ON CERTAIN MAPPINGS OF RIEMANNIAN
MANIFOLDS

MINORU KURITA

In this paper we consider certain tensors associated with differentiable map-
pings of Riemannian manifolds and apply the results to a p-mapping, which is
a special case of a subprojective one in affinely connected manifolds (cf. [1],
[71). The p-mapping in Riemannian manifolds is a generalization of a conformal
mapping and a projective one. From a point of view of differential geometry
an analogy between these mappings is well known. On the other hand it is
interesting that a stereographic projection of a sphere onto a plane is conformal,
while a central projection is projectve, namely geodesic-preserving. This situa-
tion was clarified partly in [6]. A p-mapping defined in this paper gives a
precise explanation of this and also affords a certain mapping in the euclidean

space which includes a similar mapping and an inversion as special cases.

1. Tensors associated with mappings of Riemannian manifolds

1. Let M and N be two n-dimensional Riemannian manifolds of differ-
entiable class C* and ¢ be a mapping of differentiable class C® which is locally
‘regular. We take a coordinate neighborhood U and differentiable sets of ortho-
gonal coframes on U and ¢(U). Then the arc-elements of M and N are given
respectively as

ds® = 4'', dtt =<'t (1.1)
Now we put
o' =pia,  ai=pip}. (1.2)

Then we have det(ai;) =0 on account of regularity and
o*di? = o*(¢'t') = aijd'd, (aij = aji). (1.3)

We call A = (a;;) the first tensor of our mapping ¢.

Next we take forms of Riemannian connections
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o= (d}), v =(r}) (1.4)

of M and N which are defined by the relations
di=d Ndi (di=—db), dii=v ANei (ch=—1). (1.5)
Throughout this paper we assume that for matrices such as s = (5}), t = (¢})
an upper index denotes a number of column and a lower one a number of row.
¢*dt* can be considered as a new Riemannian metric on M. It is represented

as (1.3) and when we put P= (), the form A=21}) of the Riemannian conne-

ction with respect to the base ¢ is given by
A=P-¢*c- P+ dPP! (1.6)
and satisfies the relation
do' =o' N&j. 1mn
We have by (1.5) and (1.7) o’ A (25— 4%) =0 and when we put
T=(r})=l—a, T§=C§‘ko‘k (1.8)
we get

@ Avi=0, namely clp=c; ; (1.9)

As 5 and A are forms of two Riemannian connections with respect to the same
base 4!, . .., d" their difference 7= (y}) = (ci-h&k) is a tensorial form on M,
which we call the second tensor of our mapping. It plays the most important
role in our theory.

Next we put the curvature forms on M and N as
S =) =do—oNa, T=(T§)=dr—r/\r. (1.10)
We have by (1.6) and (1.8)

r=Pe@*cs P +dPP™ —g, (1.11)
namely
dP=(r+¢)P— P-¢™r, (1.12)

Taking the outer differential we get
0= (dr+dos)P—(r+0) NdP—dPA¢*c — Po*(dr).
Substituting (1.12) we obtain by (1.10)

=P-¢*T.-p -3, (1.13)
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where we have put
= (T}):dr—r/\o'—o'/\r—'/'/\r. (1.14)

We call this tensor I" the third tensor of our mapping.

. i i . i : i 1 A ,
Putting Shi= ;Z‘Sjkh FNGS, Ti= ;« T,-khrk At Ti= o Chend* No*

(Sikn= —Sinkts Tiwn= —Timt, Cirn= — Cinr)

and
(p) ™= (P))
we get
Cikn = DT Pl ¢* Thonn —~ Siin, (1.15)
and
Chin = Vrcin = Vhcin— ciucin + chncha, (1.16)

where V means a covariant differentiation with respect to the Riemannian

connection ¢ = (g%).

2. Now we calculate cfs. As 2= (2}) are forms of Riemannian connection
of ¢*at® = a;;jd'o’, the tensor A = (a;;) is parallel with respect to the connection.

