
A THEORY OF MATHEMATICAL OBJECTS
AS A PROTOTYPE OF SET THEORY

KATUZI ONO

Introduction

The theory of mathematical objects, developed in this work, is a trial system

intended to be a prototype of set theory. It concerns, with respect to the only

one primitive notion "proto-membership", with a field of mathematical objects

which we shall hereafter simply call objects. It is a very simple system, because

it assumes only one axiom scheme which is formally similar to the aussonderung

axiom of set theory. We shall show that in our object theory we can construct

a theory of sets which is stronger than the Zermelo set-theory [1] without the

axiom of choice.

We use capital Latin letters as variables for objects, and the symbol " 6 "

for proto-membership, the only one primitive notion of our system. Proto-

membership is naturally a binary relation, and any object X satisfying X€ Y

is called a "proto-member" of Y. Objects and proto-membership can be regarded

as prototypes of sets and membership respectively of the ordinary set-theoretical

systems such as the systems of Zermelo, Fraenkel [2], etc. Our assumption

for proto-membership is much weaker than the assumptions of these systems,

especially in the following two points

1) We do not assume that for any pair of objects there is an object con-

taining them as its proto-members.

2) We do not assume that every object is completely determined by its

proto-members. In fact, there can be many individual objects having no proto-

members at all.

It is true that the pair-set axiom and the extensionality axiom are indis-

pensable for set theory. We believe, however, it is an important question

worth discussing in detail whether we can establish the notions of sets, member-

ship, and equality in such a way that these axioms hold together with other
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set-theoretical axioms such as the axioms of sum sets, of power sets, of infinity,

or of fundierung. von Neumann [3] proved consistency of the fundierung

axiom with respect to his system, and Gandy [4] proved consistency of the

extensionality axiom with respect to a modified system of the Bernays-Gδdel

set-theory [5], [6]. We show in our system that the notions of sets, member-

ship, and equality can be defined in such a way that these axioms are alto-

gether provable with respect to these notions.

Our object theory is founded on a unique principle (1.1. 4)υ which can be

taken as a generalization of the aussonderung axiom. The logic in which we

describe our system is the usual predicate logic. In describing axioms and

theorems we usually omit universal quantifiers of a formula standing at its

top and having the whole formula as their scope.

For any binary relations λ and ψ we employ the relation product ilλφ" (See

(1.1.1.).). Binary relations often employed in this work are, for instance, the

primitive notion "€" itself, the "identity =", defined in (1.2. 3), and the "ρπ>to-

inclusion £", defined in (1.1.2) a s Z ε γ1=VS(S€ X-> SeY), the last two of

which can be regarded as prototypes of equality and inclusion respectively.

Any object X satisfying XQY is called a "subobject" of the object Y.

Our system of object theory is exactly and formally introduced in Chapter

(1). Here we give a sketch of the outline of our object theory informally.

In set theory, the device of aussonderung of the form BpVxix &p = x e m

AU(x)) is powerful enough to avoid well-known contradictions caused by the

abstraction of the form 3p\ίx(x^p = H(#)). Regarding it as a sole generating

principle, however, the controlling power of the aussonderung axiom is too

weak, since in generating a new set p the restriction on its members to those

of a given set m seems too strict. Restriction to members of a given set could

be modified safely by finding out a suitable weaker substitute for membership.

In our axiom scheme, namely, restriction to members of a given set is replaced

by restriction to "satellites" of a given object. Naturally, we have to replace

sets by objects, and membership by proto-membership, so the only assumption

of our system can be expressed as

α> In the numbering of the forms (a), (a, b), and (a, b, c) in this work, a, b and c
denote the numbers of chapters, sections, and paragraphs respectively. Each paragraph
is usually a theorem or a definition.
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where XoM denotes that I is a satellite of Λf. (See (1.1.4).)

We explain now the notion of satellites. Formally, XσYis defined in (1.1.3)

as XaY = V P ( ^ ( P ) Λ 7 c ξ p . - > I s € p), where a(P) denotes VS{S<*(*P

Ξ S £ € P). To see more closely what is really a satellite of an object Λf, we

need the notion of "unit objects" of an object M (formally defined in (1.4.3)),

the notion corresponding to the notion of the unit set of a set in set theory.

Since we assume nothing corresponding to the extensionality axiom, we have

to say like "a unit object of a given object" instead of saying like "the unit

object of a given object".

Any subobject of an object M, any subobject of a proto-member of Λf, any

subobject of a proto-member of a proto-member of ΛJ, and so on, are called

"constituents" of M (formally defined in (1.5.1).). Also any subobject of an

object M, any unit object of a subobject of Λf, any unit object of a unit object

of a subobject of Λf, and so on, are called "ancestors" • of Λf (formally defined

in (1.5.8).). Any ancestor of a constituent of an object M is a satellite of Λf.

(See (1.7.1), (1.7. 3), and (1.7.5).) When we replace objects and proto-member-

ship by their corresponding notions, sets and membership in the Fraenkel set-

theory, respectively, any set x is a satellite (in the interpreted sense) of m if

and only if x and m satisfy the formal definition of xam. (a be the interpreted

relation of β.) Moreover, in the Fraenkel set-theory, every proposition of the

form Spy/xixGp = χom/\Wί(x)) holds, so our system can be imbedded in the

Fraenkel set-theory. In other words, our system is consistent if the Fraenkel

system is so. An outline of this proof of consistency relative to the Fraenkel

set-theory is described in the last Chapter (7) as a supplementary remark.

In our object theory, namely, we assume that all the satellites of a given

object satisfying an arbitrary given condition form an object. The notion of

satellites is so defined as to be able to construct a set theory as far as possible

only on the basis of this simple assumption. In our object theory, we construct

a set theory stronger than the Zermelo system without the axiom of choice,

but it has not been decided whether we can construct a system including the

axiom of replacement in our object theory. Throughout this work, we do not

discuss anything concerning the axiom of choice. However, it will be possible

to prove consistency of the axiom of choice, together with the axiom of re-
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placement, perhaps by following GδdeΓs consistency proof L6].

In Chapter (1), we show some elementary properties of satellites, con-

stituents, and ancestors. In this Chapter we show also existence of "null

objects" (corresponding to the null set) and existence of unit objects, "sum

objects", and "power objects" (the last two correspond to the sum set and the

power set respectively) of a given object in our system, even though uniqueness

can never be proved. Also here, accordingly, we have to say such as "a null

object", "a sum object of Xy\ or "a power object of X" instead of saying like

"the null object", "the sum object of X", or "the power object of X", re-

spectively. In this Chapter we prove further a proposition corresponding to the

aussonderung axiom and, even more, a proposition corresponding to the axiom

of infinity with respect to identity in our object theory. (See (1.3.1), (1.8.2),

(1.8.4), and (1.8.5).)

It seems a big merit of the notion of satellites that the natural numbers

can be introduced quite naturally by it. Namely, any object which is a satellite

of every object can be taken as a representative of a natual number and is

called a "proto-number". We prove that every null object is a proto-number, that

every unit object of a proto-number is also a proto-number, and that only those

objects which can be shown to be proto-numbers by the above two principles

are proto-numbers. (See (1.8).)

Moreover, we see that any null object is not a unit object of any object,

and that X and Y are identical if any unit obiect of X is identical with a unit

object of Y. In short, proto-numbers satisfy the Peano axioms by suitable

interpretation except for that there can be many null objects and that for each

object there can be many unit objects of it. To establish a full theory of

natural numbers, we have to identify all the proto-numbers which represent

the same natural number. This can be done only in Chapter [6].

Any proposition corresponding to the fundierung axiom seems unprovable

in our system. In Chapter (2), we introduce the notions of "semi-regularity"

and "regularity". Any object is called semi-regular if and only if it has no

such constituent S that S is a constituent of a proto-member of S itself. The

notion of regularity is a notion more complicated and stronger than semi-

regularity. (See (2.2.1), (2.2.2), and (2.2.4).) It will not be proved that all

the objects are regular, nor even that all the objects are semi-regular. However,
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we prove in (3.2.7) that all the "producible" objects (defined in (3.2,1)) are

regular. More in detail, we prove in (2.2.3) that any null object is regular,

in (3.2. 3) that any satellite of a regular object is regular, and further in (3.2. 4)

that any object formed by all the satellites of a regular object is also regular.

Chapter (3) is devoted to giving an exact description of producible objects

i.e. of those objects v/hose existence can be really confirmed by our axioms

only. Starting from any proto-number Xu we can construct an infinite sequence

of objects Xu Xz> Xz, m - successively by the rule that Xn+i is an object formed

by all the satellites of Xn. This sequence is monotone increasing in the sense

that Xn is a subobject of Xn+i- Any object formed by the first finite terms of

a sequence of this kind is called a "basic" object. Any satellite of a proto-

member of a basic object is a producible object. By technical reason, however,

the notion of basic objects is formally defined in a slightly modified way in

(3.1.1).

We prove that there is at least one producible object, that every satellite

of any producible object is also producible, and that every object formed by

all the satellites of any producible object is also producible. (See (3.2.2),

(3.2.3), and (3.2.4).) In short, the field of producible objects is closed with

respect to generation of new objects by our axiom scheme.

The field of producible objects is very important, firstly because every

producible object is regular (See (3.2.7).), secondly because for any two pro-

ducible objects there is a producible "pair object" of them (See (3,2.10). Pair

objects are defined in (3.2.9).), and thirdly because we can define membership

and equality in such a way that the extensionality axiom together with other

equality axioms holds for nroducible objects with respect to these two notions.

In Chapter (4) we introduce the notions of "membership" and "equallity"

so that all the axioms concerning equality (in the ordinary sense) are provable

for producible objects with respect to these notions (See (4.10) and (412).).

Membership and equality are weaker than proto-membership and identity

respectively. They are defined simultaneously keeping the relation in mind

that an object X is a member of an object Y if and only if X is equal to a

proto-member of Y. The process of defining equality is not so simple* Namely,

after introducing the notion of "ε-objects" (defined in (4.6.1)), X is called to

be equal to Y if and only if either X and Y are identical or there is a pair
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object of X and Y which is a proto-member of an ε-object. Roughly speaking,

e-objects can be taken as those formed by some pair objects of mutually equal

objects, but the definition turns out to be complicated because we have, in

advance, to give a condition for an object to be an ε-object without employing

the notion of equality.

Broadly speaking, producible objects can be regarded as sets with respect

to membership and equality. Namely, if we restrict ourselves to consider only

"properties modulo equality" i.e. properties common to all the objects mutually

equal to each other, as is defined in 15.1.1), we can establish a theory of sets.

An example of properties modulo equality is the property defined by the "set-

theoretical image ί %(X) f of any proposition &( X) that is obtained by replacing

proto-membership in U{X) by membership and restricting the ranges of all the

quantifiers in %{X) to producible objects. (See (δ.3.1), 15.3.2), (5.3.5), and

(6.1.4).) In Chapter (5), we study properties modulo equality, especially in

connection with the set-theoretical images of propositions.

In Chapter (6), we show that a theory of sets can be established with

respect to membership and equality. In our theory of sets, all the axioms of

the Zermelo system are provable except for the axiom of choice. Also the

fundierung axiom is provable in our set theory. Moreover, the set-theoretical

images of all the axioms of our object theory are provable, which are surely

provable in the Fraenkel system but it seems that some of them may be un-

provable in the Zermelo system.

(1) Theory of objects

Our system of object theory is founded on a unique axiom scheme taking

proto-membership "€" as the only primitive notion. "X€ Y" is read "X is a

proto-member of Y".

(1.1) Axioms. Before describing the axiom scheme, we define "subobjects"

and "satellites".

(1.1.1) The relation product λψ of two binary relations λ and ψ is defined by

XλφY*3S{XλSf\SφY).

(1.1.2) Definition: I S y U VS(S€ X-*S€ Y). The binary relation " s " is
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called proto-inclusion, and any object X satisfying l £ 7 is called a subobjeci of

y.

(1,1.3) Definition: σ(P) =VS(S € € P == SS 6 P) and

Any object P satisfying <HP) is called a o-objecί and any object X satisfying

is called a satellite of Y".

(1.1.4) Axiom scheme: All the formulas of the form

and formulas of this form only are axioms of our object theory, where in

any number of free variables other than P may occur.

Namely, we assume that there is an object formed by all the satellites of

an object satisfying an arbitrary given condition,

(1.2) Some elementary properties.

(1.2.1) XsX and XS £ Y-+X&Y. (Reίlexivity and transitivity of proto-

inclusion.)

(1.2.2) X%&Y-»X%Y.

(1.2.3) Deβnit ion: Xa Y ==>fP(Xf>P=Ξ YsP). T h e binary relation " a " is

called identity.

(1.2.4) X a X, I s y - > y s l , and X a a Y~* X as Y, (Reίiexivity, sym-

metricity, and transitivity of identity.)

(1.2.5) Definition: X^ Y = VS(SG X =S€Y). The binary relation " s " is

called proio-equality (prototype of equality).

(1.2.6) XsF= 'X&YAY&X.

(1.2.7) X(sz X, Jfs F - ^ y s I , and I s g r ^ I s Γ . (Reflexivity, sym-

metricity, and transitivity of proto-equality,)

(1.2.8) I s C Y Ξ l c y a n d l ^ Y~X€Y.

(1.2.9) Remark. We can neither introduce here term-symbols of the form

{X; %(X)}t nor adopt the way of talking such as "the object formed by all those

objects X which satisfy the condition 9t(ΛV, even when it is certain that there
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exists such an object. For, there can be possibly more than two (in the sense

of identity) objects P satisfying VZ(X€ P = WiX)), since the axiom of ex-

tensionality with respect to identity is not assumed in our system. However,

we introduce a proposition-symbol P{X\ %{X)} for any %ί(X) which is defined

by

Definition: P{X; %(X)} = \fX(X€ ? Ξ «(X)).

By this definition the axiom scheme of our object theory can be expressed

as 3P P{X; XσMf\%{X)},

(1.2.10) Remark. Concerning uniqueness,

we can not assert P{X; %(X)}/\Q{X; «UΓ)} - P s Q ,

but we can assert P{X; %{X)}/\Q{X;

(1.2.11) X€Y-+ X<*Y. (Proto-membership implies στeiation.)

Proof. Let X be any proto-member of an object 7, and P be any ^-object.

Then, YQSP implies X € € P by (1.2,2), which implies 1 S € P because P is

a ^-object.

(1.2.12) I S Y-*XόY. (Proto-inclusion implies ̂ -relation.)

Proof. Let X be a subobject of an object Y. Then, by transitivity of proto-

inclusion, 7 S €"P implies Z £ € P for any P, especially for any (/-object P.

(1.2.13) XaX. (Reflexivity of a.)

Proof. By (1.2.12) and reflexivity of proto-inclusion.

(1.2.14) XaaY-*XoY. (Transitivity of a.)

Proof. Let X be a satellite of a satellite Z of Y. For any ^-object P,

7 S €P implies Z S € P by the assumption ZtfF, and Z s € P implies XQ € P

by the assumption X<τZ, so Y S € P implies Z S 6 P .

(1.3) Aussonderung.

(1.3.1) 3P P{X; l € M A W ) } and 3P P{Z; I s MΛ «(X)}, where in

§l(X) any number of free variables other than P may occur.

PTΌO/. By (1.2.11) and (1.2.12), XsMΛK{X) and X&MMtiX) can be

expressed as XoMί\X€M/\%{X) and J ί M A I S M Λ K Z ) respectiviely, so

we can get the theorem directly from our axiom scheme.
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(1.3.2) 3P'P{X; XoM). (For any object M there is an object formed by all

the satellites of M)

Proof. Because I^M can be expressed as XoMNXόM, we can get the

theorem directly from the axiom scheme.

(1.3.3) 3X X{T; T^€Y).

Proof. By (1.2.6), (1.2.11), (1.2.12), and transitivity of a.

(1.3.4) J s y ^ l s Y . (identity implies proto-equalίty.)

Proof. Let X and Y be any two mutually identical objects. By (1.3.1)

take any P satisfying P{T T S l A I s T } . By reflexivity of proto-inclusion

and proto-equality, X€P, so Y€P. Namely I s Y.

(1.3.5) X— Y-* 'U(X) Ξ=$C( Y). (The proposition corresponding to the second

axiom of equality.)

Proof By (1.3.4).

(1.4) Null objects, unit objects, sum objects, and power objects.

(1.4.1) Definition: ΰiP) = '.-rBS-SsP.

Any object P satisfying 0(P) is called a null object.

(1.4.2) 3X-0(X). (Existence of null objects.)

Proof.2) Because P{T; 7VMΛ ~?ToM) contradicts SzP, the former also

contradicts 3Um £/€ P since the free variable S does not occur in it. Accordingly,

P{T; TσMA -7TUM) implies 0(P), so also 3X 0(X). Since the free variable

P does not occur in 3X-0{X), 3P P{Γ; ToMN-rTaM) implies 3X-0(X).

Hence the axiom VM3P-P{Γ; TaMtK-rTaM) implies 3X β{X).

