A THEORY OF MATHEMATICAL OBJECTS
AS A PROTOTYPE OF SET THEORY

KATUZI ONO

Introduction

The theory of mathematical objects, developed in this work, is a trial system
intended to be a prototype of set theory. It concerns, with respect to the only
one primitive noticn “proto-membership”’, with a field of mathematical objects
which we shall hereafter simply call objects. It is a very simple system, because
it assumes only one axiom scheme which is formally similar to the aussonderung
axiom of set theory. We shall show that in our object theory we can construct
a theory of sets which is stronger than the Zermelo set-theory [1] without the
axiom of choice.

«“«

We use capital Latin letters as variables for objects, and the symbol “€”
for proto-membership, the only one primitive notion of our system. Proto-
membership is naturally a binary relation, and any object X satisfying Xe Y
is called a “proto-member” of Y. Objects and proto-membership can be regarded
as prototypes of sets and membership respectively of the ordinary set-theoretical
systems such as the systems of Zermelo, Fraenkel [2], etc. OQur assumption
for proto-membership is much weaker than the assumptions of these systems,
especially in the following two points:

1) We do not assume that for any pair of objects there is an object con-
taining them as its proto-members.

2) We do not assume that every object is completely determined by its
proto-members. In fact, there can be many individual objects having no proto-
members at all.

It is true that the pair-set axiom and the extensionality axiom are indis-
pensable for set theory. We believe, however, it is an important question
worth discussing in detail whether we can establish the notions of sets, member-

ship, and equality in such a way that these axioms hold together with other
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set-theoretical axioms such as the axioms of sum sets, of power sets, of infinity,
or of fundierung. von Neumann [3] proved consistency of the fundierung
axiom with respect to his system, and Gandy [4] proved consistency of the
extensionality axiom with respect to a modified system of the Bernays-Gédel
set-theory [5], [6]. We show in our system that the notions of sets, member-
ship, and equality can be defined in such a way that these axioms are alto-
gether provable with respect to these notions.

Our object theory is founded on a unique principle (1.1.4)” which can be
taken as a generalization of the aussonderung axiom. The logic in which we
describe our system is the usual predicate logic. In describing axioms and
theorems we usually omit universal quantifiers of a formula standing at its
top and having the whole formula as their scope.

For any binary relations 1 and ¢ we employ the relation product “A¢” (See
(1.1.1.).). Binary relations often employed in this work are, for instance, the
primitive notion “€” itself, the “identity =", defined in (1.2.3), and the “proto-
inclusion €”, defined in (1.1.2) as XS YgVS(SE X->SeY), the last two of
which can be regarded as prototypes of equality and inclusion respectively.
Any object X satisfying X< Y is called a “subobject” of the object Y.

Our system of object theory is exactly and formally introduced in Chapter
(1). Here we give a sketch of the outline of our object theory informally.

In set theory, the device of aussonderung of the form 3pVx(xep =~x=m
A %(x)) is powerful enough to avoid well-known contradictions caused by the
abstraction of the form pVx(x<=p = A(x)). Regarding it as a sole generating
principle, however, the controlling power of the aussonderung axiom is too
weak, since in generating a new set p the restriction on its members to those
of a given set m seems too strict. Restriction to members of a given set could
be modified safely by finding out a suitable weaker substitute for membership.
In our axiom scheme, namely, restriction to members of a given set is replaced
by restriction to “satellites” of a given object. Naturally, we have to replace
sets by objects, and membership by proto-membership, so the only assumption
of our system can be expressed as

1 In the numbering of the forms (a), (@, b), and (a, b, ¢) in this work, a, b and ¢
denote the numbers of chapters, sections, and paragraphs respectively. FEach paragraph
is usually a theorem or a definition.
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APVX(XeP = XocMAA(X)),
where XoM denotes that X is a satellite of M. (See (1.1.4).)

We explain now the notion of satellites. Formally, XsY is defined in (1.1.3)
as X0V ZVP(s(P)AY S eP+ > XS eP), where o(P) denotes VS(See P
=See P). To see more closely what is really a satellite of an object M, we
need the notion of “unit objects” of an object M (formally defined in (1.4.3)),
the notion corresponding to the notion of the unit set of a set in set theory.
Since we assume nothing corresponding to the extensionality axiom, we have
to say like “a unit object of a given object” instead of saying like “the unit
object of a given object”.