Hence we have
daij = ak; f + aie h; - (1.17)
As 2i=7i+dl by (1.8), we get

k k k k
Daij = daij — arjoi — airoj = arj1i + aik7;
= arichd" + air cfh 7, (1.18)
where Da;; is a covariant differential of 4;;. Hence, putting
Da;; = Vkaijo‘k = Qijk 7,
we get
k k
Qijh = Qi Cin + Gik Cjh.
If we put Ain= arjcky, we have aijn = Ainj + Ajni, and by virtue of (1.9) Aijn
= Ajin. Hence
k
@ijh + anji — @nij = 2 Ainj =2 arjCip.
So, by putting
A" = (ai)) ' = (a7),

we obtain
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ch= *%-ak" (@ijn + anji — a@nij)- (1.19)
Thus we can calculate ¢, from a;;.
We contract (1.19) and denote the resulting vector by ¢;. Then
ci=clh= —12— " (aijn + anji — ani;) = % a" an;i

by virtue of aijs = ajin, a” =a’". Hence

cid' = - a¥anjid = 53 a” Dayj

1 4 1 &
=5 a"(danj — arjok — anes®) = 5 a T dan;.

When we put
4= det (aij)

we have d4 = a” 4-das;, and hence
cid = % 47'dd4, namely ci=F;(logv4). (1.21)

As o' is an orthogonal base, s' = ¢}, are components of a vector. By (1.19) we

get

s' = chy = a”(anjn — % @nhj). (1.22)

We contract (1.15) with respect to ¢ and 2 and put

Sit= S}k;, Tje = Ty, Cji = Ciy;. (1.23)
Then we get
Cie =567 9" Tim — Six (1.23)
and
Cir=VPrej—Vnchy — chpei+ c_l;hcf'k. (1.24)

Contracting (1.23) with respect to j, £ and putting S=3S;; we get
V;.c;,—Vhs"—s'c;—l;cf«,,c{';=pf~p§-"°tp*sz—S. (1.25)

These formulas except (1.21) are not utilised in this paper, but may be useful
for further investigations. In fact, in special casses of conformal mapping and

projective mapping, they are frequently used.

3. We assume that in A= (a;) 7is a number of row and j is that of
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column. Then (1.17) can be written as
dA=1A+ AL (1.26)
By tal{ing an outer differential we get
0=di+A-ANdA+dAN I+ A-d's,
and by substituting (1.26) we get
(dA=AARA+ A'(dr— A1) =0.
As we have 1 =7+ by (1.8), we get by (1.10) and (1.14)

di—ANA=dy+o)—(r+a)A(r+0)=T+>.
Hence
(Fr+3)A+ AT +3) =0. (1.27)

This is an integrability condition of (1.26) for aij.

4. Here we consider three tensors of a mapping

A = (ai}), 7= (75 = (cipd), I'=(ri) = (% C_;:khdk/\o‘h>

in some special cases.

(1) isometry

This is characterised by A = (dij). We have in this case =0 and I"'=0
by (1.19) and (1.14).

(2) volume-preserving mapping

This is characterised by d=det A =1. In this case we have ¢' =0.

(3) conformal mapping

This is characterised by A =(ad;;). We have in this case Dai; = da*dij,
and putting

I=logva, dl=lid,

we get ajjx =2lrad;;. Hence by (1.17)
cip=0%le+ 041 — ok (1.28)
ri=clhd =oidl + lid - Iid". (1.29)
By (1.28) we get in our case
ci = nl;, s'=—(n—-2).

Conversely we can not deduce from (1.29) that our mapping is conformal.
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This we will take up later.
(4) affine mapping
This is a mapping which preserves an affine property of our Riemannian

connection and as we see by (1.11) it is characterised by
r=0.

This mapping has been treated by several authors (cf. [3], [4], [8]). If Mis
a direct product of irreducible Riemannian manifolds M, our mapping is homo-
thetic on each components Mp.

(5) projective mapping

This is a mapping which preserves geodesics and it it well known that the

mapping is characterised by

chh=0i+0oLL  (dl=1Ld), (1.30)
namely
ri=oldl+ljd. (1.31)
In this case
ci=m+DL,  §=2,
(6) mapping with I'=0
In this case we have by (1.13)
Sl=Pp*T-P 7% (1.32)
We construct from > = (2%) forms such that
Si=3iAY],  S=jASIASEIASE ...
So=eiin 2 B A DHA - AR
These are known to be closed forms on M and especially S, is a form which
is fundamental in the theory of generalised Gauss-Bonnet’s theorem by S. S.