(1.4.3) Definition: U{X} = U{T; Γ s X ) .

Any object U satisfying U{X} is called a unit object of X.

(1.4.4) 3U'U{X}. (Existence of unit objects of X.)

Proof By (1. 3.1), take any object U satisfying U{T T&XΛT^X}. Then,

2) We prove the theorem particularly in detail, as we wish to show that our axiom
scheme logically implies absolute existence of an object. It should be also remarked here
that in our object theory we may consider any object X satisfying any condition
but its existence is negated whenever ^C(X) contradicts the axioms.
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U is clearly a unit object of X by (1.2.6) and (1.3.4).

(1.4.5) 3 P ' P{T T€ € A}. (Existence of sum objects of A. Here we call any

object P satisfying P{T; T € € A) a sum object of A.)

Proof. Because T € € A can be expressed as To A Λ T € € A by (1.2.11)

and transitivity of a.

(1.4.6) 3P P{T; ΓSΛ}. (Existence of power objects of A. Here we call

any object P satisfying P{T; T^A) a power object of A.)

Proof. Because T^A can be expressed as TaAhTQA by (1.2.12).

(1.4.7) 0(Z)->ZS Y. (Any null object is a subobject of every object.)

(1.4.8) 0{X)^XaY. (Any null object is a satellite of every object.)

Proof By (1.2.12) and (1.4.7λ

(1.4.9) X{Y)->XaY. (Unit-object relation implies ^-relation.)

Proof. Let X be a unit object of Y. For any ̂ -object Psatisfying Y&SP,

holds Y € € P i.e. y is a proto-member of a proto-member 2 of P. Accordingly,

by (1.3.5), the unit object X of Y is a subobject of the proto-member Z of P.

Hence X<;Y.

(1.4.10) X g y A y { Z > ^ 0(I)VJ{Z>. (Any subobject of a unit object of

an object Z is either a null object or a unit object of Z.)

Proof Let X be a subobject of a unit object Y" of an object Z. Assume

further that X is not a null object.

To show that X is a unit object of Zt take any proto-member T of X Then,

by (1.2.2), T is also a proto-member of the unit object Y of Z, so T s Z .

Conversely, take any object T which is identical with Z. Since X is not a null

object, there is a proto-member S of X, which is also a proto-member of Y by

(1.2.2). Hence S s Z By symmetricity and transitivity of identity, T is

identical with the proto-member Sof Z, so TβXby (1.3.5).

(1.5) Constituents and ancestors.

(1.5.1) Definition: ιc(P) U\TS(S € € P -» S S € P) and

s

Any object P satisfying κ(P) is called a ^object. Any object X satisfying
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XtcY is called a constituent of Y.

(1.5.2) a(P)-+ιc(P). (Any ^-object is a ^-object.)

(1.5.3) XKY-*XόY. (/^-relation implies ^-relation.)

(1.5.4) XGY-+ XKY. (Proto-membership implies ^-relation.)

Proof. Similar to the proof of (1.2.11) by making use of (1.2.2).

(1.5.5) X&Y-* XicY. (Proto-inclusion implies /e-relation.)

Proof. Similar to the proof of (1.2.12), by making use of transitivity of

proto-inclusion.

(1.5.6) X/cX. (Reflexivity of K.)

(1.5.7) XκκY-+XκY. (Transitivity of ft.)

Proof. Similar to the proof of transitivity of a.

(1.5.8) Definition: cc(P) s VSiS^ $P->S € € P) and

XocY = VP(a(P) Λ YS € P - -> I S € p).

Any object P satisfying oc(P) is called an oc-object. Any object JY" satisfying

XocY is called an ancestor of Y.

(1.5.9) σ(P)-*a(P). (Any ^-object is an αr-object.)

(1.5.10) XocY^XaY. (αr-relation implies <r-relation.)

(1.5.11) X^Y-*XccY. (Proto-inclusion implies α-relation.)

Proof. Similar to the proof of (1.2.12), by making use of transitivity of

proto-inclusion.

(1.5.12) X{Y)-+X<xY. (Unit-object relation implies α:-relation.)

Proof. Similar to the proof of (1.4.9), by making use of (1.3.5).

(1.5.13) XaX. (Reflexivity of a.)

(1.5.14) XaaY-^XaY. (Transitivity of a.)

Proof. Similar to the proof of transitivity of β.

(1.5.15) 0(X)->XfcY and 0(X)-*XaY. (Any null object is a constituent as

well as an ancestor of every object.)

Proof. By (1.4.7), (1.5.5), and (1.5.11),
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(1.6) Minimum properties.

(1.6.1) V J F 3 ) ( l 6 F V I c y v i { F } - - > I ( I ,

-> %(Xy Z)): -> • UaV-* K(U, V). (Minimum property of a.)

Proof. Let U(X, Y) be any transitive relation which satisfies

V i y ( l € 7 V J c YΊX{Y) * -*K(X, Y)). Take an object P which satisfies

P{T; ToVN%{T, V)}, V being an arbitrary object.

We prove first <*{P) - Take any subobject S of a proto-member T of P.

Then, %(StT) and TVFΛSKΓ, V) hold by assumption. Moreover SaT by

(1.2.12). Take now a unit object W of S by (1.4.4). Then, W<rS by (1.4.9),

and yk(W, S) holds by assumption. By transitivity of a and of the relation

W J ) , holds WaVAVKW, V). Accordingly WeP; so, by reflexivity of

identity, S is a proto-member of the proto-member W of P. Conversely, let S

be any proto-member of a proto-member T of P. Then, TaVΛ$C(T, V) holds.

Moreover, S<?.T holds by (1.2.11), and %(S, T) holds by assumption. By transi-

tivity of a and of the relation %(X, Y), holds SσVAWS, V) i.e. S€P. Hence

by reflexivity of proto-inclusion, S is a subobject of the proto-member S of P

Next we prove VsP: By reflexivity of β and proto-inclusion, hold WFand

F s F , and the latter implies %{V, V) by assumption. Hence V$P.

Now we prove that UaV implies W(U, V): If U is a satellite of V, U is a

subobject of a proto-member W of P, since P is a tf-object and V is, by re-

flexivity of proto-inclusion, a subobject of the proto-member V of P. Any proto-

member W of P satisfies clearly 51 (FT, V), and any subobject £7 of W satisfies

%{U, W) by assumption. Accordingly, %(U, V) holds by transitivity of the

relation K(X, Y).

We can prove similarly the following two theorems, minimum property of

K and that of or, by making use of (1.2.11); (1.2.12); (1.4.4); (1.4.9);

transitivity of a and reflexivity of proto-inclusion, identity, and β.

(1.6.2) v z y f ^ y v i c y . -+%(x, Y))

, V).

(1.6.4) Viy(l€yvigyVI{y} - -Sim-^m) and ί/̂ F imply

3> In this work, quantifiers of the forms VX---Z and 3X--Z s tand for VX
and 3X-' 3Z respectively.
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Proof. Because the relation ^HX)-^U(Y) is transitive, this is a special

case of (1.6.1).

Similarly, as special cases of (1.6.2) and (1.6.3), we have
(1.6.5) VXY(X€ YV.Ysy._> - «(*)-> ft(Y)) and ZJKV imply «(*/)-»«(V).

(1.6.6) V X F ( X c y v i { 7 } . - > %(X)-»VL{Y)) and U*V imply «( >

(1.7.1) XκY= X £ y v X κ € Y. (Any object X is a constituent of an object

Y if and only if X is either a subobject of For a constituent of a proto-member
of y.)

/. Take an object P satisfying P{T; ToY MT&YV Tκ$Y)). Then,

P{T; T£Y\/T>csY} holds by (1.2.11), (1.2.12), (1.5.3), and transitivity of a.

We prove first κ(P): Take any proto-member S of a proto-member T of P.

Then, T&Y or Tκ$Y. SKGY is provable, by making use of (1.2.2) and

reflexivity of K, in the case T^Y, and by making use of (1.5.4) and transitivity

of K in the case Tκ€Y. Hence S€P, so, by reflexivity of proto-inclusion, S is

a subobject of the proto-member S of P.

Moreover Y€P by reflexivity of proto-inclusion, so 7 is a subobject of

the proto-member Y of P again by reflexivity of proto-inclusion. Hence any

constituent X of Y is also a subobject of a proto-member W of P. By (1.5.5)

and transitivity of proto-inclusion and of K holds I s y V Z κ € Y, because either

Conversely, I S γ\jXK6 Y implies XtcY by (1.5.4), (1.5.5), and transitivity

of /c.

(1.7.2) XKYΞ - X s Y V * S € / e Y .

Pra>/. The proof is simiar to that of (1. 7. l). Namely, by (1.2.11), (1.2.12),

(1.5.3), and transitivity of a, we can take an object P satisfying P{T; T&Y

V T S ^ Π . By (1.2.2), (1.5.4), transitivity of *, and reflexivity of proto-

inclusion and £, we can show for this P that P is a £-object and that Y is a

subobject of the proto-member Y of P. Consequently, any constituent X of Y

is a subobject of a proto-member FF of P, i.e. there is an object W satisfying

JYS w and FF £ y v PΓ c <: * y, which imply I g y v j c ^ y b y transitivity of

proto-inclusion. On the other hand, I g Γ a s well as X&€κY implies
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by (1.5.4), (1.5.5), and transitivity of K.

(1.7.3) XaY= XcYV3Z(X{Z}ΛZaY). (Any object X is an ancestor of an

object Y if and only if X is either a subobject of Y or a unit object of an an-

cestor of Y.)

Proof. The proof is similar to that of (1.7.1).

Namely, by (1.2.12), (1.4.9), (1.5.10), and transitivity of σ, we can take

an object P satisfying P{T; T£YV3Z(T{Z} AZαY)}. For this P we can

show oc(p): Namely, take any subobject S of a proto-member T of P, and also

take any unit object U of S by (1.4.4). Then, S€ U by reflexivity of identity,

and moreover, T is either a subobject of Y or a unit object of an ancestor Z

of Y. In the case T^Y, holds S £ Y by transitivity of proto-inclusion. Hence

SocY by (1.5.11). Accordingly Z7€P, so S is a proto-member of the proto-

member U of P. In the case T{Z) KZccY, SαY by (1.5.11), (1.5.12), and

transitivity of αy so the unit object Uoί S is a proto-member of P. Accordingly,

S is a proto-member of the proto-member U of P.

Moreover, by reflexivity of proto-inclusion, we can show that Y is a sub-

object of the proto-member Y of P. Consequently, any ancestor X of Y is a

subobject of a proto-member P7 of P, namely, there is an object W satisfying

W=γ\ί3Z(W{Z}ΛZocY). From this we can easily deduce X£ YV3Z(Z{Z>

AZαy) by making use of (1.4.7), (1.4.10), and transitivity of proto-inclusion.

Conversely, I S Y as well as 3Z(X{Z} hZxY) implies XccY by (1.5.11),

(1.5.12), and transitivity of α.

(1.7.4) X^αY= - XeYVXαrY. (Any object X is a proto-member of an an-

cestor of Y if and only if X is either a proto-member of Y or an ancestor of

Y.)

Proof. Assume first that X is a proto-member of an ancestor Z of Y. By

(1.7.3), Z is either a subobject of 7 or a unit object of an ancestor T of Y.

In the case Z £ Y, -X" is surely a proto-member of Y by (1.2.2). In the case

Z{T}l\T*Y, holds I s Γ , so XccY by (1.3.5).

Conversely, any proto-member X of Y is a proto-member of the ancestor

Y of Y by reflexivity of oc. On the other hand, we can take for any ancestor

X of Y, a unit object Z of Z by (1.4.4). Then, by reflexivity of identity, X

is a proto-member of Z? which is an ancestor of Y by (1.5.12) and transitivity
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of oc.

(1.7.5) XaY=XaιcY, (^-relation is equivalent to the relation product ocκ.)

Proof. We can take an object P satisfying P{T; TcacY} by (1.5.3),

(1.5.10), and transitivity of a.

At first, we prove a(P) : Take any subobject S of a proto-momber T of Pt

and then, take a unit object U of S by (1.4.4). By (1.5.11), (1.5.12), and

transitivity of oc, ToacY implies ZJOCKY, so holds U$P. Consequently, S is a

proto-member of the proto-member U of P by reflexivity of identity. Conversely,

take any proto-member S of a proto-member T of P. Then, T is an ancestor

of a constituent Z of Y. By (1.7.4), S is either a proto-member of Z or an

ancestor of Z. In the case S€Z, holds SfcY by (1.5.4) and transitivity of tc,

so S is an ancestor of the constituent S of Y by reflexivity of a. In the case

S<xZ, SatcY holds too. Accordingly, S€P anyway, so S is a subobject of the

proto-member S of P by reflexivity of proto-inclusion.

Moreover, 7 £ € P b y reflexivity of proto-inclusion, a, and tc. Consequently,

any satellite X of Y is a subobject of a proto-member Uof P. Since the proto-

member U of P is an ancestor of a constituent of Y, X itself is an ancestor

of a constituent of Y by (1.5.11) and transitivity of a.

Conversely, XOCKY implies XoY by (1.5.3), (1.5.10), and transitivity of a.

(1.8) Proto-numbers.

(1.8.1) Definition: K D E

Any object is called a proto-number if and only if it is a satellite of every

object.

(1.8.2) 0(X)-*^{X). (Any null object is a proto-number.)

Proof. By (1.4.8).

(1.8.3) KZ)~> YOXΈΞ^{Y), (Any object is a proto-number if and only if it

is a satellite of a proto-number.)

Proof. By transitivity of a.

(1.8.4) K D A F α ->KF), K Z ) Λ r s Z ->K7), and

-(Z)Λ Y{X}' ->J-(y). (Any proto-member as well as any subobject as well as

,ny unit object of a proto-number is a proto-number.)
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Proof. By (1.2.11), (1.2.12), (1.4.9), and (1.8.3).

(1.8.5) BP'P{X; *>(X)). (There is an object formed by all the proto-numbers.)

Proof. Since )>{X) implies XσM, P{X; XσMM<(X)} implies P{X; i-(X)}.

Hence the axiom VM3P P ( Z ; XaMN^X)) implies 3P-P{X; KX)}.

(1.8.6) 0 ( X ) Ξ V Y . ^ 7 . (Any object is a null object if and only if it is a

constituent of every object.)

Proof. Any null object is a constituent of every object by (1.4.7) and

(1.5.5).

Conversely, let X be a constituent of every object. Take now a null object

Z by (1.4.2), and a unit obiect U of Z by (1.4.4). Then, Z7 is a ^-object,

because there is no proto-member of any proto-member of U by (1.3.5).

Moreover, by reflexivity of proto-inclusion and identity, Z^Z and Z€ £/, so X

is a subobject of a proto-member T of Ut because X is a constituent of every

object, especially a consituent of Z. Accordingly, T is identical with the null

object Z. Hence, by (1.3.5), T is a null object, so X is also a null object by

(1.2,2).

(1.8.7) XκYΛ0(Y) ->0(X). (Any constituent of a null object is also a null

object.)

Proof. By (1.8.6) and transitivity of tc.

(1.8.8) *(X) ΞΞ VY 'XaY. (Any object is a proto-number if and only if it is

an ancestor of every object.)

Proof To show that any proto-number X is an ancestor of every object,

take a null object Z by (1.4.2). Since the proto-number X is a satellite of Z,

X is an ancestor of a constituent T of Z by (1.7.5). However, T is a null

object by (1.8.7), so X is an ancestor of every object by (1.5.15) and transi-

tivity of a.

Conversely, if X is an ancestor of every object, then X is, by (1.5.10), a

satellite of every object. Hence X is a proto-number.

(1.8.9) MX)= 0(X)V3Y(X{Y) M<{Y)). (Any object is a proto-number if

and only if it is either a null object or a unit object of a proto-number.)

Proof. To show that any proto-number X is either a null object or a unit
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object of a proto-number 7, take a null object Z by (1.4.2). Then, by (1.8.8),

XocZ. Consequently, by (1.7.3), X is either a subobject of Z or a unit object

of an ancestor Y of Z. In the case I Ξ Z , I is a null object by (1.2.2), and

in the case X{Y) NYocZ, Y is a proto-number by (1.5.15), (1.8.8), and transi-

tivity of a.

Conversely, any null object as well as any unit object of a proto-number

is a proto-number by (1.8.2) and (1.8.4).

(1.8.10) V/Y(0(Z)->JξP

(A proposition corresponding to the complete induction of the kernel X€P.)

Proof. Assume VI(0(T)-IβP) and yYZ(Y{Z}Γ\ZξP°->Y$P). By

(1.3.1), we can take an object Q satisfying Q{X; V Γ ( Γ S J*Γ-> Γ€ P)}, because

V Γ ( Γ S X-+ T€ P) implies XzPby reflexivity of proto-inclusion.

Evidently Q S P by reflexivity of proto-inclusion.