Any subobject of an object M, any subobject of a proto-member of M, any
subobject of a proto-member of a proto-member of A7, and so on, are called
“constituents” of M (formally defined in (1.5.1).). Also any subobject of an
object M, any unit object of a subobject of M, any unit object of a unit object
of a subobject of M, and so on, are called “ancestors” of M (formally defined
in (1.5.8).). Any ancestor of a constituent of an object M is a satellite of M.
(See (1.7.1),(1.7.3), and (1.7.5).) When we replace objects and proto-member-
ship by their corresponding notions, sets and membership in the Fraenkel set-
theory, respectively, any set x is a satellite (in the interpreted sense) of m if
and only if x and m satisfy the formal definition of xGm. (7 be the interpreted
relation of ¢.) Moreover, in the Fraenkel set-theory, every proposition of the
form ApVx(x €p = -xom A %(x)) holds, so our system can be imbedded in the
Fraenkel set-theory. In other words, our system is consistent if the Fraenkel
system is so. An outline of this proof of consistency relative to the Fraenkel
set-theory is described in the last Chapter (7) as a supplementary remark.

In our object theory, namely, we assume that all the satellites of a given
object satisfying an arbitrary given condition form an object. The notion of
satellites is so defined as to be able to construct a set theory as far as possible
only on the basis of this simple assumption. In our object theory, we construct
a set theory stronger than the Zermelo system without the axiom of choice,
but it has not been decided whether we can construct a system including the
axiom of replacement in our object theory. Throughout this work, we do not
discuss anything concerning the axiom of choice. However, it will be possible

to prove consistency of the axiom of choice, together with the axiom of re-
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placement, perhaps by following Gédel’s consistency proof [6].

In Chapter (1), we show some elementary properties of satellites, con-
stituents, and ancestors. In this Chapter we show also existence of “null
objects” (corresponding to the null set) and existence of unit objects, “sum
objects”, and “power objects” (the last two correspond to the sum set and the
power set respectively) of a given object in our system, even though uniqueness
can never be proved. Also here, accordingly, we have to say such as “a null
object”, “a sum object of X”, or “a power object of X” instead of saying like
“the null object”, “the sum object of X", or “the power object of X”, re-
spectively. In this Chapter we prove further a proposition corresponding to the
aussonderung axiom and, even more, a proposition corresponding to the axiom
of infinity with respect to identity in our object theory. (See (1.3.1), (1.8.2),
(1.8.4), and (1.8.5).)

It seems a big merit of the notion of satellites that the natural numbers
can be introduced quite naturally by it. Namely, any object which is a satellite
of every object can be taken as a representative of a natual number and is
called a “proto-number”. We prove that every null object is a proto-number, that
every unit object of a proto-number is also a proto-number, and that only those
objects which can be shown to be proto-numbers by the above two principles
are proto-numbers. (See (1.8).)

Moreover, we see that any null object is not a unit object of any object,
and that X and Y are identical if any unit obiect of X is identical with a unit
object of Y. In short, proto-numbers satisfy the Peano axioms by suitable
interpretation except for that there can be many null objects and that for each
object there can be many unit objects of it. To establish a full theory of
natural numbers, we have to identify all the proto-numbers which represent
the same natural number. This can be done only in Chapter [6].

Any proposition corresponding to the fundierung axiom seems unprovable
in our system. In Chapter (2), we introduce the notions of “semi-regularity”
and “regularity”. Any object is called semi-regular if and only if it has no
such constituent S that S is a constituent of a proto-member of S itself. The
notion‘ of regularity is a notion more complicated and stronger than semi-
regularity. (See (2.2.1), (2.2.2), and (2.2.4).) It will not be proved that all

the objects are regular, nor even that all the objects are semi-regular. However,
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we prove in (3.2.7) that all the “producible” objects (defined in (3.2.1)) are
regular. More in detail, we prove in (2.2.3) that any null object is regular,
in (3.2.3) that any satellite of a regular object is regular, and further in (3.2.4)
that any object formed by all the satellites of a regular object is also regular.

Chapter (3) is devoted to giving an exact description of producible objects
ie. of those objects whose existence can be really confirmed by our axioms
only. Starting from any proto-number X;, we can construct an infinite sequence
of objects Xi, X:, X, - - - successively by the rule that X,.; is an object formed
by all the satellites of X,. This sequence is monotone increasing in the sense
that X, is a subobject of X,+:. Any object formed by the first finite terms of
a sequence of this kind is called a “basic” object. Any satellite of a proto-
member of a basic object is a producible object. By technical reason, however,
the notion of basic objects is formally defined in a slightly modified way in
(3.1.1).

We prove that there is at least one producible object, that every satellite
of any producible object is also producible, and that every object formed by
all the satellites of any producible object is also producible. (See (3.2.2),
(8.2.3), and (3.2.4).) In short, the field of producible obiects is closed with
respect to generation of new objects by our axiom scheme.