Chern (cf. [2]). When we construct corresponding forms Ty, T3, ..., Ty on
N, we get by (1.32)

S4=¢*T4, Ss=‘;0*T8, . ey So=§9*T0. (1.33)

In the case when M is of dimension 2 we have S;=2 K dA only, where K
denotes the Gaussian curvature and dA an areal element on M, and our mapping
is a one preserving K dA.

If M and N are flat Riemannian manifolds, we have always I"= 0 by virtue
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of (1.13). But in this case (1.33) means nothing because Si, Ss, ..., So, T4
Ts, ..., T, all vanish.

5. Let L, M, N be three Riemannian manifolds of dimension # and ¢, ¢
be mappings ¢ : L->M, .¢ : M- N. We denote the arc-elements of L, M, N
by dr’= oo, ds* = o'd', dt* =<'z’ and put
g*d=aio’, Q=(g), ¢*=pidd, P=(p)). (1.34)
We denote connection forms of dr’, ds’, dt* by o= (pi), o= (d}), r = (z}) with
respect to the base ¢/, o', <. Then the second tensors 8= (§}) of the mapping
¢ and 7= (7}) of ¢ are given by
B=QQ'+dQQ ' ~p, 7r=PcP'+dPP'—o. (1.33)
We drop here ¢*, p* for convenience. Eliminating ¢ from (1.35) we get
B=Q(PcP ' +dPP' —7)Q ' +dQQ ™ -
=(QP)r(QP) ' +d(QP)(QP) " - QrQ™* — v

and so
B+QrQ™ ' = (QP)c(QP) ' +d(QP)(QP)™ ! - . (1.36)

This gives the second tensor of the mapping ¢o¢ : L-> N. (1.36) is fundamental
for a superposition of mappings.

We will answer here the question raised in 4 (3). Let ¢ : M- N be a
mapping such that

ri=dldl+ Lo —lidd  (dl=1ld). (1.37)
We take a manifold L diffeomorphic to M and consider a conformal diffeomor-
phic mapping ¢~' : M~ L with the first tensor (aTi 8ij) = (€'8ij). We take base
o' in L in such a way that o' = aié o'. Then for a mapping ¢ : L— M we have
the first tensor @ '0ij = e *'s;; and so
1 ) 1
dlloga )= ~dl= ~-lid= —a ',

and the second tensor is given by

. R 1 . _1 . R R .
Bi= —d8dl—a Lo +a *hip’=—8dl—1ld+1Lid. (1.38)

Here we have @ = (a7'3;;) and the second tensor of ¢o¢ is by (1.36), (1.37),
(1.38)
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B+QrQ'=8+7r=0.

Hence the mapping f = ¢°¢ is affine. Thus we get ¢ = (¢og)og™ = fog™! and
the following is proved.

TurEOREM 1. A mapping ¢ whose second tensor y = (rj-) is of the form (1.37)
is 0= fog™" with ¢~ conformal and f affine.

2. Properties of pseudo-projective mappings

6. In this section we consider a mapping ¢ : M- N whose second tensor
has the form

ri=dldl+lid —mid  (dl=1d). (2.1

As we see from (1.29), (1.31) a conformal mapping and a projective mapping
are special cases of our mapping. Other examples will be given in section 3.

From (2.1) we have
iy =0t h+ L1 — dlm. (2.2)
Contracting with respect to 7, £ and j, 2 we get
ci=(n+ 1)~ my, s =210 —nm;. (2.3)

V4 defined by (1.20) is a magnification factor of the volume elements of M
and N, and is a function globally defined on M. Hence by (1.20) (¢:) is a
gradient vector defined globally. By virtue of (2.3) we get the following results.

TueoreM 2. (my) in (2.1) is a gradient vector, and if (L) is a gradient
vector of a function globally defined, then so is true for (mi). In the case of

brojective mapping (I;) is a gradient vector of a function globally defined on M.