We prove now VyY<0( X) -+ Xξ Q) : Take any subobject T of any null object

X. Then, by (1.2.2), Γ is also a null object. So, T$P. Hence JY"€©.

Next, we prove YYZ( Y<Z} ΛZ€ Q -*Y€ζ?) : Take any unit object Y of

a proto-member Z of Q. Then, by (1.2.2) holds Z € P . Take now any sub-

object T of 7. Then, by (1.4.10), either 0(T) or T{Z} hold. Anyway T%P

holds by assumption. Hence Y%Q.

Thirdly, we prove V T l T S € Q -> T€ Q) Take any subobject T of a proto-

member Z of Q} and take any subobject S of T. Then, S S l b y transitivity

of proto-inclusion, so S^P. Consequently TzQ.

By ( l .β.β), UaV implies F€Q-> ί/€©, since V.YF(Z{ Y) V I S 7 - - °Y%Q

->Z€Q) holds as shown above. Taking V as a null object, which is surely

possible by (1.4,2), we know that any ancestor of a null object is a proto-

member of Q, since every null object is a proto-member of Q. Because every

proto-number is an ancestor of V by (1.8.8), it is a proto-member of Q. Ac-

cordingly, it is a proto-member of P by (1.2.2).

(1.8.11) VX(0(X)->2t(Z))ΛVFZ( Y{Z}Λ2I(Z)» ->3t(Y)):-> •>(£/)-«(£/).

(A proposition corresponding to the complete induction.)

Proof. Take an object P satisfying P{T; TaMΛSί(Γ)}. Then, by (1.4.8),

(1.4.9), and transitivity of a, every null object as well as every unit object of

any proto-member of P is also a proto-member of P. Accordingly, by (1.8.10),
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every proto-number U satisfies the condition %{U) together with UaM.

(1.8.12) Remark, We can show 0(X) -» ~^X{Y} and X{Y) l\U{V) l\X^U-

- » 7 s F b y (1.3.5) and refiexivity of identity. Accordingly, if we call every

null object "zero" and every unit object of X "a number next to X", the system

of the above two propositions, (1.8.2), the last formula of (1.8.4), and (1.8.11)

can be regarded as a system of the Peano axioms. However, we can not

develop the full theory of natural numbers by this interpretation, because we

can prove neither that all the null objects are mutually identical nor that all

the unit objects of the same proto-number are mutually identical.

(2) Regularity

The main purpose of this Chapter is to introduce a new notion of "regular"

objects and thereafter to prove some fundamental properties of regular obiects.

(2.1) Sub-constituents.

(2.1.1) Definition: XCY% VS(S*X-*SιcY). Any object X satisfying XζY is

called a sub-constituent of Y. (Illustration: See (2.2.2).)

(2.1.2) XκY-> ZCF, especially X$ Y-*XζY and X£Y-+ XζY. (Any constituent

of an object is a sub-constituent of the object. Especially, any proto-member

as well as any subobject of an object is a sub-constituent of the object.)

Proof. Any proto-member S of any constituent X of Y is a constituent of

Y by (1.5.4) and transitivity of tc. The other two formulas follow immediately

from the first formula, (1.5.4), and (1.5.5).

(2.1.3) XζY=XζtcY. (C-relation is equivalent to the relation product 0 0

Proof. Let Z b e a sub-constituent of a constituent U of F. Then, any

proto-member S of X is a constituent of U. So, by transitivity of tc, S is also

a constituent of Y. Conversely, let X be a sub-constituent of Y. Then, X is a

sub-constituent of the constituent Y of Y by refiexivity of K.

(2.2) Regularity and semi-regularity,

(2.2.1) Definition: μ(P) = -^33(S«:€ S/\SκP) and
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Any object P satisfying μ(P) is called semi-regular and any object P satisfying

p(P) is* called regular.

(2.2.2) Illustration. Semi-regularity is so defined that any semi-regular object

has no constituent S satisfying StcGS, which means S S l Ί β €X*€S for

some sequence Xu ., Xn (n = 1, 2, .). Regularity can be comprehended

in connection with the proposition corresponding to the fundierung axiom

Vx3y(xt=q-* •>ytΞx/\y<= q)-*q = 0. The condition \fX3Y{X€Q-> • Yκ*X

/\YGQ)-*0(Q) on Q is a modification of the fundierung axiom regarding it

as a condition on q. To define ρ(P) so that our object theory can be developed

exclusively in the field of regular objects, we had to replace y e x of the axiom

by YICGX instead of Y€X and to require that the modified condition holds for

every object Q in the curious range of sub-constituents of P.

(2.2.3) 0(P)-»p(P). (Any null object is regular.)

Proof. Let P be a null object and Q be any sub-constituent of P. Then,

any proto-member X of Q is a constituent of the null object P, so by (1.8.7),

X is a null object. Consequently, X can not satisfy Ytc$Xf\Y$Q for any Y.

(2.2.4) p(P)-*μ(P). (Regurality implies semi-regularity.)

Proof. Assume that any object P is not semi-regular. Then, there is a

constituent S of P satisfying Sκ$S.

Take now by (1.4.4) a unit object Q of S. Firstly, holds QCP; for, any

proto-member T of Q is identical with S, so it is a constituent of Pby (1.3.5).

Secondly, VX3Y(Z€©-* • Y/c€XΛ Y€©) holds by (1.3.5) and reflexivity of

identity, because S*c€S/\S$Q holds for the only proto-member Sof Q. Thirdly,

Q is not a null object by reflexivity of identity. Hence P can not be regular.

(2.2.5) QκP/\ρ{P) -»p(Q), especially ζ?€ PA ρ(P) - ->p(Q) and

Q S PA p(P)" -*p(Q). (Any constituent of a regular object is regular, especially,

any proto-member as well as any subobject of a regular object is regular.)

Proof Let Q be a constituent of a regular object P. Any sub-constituent

R of Q, for which VX3 Y(Z€ #-> y*:€ZAF€;?) holds, is a null object, because

R is also a sub-constituent of P by (2.1.3).

Other two formulas can be derived from this formula, (1.5.4), and (1.5.5).
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(2.2.6) Q{P}Λp(P) - -» p(Q). (Every unit object of a regular object is also

regular.)

Proof Let Q be a unit object of a regular object P, and R be any sub-

constituent of Q, which satisfies VX3F(X€i?-> • 7 κ € X A F 6 β . If # is not

a null object, take a proto-member U of #. Then, by assumption, there exists

a proto-member V of /?, which is also a constituent of a proto-member T of £/.

At first, we prove VtcP: Since RCQ, the proto-member £/ of R is a con-

stituent of Qt so Z7 is either a subobject of 0 or a constituent of a proto-

member W oί Q by (1.7.1). In the case U=Qy the proto-member T of U is

also a proto-member of the unit object Q of P by (1.2.2), so T s P . Accord-

ingly, the constituent V of T is also a constituent of P by (1.3.5). In the case

UKWΛWΪQ, holds W^P since Q is a unit object of P. So, UicP by (1.3.5).

Accordingly, the constituent V of T is a constituent of P by transitivity of £,

because the proto-member T of the constituent U of P is a constituent of P by

(1.5.4) and transitivity of K.

Take now an object H which satisfies H{S S € 2? Λ SΛ; V) by (1.3.1). Firstly,

HCP', because any proto-member S of H is surely a constituent of the constituent

V of P, so S is a constituent of P by transitivity of K. Secondly, VX3Y(X$H

-» y « 6 l Λ y i ^ ) . For: Since H is a subobject of /?, for any proto-member

X of H there is a proto-member Y of R satisfying YK € X Because X is a

constituent of V, Y is also a constituent of V by (1.5.4) and transitivity of K.

Hence, Y is also a proto-member of H. Thirdly, H is not a null object, because

V is surely a proto-member of H by reflexivity of K.

Accordingly, P can never be regular, if R is not a null object.

(2.2.7) QoPAp(P) • -»p(Q). (Every satellite of a regular object is also regular.)

Proof By (1.6.4), (2.2.5), and (2.2.6).

(2.3) Objects formed by satellites of an object.

(2.3.1) Definition: XΘY=X{T; TσY). Any object whose proto-members are

all the satellites of an object is called an object formed by satellites of the object.

(2.3.2) QΘPAρ(P)- -*ρ(Q). (Any object formed by satellites of a regular

object is also regular.)
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Proof. Let Q be any object formed by satellites of a regular object P. To

show that Q is also regular, take any sub-constituent R of Q satisfying

\fX3Y(X€R~* Ύκ€X/\Y<-R). in the following, we shall show that R is a

null object.

Namely, if R is not a null object, take any proto-member U of R. Then,

U is a constituent of Q so, by (1.7.1), U is either a subobject of Q or a

constituent of a proto-member S of Q. On the other hand, we can take such a

proto-member V of R which is a constituent of a proto-member Z of U. In

the case U^Q, Z is a proto-member of ζ? by (1.2.2), so Z is a satellite of

P. Since V is a satellite of Z by (1.5.3), V is a satellite of P by transitivity

of o\ In the case (JKSASSQ, S is a satellite of P. By (1.2.11), (1.5.3), and

transitivity of σy V is a satellite of P. Thus V is a satellite of the regular

object P anyway, so F is also regular by (2.2.7).

Take now an object W satisfying W{T\ TzRATicV} by (1.3,1). Then,

firstly WCV, because every proto-member of W is a constituent of V. Secondly,

VX3Y(X* W-+ - Y/ceZΛ Yd W). To show this, take any proto-member X of

W. Then, I is a proto-member of Rt so we can find such a proto-member Y

of R, which is a constituent of a proto-member of X Since the proto-member

X of W is a constituent of F, so Y is also a constituent of V by (1.5.4) and

transitivity of K. Consequently, the proto-mernber Y of Z? is a proto-member

of PF, Thirdly, W is not a null object, because V is surely a proto-member of

W by reflexivity of κβ

Hence V can not be regular if R is not a null object,

(2.3.3) ~7 {PdQt\PβQ). (Any object formed by satellites of an object can never

be a satellite of the object.)

Proof. Let P be an object formed by satellites of Q. By the axiom scheme,

take an object R satisfying R{X; XσQA -rXsX). Then, R can not be a

satellite of Q, because R€R~ -yR&R can not hold. On the other hand, R is

clearly a subobject of P, so R is a satellite of P by (1.2.12), Accordingly, if

P were a satellite of Q, so R would be a satellite of Q by transitivity of o

contradictory to the fact above stated.

(2.8.4) P{T; *>(T))-+p(P). (Any object formed by all the proto-numbers is

regular.)
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Proof. Let P be any object formed by all the proto-numbes. Further, take

a null object X by (1.4.2). By (1.8.2) and (1.8.3), P is an object formed by

satellites of X, so P must be regular by (2.3.2), since the null object X is regular

by (2.2.3).

(2.3.5) XΘ<JZ/\YΘZ -+XQY. (Any object formed by satellites of a satellite

of an object Z is a subobject of any object formed by satellites of the object Z.)

Proof. Let X be any object formed by all the satellites of a satellite U of an

object Z, and Y be any object formed by satellites of the object Z. Take now

any proto-member S of X. Then, S is a satellite of the satellite U of Z; so,

by transitivity of cy holds SoZ. Hence S € Y.

(3) Basic objects and producible objects

It is not certain in our object theory that for any pair of objects X and Y

there exists a "pair object" of X and Y i.e. an object formed by X and Y, even

when X and Y are both regular. However, we can get rid of this difficulty by

restricting our object field to "producible" objects, whose notion will be intro-

duced in this Chapter.

(3.1) Basic objects.

(3.1.1) Definition:

71

Any object satisfying β(P) is called a basic object.

Illustration. Formal definition of basic objects is really complicated. The

condition for P to be a basic object is intended to describe essential property

of any object which is formed by some proto-numbers and Xlt , X,

(w = 0, 1, 2, .) in an infinite sequence Xu Xz9 satisfying the conditions

»(Xi) and Xi+ιdXi(i=l, 2, .). Notice that any object P of this kind is a

subobject, so also a constituent, of I»+i. It is quite uncertain in our object

theory whether there is a regular object formed by all the objects Xi (i = 1,

2, .). However, if there is such an object, it, too, is basic by our definition.

Accordingly, our definition of basic objects can not characterize the intended

objects above described.
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(3.1.2) P{T; KT)}->0(P). (Any object formed by all the proto-numbers is

basic.)

Proof. Assume P{T; MΓ)}. Then, P i s regular by (2.3.4). Take now

any object X formed by satellites of a proto-member Y of P i.e. any object X

formed by satellites of a proto-number. Then, by (1.8.3), X is an object

formed by all the proto-numbers. So, PfcXby (1. 5. δ) because ? s χ Moreover,

any proto-member X of P, i.e. any proto-number Xf satisfies evidently

v{X) VXθίP. Hence P is basic.

(3.1.3) j9(P)-» '0(P)V3X{HX)l\X*P). (Any non-empty basic object

contains a proto-number as its proto-member.)

Proof. If a basic object P contains no proto-numers as its proto-members,

then by defintion of basic objects any proto-member X of P is an object formed

by satellites of a proto-member Y of P. Accordingly, for any proto-member

X of P, there is a proto-member Y of X which is also a proto-member of P,

since any object formed by satellites of Y contains Y as its proto-member by

reflexivity of a. Hence, by refiexivity of κy P can not be regular, if P is not a

null object; because PζP by (2.1.2) and reflexivity of K.

(3.1.4) 3Q Q{T; HT)\/Tθ€P} and β{P) ί\Q{T; v{T) V Γ0€ P} • -» β{Q).

(For any object P, there is an object Q formed by all the proto-numbers and

all the objects T satisfying TO € P. The object Q is basic if P is so.)

Proof. Take an object R formed by satellites of a given object P by (1.3.2),

and take further an object Q satisfying Q{T; TaRM^(T) V TO € P)}. By defini-

tion of proto-numbers, »( T) implies TaR. Moreover, any object T formed by

satellites of a proto-member Y of P is a satellite of R. For, Y is a satellite of

P by (1.2.11), so T is a subobject of R by (2.3.5) consequently, T is also a

satellite of i? by (1.2.12). Hence, Q satisfies also Q{T; H T I V Γ ^ P } .

Let us now discuss the case β(P).

At first, we prove ρ(Q): Namely, take an object if formed by satellites

of R by (1.3.2). Any proto-member T of Q is a satellite of R, so Γ€# . Ac-

cordingly, QQH. On the other hand, the object R formed by satellites of the

regular object P is regular by (2.3.2), so also the object H formed by satellites

of the regular object R is regular, again by (2.3.2). Consequently, the sub-
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object Q of the regular object H is also regular by (2.2.5).

Secondly, we prove VX(X0 € Q - X€ Q V QKX) : Take any object X formed

by satellites of a proto-member Y of Q. Then, Y is either a proto-number or

an object formed by satellites of a proto-member of P. At first, the case (̂ Y):

By (1.8.3), X is an object formed by all the proto-numbers. If P is a null

object, then Q is an object formed by all the proto-numbers. So, QKX by

(1.5.5). If P is not a null object, then by (3.1.3) P contains a proto-number,

say Z, as a proto-member. So, any object formed by satellites of Z i.e., by

(1.8.3), any object formed by all the proto-numbers is a proto-member of Q,

especially the object X is a proto-member of Q. Next, the case Yθ€P- In

this case either Y$P or PKY hold, because P is basic. In the case Y€P, X

is an object formed by satellites of the proto-member Y of P, so X€Q. Ac-

cordingly, we have further only to discuss the case PKY.

Now we prove QKX when Y is an object formed by satellites of a proto-

member W of the object P which is a constituent of Y - Take any proto-

member S of Q. Then, we can show 5 € X Namely, S is either a proto-

number or an object formed by satellites of a proto-member of P. If S is a

proto-number, S is surely a satellite of Y, so S € X Accordingly, we discuss the

case where S is an object formed by satellites of a proto-member V of P.

By (1.7.1), the constituent P of Y is either a subobject of Y or a constituent

of a proto-member of Y. In the case P&Y, the proto-member V of P is a

proto-member of Y by (1.2.2), so FtfίF. Since any proto-member U of S is a

satellite of Vt U is also a satellite of W by transitivity of </, so Z7 € Y Con-

sequently SSF, so StfY by (1.2.12). Accordingly S € X On the other hand,

when P is a constituent of a proto-member M of Y, Mis a satellite of W. Since

any proto-member U of S is a satellite of the proto-member V of the object P

which is a constituent of the satellite M of W, Z7 is a satellite of PFby (1.2.11),

(1.5.3), and transitivity of a. So £/€ Y. Consequently SSF , so StfY by

(1.2.12). Accordingly S€X. Thus in any way we can prove that any proto-

member S of Q is a proto-member of X Accordingly Q&X,so QicXby (1.5. 5).

Hence, any object X formed by satellites of a proto-member of Q is a

proto member of Q unless Q is a constituent of X

Thirdly, we prove VX(X€Q-^ "ΛX)VXdίQ): Namely, take any proto-

member X of Q. Then, X is an object formed by satellites of a proto-member
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Y of P, unless X is a proto-number. Since P is basic, Y is either a proto-

number or an object formed by satellites of a proto-member of P. Anyway Y

is a proto-member of Q, so X is an object formed by satellites of the proto-

member Y of Q, unless X is a proto-number.

