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Consider a linear transformation T whose domain D( T) and range R( T)

lie in a complex Banach space X. We denote by [X] the class of all linear

transformations T for which D(T) =X and T is continuous (bounded). Also,

we denote the resolvent set of T by p(T) and the spectrum of T by σ(T).

In 1943 Nelson Dunford [1 and 2] and A. E. Taylor [1] developed a method

of associating with each holomorphic function / of a certain class an operator

in DΠ denoted by f(T) where Γ G DΠ. This mapping f-*f(T) gives what

is commonly called an operational calculus. Subsequently, A. E. Taylor [2]

extended these results to include the case where T is closed in the sense that

the graph of T is a closed subset of XxX and p(T) is not empty. One fact

of great importance is that the spectrum of f(T) is determined by /and σ(T).

(See Hille and Phillips Q, p. 204].) It is the purpose of this paper to extend

these results to a certain class of meromorphic functions.

We shall now describe briefly the operational calculus as developed by

Taylor. We assume that X is a Banach space and that T is a closed linear

operator so that R(λ T) = (λ - T)"1 e [X] if λ e p{ T), and R(λ T) is analytic

as a function from p( T) to LXl.

Let / be a complex-valued function which is holomorphic (locally analytic)

on an open set Δ(f) which contains σ(T) U {oo}. We require Δif) to be open

in the extended plane, and / must be regular at oo. Given such an /, we define

f(T) as follows:

L J /(λ)R(λ T)dλ,
DTtt JdD

where 3D is the oriented boundary of a suitable domain Zλ By "suitable" we

mean the following: D is an unbounded Cauchy domain which contains σ( T)
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and is such that DC J ( / \ A Cauchy domain is an open set in the plane,

with a finite number of components, and it is such that 3D consists of a finite

positive number of closed rectifiable curves, no two of which intersect. The

orientation of 3D is the usual positive orientation of the boundary. With D

unbounded there will be just one unbounded component, and its complement

will be compact. Thus, with the situation we have, if we add the point °° to

D and look at D as a set in the extended plane, then D is a neighborhood of

j ( Γ ) U { o c } .

Under these conditions f(T) is a member of ίXl. It is independent of

the particular choice of D.

Two functions /, g, each of the general character here considered, may

be considered equivalent if they agree on a neighborhood of a{T) U {°°}. In

that case f(T)=g(T). We can form equivalence classes of functions, and

these equivalence classes form a ring in a natural way. We denote the ring

by Jέf(T). I f / i s a representative of an equivalence class, the mapping

/->/( T) turns out to yield a ring homomorphism of cj^(T) into DG. Therein

lies the essence of the operational calculus.

In order to state precisely the relationship between σ(T) and σif(T)) the

properties P, as in the following definition will be used.

DEFINITION 1. The properties P, (/= 1, 2, 3) for the operator T are defined

as follows, on the assumption that T is linear, with domain and range in X.

Pi : T is not one-to-one.

Pi : The range of T is not dense in X.

Pz : There exists a sequence of unit vectors xn for which ||Tx«||->0 as

w-» °°.

It is not difficult to verify that λ^a{T) if and only if λ - T has the pro-

perty Pi for some ί = l, 2 or 3.

THEOREM 1. (The fine-point spectral mapping theorem.) Let X be a Banach

space, let T be a closed linear operator with a nonempty resolvent setf and suppose

/ e ,y/(T). If cc-T has the property Pi (i = 1, 2 or 3) then so has fia) - f{T).

If μ-f(T) has the property Pi (/ = 1, 2 or 3), if μ*f{oo) and if f(λ)£μ on

each component of the domain off then there exists an a in σ( T) such that f{a)

- μ and a- T has the property Pi. If Γ e [X], then μ = /( °°) need not be
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excepted.

This theorem is proved in Hille and Phillips (pp. 204 and 205). The purpose

of this paper is to prove Theorem 1 for a more comprehensive class of func-

tions which we will now describe.

DEFINITION 2. We shall refer to the body of theory developed in the rest

of this paper as the "operational calculus for meromorphic functions".

Suppose X is a Banach space and let T be a closed linear operator with a

non-empty resolvent set. Let / be a meromorphic function whose domain is

an open set containing σe(T) = σ(T) U {co}. Since σe(T) is a compact subset

of the extended plane, / will have (at most) a finite number of poles, au a2,

. . . , akj on a(T). Let m be the order of the pole α, for z = 1, 2, . . . , k and

let nQ be the order of <*> as a pole off We further require that (ca-T)'1

exists at each finite pole of /. Define the polynomial p by

(1) p<λ) = (aι-λ)nι- - •(χk~λ)nk

y

let m = ΠiΛ -f nπ be the degree of p, let n-no+tn and suppose β<Ξp(T).