The last assertion is evident by (2.3) because here m;=0.
Next we calculate I'= (I"%). We substitute (2.1) into

Ti=dri—vENoh— i Nrh— 78 AT
given by (1.14). Putting
Di; = di; - l;dl, Dm; = dm; — m;dm, dm = mjd' (2.4)
and taking the relations ds’ = ¢’ A g}, ot = — o into consideration we get

T}: = (Dl - 1;dl) Ne' = (Dm; — midm) N’ + lLimr o’ N o', (2.5)
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Hence we get
ten = (Prlj— Lil) 8}, — (Pali — 1ils) &,
— (Pemi— mimz) 8+ (Vyymi — mimn) 8L + I, mp(3L 84 — 650%).  (2.6)
Contracting with respect to ¢ and 7 we get
Cip=m=1)YFrli— Lile) — Temj — mjmz)
+ (Pums — mumn+ (n - 1) lpymp) 81. 2.7)
Again contracting with respect to j and %
C=Cij=(n—=1Fili=LL+V;mi — m;mi + nlim). (2.8)

7. Here we will give a geometric meaning of (2.1). We take a curve c
on M with a parameter # and consider the image ¢(c) of ¢ under cur mapping
which satisfies the relation (2.1). As was defined in 1 (2}) are forms of Rieman-
nian connection of the Riemannian metric ¢*d#* = aijd's’ introduced on M. ¢ =
¢! can locally be defined and (¢v*/1}) are connection forms of the Riemannian
connetion of the metric df* on N with respect to the base ¢*/. We drop
hereafter ¢* for convenience. By virtue of (1.8) and (2.1) we have

l;:=a;:+6]':dl+ljai—-mmj. (2.9)

Along the curve ¢ we have

du du ~ du

d(ai)_*_aj A}:_d(ai) o’ aj' d 4 (gs

du \ du du) ™t Gudu Y au i\

2 .
du du du du ) - (2.10)

Denoting the covariant differential by Dy and Dy respectively according to the
metric ds* of M and dt® of N we get

Du(o0) Du( o) py(d5)1pdl o @.11)

Now we take a curve ¢ on M which is a solution of the differential equation

‘?u" (*2;;) =mi(gf7)2 (i=1,...,n). (2.12)

When we consider the parameter # as a time (2.12) means that the acceleration
vector is proportional to the gradient vector (m;), proportion being a square
of the speed. To such a curve ¢ on M corresponds a curve ¢(¢) on N satisfying

Dy(d\ _o,dl & .
——d;(—d—u-)—z—d7-dﬁ (3—'1, o o o ,”)- (2-13)
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Thus ¢(¢) is a geodesic and the arc-length ¢ on it is given by
t= fe”du X const. (2.14)
In fact we have log (dt/du) =21+ const. in this case and we get by (2.13)
S (8= (| 9 = (VT - e 2]
(45 - s 2 i)-o

Thus we have got the following result.

TueorReEM 3. By the mapping satisfying the relation (2.1) the curve c of the
solution of the differential equation (2.12) is mapped onto a geodesic on N, and
there exists a relation (2.14) between the parameter u and the arc-length t of
o(c).

The converse is also true as is shown next. We assume a mapping ¢
satisfies the conclusion of the theorem 3 and denote its second tensor by rj-
and put

el = ej-kok =7i—(didl+ Lid — mid).
Then we have
M=ditri=al+ (ldl+ Lo — mid?) +

and by a calculation analogous to (2.1) we get
Dy (o \_Du(d\__(ds d 4 o ¢
du(du)-ﬁ(du) m'(du)+2du du+du du’
Along a curve ¢ satisfying (2.12) we have (2.13) by assumption and so
——— —-—~ = e;:k ———Lu = 0 (2. 15)

along c¢. As the curve c is a solution of the differential equation of the second
order (2.13) (4'/du) can be taken as an arbitrary vector at any point. More-
over we have e, =ef; by (1.9) and (2.2) and we get from (2.15) e, =0.
Thus the converse of theorem 3 is proved.

As our mapping which satisfies (2.1) is a generalization of a projective
mapping and theorem 3 holds good, we call our mapping pseudo-projective and
in short a p-mapping hereafter.
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8. We take three Riemannian manifolds of dimension » and two mappings
¢ :L->Mand ¢ : M->N. When ¢ and ¢ are p-mappings, the mapping ¢o¢ :
L N is not necessarily a p-mapping, as is shown in the next.

We use the notafions in 5. Then the second tensors of ¢ and ¢ are

Bi=oidh+hio' — ki’ (dh=hio))
ri=oldl+lid — mid’ (dl=1Ld).
When we put @ = (g%) and Q' = (Q%), we have for a = (a) =g+ QrQ™"
al=pi+giriQl
=0tdh+ hjp' — kip” + ¢4(dl 8} + lkd” — mnd*) @},
=oid(h+1) — (i+15) 6 - (kio” + maqidi Qo™
(dl=1lid =),
This is not of the form (2.1) in general.