Hence Q is basic.

(3.1.5) β(P)-+3Q{β(Q)/\PQQΛVT(ι<(T)-*T€Q)). (For any basic object P,

there is a basic object which includes P as a subobject and which contains

every proto-number as a proto-member.)

Proof. Let P be any basic object. Then, we can take a basic object Q

satisfying Q{T\ HT) V TΘ$P) by (3.1.4).

Firstly P s ρ ; To prove this, take any proto-member T of P. Then, T

satisfies KT) V T0 € P, because P is basic. So, Ts Q. Hence P S ζ). Secondly,

it is evident that every proto-number is a proto-member of Q. Consequently, Q

is a basic object which includes P as a subobject and which contains every

proto-number as a proto-member.

(3.1.6) β(P) t\β(Q) -+3R(β(R) ΛPicRΛQicR). (For any pair of basic objects

P and Q, there is such a basic object R that P as well as Q is a constituent

of /?.)

Proof. "Let P and 0 be any two basic objects. By (3.1.5) take a basic

object U which includes Q as a subobject and which contains every proto^

number as a proto-member.

We assert that either P £ U or UJeP hold Namely, if there is a proto-

member Y of P which is not a proto-member of Z7but which is an object formed

by satellites of a proto-member of U, then UKY because U is basic. So, by

(1.5.4) and transitivity of κt U is a constituent of P. On the other hand, if

there is no such proto-member of P, then take an object V satisfying

V{T; T€PΛ -7Γ€£/}by (1.3. l) . Clearly VCP by (2.1.2). Take now any proto-

member X of V. Then, XGP, and X can never be a proto-number, because

every proto-number is a proto-member of U. Consequently, the proto-member

X of the basic object P is an object formed by satellites of a proto-member Z

of P. Z$X by reflexivity of </. Moreover -^Z€Z7; for, the proto-member X

of P is not a proto-member of Z7, so the object X formed by satellites of Z

can never be an object formed by satellites of any proto-member of U by
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assumption. Thus we know Z € V. Accordingly/for any proto-member X of

V, there exists a common proto-member, Z for instance, of X and V. However,

by reflexivity of &, this can not be true for the basic object P, unless the sub-

constituent V of P is a null object since the basic object P is regular. So,

When P&U, P as well as Q is a constituent of the basic object Uby (1.5.5),

and when UKP, P as well as Q is a constituent of the basic object Pby (1.5.5)

and reflexivity and transitivity of tc.

(3.1.7) β{P) Λ Z€ PΛ y€ P - -* -XσYV YeX. (Among any two proto-members

of a basic object, one is a satellite of the other.)

Proof. Let P be any basic object. By (1.3.1), take an object Q satisfying

Q{T; T€PA -7>yfmU*P-* TύU\/UaT)}. Then, QCP by (2.1.2). Moreover,

any proto-number S can never be a proto-member of Q. For, the proto-number

S surely satisfies V£/(Z7€P-> S<JUV U<JS), since any proto-number is a satellite

of every object, Accordingly, any proto-member Z of Q is not a proto-number.

Hence, the proto-member Z of the basic object P is an object formed by

satellites of a proto-member W of P.

Now we assert WGQ' TO prove this, we have only to show -^VίΛ£/€P

-* - WoUMUύW). Namely, if V£ΛZ7€P-> - WaUNUaW) holds, we assert that

any proto-member U of P satisfies Ztfί/V C/tfZ contradictory to the assumption

ZzQ. For, the proto-member U of the basic object P is either a proto-number

or an object formed by satellites of a proto-member V of P. In the case ^{U)t

U is a satellite of any object, especially of Z. In the case UΘV ί\ F€P, either

W<;F or FtfPF hold by assumption. If WaV, then hold UΘV and Z0*P; con-

sequently, Z S £7 by (2.3.5), so ZaU by (1.2.12). If VσW, then hold Z W and

UθσW; consequently ί/SZby (2.3.5), so, UaZ by (1.2.12).

The object FT is a proto-member of Z by reflexivity of a.

Hence, for any proto-member Z of Qy there is a proto-member W oί Q

which is also a proto-member of Z. Since P is a basic object, P is regular.

So, the sub-constituent Q of P is a null object by reflexivity of K. Namely, any

proto-member X of P satisfies J£tfY V Y^X for any proto-member Y of P.

(3.2) Producible objects.

(3.2.1) Definition: π(X) = 3P(/5(P) A I ^ P ) . Any object X satisfying π



A THEORY OF MATHEMATICAL OBJECTS 131

is called a producible object.

Illustration. In defining producible objects, we have intended to take up

only such objects whose existence can be affirmed by our axioms. As such

objects, we adopt those objects which are satellites of any terms Xk in an

infinite sequence of objects Xlt X2, satisfying the conditions- KXi) and

Xn-iθXt• (i = 1, 2, .). However, it is quite uncertain whether there is an

object formed by all the terms of any sequence of this kind. So, we had instead

to introduce the notion of basic objects, any one of which is supposed to be

formed by first finite terms of any sequence of this kind. Although our defini-

tion of basic objects can not characterize the said kind of objects as is pointed

out in (3.1.1), the definition works well for our purpose of introducing pro-

ducible objects.

(3.2.2) HX)-*π(X). (Any proto-number is producible.)

Proof By (1.8.5) and (3.1.2), there is a basic object formed by all the

proto-numbers, so any proto-number is producible by reflexivity of β.

(5.2.3) XσY^7-(γ).-*~(χ); especially X*Y/\π(Y)' -*π(

I s y Λ " ( 7 ) ->-(X), and Z{y}A~(Y)- -*τr(χ). (Any satellite of a producible

object is also producible. Especially, any proto-member, any subobject, and any

unit object of any producible object are also producible.)

Proof. By (1.2.11), (1.2.12), (1.4.9), and transitivity of σ.

(3.2.4) X0Y\~(Y) -+-{X). (Any object formed by satellites of a producible

object is also producible.)

Proof. Let X be any object formed by satellites of a producible object Y.

Then, Y is a satellite of a proto-member U of a basic object P. By (3.1.4),

take a basic object Q satisfying Q{T; KT) V Tθ$ P). Now, take an object V

formed by satellites of U by (1.3.2) then, V is a proto-member of Q. Since

XβoU and VβU hold, X g F b y (2.3.5) so, XaVby (1.2.12). Hence, Xsatisfies

Xo$Q for the basic object Q, so X is producible.

(3.2.5) X{T; TQY}ί\~(Y) -*π{X) and X{T Te € Y) Nπ(γ) - -*π(X). (Any

power object as well as any sum object of a producible object is also producible.)

Proof. By (1.2.11), (1.2,12), (1.3.2), (3.2.3), (3.2. 4), and transitivity of a,
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(3.2.6) X{T; Ts

Proof. By (1.2.6), (1.2.11), (1.2.12), (1.3.2), (3.2.3), (3.2.4) and transi-

tivity of o.

(3.2.7) π(X)-»p(X). (Any producible object is regular.)

Proof. Let X be any producible object. Then, X is a satellite of a proto-

member of a basic object P. By (1.2.11) and transitivity of <?, X is a satellite

of the basic object P, which is naturally regular, so Zis also regular by (2.2.7).

(3.2.8) π(X) Λπ(y) • ->3Z(τr(Z) KXβZN YoZ). (For any two producible objects,

there is a producible object which has these objects as its satellites.)

Proof Let X and Y be any two producible objects. Then, there are such

basic objects P and Q that X is a satellite of a proto-member W of P and Y

is a satellite of a proto-member of Q. By (3.1.6), there is such a basic object

i? that P as well as Q is a constituent of R. Then, by (1.7.1), P is either a

subobject of R, or a constituent of a proto-member Γ of i?. In the case PS/?,

JY" is a satellite of the proto-member W of the basic object R by (1.2.2), and

in the case PtcT/\Ts R, X is a satellite of the proto-member T of the basic

object R by (1.2.11), (1.5.3), and transitivity of a. Anyway, X is'a satellite

of a proto-member U of the basic object R. Similarly, we can prove that Y

is also a satellite of a proto-member V of R.

According to (3.1.7), one of the two proto-members U and V of the basic

object R is a satellite of the other, say Z, so by reflexivity and transitivity of <?,

X and Y are both satellites of the same proto-member Z of the basic object R.

The object Z is producible by reflexivity of a.

(3.2.9) Definition: U{X, Y) = Z7{Γ; T s Z V Γ s Y}. Any object C7satisfying

, Y} is called a /wr oδ/*tf of X and Y.

(3.2.10) -(Z)Λτr(Y)- -+3U'U{X9 Y} and π(X) Λ~( Y) Λ £/{Z, Y} -»*•(£/).

(For any two producible objects, there is a pair object of them and any pair

object of any two producible objects is also producible.)

Proof Let X and Y be arfy two producible objects. Then, by (3.2.8),

there is a producible object W for which XoW and YoW hold. Accordingly,

if we take an object U satisfying U{T; TσW/\ ( Γ = I V Γ s γ)>, then by

(1.3.5), it satisfies also U{T; T^XMT^Y) i.e. U{X,Y).
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Now, let U be any object satisfying U{X, Y} for two producible objects X

and y, and by (1.3.2), take an object H formed by satellites of the producible

object W. Then, by (1.3.5), U is a subobject of H. Since H is producible by

(3.2.4), U itself is producible by (3.2.3).

(3.2.11) - ( I )Λίr (F) ->3Z Z { T ; T € l V T β 7 } and

(For any two producible objects, there is a union object of them; and any

union object of any two producible objects is also producible. Here we call any

object Z satisfying Z{T; TsXVTzY) a union object of X and Y.)

Proof. By (1.3.5), (1.4.5), (3.2.5), (3.2.10), and reflexivity of identity.

(4) Membership and Equality

In our theory of objects, we do not assume the extensionality axiom of the

set theory for our objects with respect to proto-membership and identity, nor

we can not expect the second equality axiom holds with respect to proto-

membership and proto-equality for our objects. However, even if it is impos-

sible to prove the axioms with respect to proto-membership and identity, or

with respect to proto-membership and proto-equality, for our objects in general,

it may be still possible to prove them with respect to other suitably defined

notions, "membership" and "equality", in a suitably defined range of objects,

the range of producible objects. In the following, we shall show that this is

the case.

(4.1) Before going into details, we describe here shortly our plan. By

modifying proto-membership, we introduce a new notion "membership" (nota-

tion " e " ) , and by modifying the notions, identity and proto-equality, we

introduce a new unified notion "equality" (notaion: " = "), in such a way that

the axiom of extensionality together with the equality axioms holds with respect

to them. However, we try to minimize the modification as far as these axioms

hold. Perhaps, "membership" and "equality" should be weaker than proto-

membership and identity respectively, but we try to keep the mutual relation

X^PΞ=X = €P, a modification of the first formula of (1.2. 8). As far as this

relation should be kept, we have only to define "equality".

It would be very easy to define "equality", if an object formed by all the
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pair objects of X and Y satisfying X = Y could be considered. However, it is

impossible to consider such an object, if X = X should hold for every X. For,

such an object must contain all the unit objects as its proto-members, so all

the objects must be its satellites.

An approach to define "equality" is to consider objects formed by only

those pair objects of X and Y satisfying X = Y. If "ε(P)" is a condition for

that P is an object of this kind, then every pair-object proto-member of P

satisfying "ε(P)" must be a pair object of X and Y satisfying X = Y and also

satisfying VS(S<=X =SGY). We try to express the condition by introducing

new relations "X= Y" and "XψY", which are defined by XaYVΞlHUiX, Y)

A £/€P) and VZ(Zψ<-X= Z=SY) respectively. (See (4.2.1), (4.3.1), and

(4.5. D.) Then, "ε(P)" is defined for trial as - ( P ) Λ V I 7 ( X = Y-> X^ Y). (See

(4.6.1).). In the following, we show that this trial definition works well for

our purpose.

(4.2) P-equaϋty.

(4.2.1) Definition: XψY^ X^Y\/3V(U{X, F}Λ£/€P). Any two objects

X and Y satisfying X = Y are called P-equal to each other. P-equality can be

taken as a binary relation regarding P as a parameter.

Remark. We define P-equality to introduce a way of weakening the notion

of identity with respect to an object P. Only for a special kind of objects P,

P-equality can be considered as closely related to "equality".

(4.2.2) XτzY-*Xψ Y. (Identity implies P-equality.)

(4.2.3) P S Q -* (X= y-» X= Y). (If P is a subobject of Q, P-equality implies

©-equality.)

Proof. By (1.2.2) and (4.2.2).

(4.2.4) 0(P) ΛXψY' -+ X=Y. (For any null object P, P-equality implies

identity.)

(4.2.5) XψX. (Reflexivity of P-equality.)

Proof. By reflexivity of identity.

(4.2.6) XψY-+YψX. (Symmetricity of P-equality.)
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Proof. By symmetricity of identity.

(4.2.7) P{T;

Proof. Let P be an object satisfying P{T; T^sQ}. Then, Q S P by

reflexivity of proto-equality, so φ-equality implies P-equality by (4.2.3).

To show that also P-equality implies Q-equality, take any two objects X

and Y which are P-equal to each other. Then, either I s For a proto-member

U of P is a pair object of X and Y. In the case I s Yf holds X g Γby (4.2.2).

Also in the case £/€ PA U{X, Y), the proto-member t/ of P is proto-equal to

a proto-member V of Q, so F is also a pair object of X and Y. Hence I g Y.

(4.2.8) 3 C ( V I 7 ( I = 7 = Z = 7 ) A Q { T ; T s € ( ? » . (For any object P,

there is such an object Q that ©^equality is equivalent to P-equality and

Q{T; T^€Q} holds.)

Proof. For any object P, take an object Q satisfying Q{T; T^eP) by

(1.3.3). Then, P-equality is equivalent to ©-equality by (4.2.7). Moreover,

we can prove Q{T; T s €Q}: Namely, take any T which is proto-equal to a

proto-member S of Q. Then, S is proto-equal to a proto-member R of P. By

transitivity of proto-equality, T is proto-equal to the proto-member R of P, so

T.€-Q. Conversely, any proto-member U of Q is an object which is proto-

equal to the proto-member U of Q by reflexivity of proto-equality. Hence

Q{T; T&$Q}.

(4.3) P-membership.

(4.3.1) Definition: Xf Y = Xψ € Y. Any object X satisfying Xf Y is called a

P-member of F.

(4.3.2) Z € F - » Z ρ F . (Proto-membership implies P-membership.)

Proof. By reflexivity of P equality.

(4.3.3) P s e - > ( J p 7 - > ^ | 7 ) . (For any subobject P of an object ©,

P-membership implies Q-membership.)

Proof. By (4.2.3).

(4.3.4) P{T; Γ s €(?}-» -Xψ Y=X £ y.

By (4.2.7),
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(4.4) Transitive objects.

object P satisfying r(P) is called a transitive object.

(4.4.2) r ( P ) A I = 7 -» I s y VVU(U{X, F}->£/€P). (If two objects X and

F are P-equal for a transitive object P, then any pair object of X and 7 is a

proto-member of P unless JΓsF.)

Proof. Let P be a transitive object, and X and F be P-equal but not

identical. Then, there is a proto-member V of P satisfying F{X, F}. Any

pair object U of X and F is evidently proto-equal to the proto-member V of

P, so Z7€P because P is transitive.

(4.4.3) τ(F)Aτ(G)AP{T; TSFATGG}- ->r(p). (Any object formed by all

the common proto-members of two transitive objects is also transitive.)

Proof. Let P be any object satisfying P{T; TϊFNTsG) for any two

transitive objects F and G.

Firstly, we prove P{Tl T^ίSP}> Namely, take any object T which is an

object proto-equal to a proto-member S of P. Then, S is a proto-member of

F as well as of G. Since F and G are transitive, T is a proto-member of F

as well as of G, so T€P. Conversely, any proto-member T of Pis proto-equal

to the proto-member T of P by reflexivity of proto-equality.

Secondly, we prove that X ψ = F implies XψY Let any object X be P-

equal to an object Z and Z be P-equal to another object F. Since P is a sub-

object of F as well as of G, so by (4.2.3), X is F-equal as well as G-equal to

Z, and Z is F-equal as well as G-equal to F Because F and G are both

transitive, X is F-equal as well as G-equal to F. Consequently, there is a pair

object U of X and F which is a proto-member of F, unless X s 7 . Since G is

transitive, the pair object U oί X and F is a proto-member of G by (4.4.2),

unless I s Γ , Accordingly ί/ is a common proto-member of Fand G i.e. ί/€P,

unless I s 7 , Hence X= F.

(4.4.4) ~(P)-*(X=F-> Z p Z = F p Z ) . (For any transitive object P, any two

P-equal objects are either both P-members or both no P-members of any object.)

Proof. Let X be P-equal to F for a transitive object P, and X be a P-

member of Z Then, X is P-equal to a proto-member U oί Z By symmetricity
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of P-equality, Y is P-equal to the proto-member U of Z, since P is transitive.

