $k \equiv -3 \pmod{9}$, *i.e.,* $k \equiv 6$ *or* 15(mod 36),
- (2) $3 \nmid H$, *H* the class number of $R(\sqrt{k})$,
- (3) $U = 3$ or 6(mod 9) where (T, U) is the fundamental solution of the Pellian *equation*

 $Y^2 - kX^2 = 1$,

- (4) $3+h$, *h* the class number of $R(\sqrt{1-\frac{1}{2}})$
- (5) the integer solutions of $p^2 + \frac{\kappa}{2}q^2 = 3^{2h}$ when $h \equiv 1 \pmod{3}$, *do not satisfy* $q \equiv \pm 1 \pmod{9}$, *and when* $h \equiv -1 \pmod{3}$, *do not satisfy* $q \equiv \pm 2 \left(\frac{k}{3}\right)^2$ (mod 9).

THEOREM 2. The equation $y^2 = x^3 + k$ has no rational solutions if k is a square *free positive integer and*

- (1') $k \equiv 5 \pmod{8}$ and $k \equiv -3 \pmod{9}$, *i.e.*, $k \equiv -3 \pmod{72}$,
- $(2')$ 3 + H, H the class number of $R(\sqrt{k})$,
- (3^{*'*)} $U \equiv 3$ or 6(mod 9), *U* the least positive value of q satisfying the Pellian *equation*

Received November 24, 1965.

 $p^2 - kq^2 = +4$, (4^t) 3+*h*, *h* the class number of $R\left(\sqrt{\frac{1}{2}k}\right)$. (5') α , β and γ , δ the respective integer solutions of the equations $\frac{1}{\Lambda}$ $\left(\alpha^2 + \frac{1}{\Lambda}\right)$ $\left(\frac{1}{3}k\beta^2\right) = 2^h$, $\frac{1}{4} \left(\gamma^2 + \frac{1}{3}k\delta^2\right) = 3^{2h}$ satisfy the conditions: (a) (i) $\alpha \not\equiv 0 \pmod{9}$ when h is odd, (ii) $\beta \not\equiv 0 \pmod{9}$ when h is even: (b) when $h = 3 n + 1$, $\alpha \pm \beta \frac{1}{3} k^2 (\delta \pm \pm 2 \pmod{9})$ *and* $\delta \equiv \pm 2 \pmod{9}$, *when* $h = 3 n - 1$, $\left\{ \alpha \left(\frac{1}{3} k \right) \pm \beta \right\} \delta \equiv \pm 2 \pmod{9}$ and $\delta \equiv \pm 4 \left(\frac{k}{3}\right)^2$ (mod 9) were the signs are all independent of *each other.*

Proof of Theorem 1. The set of conditions used in Theorem 1 arises from a theorem proved by Mordell [3] upon replacing his condition (3), in which he assumes that $U \not\equiv 0$, $\pm 1 \pmod{9}$, by the condition (3) as shown in the statement of Theorem 1. Hence it suffices to prove that at that point of the argument where Mordell $\begin{bmatrix} 3 \end{bmatrix}$ obtains a contradiction by imposing the conditions $U\neq 0$, $\pm 1 \pmod{9}$ it is possible to obtain a contradiction by imposing instead the conditions $U \equiv 0 \pmod{3}$ and $U \not\equiv 0 \pmod{9}$ (i.e., $U \equiv 3$ or $6 \pmod{9}$). Upon referring to the paper of Mordell [3] one sees that it is enough to show that the equation

(6)
$$
Y + \sqrt{k} Z^3 = (T \pm U\sqrt{k})(A + B\sqrt{k})^3
$$

cannot be solved in rational integers *Y*, *Z*, *A* and *B* if $(Y, k) = 1$ and $U = 3$ or $6 \pmod{9}$.