Especially if ¢ is projective (m; =0), ¢o¢ is a p-mapping. Thus we get

the following theorem.

TaeOREM 4. If ¢ : L> M is a p-mapping and ¢ : M- N is projective, then
@og . L-> N is a p-mapping.

The inverse of a p-mapping is not a p-mapping in general, and we can

prove the following theorem.

TuroreM 5. The inverse ¢~' of a p-mapping ¢ is a p-mapping when and

only when ¢ is conformal or projective.

Proof. let ¢ : M~ N be a p-mapping with its inverse ¢~%. In the notation
we have used
r=PtP '+ dPP -, (2.16)

We drop ¢* for the sake of convenience. We get from this
~ P tP=P 'gP+dP)P-r.

In comparison with (2.16) we see that — P~'yP is the second tensor of the

mapping ¢~>. When we put

—-PhP=(c), P=(pd), P'=(Pi

we get

= — Pirhph = — PRSkdl+ 1" — mad®) b},
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=8id( = 1) + (= L P%) < + mnpi, P} P

As we have - L Pici= — o= —di, ¢} is of the form (2.1) when and only
when

PP plmn=r7;du.
If there exists one j such that ﬁ,’;mhﬂeo, we have PLP%=5b5; on an open set.
1
As (P} P%) is a positive definite matrix, & is positive and (5~ ? P%) is orthogonal
1

and so is (b2p%). Hence (aij) = (p¥p%) = (67'5;;) and ¢ is conformal. On the

other hand, if pjms =0 for all j we get ms =0 and our mapping is projective.

9. Here we treat the case M is of constant curvature and N is flat. Then
we have T=0 and we get from (1.13) I'= - 3. As >i= — Ko’ Ao’ by our
assumption we get for the p-mapping

(DI; = I;dl) Nd* = (Dmi — midm) No’ + lympa’ No* = = Ko’ N o' (2.17)
by virtue of (2.5). Thus, putting
Dl = Lidl = (Prli— Lile) o* = lird®,  Dmi— midm= (Pymi — mimy) &" = mun o
we get Lip = lp;, min=mn. Hence (2.17) reduces to
Lrd* N = mind* N’ + lhmpa’ Ao = — Ko’ N '
If n=3, we get Lir=0 (7%k), mir=0 (ixh), ‘
Lij+mjj+lkmr= — K (not summed for i, 7).
Hence we can put l;; = 4, mj; = ¢ (not summed for 4, 5), and we get
Lj=28ij, mij=updij, A+p+hme=—K (2.18)
If n=2, we get
hi+mep=lp+my= —(km+bLm+K), bL=mmp,

and these can not be simplified. Thus we get the following theorem.

TuEOREM 5. Let M be a Riemannian manifold of constant curvature K and
N is a flat Riemannian manifold, each of dimesion n (=3). Then a p-mapping
M~ N satisfies the relations (2.18).

We give here a geometric interpretation of the second relation in (2.18)

mi; = Vimj — mimj; = poij. (2.19)
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THEOREM 6. If a p-mapping ¢ satisfies the relation (2.19), the curves c on
M, which are mapped upon geodesics of N, are Riemannian circles or geodesics.
Here we méan by Riemannian circles those curves on M whose delopments into

the euclidean space are circles.

Proof. As a preliminary we shall show that a curve x = x(s) in the euclidean
space is a circle or a straight line when and only when d°x/ds® is collinear with
dx/ds, where s means an arclength along the curve. Necessity is evident from
Frenet-Serret’s formula. We prove the sufficiency. By assumption we have
%" = hx' (! means derivation with respect to s). Since (x/, ", x'"") =0 the
curve c¢ is a plane curve. We have on the other hand (x’, ') =1, (x/, ") =0,
(x, x") + (x', ") =0 and hence h= — #° (% being a curvature). When k20,
k7'x is a unit principal normal and by Frenet’s formula for a plane curve we
have (£'x")' = — kx!, and taking %"= —E’x' into consideration we get %' =0,
which was to be proved in preliminary (cf. [6]).