Hence YfZ.

Similarly, we can prove that F p Z implies XψZ.

(4.5) Equal P-extension.

(4.5.1) Definition: Xψγddy/S(SfX=S^Y). Any two objects X and Y

satisfying XjY are called objects of equal P-extent.

(4.5.2) X^Y^XψY. (Identity implies equal P-extension.)

Proof. By (1.3.5).

(4.5.3) Ps©-> *XjY=X~Y. (If P and © are proto-equal, equal

P-extension is equivalent to equal ©extension.)

Proof. Let P and © be any two proto-equal objects, and X and Y be any

two objects of equal P-extent. Take any ©-member S of X Then, Sp X by

(1.2.6) and (4.3.3). Since Xψ Y, holds Sψ Y. So, again by (1.2.6) and (4.3.3),

S g Y. By the same reasoning, we can show that any ©-member of 7 is a

©-member of X.

Similarly, we can prove that any two objects are of equal P-extent if they

are objects of equal ©-extent.

(4.5.4) P c © Λ τ ( © ) . -> -X^Y^X^Y. (if x a n c | y a r e objects of equal P-

extent for a subobject P of a transitive object ©, they are also objects of equal

©-extent.)

Proof. Let X and Y be objects of equal P-extent for a subobject P of a

transitive object ©, and let S be any ©-member of X. Then, S is ©-equal to

a proto-member T of X. By (4.3.2), T<=X, so Tp Y by assumption. Accord-

ingly, T is P-equal to a proto-member U of Y. By (4.2.3) T^U, so S^U

because © is transitive. Hence Sg Y.

Similarly, we can prove that any ©-member of Y is a ©-member of X.

(4.5.5) XψX. (Reflexivity of equal P-extension.)

(4.5.6) XjY-* YψX. (Symmetricity of equal P-extension.)

(4.5.7) Xj ^ y-» Xψ Y. (Transitivity of equal P-extension.)
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(4.6) ε-objects.

(4.6.1) Definition: ε(P) = - ( P ) Λ V J 7 ( I ? F-> Xf Y). Any object P satis-

fying ε(p) is called an ε-object.

(4.6.2) 0(P)-»ε(p). (Any null object is an e-object.)

Proof. By (1.8.2), (3.2.2), (4.2.4), and (4.5.2).

(4.6.3) ε ( P ) Λ Q s P -*ε(Q). (Any object which is proto-equal to an ε-obect

is also an ε-object.)

Proof. Let Q be an object proto-equal to an ε-object P.

Firstly, Q is a producible object by (1.2.6) and (3.2.3), because the ε-

object P is naturally producible.

Secondly, we assert that Q-equality implies equal ©-extension: To show

this, take any two mutually ©-equal objects X and Y. Then, by (1.2.6) and

(4.2.3), they are mutually P-equal; so, they are also objects of equal P-extent,

because P is an ε-object. Consequently, by (4.5.3) X^Y Hence Q is an

ε-object.

(4.6.4) π(P) Λ V£/(£7eP-*3X U{X)) -»ε(P). (Any producible object formed

by exclusively unit objects is an ε-object.)

Proof. Let P be a producible object which is formed by unit objects only.

To show that P is an ε-object, take any two mutually P-equal objects X and

Y. Then, X^Y because any pair object of X and Y can be a proto-member

of P only when X = Y by reflexivity, symmetricity, and transitivity of identity.

Since identity implies equal Pextension by (4.5.2), holds Xf Y. Hence ε(P).

(4.7) ε(p)Λε(Q)--»3M(PSΛfΛQSAfΛε(M)Λr(Af)). (For any two ε-

objects, there is a transitive ε-object which includes them as subobjects.)

Proof. The proof consists of two parts. In the first part, we prove that

for any two ε-objects P and Q there exists a producible object M which satisfies

M{U; VS(~(S)ΛP£SΛQ£S ->£/€S)}, and that M is a transitive object

including P and Q as subobjects. In the second part, we show ε(M) by proving

that Mis proto-equal to any object N satisfying N{V; F€MAVST(V{S,T}

->SffT)}. There is surely an obect N of this kind by (1.3.1).

Now, let P and Q be any two ε-objects. By (1.4.5), we can take sum
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objects F and G of P and Q respectively. Since ε-objects P and Q are pro-

ducible, F and G are also producible objects by (3.2.5). By (3.2.11), we can

take a union object H of the producible objects F and G, which is also pro-

ducible. Namely, H is a producible object satisfying H{T; T€ €PV T € € Q}.

By (1.4.6) and (3.2.5), we can take a producible object K satisfying

K{U; USίH).

We assert that the producible object K is transitive and that P and Q are

subobjects of K. At first, we prove K{U) U^^K}'- Namely, take any object

U which is proto-equal to a proto-member V of K. Then, V^H, so, by (1.2.6)

and transitivity of proto-inclusion, also U&H. Accordingly, ϋ€K. Conversely,

any proto-member U of K satisfies U^^K by reflexivity of proto-equality.

Hence K{U; U^ZK). Secondly, we prove that Z = - 7 implies I | F for

any X and Y- Namely, let X be if-equal to Z and Z be if-equal to F. Then,

either I s Z o r there is a proto-member U oί K which is a pair object of J¥"

and Z, and also either Z s Y o r there is a proto-member V oί K which is a

pair object of Z and F. When one of the two identities I s Z a n d Z = Fholds,

we can conclude X= Y by (1.3.5), so we have only to discuss the case

- ^ I S Z ' Λ T Z Ξ F . In this case, there are two proto-members U and V of

K satisfying U{X, Z) and V{Z, Y). The proto-members U and V of K are

subobjects of #, so X and F are proto-members of H by (1.2.2) and reflexivity

of identity. Accordingly, if we take an object W satisfying W{T\ T€H

A ( Γ s X V Γ s y ) } by (1.3.1), W is a pair object of X and Y by (1.3.5).

Moreover T7 € /f, because WQH again by (1. 3.5). Consequently Z = 7 . Hence

K is transitive. To prove further that P as well as Q is a subobject of K,

take any proto-member S of P or ζ). Then, any proto-member T of S is

surely a proto-member of H, so S s # i.e. S€K Hence P S if and Q^K.

Now we assert that there exists a producible object Λf satisfying

M{U; VS(r(S)ΛPSSΛQsS-->f/€S)}. To show this, take an object M satis-

fying M{U; £/€ϋΓΛ VS(r(S) Λ P S S Λ Q S S ->£/€S)} by (1.3.1). Clearly, Mis

a subobject of the producible object if, so M is also a producible object by (3. 2.3).

Now, any U satisfying VS(~(S) Λ P s SΛ©£ S • -* £/€ S) satisfies especially

r(/O Λ P S K/\Q£K -*U€K, so £/€ if, because if is a transitive object and

satisfies P^ K and ζ) S if. Consequently, the producible object M satisfies also

M{U;
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Next we prove that M is a transitive object and P as well as Q is a sub-

object of M. To show that M is transitive, we prove at first M{U; C/s €M}'

Namely, let any object U be proto-equal to a proto-member V of M. To show

that U is also a proto-member of M, take any transitive object S including P

and 0 as its subobjects. Then, V is surely a proto-member of S, so also Z7 is

a proto-member of S, because S is transitive. Conversely, any proto-member

Uoί Msatisfies Uss €Mby reflexivity of proto-equality. Hence M{U; ί/sgM}.

Next we prove that I j g Z and Z^Y imply Z = y for any three objects X, Y,

and Z. Namely, take again any transitive object S for which P S S and Q g S

hold. Then, M i s a subobject of S, because any proto-member Uof Aίsatisfies

VS(τ(S)ΛPsSAO = S -*£/€S). Accordingly, by (4.2.3), Z = Z a s well as

Z= Y holds so, X= Y holds too, because S is transitive. If I s y, then Z= Y

holds by (4.2.2). If v l s 7 , then we can find a proto-member V of S which

is a pair object of X and Y. Any pair object U oί X and Fis evidently proto-

equal to V, so £/€S, since S is transitive. Accordingly, U is a proto-member

of any transitive object S which includes P and Q as subobjects, i.e. U€M.

Namely, any pair object U of X and Y is a proto-member of Λf, especially

VeM. Consequently, X and Y are Λf-equal even in the case T Z S F , Hence

M is transitive. Lastly, we prove that P and Q are subobjects of Λf: Namely,

take any proto-member U of P or ζ). Then, by (1.2.2) £/ is a proto-member

of any transitive object including P and Q as subobjects, so £/€Λf. Hence

P s M a n d Q s M

Next step is to show ε(M). To prove this, take an object iV satisfying

N{V; VeMAVST(V{S, T}-»S^T)} by (1.3.1). Then, surely NsM.

We assert ?(N). To show this, we prove at first N{V; Fs€AΓ}: Namely,

take any object V which is proto-equal to a proto-member W oί N. V$M

because W is surely a proto-member of M and V is proto-equal to the proto-

member W oί the transitive object Λf. Moreover, if V is a pair object of two

objects S and T, W is also a pair object of these two objects, because V is

proto-equal to W. Since W is a proto-member of ΛΓ, S ^ T holds by assumption.

Consequently V$N. Conversely, any proto-member V of N satisfies V^€N

by reflexivity of proto-equality. Hence N{V; F s ξ N}. Next we assert that
XNNY i m P l i e s Xft Y f o r any X and F : To show this, assume X^Z and
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Z == F. Then, we can take a proto-member A of Λr being a pair object of X

and Z and a proto-member B oϊ N being a pair object of Z and F, unless one

of the two identities I s Z and Z s F holds. When one of these two identities

holds, X is JV-equal to Y by (1.3.5), so we have only to discuss the case where

we have such pair objects A and B which are proto-members of Λr. Since N

is a subobject of the transitive object Λf, hold X=~Z and Z~Y by (4.2,3), and

accordingly X ~ Y holds, i.e. there is a proto-member C of M which is a pair

object of X and F, unless Z s F . When I s F , holds X - F by (4.2.2). On

the other hand, when there is a pair object C of X and F which is a proto-

member of M, C is also a proto-member of N. To show this, we remark that

X^Y holds by (4.5,7), because X ~ Z and Z J J F hold by assumption. This

implies that for any S and T satisfying C{S, T) holds S^T by (1.3,5) and

(4.5.6), because we can show that, either S s l and T s F, or S^ F and T ^ X

hold for such S and T by (1.2.4) and (1.3.5). Accordingly X^Y anyway.

Hence, N is a transitive object.

Next we prove that P as well as Q is a subobject of N Namely, take any

proto-member U of P. The proto-member U of the subobject P of M is a

proto-member of M by (1.2.2). If U is a pair object of Sand T, clearly S^T,

so S J J T , because P is an ε-object. Moreover S~T implies Sj- T by (4.5.4),

since P is a subobject of the transitive object M. Consequently Z7€iV. Hence

P&N. Similarly, we can show Q&N.

Since every proto-member U of M is a proto-member of the transitive object

N including P and Q as its subobjects, holds M&N»

Lastly, we prove that the producible object M is an c-object: Namely, take

any two mutually M-equal objects X and F. Then, there is a proto-member

U of M which is a pair object of X and F, unless X ^Y. When X s F, holds

X - F by (4.5.2). Also in the case - ^ X s F , the pair object U oi X and F,

being a proto-member of M, is a proto-member of JV by (1.2. 2), because M S JV.

Accordingly X^Y. Hence, M is an ε-object.

(4.8) Equality.

(4.8.1) Definition: A = 5 = 3P(-(P) A i = β). Two objects are called mutually

if and only if they are P-equal for a suitable ε-object P.
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(4.8.2) A s B -> A = JB. (Identity implies equality.)

(4.8.3) A = A. (Refelxivity of equality.)

PTΌO/ of (4.8.2) ύwrf (4.8.3). There is an ε-object P by (1.4.2) and (4.6.2).

If A s £, then A = J5 for the ε-object P by (4.2.2), so A = £. Also, by reflexivity

of P-equality, holds A == A for the ε-object P, so A = A.

(4.8.4) A = £ -»B = A. (Symmetricity of equality.)

PTΌO/. Assume A = B. Then, A = J5 for a suitable ε-object P. By sym-

metricity of P-equality holds BψA for the ε-object P. Hence B = A.

(4.8.5) A = = B -> A = JB. (Transitivity of equality.)

Proof, Let any object A be equal to an object T which is equal to another

object B. Then, AψT for a suitable ε-object P and T^B for another suitable

ε-object <?. By (4.7), there exists a transitive ε-object M which includes these

two ε-objects P and Q as subobjects. Accordingly, by (4.2.3) hold AjgΓ and

Tjg J5. Since Λί is transitive, holds A=^B. Since Mis an ε-object, holds A = B.

(4.9) Membership.

To define membership " e ", two ways are possible. Of course, definitions

by these two ways are logically equivalent to each other.

(4.9.1) Definition: A<=B^ A=SB or A e £ = 3P(ε(P)Λ Ap B). Any object

A is called a member of an object Bf if and only if A is equal to a proto-

member of B or, if and only if A is a P-member of B for a suitable ε-object P.

Proof of equivalence of the two definitions. At first, assume that A is

equal to a proto-member T of B. Then, A = T f or a suitable ε-object P. AψT

and T$B implies AψB. So, 3P(e(JP) Λ Ap B). Next, assume conversely

AψB for an ε-object P. Then, A is P-equal to a proto-member Γof B. Since

A = Γ and ε(P) implies A = Tf A is equal to the proto-member T of B.

(4.9.2) A € £ -* A e £. (Proto-membership implies membership.)

Proof. By reflexivity of equality.

(4.10) Equality principle.

Theorems corresponding to the equality axioms of the set theory hold in

our system with respect to equality and membership.
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(4.10.1) A = B -> A e P = B&P. (Two equal objects are either simultaneously

members of an object or simultaneously non-members of the object.)

Proof. Assume A = B. If A is a member of an object P, A is equal to a

suitable proto-member C of P. By symmetricity and transitivity of equality,

B is also equal to the proto-member C of P. Hence B G P .

Similarly, we can prove that A is a member of P whenever B is so.

(4.10.2) A = £-> Z e Λ == ZeJB. (Equal objects have all their members in

common.)

Proof. Let X be a member of an object A which is equal to another

object B. Then, XfA for a suitable ε-object P, and A g £ for another suitable

ε-object Q. By (4.7), we can take a transitive ε-object M which includes P and

Q as subobjects. By (4.3.3) X§4 and by (4.2.3) A-=B. Since Af is an

ε-object, A^B implies A^B. So, X^A implies X^B. Hence X&B, because

I | J5 for the ε-object Λf.

Similarly, we can prove that any member of B is a member of A.

(4.10.3) X = F-* 3I(Z) = «(y), if ?I(T) can be expressed by the notions of

membership and equality only. (A theorem corresponding to the second axiom

of equality with respect to membership and equality.)

Proof. By (4.10.1), (4.10.2), and symmetricity and transitivity of equality.

(4.11) Equal extension.

(4.11.1) Definition: X-Y= VZ{Z& X = Z^Y). Any two objects are called

objects of equal extent if and only if they have all their members in common.

(4.11.2) A = B -+A-B. (Equality implies equal extension.)

Proof By (4.10.2).

(4.11.3) X^X. (Reflexivity of equal extension.)

(4.11.4) X^ F-> Y^X. (Symmetricity of equal extension.)

(4.11.5) X^r cr Y -> Z2r y. (Transitivity of equal extension.)

(4.12) Extensionality principle.

(4.12.1) π(A)Λ~(B) ί\A — Ba ->A = B. (A theorem corresponding to the axiom
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of extensionality of the set theory. Producible objects of equal extent are equal

to each other.)

Proof. Let A and B be any two producible objects of equal extent. Then,

by (3.2.11) we can take a producible object H which is a union object of A

and B.

We assert first that there is a producible object P which satisfies

P{ U; 3ST(SfcHA TKHA U{S, T) Λ S ^ T)}: To show this, take a producible object

K formed by satellites of H by (1.3.2) and (3.2.4), and then take an object

P satisfying P{U\ U<JK/\3ST(SICHA TKHN U{S,T}/\S^ T)}. Any constituents

S and T of H are proto-members of K by (1.5.3), so any pair object U of the

proto-members S and T of K is a subobject of K by (1.3.5) therefore JJaK

by (1.2.12). Consequently, P satisfies P{U; 3ST(SιcHί\TιcH/\ U{S, T}/\S^T)}.

Moreover, P is a producible object by (3.2.3), because we can prove by (1.3.2)

and (3.2.4) that P is a subobject of a producible object formed by satellites

of the producible object K.

We prove next that P-equality implies equal extension: Namely, take any

two mutually P-equal objects X and Y. Then, either X and Y are identical

or a pair object U of X and Y is a proto-member of P. In the case I s 7 ,

holds surely X - Y by (1.3.5). In the case 7 j s 7 , there is a pair object U

of X and Y which is a proto-member of P. The proto-member U of P is a

pair object of two suitable objects S and T of equal extent, so one of the two

objects X and Y is identical with S and the other is identical with T by re-

flexivity, symmetricity, and transitivity of identity. Hence, by (1.3.5), X—Y.

holds also in this case.