Upon equating coefficients in (6) one obtains the two equations

(7)
$$
Z^3 = \pm AU(A^2 + 3kB^2) + TB(3A^2 + kB^2), \text{ and}
$$

(8)
$$
Y = TA(A^2 + 3kB^2) \pm UkB(3A^2 + kB^2).
$$

Upon taking residues modulo 3 in equation (7) one obtains $Z = \pm UA \pmod{3}$. Since it is being assumed that $U \equiv 0 \pmod{3}$ it follows that $Z \equiv 0 \pmod{3}$. Again, taking residues modulo 3 in equation (8) one obtains $Y \equiv TA \pmod{3}$. Since $(F, k) = 1$ it follows that $A \not\equiv 0 \pmod{3}$ and $T \not\equiv 0 \pmod{3}$. Hence $A^3 \equiv \pm 1$ (mod 9). Next, taking residues modulo 9 in equation (7) one obtains

CLASSES OF EQUATIONS OF THE TYPE $y^2 = x^3 + k$ $+k$ 51

(9)
$$
0 = \pm U + 3TB\left(A^{2} + \frac{k}{3}B^{2}\right) \pmod{9}.
$$

If $B \equiv 0 \pmod{3}$ then $3TB(A^2 + \frac{\pi}{2} B^2) \equiv 0 \pmod{9}$

which implies $U \equiv 0 \pmod{9}$ contrary to the assumption on *U*. If $B \not\equiv 0 \pmod{9}$ 3) then $B^2 \equiv 1 \pmod{3}$. Since $k \equiv -3 \pmod{9}$ it follows that $\frac{k}{3} \equiv -1 \pmod{3}$. Since $A \not\equiv 0 \pmod{3}$ it follows that $A^2 \equiv 1 \pmod{3}$. Hence upon assuming (mod 3) one finds that $A^2 + \frac{R}{2}B^2 \equiv 0 \pmod{3}$ so that once again $3TB(A^2 + \frac{R}{3})$ $\equiv 0 \pmod{9}$. Thus one obtains the contradiction $U \equiv 0 \pmod{9}$ also in this case.

Proof of Theorem 2. The set of conditions used in Theorem 2 arises from a theorem proved by Chang $[4]$ upon replacing his condition (3), in which he assumes that $U \not\equiv 0 \pmod{3}$ and $U \not\equiv \pm 2 \pmod{9}$ by the condition (3^t) as shown in the statement of Theorem 2. The Pellian equation $p^2 - kq^2 = -4$ need not enter the discussion of the theorem proved by Chang [4] or Theorem 2 since this equation is insoluble whenever $k \equiv 0 \pmod{3}$. It suffices to prove that at that point of the argument where Chang $\left[4\right]$ obtains a contradiction by imposing the conditions $U \not\equiv 0 \pmod{3}$ and $U \not\equiv \pm 2 \pmod{9}$ it is possible to obtain a contradiction by imposing instead the conditions

 $U \equiv 0 \pmod{3}$ and $U \not\equiv 0 \pmod{9}$ (i.e., $U \equiv 3$ or 6(mod 9)).

Upon referring to the paper of Chang $[4]$ one sees that it is enough to show that the equation

(10)
$$
Y + Z^3 \sqrt{\overline{k}} = \left(\frac{1}{2} T \pm \frac{1}{2} U \sqrt{\overline{k}}\right) \left(\frac{1}{2} A + \frac{1}{2} B \sqrt{\overline{k}}\right)^3
$$

cannot be solved in rational integers Y, Z, A and B if $(Y, k) = 1$ and $U = 3$ or 6(mod 9). Here (T, U) is the fundamental solution of the Pellian equation $p^2 - kq^2 = +4.$

Upon equating coefficients in (10) one obtains the two equations

(11)
$$
16 Z^3 = \pm A U (A^2 + 3 k B^2) + T B (3 A^2 + k B^2), \text{ and}
$$

(12)
$$
16 Y = TA(A^2 + 3kB^2) \pm UkB(3A^2 + kB^2).
$$

Upon taking residues modulo 3 in equation (11) one obtains $Z = \pm UA \pmod{3}$. Since it is being assumed that $U=0 \pmod{3}$ it follows that $Z=0 \pmod{3}$.

52 HUGH M. EDGAR

Again, taking residues modulo 3 in equation (12) one obtains $Y \equiv TA \pmod{3}$. Since $(Y, k) = 1$ it follows that $A \not\equiv 0 \pmod{3}$ and $T \not\equiv 0 \pmod{3}$. Hence $A^3 \equiv \pm 1$ (mod 9). Next, taking residues modulo 9 in equation (11) one obtains a contradiction in the form $U \equiv 0 \pmod{9}$, just as in the proof of Theorem 1.