The function F given by

(2) F{λ) = f(λ)p(λ)(β-λ)~n for λ*aif F(a») = lim F\λ)

for i = 1, . . . , k

is holomorphic (locally analytic) on an open set containing σe(T). We can

now define F{T) in 1X1 by use of the operational calculus for holomorphic

functions in *&<(T). Alsop( T)ίR(β T)T has an inverse which will be denoted

by S(β T) to emphasize its dependence on β and T as well as to preserve

the analogy with the notation Riβ T) for (β - T)~\ We denote by <Jί(T)

the class of meromorphic functions satisfying all the requirements listed in

this paragraph. Finally, for each / e ^#( T) we define the linear operator

f(T) by

(3) f(T)x = FκT)S(β T)x for x in the domain of S(β : T).

Observe that, if / e c_#(D but / has no poles on aeKT), equation (3) defines

the same operator f(T) as that guaranteed by the operational calculus for

holomorphic functions in Jά'(T). But, unlike this earlier operational calculus,

equation (3) does not define an element of [X], in general. In fact, f(T) ^
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DG if and only if / is locally analytic on an open set containing σe( T). This

does not deny the possibility that /(T) be bounded on its domain as will be

the case whenever °° is not a pole of / and .α, — T has a bounded inverse for

each finite pole of f.

We proceed now with the task of developing the machinery necessary to

prove a fine-point spectral mapping theorem for members of c^f(T). We

employ the notation introduced earlier.

LEMMA 2. Let X be a Banach space and let T be a closed linear operator from

X to X. If {yk) is a sequence of unit vectors in the domain of T for which

(a - T)yk->0 as k-+°°, then, for each positive integer n and each β in p(TΪ,

WlR(β ί T)T~ιyk\\ is bounded away from zero.

Proof The proof is by induction. The case n = 1 is trivial, so we may

assume n>\ and that WlRiβ T)ln~2yk\\ is bounded away from zero. Then,

writing Xk = LR(β I T)Y~ιyk, we have

= WlR(β T)γ-2yk\\-KR(β T)n~\a - T)yk\\.

The second term on the right hand side of this equation goes to zero, while

the first term on the right is bounded away from zero. It follows that 11**1! is

bounded away from zero, as was to be proved.

LEMMA 3. Let X be a Banach space, let T be a closed linear operator with a

non-empty resolvent set, and suppose f&^£(T). Then, for f(T), β, S(β T)

and FKT) as in equation (3),

(4) f(T)x = S(β T)F(T)x for all x in the domain of f(T)

Hence f(T) is closed in the sense that the graph of f(T) is closed in Xx X.

Proof The operator S(β T) is closed, for its inverse p(T)LR(β T)T

is in [X]. Since F(T) e [X], it will follow that f(T) is closed once equation

(4) is established.

We know that

(.5) ρ(T)ίR(β T)YF(T)x = FiT)p(T)lR(β T)Tx

for all x in X. Letting y = p(T)LR(β T)Tx or x = S(β T)y in equation (5)

and applying S(β T) to both sides of this equation, we obtain
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F(T)S(β T)y = S(β T)F(T)y for all y in the domain of S(β Γ).

In view of the definition of /XT), this establishes equation (4).

The following lemma will also prove useful.

LEMMA 4. Let f and g be in ^ # ( T ) , with X and T as in the previous lemma,

and suppose g has the same poles with the same order as f. Then h —f-\-g^ ^Jί{ T)

and, for each β in μ(T), h{T) is an extension of f(T)+g{T). If g<=cJ^(T),

then h(T) =f{T)+g(T).

Proof. Let q be a polynomial related to the poles of h in the same way

that the polynomial p in the discussion preceding equation (3) is related to

the poles of /. It is not necessarily true that q-p but q does divide p so that,

since q*0, r-p/q is a polynomial. We now define the holomorphic functions

F, G and H by

G(λ)=g(λ)p(λ)(β-λΓn

Ha)=h(λ)qiλ)(β-λVk

where each of the functions F, G and H are defined by the appropriate limits

at the poles of / and where n and k are related to / and h in the same way

n is related to / in the discussion leading up to equation (3). Clearly, F, G

and H are members of J& (T) and

H(λ)r{λ)((l - λ)k~n = F(λ) + G(λ).

By expressing r(λ)(β~ λ)k"n as a polynomial in (β~λ)~\ applying the opera-

tional calculus and then factoring out ίR( β T)Y~k, we obtain r(T)ZR(β T)T~k

as a member of the operational calculus. It now follows that

(6) H{T)r{T)LR(β T)T"k = F{T) + G{T).

For x in the domain of f(T), write

(7) x = p{T)LR(β T)Ty

or

(8) y^S(β T)x.

Using first the definition of f(T) and g{T) and equation (7), then equation

(6), then the relationship between H{T) and λ(T), and finally the relationship
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between r, q and p and equation (8), we have

T)T"ky

I T)Y~ky

= h(T)x for all x in the domain of f{T)+g(T).

This shows that h(T) is an extension of f(T)+g(T). If ge Jt/(T)t the same

calculations can be performed but in this case q = p and n = k so that h(T)

has the same domain as f(T).