The field of producible objects is very important, firstly because every
producible object is regular (See (3.2.7).), secondly because for any two pro-
ducible objects there is a producible “pair object” of them (See (3.2.10). Pair
objects are defined in (3.2.9).), and thirdly because we car define membership
and equality in such a way that the extensionality axiom together with other
equality axioms holds for nroducible objects with respect to these two notions.

In Chapter (4) we introduce the notions of “membership” and ‘“equallity”
so that all the axioms concerning equality (in the ordinary sense) are provable
for producible objects with respect to these notions (See (4.10) and (4.12).).
Membership and equality are weaker than proto-membership and identity
respectively. They are defined simultaneously keeping the relation in mind
that an object X is a member of an object Y if and only if X is equal tc a
proto-member of Y. The process of defining equality is not so simple. Namely,

after introducing the notion of “c-objects” (defined in (4.6.1)), X is called to

be equal to Y if and only if either X and Y are identical or there is a pair
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object of X and Y which is a proto-member of an :-object. Roughly speaking,
¢-objects can be taken as those formed by some pair objects of mutually equal
objects, but the definition turns out to be complicated because we have, in
advance, to give a condition for an object to be an :-object without employing
the notion of equality.

Broadly speaking, producible objects can be regarded as sets with respect
to membership and equality. Namely, if we restrict ourselves to consider only
“properties modulo equality” i.e. properties common to all the objects mutually
equal to each other, as is defined in (3.1.1), we can establish a theory of sets.
An example of properties modulo equality is the property defined by the “set-
theoretical image | U(X)|” of any proposition ¥ X) that is obtained by replacing
proto-membership in %(X) by membership and restricting the ranges of all the
quantifiers in A(X) to producible objects. (See (5.3.1), (5.3.2), (5.3.5), and
(6.1.4).) In Chapter (5), we study properties modulo equality, especially in
connection with the set-theoretical images of propositions.

In Chapter (6), we show that a theory of sets can be established with
respect to membership and equality. In our theory of sets, all the axioms of
the Zermelo system are provable except for the axiom of choice. Also the
fundierung axiom is provable in our set theory. Moreover, the set-theoretical
images of all the axioms of our object theory are provable, which are surely
provable in the Fraenkel system but it seems that some of them may be un-
provable in the Zermelo system.

(1) Theory of objects

Our system of object theory is founded on a unique axiom scheme taking
proto-membership “€” as the only primitive notion. “Xe€Y” is read “X is a

proto-member of Y.

(1.1) Axioms. Before describing the axiom scheme, we define “subobjects”
and “satellites”.

(1.1.1) The relation product 2¢ of two binary relations 2 and ¢ is defined by
Xi0Y € 3s(X1SA SeY).

(1.1.2) Definition: X& Y‘gVS(SGX—»S€ Y). The binary relation “g” is
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called proto-inclusion, and any object X satisfying XY is called a subobject of
Y.

(1.1.3) Definition: o(P) ZVS(Se¢ ¢ F=SseP) and
XoY LVP(s(P)AYSeP > XSeP).

Any object P satisfying o(P) is called a c-object and any object X satisfying XoY
is called a satellite of Y.

(1.1.4) Axiom scheme: All the formulas of the form
APV X(X€ P= - XoMANUN(X))

and formulas of this form only are axioms of our object theory, where in %(X)
any number of free variables other than P may occur.
Namely, we assume that there is an object formed by all the satellites of

an object satisfying an arbitrary given condition.
(1.2) Some elementary properties.

(1.2.1) XsXand XS Y->XgY (Reflexivity and transitivity of proto-

inclusion.)
(1.2.2) XecsY > XeY.

(1.2.3) Definition: X=Y ZVP(XeP=YeP). The binary relation “=" is
called identity.

(1.24) X=X, X=Y-Y=X, and X==Y-X=Y. {Reflexivity, sym-
metricity, and transitivity of identity.)

(1.2.5) Definition: XY £ VS(Se X=SeY). The binary relation “=” is
called proto-equality (prototype of equality).
(1.2.6) X=Y=-XsYANYS X

1.2.7) X=X, Xa¥Y->Y=X and X=xY->XaV. (Reflexivity, sym-

metricity, and transitivity of proto-equality.)
(1.2.8) X=€e¢Y=XeY and Xe=Y=XeY.

(1.2.9) Remark. We can neither introduce here term-symbols of the form
{X; %(X)}, nor adopt the way of talking such as “the object formed by all those
objects X which satisfy the condition U(X)”, even when it is certain that there
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exists such an object. For, there can be possibly more than two (in the sense
of identity) objects P satisfying VX(Xe€ P=%(X)), since the axiom of ex-
tensionality with respect ‘to identity is not assumed in our system. However,
we introduce a proposition-symbol P{X; %(X)} for any ¥(X) which is defined
by

Definition: P{X; %A(X)} L vX(XeP=u(X)).