It seems natural to ask whether it is possible to make any progress when one assumes $k \equiv 1 \pmod{8}$ and simultaneously $k \equiv -3 \pmod{9}$ i.e., $k \equiv 33 \pmod{9}$ 72). If one parallels the work of Chang [4] it is found that the equation

$$
(13)\qquad \qquad Y^2 - kZ^6 = X^3
$$

can be obtained. The symbols *X^y Y* and *Z* have the meanings ascribed to them by Chang [4] and the conditions $(Y, Z) = (X, Z) = 1$ obtain. Upon assuming *k* to be square free one also obtains $(Y, k) = 1$. Since $k \equiv 1 \pmod{8}$ both odd and even values for *X* are conceivable. If $X \equiv 1 \pmod{2}$ then the argument proceeds exactly as in Chang [4], provided (2) through (5) of Chang [4] (or (2') through (5') of Theorem 2) are assumed. Hence in these two cases one can conclude that there are no solutions of equation (13) with $X \equiv 1$ (mod 2). It may therefore now be assumed that $X \equiv 0 \pmod{2}$. Upon factorizing the lefthand side of equation (13) one obtains the ideal equation

(14)
$$
\mathbb{E}Y + Z^3 \sqrt{k} \mathbb{E}Y - Z^3 \sqrt{k} \mathbb{E}Y = \mathbb{E}X \mathbb{I}^3.
$$

Let *A* be the greatest common divisor of the two ideals $[Y + Z^3\sqrt{k}]$ and $[Y - Z^3 \sqrt{k}]$. Then it can be shown that $A/[2]$. To prove this fact it is enough to show that $2 \in A$, since $A|[2]$ can equivalently be expressed by saying that *A* includes (as a set of algebraic integers from the field $R(\sqrt{k})$) [2]. By the definition of *A* one has

(15)
$$
A = (\llbracket Y + Z^3 \sqrt{k} \rrbracket, \llbracket Y - Z^3 \sqrt{k} \rrbracket)
$$

$$
= \llbracket Y + Z^3 \sqrt{k} k, \quad Y - Z^3 \sqrt{k} \rrbracket.
$$

It will suffice to prove the existence of rational integers *a, b, c* and *d* having the properties

(16)
$$
2 = \left(\frac{a+b\sqrt{k}}{2}\right)\left(\frac{Y+Z^3\sqrt{k}}{2}\right) + \left(\frac{c+d\sqrt{k}}{2}\right)\left(\frac{Y-Z^3\sqrt{k}}{2}\right),
$$

(17)
$$
a \equiv b \pmod{2}, \ c \equiv d \pmod{2}.
$$

The form for the general integer of $R(\sqrt{k})$ follows from the assumption $k \equiv 1$ (mod 4). Upon equating coefficients on both sides of equation (16) and sim

plifying, one obtains

(18)
$$
(a + c) Y + (b - d) k Z3 = 4, and
$$

(19) $(b+d)Y+(a-c)Z^3=0.$

Equation (19) can be satisfied by putting $a = c$ and $b = -d$. Then equation (18) becomes

$$
(20) \t\t aY + bkZ^3 = 2.
$$

Now since $X \equiv 0 \pmod{2}$ by assumption, it is necessary to have $Y \equiv Z \equiv 1 \pmod{2}$ 2). Then it follows that $Y = kZ^3 = 1 \pmod{2}$ from which it follows that if *(a, b*) is to be a solution of equation (20) then $a \equiv b \pmod{2}$ is necessary. This last condition is in accord with equation (17). Equation (20) is a linear diophantine equation in the two quantities *a* and *b* and has solutions in *a* and *b* since $(Y, kZ^3) = 1/2$. Finally, since $a \equiv b \pmod{2}$ is required by equation (20) the previously imposed conditions $a = c$ and $b = -d$ imply that $b \equiv d \pmod{d}$ 2). Hence it follows that it is possible to find rational integers *a, b, c* and *d* satisfying equations (16) and (17) and so $A|[2]$ as stipulated.

It will be of use in the sequel to know the canonical decomposition of the ideal [2] in the field $R(\sqrt{k})$. Since it is being assumed that $k \equiv 1 \pmod{4}$ it follows (Theorem 872, page 172, Landau [5]) that the discriminant Δ of $R(\sqrt{k})$ is given by $\Delta = k \equiv 1 \pmod{8}$. Hence Δ is a quadratic residue modulo 8. From Theorem 879, page 178, Landau [6] with $p = 2$ it follows that $[2] = PQ$ where $P = [2, R + \omega]$ and $Q = [2, R + \omega']$ for a suitable rational integer *R*. Here $\omega = \frac{1+\sqrt{R}}{2}$ and $\omega' = \frac{1-\sqrt{R}}{2}$. Also since 2 + J it follows from Theorem 880, page 180, Landau [7] that $P \neq Q$. *P* and *Q* are prime ideals.