Now we assert ε(P) In order to show this, we have only to prove that

P-equality implies equal P-extension, because we know already that P is pro-

ducible. Take now any two mutually P-equal objects X and Y. Then, X and

Y are objects of equal extent, as we have shown above. If X s y , X and Y

are objects of equal P-extent by (4.5.2), so we have only to discuss the case

-71« y. In this case there is a proto-member M of P which is a pair object

of X and Y. Since M is also a pair object of two suitable constituents S and

T of Hy X as well as Y is also a constituent of H by (1.3.5) and reflexivity

of identity. Take now any P-member Z of X. Then, Z is P-equal to a proto-

member W of X. Since P-equality implies equal extension for the object P,
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holds ZZiW. Moreover, W e X since proto-membership implies membership

by (4.9.2). Because X^ Y, the member W of X is also a member of Y; so,

JF is equal to a proto-member F of F. Since equality implies equal extension

by (4.11.2), holds W — F. So, by transitivity of equal extension, holds Z - F.

If ZsPF, Z is a proto-member of the constituent X of # by (1.3.5), so Z is

also a constituent of H by (1.5.4) and transitivity of ιc. If -^Z^W, Z is a

proto-member of a pair-object proto-member iV of P by reflexivity of identity,

and every proto-member of N is a constituent of H by (1.3.5), so Z itself is

a constituent of H. Consequently, ZKH anyway. Moreover, the proto-member

V of the constituent Y of H is also a constituent of # by (1.5.4) and transi-

tivity of K. Accordingly, by (1.3.5) and (1.5.3), there exists a pair object of

Z and F, which is a proto-member of P. So, Z is P-equal to the proto-member

V of Y. Hence Zp Y". Similarly, we can prove that any P-member of Y is

also a P-member of X. Hence X^Y.

We prove now A ψ B Because A and J5 are subobjects of their union

object H, they are constituents of H by (1.5.5). By assumption, A-B.

Moreover, there is a pair object R of the producible objects A and B by (3.2.10).

Consequently, the pair object R is a proto-member of P, so A p J3.

Because A ψ B holds for the ε-object P, holds A = B.

(4.12.2) π(A)Λπ(J3)ΛVZ(π(Z)-* -ZεΛ s Z e £ ) ->A:TJB. (If any two pro-

ducible objects have all their producible members in common, they are objects

of equal extent.)

Proof. Let A and B be two producible objects which satisfy \ίZiπ(Z>

-> Z&A ΞΞ Z e B ) . To prove A - £ , take any member T of A. Then, T is

equal to a proto-member Z of A. The proto-member Z of the producible

object A is surely producible by (3.2.3), and Z e A by (4.9.2). So, Z e ΰ by

assumption. Consequently, by (4.10.1), T s J 5 too. Similarly, we can prove

that any member of B is a member of A.

(5) Properties modulo equality

Producible objects can be regarded as sets if we draw no distinction be-

tween mutually equal objects. To treat objects formally without drawing any

distinction between mutually equal objects is to consider only "properties
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modulo equality" whose notion shall be introduced in this Chapter. If we restrict

ourselves only to properties modulo equality exclusively in the field of pro-

ducible objects, our object theory can be regarded as a set theory. Indeed,

with any proposition, we can associate a set-theoretical proposition which is

called the set-theoretical image of it. Fundamental properties of set-theoretical

images are also studied in this Chapter.

(5.1) Properties modulo equality.

(5.1.1) Definition: Any condition WiX) is called to define a property of X

modulo equality if and only if VXY{X=Y-*i1l(X) = H(γ))) holds, where X

and Y do not occur in B(Z). The condition U{X) is also called shortly a

condition on X modulo equality.

(5.1.2) If X does not occur in % B is a condition on X modulo equality.

(5.1.3) X& Y defines a property of X as well as of Y modulo equality.

(5.1.4) X- Y defines a property of X as well as of Y modulo equality.

Proof of (5.1.3) and (5.1.4). By (4.10.3).

(5.1.5) π(χ) defines a property of X modulo equality.

Proof. Let X and Y be mutually equal objects, and moreover, one of them,

say X, be producible. Then, either these two objects are identical or there is

a pair object U of them which is a proto-member of an ε-object P. In the

former case, π(X) implies π(Y) by (1.3.5). In the latter case, the ε-object P

is naturally producible, so the proto-member U of P is also a producible object

by (3.2.3). Since Y is a proto member of the producible object U by reflexivity

of identity, Y is also a producible object again by (3 2.3).

(5.1.6) If H{X,Ϋ) defines a property of X and Y modulo equality, «(*, X)

defines a property of X modulo equality, assuming that X and Y do not occur

in H(U9 V).

(5.1.7) If U(X) defines a property of X modulo equality, -y%{X) defines a

property of X modulo equality.

(5.1.8) If BUD and ©(X) are conditions on X modulo equality,

BUO V©U0, and %(X)-+Sd(X) are also conditions on X modulo equality.
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(5.1.9) If VL(X) defines a property of X modulo equality, \fZ'U(X) as well

as BZ'U(X) defines a property of X modulo equality.

(5.1.10) Any condition, expressible in terms of membership α e ", equality " = ",

and producibility "~( )", defines a property of any variable modulo equality.

Proof. By (5.1.2)—(5.1. 9).

(5.1.11) A necessary and sufficient condition for that %{X) defines a property

of X modulo equality is that H(X) is equivalent to 3S(X = SA H(S)), assuming

that X and S do not occur in 3KT).

Proof. Assume first that %(X) defines a property of X modulo equality.

Then, Έ.{X) holds whenever X is equal to any object S satisfying %(S). On

the other hand, %{X) implies 3S(X^ SΛ9KS)) by reflexivity of equality.

Next, assume conversely that 9L(X) is equivalent to 3S{X^ SΛ %(S)) for

every X. By symmetricity of equality, X= Fand %{X) imply 3S(Y= SAU(S)),

so also %{Y) by assumption. Similarly, X=Y and SKY) imply %(X). Hence,

3KX) defines a property of X modulo equality.

(5.1.12) 3S(X = SAKS)) is one of the strongest conditions under those condi-

tions on X modulo equality, which are weaker than the condition %(X)> assum-

ing that X and S do not occur in %(T).

Proof. Let SK-Y) be any condition on X, where X and S do not occur in

3S(X= SΛ2KS)) defines a property of I modulo equality. For,

SΛSUS)) is equivalent to 3T(X= TΛ3S(T= SΛ3KS))) by reflexivity

and transitivity of equality, so 3S(X= Sf\%(S)) defines a porperty of Xmodulo

equality by (3.1.11).

3S(JT=SΛ3KS)) is weaker than 2t(X), i.e. the latter implies the former.

For, if H(X) holds, 3S(X = SΛU(S)) holds by reflexivity of equality.

3S(X= SΛ2KS)) is stronger than any condition on X modulo equality

which is weaker than U(X) namely, if the condition WiX) on X implies any

condition β(X) on X modulo equality, also 3S(X = SΛ «(S)) implies 93(X) for

any X. To show this, take any condition ?8(X) on X modulo equality which

is weaker than U(X). If X is equal to an object S which satisfies 2KS), then

V is equal to the object 5 which satisfies 55 (S). Consequently, $B(X) holds too
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by (5.1.11), because 33(X) is assumed to define a property of X modulo equality.

(5.1.13) A = Bf\π(B)m -»π(A). (Any object which is equal to a producible

object is also producible.)

Proof. By (5.1.5).

(5.1.14) Ae£Λπ(J3) . ^T:(A). (Any member of a producible object is also

producible.)

Proof. Let A be a member of a producible object B. Then, A is equal

to a proto-member C of B. The proto-member C of the producible object B

is a producible object by (3.2.3), so A is also a producible object by (5.1.13).

(5.2) Set variables.

Together with capital Latin letters as variables for denoting objects in

general, we employ small Latin letters as variables for denoting producible

objects. Accordingly, whenever any small Latin letter x is employed as a free

variable in a proposition $(#), the proposition means that WiX) holds for a

corresponding free variable X which does not occur already in the course of

the reasoning, having in mind that X denotes a producible object. Vx U(χ)

means naturally yfX(π{X)-*U(X))f and 3x*%(x) means 3X{π(X) Mί(X)),

where x and X are variables which do not occur in 91 (S).

(5.2.1) Remark. Producible objects can be regarded as sets with respect to

membership and equality, so we call variables denoted by small Latin letters

set variables. Also, producible objects denoted by set variables are called

sometimes sets. Any expression expressed by membership and equality with

no bound capital-letter variables is called a set-theoretical expression.

(5.2.2) Remark. Although the relation between the set notion and the object

notion of our system is quite different from the relation between the set notion

and the class notion of the Bernays-Gδdel set-theory [5], [6], we can use our

set variables just as the set variables of the Bernays-Godel set-theory.

(5.2.3) Any proposition in our system can be expressed exclusively by the

primitive notion "proto-membership" and without employing bound set variables.

Any expression expressed exclusively by proto-membership and without employ-

ing bound set variables is called a proper expression. Any proposition has a

proper expression of i t
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(5.3) Set-theoretical images.

(5.3.1) Definition. Any set-theoretical expression 53 is called the set theoretical

image of a proper expression 2Ϊ, if and only if we obtain 53 by replacing proto-

membership in 9C by membership and all the bound variables X, Y, Z,

in 3X by their corresponding set variables x, y, z, .

(5.3.2) Any proper expression has a definite set-theoretical image. For any

proper expression $, we denote its set-theoretical image by |9t|.

(5.3.3) Any set-theoretical expressions, especially the set-theoretical images of

any proper expressions, define properties modulo equality with respect to any

variables.

Proof. By (5.1.10).

(5.3.4) If H and 53 are proper expressions, so 21Λ53, BV©, and 2l-»53 are

also proper expressions, and | « Λ » | , |HV©|, and |H->©| are | « | Λ | © | ,

\%\ V [ SB (, and I $*[-*! 53 I respectively. If 91 is a proper expression, so ^% is

also a proper expression, and | -?%\ is -H$l|. If %{T) is a proper expression,

so VX %(X) and 3X*H(X) are also proper, and | VX- U(X)\ and \3X n(X)\

are V#|9U#)| and 3#|9C(#)| respectively, where -X" and Λ: do not occur in U(T).

(5.3.5) Remark. Although set-theoretical images are defined only for definite

expressions, they are practically defined whenever the expressions are definite

except for nomination of bound variables. Accordingly, we can make use of

notations such as | A s 5 | , |i4 = B|, |</(A)|, \AσB\, etc.

(5.4) Inclusion and set-theoretical inclusion.

(5.4.1) Definition: I ς y f V Z ( Z E Z - Z e Y). Any object X is called a

object of y or to be included in Y if and only if every member of X is a

member of Y.

(5.4.2) I S y->j£e Y. (Proto-inclusion implies inclusion.)

Proof. Let X be any subobject of an object Y. Take any member S of

X. Then, S is equal to a suitable proto-member T of Xf which is surely a

proto-member of Y by (1.2.2). Accordingly, S is equal to the proto-member

T of Y, i.e. S<BY. Hence K F .

(5.4.3) Definition; The binary relation ! l = Y| i.e. Vs($£ΞX-+s<=γ) is called
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set-theoretical inclusion. Any object X satisfying \X£ Y\ is called a set-theoretical

subobject of Y.

(5.4.4) XQY-* |A"S Y|. (Inclusion implies set-theoretical inclusion.)

(5.4.5) J c j and |Xfi X|. (Reflexivity of inclusion and of set-theoretical in-

clusion.)

( 5 . 4 . 6 ) J c c 7 - > l c 7 a n d \X*Y\ Λ i Y £ Z | - -> \X^Z\. (Transitivity of

inclusion and of set-theoretical inclusion.)

(5.4.7) XΞr γ = . i c r A Γ c l (Two objects are of equal extent if and only

if each one of them is included in the other.)

(5.4.8) X=Y^X^Y. (Equality implies inclusion.)

Proof. By (4.11.2) and (5.4 7).

(5.4.9) X^Y = χτis Y. (Any object X is a minor object of another object

Y if and only if X is an object of equal extent with some subobject of Y.)

Proof. Let X be a minor object of Y. Take an object Z satisfying

Z{T; T€ YΛ T€= X} by (1.3.1). Evidently Z S Y. Moreover, we assert XcrZ:

Namely, to show I ς Z , take any member U of X. Then, ί/ is a member of

the object Y which includes X. Accordingly, U is equal to a proto-member T

of Y. Moreover, T s l b y (4.10.1). Accordingly TϊZ, so *7eZ. To show

conversely Z c j , take any member U of Z. Then, £/ is equal to a proto-

member T of Z. Since the proto-member T of Z is a member of X, £7 is equal

to the member T oί X i.e. ί / e l again by (4.10.1). Accordingly, Z - Z holds

by (5.4.7). Hence X^cγ,

Conversely, let X be an object of equal extent with a subobject W of Y.

Then, Wc Y by (5.4.2), so X itself is included in Yby (5.4.7) and transitivity

of inclusion.

(5.4.10) # c v ΞΞ ΛΓ = G ^ and # c ^ - 3Z(ΛΓ= 2Λ2Sj>). (Any set xis included in

another set v if and only if x, is equal to a subobject Z of y, or, if and only if

x is equal to a producible subobject 2 of y.)

Proof If we assume in the proof of the preceding theorem further that

X and Y are producible objects and denoted by x and y respectively, then the

object Z i$ also a producible object by (3.2.3), sinςe Z is a subobject of the
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producible object y. Consequently, x = Z by (4.12.1). Hence, x^y implies

x-^y and 3z(x = z/\z£y).

Conversely, if x is equal to a subobject Z of yy then x-Z by (4.11.2), so

x^y by (5.4.9).

(5.4.11) xQy = xQ=y and xQy s 3 Z ( # G 2 Λ 2 =j>). (Any set x is a minor

object of another set y if and only if x is a subobject of an object Z which is

equal to y, or, if and only if x is a subobject of a set 2 which is equal to y.)

Proof. At first, let any set Λ be a minor object of another set y. By

(3.2.11), take a producible union-object z of x and y. Clearly jySz, so yQz

because proto-inclusion implies inclusion by (5.4.2). To show z czy, take any

member S of z. Then, S is equal to a proto-member T of z. The proto-

member T of the union object z of x and y is a proto-member of x unless it

is a proto-member of y. So, T e # unless Tejy, because proto-membership

implies membership by (4.9.2). Since x^y, T is a member of y even when

T(=x. So, T G ^ anyway. Accordingly S e y by (4.10.1). Hence 2~j> by

(5.4.7), so, z-y by (4.12.1). Since clearly x£z, x is a subobject of the set

z which is equal to y.

Conversely, let x be any subobject of an object Z which is equal to y.

Then, Λ c Z a n d Z^y hold, since proto-inclusion as well as equality implies

incusion by (5.4.2) and (5.4.8). Hence xQy by transitivity of inclusion.

(5.4.12) # c y = | # s Yi. (Inclusion is equivalent to set-theoretical inclusion

for sets. More precisely, any set is a minor object of an object if and only if

the set is a set-theoretical subobject of the object.)

Proof. Since inclusion implies set-theoretical inclusion by (5. 4. 4), we have

only to show that | # S Y | implies XQY.

To show this, assume 1#£ Y|. Any member Z of x is equal to a proto-

member W of x. By (3.2.3), the proto-member W of the set x is producible,

and it is a member of x by (4.9.2). Accordingly W<ΞY, SO also Z e F b y

(4.10.1). Hence xQY.

(5.4.13) x = y, x-y, and \x&y\ are equivalent to each other.

Proof By (4.10.2), (4.12.1), and (4.12.2),
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(5.5) Set-theoretical satellites.

(5.5.1) \Xeey\ Ξ Z ε ε v .

Proof. \X€€y\ implies X&<=y evidently. Conversely, let X be any

member of a member U of y. Then, U is equal to a proto-member V of y.

The proto-member F of the producible object y is a producible object by (3.2.3),

so U is also a producible object by (5.1.13). Hence \Xίίy\ holds.

(5. 5.2) I G G Y ΞΞ X <Ξ € Y. (Any object is a member of a member of another

object if and only if the former is a member of a proto-member of the latter.)

Proof. Since proto-membership implies membership by (4.9.2), X e € Y

implies I G E Γ , Conversely, let X be any member of a member U of Y

Then, £7 is equal to a proto-member V of Y. Since the member X of £7 is

also a member of F by (4.10.2), X is a member of the proto-member F of Y.

(5.5.3)

Proo/. By (3.2.3), (4.9.2), (5.3.3), and (5.4.12). Similar to the proof of

(5.5.1).

(5.5.4) X^&Y = X^sY. (Any object is a minor object of a member of

another object if and only if the former is a minor object of a proto-member

of the other.)

Proof By (4.9.2), (5.4.8), and transitivity of inclusion. Similar to the

proof of (5.5.2).