The condition for d®x/ds® to be collinear with dx/ds is equivalent to the
property

d’x (dx\*_,d% ds d’s . . Ly dx
st (—du-) -3 a7 du dwt S collinear with ds” (2.20)

In fact we have

d _(ds ) d' (ds )2 d’x ds d’s | dx |_ d’ ds <dzs_)2}J.

s “\aw) Vaw\aw) ~3aw au g T au\" dw du 3

On a Riemannian manifold the condition for a curve to be a Riemannian circle
or a geodecic can be given by replacing differentiatiation by a covariant one in
(2.20). For a curve in question we have by (2.12)

2ilge)=mla)

where D means a covariant differentiation on M. We put

) 2 i 2 i
o= 2l E) (o) s ()

and we get for the curve ¢
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- [ o () -t 4314

Here we have

2 2 i 7 j 7
= 2 ) = 7 ) = e )

and so
i (Dm; _ dm\({ds\* o (ds\*
O = (=Gt ) () =mig ()
As mj = 18;j by the assumption, ' in collinear with o'/ds and our theorem is
proved.

As a corollary we get the following.

THEOREM 7. If ¢ is a p-mapping of a Riemannian manifold M of constant
curvature onto a flat Riemannian manifold N, each of dimension n (23), the

inverse image ¢~ '(¢) of any geodesic ¢ on N is a Riemannian circle or a geodesic.

10. All the p-mappings from a flat M to a flat NV can be obtained as follows

when the dimension 7z is greater than 2. We take as local coordinates rectan-

gular ones x', ..., x". Then we have by virtue of (2.18)
o ol ol o'm om om .
b= SxToxt T oxt ox* Svion® ~ oxl ogh =0 (F=h).

=0 (ixk), mjr=

Hence we get
e =3 Ar(x"), e ™ =) Br(x").
k K
As

Lii=

are independent with 7 and j (not summed,) we have

A} =2a (const.), BY =2b (const.).

Hence

el=axfxt 4 2cxt+f, e =bxFx"+2dixt+ g (2.21)

(a, b, cr, dr, f, g constants)

Moreover by the relation A+ 2+ m, =0 in (2.18) we get
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ag+bf =2crd. (2.22)
Conversely we assume that / and m are as in (2.21) accompanied by the
relation (2.22) and put
vi=08ldl+ Lidx' —midx’, dl=1ldx, dm=m;dx'. (2.23)
We solve the differential equation
daij = aix 7% + ari 1§ (2.24)
with unknown a;;. It is completely integrable because the condition for (2.24)
to be completely integrable is by (1.27)
ainl +an% =0
in our case and it is satisfied by I’{: =0, which is evident by our construction
of I and m.
Thus the mapping which maps M: ds’=dx'dx’ onto N: d® = aijjdx’dx’ in
such a way that the corresponding points have the same coordinates, is a p-
mapping with I"i =0 and the curvature tensor T of di* vanishes by (1.13).

Hence our mapping is a p-mapping of a flat M onto a flat N. We will give

examples of p-mappings which are more interesting in the next section.

3. Examples of pseudo-projective mappings
11. As a preliminary we consider an n-dimensional Riemannian metric du’
such that
du’ =p(x")? (dx")? + q(x")2dv?, (3.1)
where dv’ is an # —1 dimensional Riemannian metric independent with x'. We
take orthogonal coframe and put
av’ = p*7* (a=2,...,n) (3.2)
and its forms of Riemannian connection (n3) are determined by

de*=n*Anf, = —n) (a, B=2....,n). (3.3)

We put
w'=pdy', ow*=qr% dg/dd'=¢q¢ (a=2,...,n). (3.4)
Then we get

i

du’ = o' w (3.5)
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and its forms of Riemannian connection (w?) are given by

01=0, of=p"'¢r*=—0) wi=n;. (3.6)
In fact we have then
dwi=wiAa>§, w}:=—wf: G, 7=1...,n

by virtue of (3.3) (3.5).
Hereafter in this section we use the indices a«, 8, ... and ¢, 5,... as
indicated above.