It can be shown that one can choose the prime ideal factors of [2] as *P* = [2, ω] and *Q* = [2, ω']. Upon writing *PQ* = [2, ω][2, ω'] = [4, 2 ω , $2\omega'$, $\omega\omega'$] one sees that 4, 2 ω , 2 ω' and $\omega\omega'$ are integral (algebraic) multiples of 2 and so [2] | PQ. The element $\omega \omega'$ has the value $\frac{1-k}{4}$ and since $k \equiv 1 \pmod{8}$ it follows that $\omega \omega'$ is an even rational integer. Also $2 = 2 \omega + 2 \omega'$ so that $PQ|[2]$. Hence $PQ = [2]$.

The next step is to determine under what conditions *P* and *Q* are principal ideals. In order that *P* and *Q* be principal ideals it is necessary and sufficient that the number 2 have a non-trivial representation of the form

54 HUGH M. EDGAR

(21)
$$
2 = \left(\frac{a+b\sqrt{k}}{2}\right)\left(\frac{u+v\sqrt{k}}{2}\right)
$$

where *a*, *b*, *u* and *v* are rational integers satisfying the conditions $a \equiv b \pmod{2}$, $u \equiv v \pmod{2}$. The term non-trivial refers to the requirement that

$$
\frac{a+b\sqrt{k}}{2} \text{ and } \frac{u+v\sqrt{k}}{2} \text{ not be units of } R(\sqrt{k}).
$$

From the ideal equation corresponding to equation (21) *it* follows that one can identify P with $\left\lfloor \frac{a+b\sqrt{k}}{2} \right\rfloor$ and Q with $\left\lfloor \frac{a+b\sqrt{k}}{2} \right\rfloor$. Now it is known the $N(P) = N(Q) = 2$, and so, using the fact that $N([\beta]) = |N(\beta)|$ where β is any integer of $R(\sqrt{k})$, one sees that the two equations

$$
(22) \qquad |a^2 - kb^2| = 8
$$

$$
(23) \t\t\t |u^2 - kv^2| = 8
$$

must be satisfied. Since $x^2 - ky^2 = +8$ is insoluble whenever $k \equiv 0 \pmod{3}$, equations (22) and (23) become

(24)
$$
a^2 - kb^2 = -8,
$$

(25)
$$
u^2 - kv^2 = -8.
$$

Upon equating coefficients on both sides of equation (21) one obtains the two equations

$$
(26) \t\t au + bv = 8
$$

$$
(27) \t av + bu = 0.
$$

If one multiplies equation (26) by v and substitutes for av from equation (27) it is found, using equation (25), that $b = v$. Hence also $u = -a$ and thus equation (21) becomes

(28)
$$
2 = \left(\frac{a+b\sqrt{k}}{2}\right)\left(\frac{-a+b\sqrt{k}}{2}\right).
$$

It is seen that, since $k \equiv 1 \pmod{4}$, the parity restrictions on *a*, *b*, *u* and *v* must be met if equations (24) and (25) are to be satisfied.

Since $k \equiv 1 \pmod{4}$ and since $Y = Z^3 \equiv 1 \pmod{2}$ it follows that $\frac{Y + Z \sqrt{R}}{2}$ and $\frac{Y-Z^3\sqrt{k}}{2}$ are integers of $R(\sqrt{k})$. In other words $[2] | [Y+Z^3\sqrt{k}]$ and $[2]$ I $[Y - Z^3\sqrt{k}]$. Putting this fact together with the previous result that $A[[2]]$ shows that $A = [2]$. From equation (14), using the fact that $X \equiv 0 \pmod{2}$

one obtains the equation

(29)
$$
\left[\frac{Y+Z^3\sqrt{k}}{2}\right]\left[\frac{Y-Z^3\sqrt{k}}{2}\right] = \left[2\right]\left[\frac{X}{2}\right]^3
$$

where the two ideals on the left-hand side of equation (29) are relatively prime. Upon using the unique factorization of ideals in an algebraic number field, one obtains the two equations

$$
(30) \qquad \qquad \left[\frac{Y+Z^3\sqrt{k}}{2}\right]=I_1D_1^3,
$$

$$
(31) \qquad \qquad \left[\frac{Y - Z^3 \sqrt{k}}{2}\right] = I_2 D_2^3,
$$

Where I_1 , I_2 , D_1 and D_2 are ideals in $R(\sqrt{k})$ which satisfy the conditions $(I_1, I_2) = [1]$

$$
I_1I_2 = [2], (D_1, D_2) = [1]
$$
 and $D_1D_2 = \left[\frac{X}{2}\right]$.