(5.5. 5) ιc(p) -+\κ(p)\. (Any producible /c-object is also a set-theoretical ^-object

Here we call any object P satisfying |«(JP)| a set-theoretical κ-object.)

Proof. Let a set p be any κ-set i.e. any producible /c-object. To show that

p is also a set-theoretical ^-object, take any set s satisfying |s€ €/>|. Then,

by (5.5.1) and (5.5.2), s is a member of a proto-member of p, so s is equal

to a proto-member T of a proto-member of i>. Since £ is a κ-set, T is a sub-

object of a proto-member €7" of p. The proto-member £7 of the set p is a pro-

ducible object by (3.2.3). Since s is equal to subobject T of the producible

object U, | s S t / | by (5.4.10) and (5.4.12). By (4.9.2), the proto-member U

of p is also a member of ί ; so, s is a set-theoretical subobject of the pro-

ducible member U of p. Hence, p is a set-theoretical ^-object by (5.3.4),
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(5.5.6) π(β)->\oc(p)\. (Any producible α-object is also a set-theoretical a-

object. Here we call any object P satisfying \a(P)\ a set-theoretical a-object.)

Proof. Let p be any α-set i.e. any producible ^-object T o show that p is a

set-theoretical α-object, take any set 5 satisfying | s S € £ | . Then, by (5.5.3) and

(5.5.4), s is a minor object of a proto-member V of p. The proto-member V

of the set p is a producible object by (3.2.3) , so the minor object s of V is

equal to a subobject T of F by (5.4.10). Since _£ is an a-set, the subobject T

of the proto-member V of P is a proto-member of a proto-member W of i>.

So, S G FF and W^β by (4.9.2) . Accordingly | s € €./>i by (5.5.1) . Hence p

is a set-theoretical α-object by (5.3 .4) .

(5. 5. 7) σ(β) -> I σ(p)\. (Any producible ^-object is also a set-theoretical <τ-object.

Here we call any object P satisfying \a{P)\ a set-theoretical a-object.)

Proof. Let p be any j-set i.e. any producible ^-object. Then, p is a ^-object

as well as an ^-object by (1.5.2) and (1.5.9), so the producible object p is a

set-theoretical ^-object as well as a set-theoretical α -object by (5.5.5) and

(5.5.6). Since any object which is a set-theoretical ^-object as well as a set-

theoretical ^-object is a set-theoretical </-object by (5.3.4), the set p is a set-

theoretical a- object.

(5.5.8^ \χκhi -> x~κ h, \yoch\-*y —oclh and \zσh\-> z — ah. (Any producible set-

theoretical constituent of a set is equal to a constituent of the set, any pro-

ducible set-theoretical ancestor of a set is equal to an ancestor of the set, and

any producible set-theoretical satellite of a set is equal to a satellite of the set,

Here we call any object X satisfying \XιcY\y \XaY\, or \XaY\ a set-theoretical

constituent, a set-theoretical ancestor, or a set-theoretical satellite of Y respectively.)

Proof. Let three sets x, y, and z be any set-theoretical constituent, any

set-theoretical ancestor, and any set-theoretical satellite of a set h respectively.

Then, by (1.3.2) and (3.2.4), we can take a set p formed by satellites of the

set h, and then we can take a set q formed by constituents of h by (1.5.3)

and (3.2.3), and also a set r formed by ancestors of h by (1.5.10) and (3.2.3).

At first we assert κ(q). To show this, take any proto-member S of a proto-

member T of q. Then, Tith, so, by (1,5.4) and transitivity of κ% S*h i.e. S€q.

Consequently, by reflexivity of proto-inclusion, S is a subobject of the proto-
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member S of p.

Next we assert air). To show this, take any subobject S of a proto-

member T of r. Then, Tah, so, by (1.5.11) and transitivity of #, S<xh. Take

now by (1.4.4) any unit object K of S. Then, by (1.5.12) and transitivity of

#, also Kah i.e. K€r. Since SξK holds by reflexivity of identity, S is a proto-

member of the proto-member K of r.

We assert thirdly σ(p). We can prove this similarly to the above two

proofs by employing (1.2.11) in place of (1.5.4), (1.2.12) in place of (1.5.11),

(1.4.9) in place of (1.5.12), and transitivity of a in places of transitivity of tc

and of a.

h is a set-theortical subobject of a producible members of p, q, and r

respectively. (|fcS€£l, | f tS€g | , and | f tS€r | . ) For, /i is a set-theoretical

subobject of h by reflexivity of set-theoretical inclusion, and h is a member of

i>, #, and r by (4.9.2) and reflexivity of a, £, and <*.

Since the £-set <7 is a set-theoretical /̂ -object by (5.5.5), the αr-set r is a

set-theoretical αr-object by (5.5.6), and the σ-set p is a set-theoretical <;-object

by (5.5.7), x, y, and z are set-theoretical subobjects of some producible

members of q, r, and p respectively, by (5.3.4). ( ]#S€# | , ljyS€r|, and

U S € ^ | . ) By (3.2,3), (5.5.3), and (5.5.4), AT, ̂ , and 2 are minor objects of

some producible proto-members of q, r, and p respectively. So, by (5.4.10),

x, y, and z are equal to some subobjects of a constituent, of an ancestor, and

of a satellite of h respectively. Accordingly, by ί 1.5.5), (1.5.11), (1.2.12), and

transitivity of K, of a, and of σ, the sets x, y, and z are equal to a constituent,

to an ancestor, and to a satellite of h respectively.

(5.6) Some other set-theoretical images.

(5.6.1) \0(p)\^0(P). (Any set is a set-theoretical null object if and only if

it is a null object. Here we call any object P satisfying \&{P)\ a set-theoretical

null object.)

Proof. Evidently, 0(p) implies \8(p)\ for any set p. Conversely, if any

set p is not a null object, then p must have some proto-members, which are

producible members of p by (3.2.3) and (4.9.2), so p can never be a set-

theoretical null object. Hence, 10(^)1 implies 0(p) for any set p.

(5.6.2) U{XtY}-»\ίs(s<=U=.s = X\/s=Y), especially U{X} - Vsίse U =
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s —X). (Any pair object of two objects X and 7 is a set-theoretical pair

object of X and Y, especially any unit object of an object X is a set-theoretical

unit object of X Here we call any object U a set-theoretical pair object

of X and Y or a set-theoretical unit object of X if and only if U satisfies

Vs(s e C / = . 5 = Z V s = y ) or Vs(s e £/ = s = X) respectively.)

Proof, Let £/ be any pair object of X and Y. To show that U is a set-

theoretical pair object of X and Y, take at first any producible member s of

Z7. Then, s is equal to a proto-member T of Z7. Since the proto-member T of

the pair object U of X and Y must be identical with X or with Y, 5 must be

equal to X or to Y by (1.3.5). Conversely, if we take any set s which is

equal to one of the objects X and Y, then by reflexivity of identity, it is equal

to a proto-member of U. Consequently set/. Hence s e U = » s = XVs= Y

holds for any set s.

Especially, by taking Y as X, we know that any unit object U of X is

also a set-theoretical unit object of X

(6) A theory of sets

Any proposition, expressible in terms of membership and equality only

with respect to exclusively set variables, can be regarded as a set-theoretical

proposition. Any provable set-theoretical proposition can be regarded as a

set-theoretical theorem. The set-theoretical image of any proposition containing

no free variables other than set variables is evidently a set-theoretical pro-

position. Furthermore, we shall prove in this Chapter that the set-theoretical

image of any theorem is a set-theoretical theorem, assuming that the original

theorem contains no free variables at all. In this Chapter, we shall prove also

that all the axioms of the Zermelo set-theory except the axiom of choice are

set-theoretical theorems. We shall prove further that the axiom of fundierung

is also a set-theoretical theorem.

(6.1) Set-theoretical images of the axioms.

(6.1.1) The set-theoretical image of any axiom is a set-theoretical theorem.

Proof. According to (5.3.4), the set-theoretical image of an axiom is a

formula of the form 3pVx(χeΞp = - \xσm\ A\Vl(x)\).
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To show this formula for any set m> take an object P satisfying

P{T; Tσm/\\Tσrn\/\\yL(T)\}* Because P is clearly a subobject of any object

of satellites of the set m, it is a producible object by (1.3.2), (3.2.3), and

(3.2.4), so it can be also denoted by a small letter p.

We assert \fx{x&p = \xΰm\ ΛI 9C(#)|) : To show this, take any producible

member x of p. Then, x is equal to a proto-member Z of p. Z satisfies I Zarn \

and |3t(Z)|. Since set-theoretical images define properties modulo equality by

(5.3.3), so also x satisfies \xom\ and |H.U)|. Conversely, take any producible

set-theoretical satellite x of the set m satisfying |2t(#)|. Then, by (5.5.8), x

is equal to a satellite T of m. Since set-theoretical images define properties

modulo equality by (5.3.3), T satisfies \Tam\ and |«(Γ) | . Accordingly

Since x is equal to the proto-member T of p, holds

(6.1.2) The set-theoretical image of any provable theorem containing no free

variables is a set-theoretical theorem.

Proof. Let £ be any provable theorem. Take any proof figure of %, and

replace all the propositions in the proof figure by their set theoretical images

and all the free variables by their corresponding set variables. Then, the proof

figure is transformed into a right proof figure of the set-theoretical image \%\

of %. For, by virtue of (5.3.4), every right inference is transformed into a

right inference, and moreover, by (6.1.1), every axiom is transformed into a

provable proposition. Hence, the set-theoretical image \%\ of any provable

theorem % is also provable.

(6.1.3) The set-theoretical images of mutually equivalent propositions are also

mutually equivalent with respect to free set variables.

Proof. If U and 93 are mutually equivalent, then W = 93 is provable. By

(6.1.2), I «. = © Γ is also provable, which implies | « Γ s | © |* by ( 5 3 4 > ; where

| ^ = 53|*, I9C |*f and | © | * are the formulas obtained by replacing all the free

variables of |3t = ©l, | H | , and | © | by their corresponding free set variables

respectively.

(6.1.4) Remark. By (6.1.3), we can now talk of the set-theoretical image of

any proposition with respect to free set variables without assigning its definite

expression.



(6.2) Equality.

A THEORY OF MATHEMATICAL OBJECTS 157

(6.2.1) x=*y = \fp{x&p=y&p) i.e. x=y = \χssy\. (Two sets are equal to each

other if and only if they are, for every set, simultaneously members or no

members of it.)

Proof. x = y implies Vp(x<=p = y<=p) by (4.10.1). Conversely, by the

set-theoretical image of (1.3.4), Vp(x &pΞ=y^ρ) implies \x^y\ which is

equivalent to x-y by (5.4.13).

(6.2.2) x-y = Vs(se# s s&y). (Two sets are equal to each other if and

only if every set is always simultaneously a member or no member of both of

them. This theorem implies the axiom of extensionality with respect to

membership and equality.)

Proof. By (5.4.13).

(6.2.3) x-y -* - H(x) = H(y), where H(t) is a set-theoretical proposition. (The

second axiom of equality with respect to membership and equality.)

Proof. By (6.2.1) and the set-theoretical image of (1.3.5).

(6.3) Term-symbols.

In the theory of objects, we can not introduce term-symbols of the form

{T; %(T)} as we have pointed out in (1.2.9). However, by virtue of (6.2.1),

(6.2.2), and (6.2.3), we can adopt term-symbols of the form {t; U(t)} in our

theory of sets, assuming that there exists surely a set p satisfying p{t %(t)).

Here we denote by p{t; B(f)} the set-theoretical proposition VKfe £ = $(*)).

(6.3.1) pit; %(t)}Aq{t; «(*)}• -> -%>(p) = 55 (<?), where 53 (5) is a set-theoretical

proposition.

Proof By (6.2.2) and (6.2.3).

(6.3.2) When it is certain that there is at least one setp satisfyingp{t;

we know by (6.3.1) that, in our theory of sets, any set q satisfying q{t

does not show any distinction from the set p> so we can consider as if there

is one and only one set p satisfying p{t %{t)}.

Definition: When it is certain that there exists a set p satisfying

p{t; Kit)}, we denote the set p by {t; «(ί)>. In this case, we call {t; %(t)}
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an admissible term-symbol.

(6.3.3) Any symbol of the form {t; \ tam\ι\ %(t)} is an admissible term-symbol,

assuming that %(t) defines a property of t modulo equality.

Proof. Similar to the proof of (6.1.1), by making use of (1.3.2), (3.2.3),

(3.2.4), (5.3.4), and (5.5.8).

(6.3.4) Remark. Here we would like to fix the meaning of set-theoretical

images of propositions, in which term-symbols occur. Namely, the set-theoretical

image |2ί(t)| containing a term-symbol t denotes the proposition obtained by

replacing all the free variables t of |9X(f)l by t, where the free variable t does

not occur in |H(s)| if s is different from t.

(6.3.5) Remark. It is possible that free variables occur in a term as para-

meters. To denote explicitely parameters x, , z of a term, we denote them

like tU, , z).

(6.3.6) x=y

Proof. By (6.2.3) and reflexivity of equality.

(6.4) The null set.

(6.4.1) 0(p)ί\0(q) ~+p = q. (All the null objects are equal to each other.)

Proof* If p as well as q has no proto-members at all, they are sets of

equal extent, so they are mutually equal by (5.4.13).

We do not need to assume the two null objects are producible, because

every null object must be a producible object by (1.8.2) and (3.2.2).

(6.4.2) 0{p)=zp{t\\tam\N'7\tam\).

Proof. By (3.2.3) and (4.9.2).

(6.4.3) Definition: The term-symbol {t) \tam\ί\-7\tom\), which is proved to

be admissible by (6.3.3) and which denotes a definite set independent of m by

(6.4.1) and (6.4.2), is called the null set and is denoted by 0.

(6.4.4) ,0(0) and s$JΪ.

Compare with (5.6.1). Proof. By (6.4.2).



A THEORY OF MATHEMATICAL OBJECTS 159

(6. 5) Unit sets and pair sets.

(6.5.1) {t; t = x} is an admissible term-symbol.

Proof. By (1.4.4) and (3.2. 3\ there exists a set u satisfying u{x). By

(5.6.2), u{x) implies u{t / = #}, so {t; f = #} is an admissible term-symbol.

(6. 5. 2) Definition: The set {t; ΐ = x) is denoted by {x} and is called the unit set

of x.

(6.5.3) ίeWΞί = i

(6.5.4) {t; t = xVt=y} is an admissible term-symbol. (The pair-set axiom.)

Proof. For any two sets x and y, there is a set u satisfying u{x, y) by

(3.2.10). By (5.6.2), u{x, y) implies u{t t = x Vί =^}, so {ί ί = * V ί = .?}

is an admissible term-symbol.

(6.5.5) Definition: The set {t; t = xV t =y} is denoted by {x, y) and is called

the pair set of x and y.

(6. 5.6) Remark. Similarly, we can also define the set {xu ' * * , Xn) of ^-members

Xu ' * * , #«.

(6.5.7) ttΞ{x, y} ΞΞ . t = xVt = y.

( 6 . 5 . 8 ) {ΛΓ, A;} = {Λ:}.

Proof. By ( 6 . 2 . 2 ) , ( 6 . 5 . 3 ) , a n d ( 6 . 5 . 7 ) .

( 6 . 5 . 9 ) {x} = {y} Ξ A -V.

ProoΛ By (6.2.2), (6.5.3), and reflexivity, symmetricity, and transitivity

of equality.

(6.5.10) {x, y)-{u,v) ^{χ~ul\y-v \!*x~vf\y~ u).

Proof. By (6.2.2), (6.5.7), and reflexivity, symmetricity, and transitivity

of equality.

(6.6) Union.

(6.6.1) {t; ί^χ\lt^Ξy) is an admissible term-symbol.

Proof. For any two sets x and y9 there is a set z satisfying z{T; T$x

\'T$y} by (3.2.11). To show z{t; ttΞxVteΞy}, take any producible member
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t of z. Then, t is equal to a proto-member T of z, which must be a proto-

member of one of the two sets x and y. Accordingly, t is equal to the proto-

member T of x or of y, i.e. t is a member of x or a member of jy. Conversely,

if any set t is a member of x or of .y, £ must be equal to an object T which is

a proto-member of x or of y, so T is a proto-member of z. Accordingly, t is

equal to the proto-member T of zt i.e. ί e z .

Hence {t; t^xVt^y) is an admissible term-symbol.

(6.6.2) Definition: The set {t t^xWt^y} is denoted by xϋy and is called

the union of x and jy.

(6.6.3) *e(

(6.7) Aussonderung.

(6.7.1) #<=.>>-» \x<jy\. (Any member of a set is a set-theoretical satellite of

the set.)

(6.7.2) \x£y\-*\xσyl (Any subset of a set is a set-theoretical satellite of the

set. Here we call any producible set-theoretical subobject of a set simply a subset

of the set.)

(6.7.3) \xay\/\\yσz\ - -*|#<;2|. (Any set-theoretical satellite of a set-theoretical

satellite of a set is a set-theoretical satellite of the set.)