12. We take two z#-dimensional Riemannian manifolds M and N whose

merics are given locally by
M: ds*= (dx")’+ c’dv’ (3.7)
N: di® =ad*(dx")? + bc’dv (3.8)
with a = a(x"), b=5b(x"), ¢ =c(x') all positive and d2* as in (3.2). We put
¢ = dx', o =cn® (3.9)
and take these as coframes on M. Then we have
ds*=d'd’ (3.10)

and its forms of Riemannian connection are by (3.6)

ad=cz", S=ny (¢=dc/dx"). (3.11)
and so
.= ( 0 c’”u). (3.12)
-7
Next we put
! = adx', % = ben®

and take these as a coframe on N. Then we have
dt* =o't (3.13)
and its forms of Riemannian connection are by (3.6)

o =a " (bc) 7%, s =1y

-1 [
,=( 0 @ (bo)'x ) (3.14)

—a Nbe)' 7’ 071

and so
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We denote dv* as dv’ = g,;dx®dx’ in local coordinates and consider a mapping
¢ : M- N which maps a point (x',...,x") of M onto a point (x!, .

ey %)
of N. Then the matrix P= (p}) defined by ¢*< = pis’ in 1 is

(5 )
P= .
0 bEn—l

where E,._, is a unit matrix. Hence we get

i=PcP ' +dPP = ( f’:da b:l(bC) ' ) (3.15)
—a(be) =" b7dbeo; +
By (1.8) the second tensor is v = (r}) =1— ¢ and by (3.12) (3.15)
ri=a'da=a"'adx', ri=0"'db=>b""b'dx' (not summed for «)
1i=b"Wen®, r1i=(c'—a"'blbc))a® 1i=0 (a=xR) (3.16)
We seek for conditions for ¢ to be a p-mapping. This is by definition
ri=o8idl+1jd — mid. (3.17)
We assume ¢ is a p-mapping, and we have
ri=dl+ (L —m)dx', ri=dl+ (l,—m.) ¢ (not summed for «) (3.18)
By taking their difference and taking (3.16) into consideration we get
(L—m)dx'— (s —m,) e = (a"a' — b7b') dx'
and so
l, = m,.
Hence by (3.18) (3.16)
dl=b"'b'dx". (3.19)
Then we have I, =0 and so m,=0. Hence we get by (3.18) (3.16)
dm=mdx'=dl+ ldx' -1 =2dl—a"'da
and then by (3.19)
dm=2b"'db— a”'da. (3.20)
By (3.19) and (3.20) we get
1= log b+ const., m = log (a™°b) + const. (3.21)
Next we have by (3.16)
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18 = (¢! = a”?b(bc)") =%
On the other hand by (3.20)
Lt —mot= —md®= —m'd® = (a"'a —2b7'D") cn”.
As we have by (3.17)
18 =lsd' — mid°, (3.22)
we get
¢ —a*blbe) =(a'a=2b7'0')ec. (3.23)

This is equivalent to
(@—b)c'e'= —2(a* = ") b7'b' + (aa' — bb')
and is also to
a=b or c*=b""d"—b"| X const. (3.24)

Conversely we assume (3.24). We take / and m given by (3.21). Then
we have (3.18) and (3.22), and by (3.16) (3.21) (3.9)

i =b""en’ =1o®
and so

18 =1ls" — mya'. (3.25)
By (3.16) and I, =0, m, =0 we have
rs=bho — m.o (axpB). (3.26)

Thus (3.17) has been verified, and we have got the following theorem.

TueoreM 8. We assume that the metrics of two Riemannian manifolds M
and N are given by (3.7) and (3.8). In order that a mapping which maps a
point of M to the point of N with the same coordinates is a p-mapping, it is

necessary and sufficient that the functions a, b, ¢ satisfy (3.24).

13. We will show here that in the euclidean space E..; a mapping of a
hypersphere onto a hyperplane, which is induced by a projection through a
fixed point, is a p-mapping. In the first we take a unit sphere S and a hyper-
plane L which touches S at a point O. We choose a fixed point A on the
diameter of S through O and project from A a point P on S onto a point @
on L. We denote by x' an angle between two radii of S whose ends are points

O and P, and denote the lengths of segments OA and OQ by % and r respectively.
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Now we take rectangular axis with the origin at O, and A on the n+1
-th axis. We represent the rectangular coordinates of a point @ on L by (rl,
., 705, 0). Then (&, ..., 1s, 0) are components of a unit vector at O and

the metric on the hyperplane L induced from the euclidean metric in E,+; is
dt® = dr® + r*dv’, (3.27)

where dv® is a metric on an n—1 dimensional unit sphere on L. The coor-
dinates of the point P on S which is projected on @ by a straight line through