If it is now assumed that the Pellian equation $a^2 - kb^2 = -8$ can be solved, it follows that the ideals I_1 and I_2 are principal ideals in every case, according to remarks made previously. Then from equations (30) and (31) it follows that D_1^3 and D_2^3 are also principal ideals. Finally, the assumption $3/H$ leads one to conclude that D_1 and D_2 are principal ideals. Thus, in particular, one can write $I_1 = \left[\frac{a+b\sqrt{k}}{2} \right]$ and $D_1 = \left[\frac{c+d\sqrt{k}}{2} \right]$. From equation (30) one obtains the equation

(32)
$$
\left[\frac{Y+Z^3\sqrt{k}}{2}\right]=\left[\frac{a+b\sqrt{k}}{2}\right]\left[\frac{c+d\sqrt{k}}{2}\right]^3.
$$

From equation (32) one obtains the equation

(33)
$$
\frac{Y + Z^3 \sqrt{k}}{2} = \varepsilon \left(\frac{a + b\sqrt{k}}{2} \right) \left(\frac{c + d\sqrt{k}}{2} \right)^3
$$

 $Y - Z^3 \sqrt{k}$ where ε is a unit of the field $\mathbf{\Lambda}(\mathbf{\gamma}\kappa)$. It follows that one can write $\frac{\gamma}{2}$ in the form

(34)
$$
\frac{Y - Z^3 \sqrt{k}}{2} = \epsilon \left(\frac{a - b\sqrt{k}}{2} \right) \left(\frac{c - d\sqrt{k}}{2} \right)^3
$$

and a corresponding equation in ideals would be

$$
(35) \qquad \qquad \left[\frac{Y - Z^3 \sqrt{k}}{2}\right] = \left[\frac{a - b\sqrt{k}}{2}\right] \left[\frac{c - d\sqrt{k}}{2}\right]^3.
$$

From equations (31) and (35) one obtains the equation

(36)
$$
I_2 D_2^3 = \left[\frac{a - b\sqrt{k}}{2} \right] \left[\frac{c - d\sqrt{k}}{2} \right]^3.
$$

From equation (36) one has $\left[\frac{c-d\sqrt{k}}{2}\right]$ D_2 for if there were a prime ideal R with the properties $R\left|\frac{c-d\sqrt{k}}{2}\right|$ and $R+D_2$ then one would necessarily have $R^3 | I_2$, which is impossible since $I_2 | [2]$. In the same way, one finds that $D_2\left[\frac{c-a\sqrt{\kappa}}{2}\right]$ since the conditions on $\left[\frac{a-v\sqrt{\kappa}}{2}\right]$ make it impossible to have the cube of a prime ideal dividing $\left[\frac{a-b\sqrt{k}}{2}\right]$. Hence $D_2 = \left[\frac{c-d\sqrt{k}}{2}\right]$ and $\left[\frac{-b\sqrt{k}}{2}\right]$. Since one now has $I_1I_2 = \left[\frac{a+b\sqrt{k}}{2}\right] \left[\frac{a-b\sqrt{k}}{2}\right] = [2]$, the two possibilities $I_1 = [1]$ and $I_1 = [2]$ cannot arise.

If one parallels the treatment of Mordeli [3] the following equations result in those cases where the unit cannot be totally absorbed

(37)
$$
\frac{Y+Z^3\sqrt{k}}{2} = \left(\frac{T \pm U\sqrt{k}}{2}\right)\left(\frac{a+b\sqrt{k}}{2}\right)\left(\frac{C+D\sqrt{k}}{2}\right)^3,
$$

$$
(38) \tC2 - kD2 = -2 X.
$$

In those situations where total absorption of the unit factor is possible, equation (38) still applies but equation (37) is replaced *by* the equation

(39)
$$
\frac{X+Z^3\sqrt{k}}{2} = \left(\frac{a+b\sqrt{k}}{2}\right)\left(\frac{C+D\sqrt{k}}{2}\right)^3.
$$