We are now ready to prove the promised extension of the fine-point spectral

mapping theorem. Theorem 5 relies very heavily on Theorem 1 as well as

the notation and lemmas following Definition 2.

THEOREM 5. Let X be a Banach space. Let T be a closed linear operator

with a non-empty resolvent set and suppose / e c f̂ (T), If a e <J(T) but a is not

a pole of f and if oc - T has the property Pi (/=1, 2<?r3), then so has f(a) - /(Γ),

where f(T) is defined by equation (3). If μ- f(T) has the property Pi, if

ju^fi00) and if f{λ)$μ on each component of the domain off then there exists

an a in a(T) such that ficc) =μ and a - T has the property Pi. If T e [X],

then μ = /(<*>) need not be excepted.

Proof If «G(i(T) and a is not a pole of /,

G(λ) = ίf(a) -f{λ)lp{λ)iβ-λΓn<=ΞΛS{T).

Now h(λ) = f(a) - / U ) satisfies the hypotheses of the previous lemma with

f(a) constant, hence analytic, so that h(T) = / ( « ) — / ( T ) by Lemma 4. On

the other hand, h e .^f (T) and A( T) = G( T)S(β T) by definition. Therefore,

<9) lf(a)-f(T)lx=G{T)S{β T)x

for all x in the domain of /(T).

The remainder of this part of the proof rests heavily on the fact that the

function G is known to satisfy the fine-point spectral mapping theorem (Theorem

1) and the fact that G(a) = 0.

Suppose a - T has the property Pu so that there exists s. y^X such that

G{T)y = 0 but 3>^0. Letting x = p[T)ZR(β T)Ty, we see that If (a) - f(T)]x

= 0 by equation (9). We know x*0 because of the restrictions placed on p

earlier. This shows that the assertion of the first part of the theorem holds

for the property P ί t
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From equation (9) we see that the range of /(a) - fKT) is contained in

the range of G(T), so that f(a) - f{T) does not have a dense range if the

range of G(T) is not dense. The same relationship holds between G(T) and

a - T. Hence, f(oc) - f{T) has the property P2 if a - T has this property.

Suppose there exist unit vectors yu, k - 1, 2, . . . , with each yu in the

domain of T and such that (cc - T)yk-*0 as k~> oo. Then GiT)yk-*0. Let

Xk=ρ(T)lR(β T)Yyk for « - 1, 2,

Then #fe is in the domain of /( T) for each k and [/U) - f(T)lxk = G(Γty*-*0

as ^-»oo. The desired conclusion will follow once it is shown that the \\xk\\

are bounded away from zero. To see that this is the case, write

p(T) =q(T){a~T)+δ

where q is a suitable polynomial and δ is a complex number. Observe that

δ =¥ 0 because or is not a pole of / by hypothesis, so cc - λ is not a factor of

p(λ). Using the above expression for p{T), the definition of xu and applying

the triangular inequality we have

; T)Tyk\\

:T)Yyk\\-\\q(T)tRiβ; T)Y(* - T)yk\\.

The ||U?(/3 T)]π^l! are bounded away from zero by Lemma 2. Also,

because q(T)LR(β T ) ] n e [ Z ] and (α - Γ)^*->0 as *-* ». Since δ*0, we

conclude from (7) that the \\xk i! are bounded away from zero. Hence /(a) - /(T)

has the property P3.

To show the converse, suppose μ~σ(f(T)) and suppose f(λ)^βμ on any

component of σ(T). Let

Again the proof relies heavily on the fact that G satisfies the fine-point spectral

mapping theorem. If μ-fiT) has the property P, (/=l, 2 or 3), we shall

show that G(T) also has the property P, . It will then follow that there exists

a complex number a such that G(a) = 0 and α: — T has the property P, . Since

G(a) =0 implies μ = / ( # ) , all will be proved.

We now propose to present the proof promised in the preceding paragraph,
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Suppose x is in the domain of /(T), x*eϋ and ίμ — /(T)lx = 0. By Lemma 4,

G(T)S(β I T)x=ίμ-f(T)lx

so that G(T) annihilates the non-zero vector S(β T)#. This shows that G(T)

has the property Pi if μ - /(T) does.

If y e l , then x = p(T)lR(0 T)Ty is in the domain of f(T) and

This shows the range of G(T) is contained in the range of μ~f{T). The

desired conclusion about the property P% now follows.

Similarly, let {xk) be a sequence of unit vectors contained in the domain

of /(T), and suppose Lμ — f(T)lxk-+0 as k-* «>. There exist ^ for which

Then

so that G(T)y'k~*0 as ^-> «>. Moreover, by expressing p(T)LR(β T)T as a

polynomial in R(β T) we see that piT)LR(β T ) ] n e [ Z ] , and

; T)Y\\ hkl

This shows that the Ilj>*l! are bounded away from zero. Hence, if μ- f(T)

has the property A, then so does G(T).

The proof of the theorem can now be completed εls indicated above.
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