Proof of (6.7.1), (6.7.2), and (6. 7.3). These are the set-theoretical images

of (1.2.11), (1.2.12), and a modification of (1.2.14), respectively.

(6.7.4) {t ί e w z Λ ^ U ) } is an admissible term-symbol, assuming that ^i(t) is

a set-theoretical proposition. (The axiom of aussonderung with respect to

membership and equality.) Especially, {t; t<=x/\t^y} is an admissible term

symbol.

Proof. By (6.3.3) and (6.7.1).

16.7.5) Definition: The set {t\ t<=xΛtGy} is denoted by xΠy and is called

the intersection of x and y.

(6.7.6) ί e (xΠy) = . t

(6.7.7) U; | ί S wι|ΛH(ί)> is an admissible term-symbol, assuming that %{t)

is a set-theoretical proposition. Especially, {t | ί S # | } is an admissible term-
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symbol. (The power-set axiom.)

Proof. By (6.3.3) and (6.7.2).

(6. 7. 8) Definition: The set {t | ί:S x\) is called the power set of x and is denoted

by $ U ) .

(6.7.9) f e φ U ) = | fS#i, and i G ? U ) = / c x ,

Proo/ 0/ £/*£ second formula. By (5. 4.12).

(6.7.10) {t; 3y(t^y ί\y^ x)) is an admissible term-symbol. (The sum-set

axiom.)

Proof By (6.3.3), (6.7.1), and (6.7.3).

(6.7.11) Definition: The set {t 3y{t ejy ί\y e x)} is called the sww set of * and

is denoted by 3 U ) .

(β. 7.12) i e etΛΓ) = 3y(* G j Ά ^ e ^ ) , and t e Slff) = f e G #

Proof of the second formula. By (5.5.1).

(6.8) Relations and functions.

Any set-theoretical proposition containing some free variables can be con-

sidered as a relation, and also any term containing some free variables can be

considered as a set-theoretical function. However, these relations and functions

can not be taken as sets in general. In order to consider sets which represent

relations and functions, we introduce the notions, ordered pairs, ordered n

tuples, and direct products of sets, as usual.

(6.8.1) Remark. We can define the ordered pair <#, v> as the term denoting

the set {{x}, {x,y}} as usual. Moreover, we can further define the ordered n-

tuple <#!, ' - , Xn? in a natural way. We can also prove the formula

<#, y} = <w, v} = ' x = u ί\y = υ by (6. 5. 8), (6. 5. 9), (6.5.10), and symmetricity and

transitivity of equality. According to this definition, we can prove that x as

well as y is a set-theoretical satellite of <#, v>. Namely, by (6.5.7) and re-

nexivity of equality, x as well as y is a member of the member {xty} of (x, v>.

So, ΛΓ as well as y is a set-theoretical satellite of <#, jy> by (β. 7.1) and (6.7.3).

Furthermore, we can prove also that <#, ;y> is a set-theoretical subobject of the

power set of any set which contains x and y as members. Namely, take any

set ιv which contains x and y. Then, by (4.10.1), (6.5.3), and (6.5.7), {x'ί as
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well as {x, y) is a set-theoretical subobject of w> so <%, jy> is a set-theoretical

subobject of φ(w) by (4.10 1), (6.5.7), and (6.7.9). Accordingly, <*, ̂ > is

also a set-theoretical satellite of ty(tv) by (6.7.2).

(6. 8.2) The term-symbol {<M, V> we#Ae>e>>} is admissible. Here the term-

symbol naturally stands for {t 3w#(ί = <w, #> Λ « e x Λ # e jy)}.

Proof. Take any ordered pair <«, ι;> of a member « of # and a member

t; of x. Then, <w, i/> is a set-theoretical satellite of s£UU.y) by (6.6.3) and

(6.8.1). Accordingly, by (6.2.3) and (6.3.3), {<u,v> U<ΞX Λ υ^y) is an

admissible term-symbol.

(6. 8.3) Definition: The set {<«, v> u e Λ; Λ V e >;} is called the direct product of

# and ̂  and is denoted by xxy.

(6.8.4) <«, t;>e U x ^ ) Ξ U*EX/\ v<=y, and

<«, #> Λ

Proof. The second formula holds evidently. The first formula can be

proved by the second formula, (4.10.1), (6.8.1), and reflexivity of equality.

(6.8.5) Remark. Similarly, we can define the direct product of w-factors.

(6.9) Natural numbers.

In our theory of sets, natural numbers are introduced quite naturally by

taking 0 as the number zero, and the unit set {x} of a number #as the number

next to the number x. Since we can consider a set of all the natural numbers

as shown in (6.9.6), the axiom of infinity holds in our set theory.

(6.9.1) Definition: Any set x satisfying IK#)| is called a natural number.

(6.9.2) IK0)|. (Zero is a natural number.)

Proof. By (5.6.1), (6.4.4), and the set-theoretical image of (1.8.2).

(6.9.3) |K#)|-*|K{#})|. (The unit set of any natural number or, in other

words, the number next to any natural number is also a natural number.)

Proof. By (1.4.4) and (3.2.3), we can take a set u satisfying u{x). By

(5.6.2) and (6.2.1), u satisfies V S ( S G « = | S S X | ) , SO, also \u{x)\ by (5.3.4).

Consequently, the set-theoretical image of (1.8.4) shows that u is a natural

number if x is so. On the other hand, by (5.6.2) and (6. 5.3), we have | u s {χ}\
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which implies u = {%} by (5.4.13). Hence, by (6.2.3), {%} is a natural number

if x is so.

(6.9.4) D't {x), (Zero is a number next to none.)

Proof, x is a member of {x) by (β. 5. 3) and reflexivity of equality, whereas

x is not a member of 0 > y (6.4.4), so 0 Φ { * } by (6.2.2).

(6.9.5) V'(t)\ Ξ \tσ0\. (Any set is a natural number if. and only if it is a set-

theoretical satellite of the null set.)

Proof By (6.9.2) and the set-theoretical image of (1.8.3).

(6.9.6) {t; |^U)|} is an admissible term-symbol. (This theorem implies the

axiom of infinity with respect to membership and equality.)

Proof. By the set-theoretical image of (1.8.5).

(6.9.7) Definition: The set {t', |^U)|} is called the set of natual numbers and is

denoted by N.

(6.9.8) # e N = \Hx)\.

(6.9.9) 0ζΞp/\\fx(χ(Ξp-*{χ}ξΞp) . - > | N s ί l . (For any set p, if 0 is a member

of p, and {%} is a member of p for any member x of p> then N is a subset

at p.)

Proof. Take any set p satisfying 0<^p and \fx(x<=p -> {χ}(Ξp). Then, by

(4.10.1), (5.6.1), (6.4.1) and (6.4.4), we can show y/x(\0(x)\-»xep), and

by (4.10.1), (5.3.4), (5.4.13), and (6.5.3), we can also show Vvz(|vUM

ί\z^:p -*y&p). Consequently, by (5.3.4) and the set-theoretical image of

(1.8.10), \^(u)\^u(=p holds for every u, which implies |N£jf>l by (6.9.8).

(6.9.10) Complete induction. 11(0) and V*W*)->«({*})) imply «(«) for

any natural number w, assuming that %(u) is a set-theoretical proposition.

Proof. Let %(u) be any set-theoretical proposition satisfying %(0) and

Vχ(%(x)-*yL({x})). Then, by (6.3.3), {t \ \ta0\ Λ«( ί ) } is an admissible term-

symbol, which we will denote by nt. By the set-theoretical image of (1.2.13),

0 is a member of m, and by (5.3.4), (6.5.3), (6.7.3), and the set-theoretical

image of (1.4. 9), {x} is a member of tn for any member x of nt. Consequently,

by (6.9.9), N is a set-theoretical subobject of m, so every natural number u
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satisfies %{u) by (6.9.8).

(6.9.11) Remark. (6.5.9), (6.9.2), (6.9.3), (6.9.4>, and (6.9.10) show that

we can construct a complete theory of natural numbers in our theory of sets.

(6.9.12) # e N = x = 0 V3y(y e NΛΛΓ = iy}). (Any set is a natural number

if and only if is equal to the null set or to the unit set of a natural number.)

Proof. By (4.10:2), (5.3.4), (5.4.13), (5.6.1), (6.2.3), (6.4.1), (6.4.4),

(6.5.3), (6.9.8), and the set-theoretical image of (1.8.9).

(6.9.13) j f ε N Ξ ϊ G ε N , i.e. N = ©(N). (Any set is a natural number if and

only if it is a member of a natural number. Namely, the sum set of N is N.)

Proof. By (5.3.4), (5.4.13), (5.5.1), (6.5.3), (6.7.1), (6.7.3), (6.7.12),

(6.9.3), (6.9.8), and reflexivity of equality.

(6. 9.14) Remark. The ordering of the natural numbers can be defined very

easily as x<y stands for \xκy\. We do not go into details in this matter.

(6.9.15) Remark. We do not discuss here in detail on recursive functions and

recursively defined relations. However, it should be remarked here that we

can define functions as sets recursively, if it is certain that their value domains

can be considered as definite sets. Moreover, we can take the parameters of

these functions as variables of these functions, if they are restricted to definite

sets. The same holds also for recursively defined relations.

There is no difficulty to use the usual function notations such as fix),

fix, v), etc. as terms. However, it should be noticed here that in our theory

of sets, we can not define functions or relations as sets recursively in general.

For example, it seems impossible to prove that there is a function fix) of a

natural-number parameter x satisfying fiίd) = 0 and /({*}) = {ul \uσftx)\}.

(6.10) Fundierung.

In our theory of sets, also the axiom of fundierung holds in a somewhat

generalized form.

(6.10.1) Vx3yix<Ep -> - \yκ€χ\ f\y<=p) -+p = 0, especially

\fx3yix<=p -> >y<= x A y<=p) -+p = 0. (The second formula is the axiom of

fundierung. As for the meaning of the first formula, see (2.2.2).)

Proof. The first formula implies the second one by the set-theoretical



A THEORY OF MATHEMATICAL OBJECTS 165

image of (1.5.6). We shall prove the first formula in our theory of objects.

Take namely any set p satisfying \fxBy(x&p -» \y fc € x\ ί\y ^p), and then

take an object Q satisfying Q{T; Tap/\T<Ξp). Q is surely a subobject of any

object formed by satellites of p, so Q is producible by (1.3.2), (3.2."), and

(3.2.4). Consequently, Q is regular by (3.2.7).

Now we prove VXBUiXϊQ-* - UfceX/\U€Q): Namely, take any proto-

member X of Q. Then, the proto-member X of the set Q is a producible object

by (3.2.3), and X<Ξp by definition. Accordingly, by our assumption, there is

a member y of p, which is also a set-theoretical constituent of a member s of

X. The member s of X is equal to a proto-member Tof X. Since \yκs\ defines

a property of s modulo equality by (5.3.3), holds \yιcT\. Moreover, the proto-

member T of the set X is a producible object by (3.2.3); so, by (5.5.8), the

set-theoretical constituent y of T is equal to a constituent Z7of T. By (4.10.1),

U^p. On the other hand, the proto-member X of Q is a satellite of p by

definition, so the constituent U of the proto-member T of X is a satellite of p

by (1.2.11), (1.5.3), and transitivity of a. Consequently, U€ Q by definition.

Hence, for any proto-member X of Q, there is a proto-member of Q (U for

example) which is a constituent of the proto-member T of X.

Because QζQ by (2.1.2) and reflexivity of £, the regular object Q must be

a null object.

Now we prove 0(p): Namely, if there were a proto-member W of p, W

would be a satellite as well as a member of p by (1.2.11) and (4.9.2), so W

would be a proto-member of Q contradictory to the fact that Q is a null object.

0(p) implies p=0 by (6.4,1) and (6.4.4).

(β. 10.2) |p(^)|. (Every set is set-theoretically regular, i.e. every set p satisfies

\p(p)l)

Proof. This follows trivially from (4.10.2), (5.3.4), (5.4.13), (6.4.4), and

(6.10.1).

(7) Supplementary remark

To show relative consistency of our object theory with respect to the Fraenkel

set-theory, we prove that all the interpreted propositions of our axioms are

provable in the Fraenkel system Φ without the axiom of choice. Objects and

proto-membership are interpreted as sets and membership respectively. We
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use small letters for sets of Φ. Inclusion " £ " is defined naturally by

xcy ΞΞ Vs(sG^->5Gy), and the notion of satellites in Φ is defined by

xay = y/p(d(p) Λjy£ ^p • -* x Q e_£), where J(^>) stands for

We show that the following theorem holds in 0.

Theorem. 3p>ίx{x&p = M A W A ; ) ) .

Proof. For any set # of $, there are well defined sum set &(x) and power

set $(#) of ΛΓ. Also, for any pair of sets x and .y of Φ} there is a well defined

pair set {x, y) of them. Accordingly, we can define the ordered pair <#, ;y>

and the unit set {x). Furthermore, in Φ there is also the set of all the natural

numbers N = {0, {0}, {{0}}, }. We can also define the transitive relation

" < " on N which satisfies x<{y} = x<yVx = y.

On the domain N, we define functions /(#, t) and gix, t) satisfying the

conditions: / U , 0 ) = # , /(*,{*}) = </(*,*)}; and g(x,0) = {x),

g(χy {t}) = (&(g{x ,t)). Namely, fix, t) and g(x, t) are y and z defined by the

following conditions respectively:

> <Eht\\Tuv(u<t N<u,υ> €ih • -*<{«}, {v}>(=h) • -*<tty>eh),

Existence and uniqueness of y and z for every natural number t can be proved

by complete induction.

By the axiom of replacement, we define A(#) = {fix, t) t e N}, and

B(ΛΓ) = {̂ T(ΛΓ, ί) ί e N } . Accordingly, we A(2) holds if and only if ^ = 2 or

zt; is a unit set of a member of Aiz). Evidently, W G A ( Z ) implies {w}e AU).

Also holds m e e ( B ( m ) ) and that Λ Γ G G © ( B ( ^ ) ) implies xe<S(B(m)).

Again by the axiom of replacement, we define dm) = {$(#); ΛΓ e β(B(m))}.

Evidently, s c e ®(C(m)) as well as s G 6 g ( C ( w ) ) implies seS(C(m)). Once

again by the axiom of replacemement, we define Ό(m) = {A(z) 2G @(C(m))}.

Now we prove that S C G @ ( D ( » I ) ) implies seg(D(»i)) as well as

S £ G S ( D ( W ) ) : Namely, take any subset s of a member &/ of ®(D(wι)).

Then, ίί; is a member of a member A(z) of D(»ί), z being a member of

S(C(wi)). The member ^ of A(z) is a unit set unless w = z. If w is a unit

set7 the subset s of zi; is 0 or w itself. In the case s = 0, hold sQz and
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2Gg(C(m)), S O S G £ ( C ( » I ) ) . Accordingly A ( S ) G D ( W ) , SO s e e D ( m ) i.e.

seS(D(»i)). In the case s^w, holds s e δ ( D ( w ) ) because ii e @(D(ιw)).

On the other hand, if w-z, then s c ^ and zeβ(C(m)), so se6(C(m)) since

s c e δ ( C ( w ) ) implies seS(C(w)) . Because seA(s), holds s £ G D ( w ) i.e.

se6(D(m)) . Hence S G - S ( D ( » I ) ) anyway. Now, the member 5 of ®(D(m))

is a member of a member A( z) of D(m), z being a member of S(C(m)).

Because s e A U ) implies {s}eA(z), so S E G S ( D W ) .

Next we prove that S G GΞ S(D(m)) implies s c s2(D(w)) : Namely, let

s be a member of a member w of ®(D(m)). Then, w; is a member of a

member A(«) of Ώ(tn), z being a member of S(C(WJ)). The member w of

A (2) is a unit set of a member of A (2) unless w = z. If ^ is a unit set of a

member of A(z), also its member s belongs to A(z), so 5 6 G D ( W ) i.e.

5GΞ S(D(w)). On the other hand, if w = z, then s e e @(C(w)), so s e ®(C(*w)).

Because seA(s), s e e D ( m ) i.e. se©(D(wι)). Hence se(£(D(m)) holds

anyway. Since s£5, holds s ^ e S ( D ( w ) ) .

Thus we obtain 2(S(D(m))). Moreover, holds m c e S ( D ( w ) ) . For:

w e e B ( m ) i.e. w e e(B(m)), because {m} eB(m) by definition. Since w c m,

holds w e e C ( m ) i.e. meβ(C(m)) . Because weA(m), holds w e e D ( m )

i.e. weS(D(»j)). Hence m £ e © ( D ( w ) ) , since m^m.

Assume now xσm. Then, xQ&<&(D(rn)) holds, because 3(β(D(wι))) and

W C G 8(D(w)). However, Λ c e @(D(w)) implies Are B(D{m))} so #£m implies

Because the aussonderung axiom holds in Φ> we can take a set ./> satisfying

. # e S(D(m)) t\xβmΛ5l(,r)). The set £ satisfies evidently

ΛΓ^mΛ?ί(Λ:)), because Λr5m implies *G'S(D(f»)).
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