From equation (39) one obtains, upon equating coefficients, the equation

(40)
$$
8 Y = aC(C^2 + 3 kD^2) + b k D(3 C^2 + kD^2).
$$

Upon taking residues modulo 9 in equation (40) it is found, using the fact that $C \neq 0 \pmod{3}$, that $Y = \pm a \pmod{9}$. Now if it is assumed that $b \equiv 0 \pmod{3}$ then the equation $a^2 - kb^2 = -8$ forces the condition $a^2 \equiv 1 \pmod{9}$. Thus Y^2 \equiv 1(mod 9) and upon referring back to equation (13) it can be seen that $Z \equiv 0$ (mod 3) is necessary. Upon equating coefficients of \sqrt{k} in equation (39) one obtains the equation

(41)
$$
8 Z^3 = aD(3 C^2 + kD^2) + bC(C^2 + 3 kD^2).
$$

Upon taking residues modulo 9 in equation (41) it is found that $b \equiv 0 \pmod{9}$ is required. Thus one cannot find rational integers F, Z, *C* and *D* whicfi

satisfy equation (39) if it is assumed that $b \equiv 0 \pmod{3}$ and simultaneously $b \not\equiv 0 \pmod{9}$.

From equation (37) one obtains, upon equating coefficients of *k,* the equation

(42)
$$
16 Z^3 = (Ta \pm Ubk) (3 C^2 + kD^2) D + (Tb \pm Ua) (C^2 + 3kD^2) C.
$$

In equation (42) it is enough to consider the positive sign, upon replacing *b* by $-b$, D by $-D$ and leaving a and C unchanged. This replacement has the effect of changing Y to $-Y$. Hence one can replace equation (42) by the equation

(43)
$$
16 Z^3 = (Ta + Ubk) (3 C^2 + kD^2) D + (Tb + Ua) (C^2 + 3 kD^2) C.
$$

Upon taking residues modulo 9 in equation (43) one obtains the relation

(44)
$$
-2 Z^3 \equiv \pm (Tb + Ua) \pmod{9}.
$$

With the assumptions on U and b it follows that $Z \equiv 0 \pmod{3}$ so that one would require $Tb + Ua \equiv 0 \pmod{9}$.

The following result has been established:

THEOREM 3. The equation $y^2 = x^3 + k$ has no rational solutions if k is a square *free positive integer and if the following conditions obtain:*

(a) $k \equiv 1 \pmod{8}$ *and* $k \equiv -3 \pmod{9}$,

i.e., $k \equiv 33 \pmod{72}$,

(b) the conditions (2^t) through (5^t) of Theorem 2,

(c) the Pellian equation $X^2 - kY^2 = -8$ is soluble and possesses a solution (a, b) for which $b \equiv 0 \pmod{3}$ and $b \not\equiv 0 \pmod{9}$,

i.e., $b \equiv 3$ *or* 6(mod 9).

(d) $Tb + Ua \not\equiv 0 \pmod{9}$.

REFERENCES

- [1] Mordell, L. J., Proc. London Math. Soc, Hodgson, London, 1914, Volume 13, The Dio phantine equation $y^2 - k = x^3$, Pages 60-80.
- [2] Fueter, R., Commentarii Mathematici Helvetici, Societate Mathematica Helvetica, Zurich, 1930, Volume 2, Ueber kubische diophantische Gleichungen, Pages 69-89.
- [3] Mordell, L. J., Archiv fur Mathematik og Naturvidenskab B.I.L., NR 6, Oslo, 1947, On some diophantine equations $y^2 = x^3 + k$ with no rational solutions, Pages 143-150.
- [4] Chang, K. L., The Quarterly Journal of Mathematics, Oxford University Press, Oxford,

58 HUGH M. EDGAR

1948, Volume 19. On some diophantine equations $y^2 = x^3 + k$ with no rational solutions, **Pages 181-188.** \mathcal{A}

- **[5] Landau, E. G. H., Vorlesungen ίiber Zahlentheorie, Chelsea Publishing Company, New York, 1947, Page 172, Theorem 872.**
- **[6] Landau, E. G. H., Vorlesungen iiber Zahlentheorie, Chelsea Publishing Company, New York, 1947, Page 178, Theorem 879.**
- **[7] Landau, E. G. H., Vorlesungen iiber Zahlentheorie, Chelsea Publishing Company, New York, 1947, Page 180, Theorem 880.**

San Jose State College, San Jose 14, Calif., U.S.A.