Ais (Iisin#', ..., 1, sinx', 1 -cos x'). Hence the induced metricon S is
ds’ = (dx")® + (sin x")2dv’ (3.28)

and the relation between » and x is given by
_ ksin &'
7= F-l+cos# (3.29)
as simple calculation shows. We put

g FA+(k=1)cosx) ]
T (k=1+cos &)t ’ T k-1

Then (3.28) and (3.27) can be written as
ds® = (dx")? + dv’, de® = a*(dx")* + b’c’dv.
In case k=2 we have a=> and in case k=2 we have ¢ =b*(* —a*). Hence

our projection is a p-mapping by theorem 8 We can assert a more general

theorem as follows.

THEOREM 9. In the euclidean space we project a hypersphere S on a hyper-

plane L by a straight line through a fixed point. This mapping is p-mapping.

Proof. We take a hyperplane L; which is tangent to S at the point where
the diameter through the fixed point A intersects S. The mapping ¢ in the
theorem can be decomposed as ¢ = ¢o¢;, where ¢; is a projection of S onto L
with the center at A and ¢ is a projection of L; onto L with the same center.

As ¢, is a p-mapping and ¢ is projective, ¢o¢, is a p-mapping by theorem 4.

14. Finally we will give an example of a p-mapping in the euclidean space.
We take two euclidean spaces E, and E) of dimension #. In E, the euclidean
metric is given by

ds’ = dr® + r*dv’, (3.30)



140 MINORU KURITA

where 7 is a distance from a fixed point (origin) to an arbitrary point and dv’
is the induced metric on a unit hypersphere with the center at the origin. If
the metric of E} is given by

at =ddar’+ (br)’d’®  (a=alr), b=056(7)) (3.31)

with
7 =b"*|a’ — b*| X const., (3.32)
then the mapping which maps the point on E, onto the point on Ej with the
same coordinates, is a p-mapping by theorem 8. Now the metric (3.31) is flat

if

d(br) = adr (3.33)
by the same reason as (3.30). We will find @ and b satisfying (3.32) and
(3.83). We put b7 = w and denote the constant in (3.32) by k& Then we get
dw ( dw )2_ ( w

2— w4
o= () -(F) ==rp

By solving the second equation we get

= r
W= (ky, ks, constants).
Now (3.31) can be written as

at* = dw’ + w*dv’.

When we represent dv® as dv’=gijdx’'dx’ (i, j=1,...,n—1), the mapping
which maps the point with polar coordinates (7, 2%, ..., 2" ") of E4 to the
point with coordinates (w, 2%, ...,2""") on E, is a p-mapping. When we
superpose E, and E}, in such a way that the two points with the same polar
coordinates coinside, we get the following theorem.

TreoreM 10. In the euclidean space we take a fixed point O and maps any
boint P onto a point Q on the straight line OP in such a way that between
OP =7 and OQ =w the relation

r
W= (ky, k2 constants)

holds good. This mapping is a p-mapping.

In case k=0 our mapping is a similar mapping and in case k=0 an
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inversion. In rectagular coordinates the mapping (x', ..., 2") > (X, ..., X"
in theorem 10 is represented as
i

X'= ‘;g;j;pk;- (7= x'%')

Especially if ;= —1 and k=1 we get

i % 2 i
X'= 4= o (r®=x'x")
and this mapping maps the interior of the unit sphere S: x'x'=1 onto the
whole euclidean space. It is a hyvpersphere or a hyperplane

Aix' = B(1~-%'%) (A;, B const.)

which passes through the intersection of the unit hypersphere S and a hyperplane
A;x'=0 that is mapped upon a hyperplane. Hence it can be easily be shown
that it is an arc of a circle joining two end points of a diameter of S that is
mapped onto a straight line by our mapping. Thus we get a representation
of the whole euclidean space in a unit hypersphere ¥'x’ =1 whose euclidean
metric is

ds’=dX'dX = (1—7*)"%dx'dx’ + 4(1— 7°) " (dr)? (7 = x'%"),

where the straight lines are replaced by arcs of circles joining two end points

of diameters of the fundamental unit hypersphere.
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