By this definitior the axiom scheme of our object theory can be expressed
as 3P+ P{X; XocMAR(X)}.

(1.2.10) Remark. Concerning uniqueness,
we can not assert P{X; A(X)IANQ{X; A(X)}» -P=Q,
but we can assert P{X; W(X)}AQ{X; A(X))» - P=Q.

(1.2.11) Xe Y- XoY. (Proto-membership implies o-reiation.)

Proof. Let X be any proto-member of an object Y, and P be any gJ-object.
Then, Y& € P implies X € € P by (1.2.2), which implies X & € P because P is
a o-object.

(1.2.12) X< Y- XoY. (Proto-inclusion implies o-relation.)

Proof. Let X be a subobject of an object Y. Then, by transitivity of proto-
inclusion, Y € € P implies X & € P for any P, especially for any d-object P.
(1.2.13) XoX. (Reflexivity of ¢.)

Proof. By (1.2.12) and reflexivity of proto-inclusion.

(1.2.14) XooY > XoY. (Transitivity of ¢.)

Proof. Let X be a satellite of a satellite Z of Y. For any o-object P,
Y € € P implies Z& € P by the assumption Z¢Y, and Z< € P implies XS € P
by the assumption X¢Z, so Y& € P implies XS € P.

(1.3) Aussonderung.
(1.3.1) 3P P{X; Xe MAN(X)} and 3IP-P{X; XS MAN(X)}, where in
A(X) any number of free variables other than P may occur.

Proof. By (1.2.11) and (1.2.12), X€e MA¥(X) and XS MAU(X) can be
expressed as XcMAXEMAR(X) and XeMAXe MAR(X) respectiviely, so

we can get the theorem directly from our axiom scheme.
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(1.8.2) 3P - P{X; XoM). (For any object M there is an object formed by all
the satellites of M.)

Proof. Because XoM can be expressed as XocMA XoM, we can get the

theorem directly from the axiom scheme.
(1.3.3) 3X-X{T; T=¢Y}.

Proof. By (1.2.6), (1.2.11), (1.2.12), and transitivity of o.
(1.83.4) X=Y-»>X=Y. (ldentity implies proto-equality.)

Proof. Let X and Y be any two mutually identical objects. By (1.3.1)
take any P satisfying P{T; TS XA X=T). By reflexivity of proto-inclusion
and proto-equality, X€ P, so Y€ P. Namely X=Y.

(1.8.5) X=Y- - A(X) =A(Y). (The proposition corresponding to the second

axiom of equality.)
Proof. By (1.3.4).

(1.4) Null objects, unit objects, sum objects, and power objects.

ar

(1.4.1) Definition: 0(P) = :—-3S-SeP.

Any object P satisfying g(P) is called a null object.
(1.4.2) 3X-0(X). (Existence of null objects.)

Proof? Because P{T; ToMA —TsM} contradicts S€ P, the former also
contradicts 3U+ U€ P since the free variable S does not occur in it. Accordingly,
P{T; ToMA —TsM} implies 0(P), so also 3X+0(X). Since the free variable
P does not occur in AX+ 0(X), AP P{T; ToMA —~TsM} implies 3X - 0(X).
Hence the axiom VYM3AP- P{T; ToMAN - ToM} implies 3X « 0(X).

(1.4.3) Definition: U{X} £ U{T; T=X).
Any object U satisfying U{X?} is called a unit object of X.
(1.4.4) 3U - U{X}. (Existence of unit objects of X.)
Proof. By (1.3.1), take any object U satisfying U{T'; T XA T= X}. Then,

) We prove the theorem particularly in detail, as we wish to show that our axiom
scheme logically implies absolute existence of an object. It should be also remarked here
that in our object theory we may consider any object X satisfying any condition ¥(X)
but its existence is negated whenever (X) contradicts the axioms.
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U is clearly a unit object of X by (1.2.6) and (1.3.4).

(1.4.5) 3P- P{T; Te€ € A}). (Existence of sum objects of A. Here we call any
object P satisfying P{T; T € € A} a sum object of A.)

Proof. Because T € € A can be expressed as TcAAT €€ A by (1.2.11)
and transitivity of o.

(1.4.6) 3P P{T; Ts A}. (Existence of power objects of A. Here we call
any object P satisfying P{T; TS A} a power object of A.)

Proof. Because TS A can be expressed as TcAAT S A by (1.2.12).

(1.4.7) 9(X)»X<s Y. (Any null object is a subobject of every object.)
(1.4.8) 9(X)~>XoY. (Any null object is a satellite of every object.)

Proof. By (1.2.12) and (1.4.7).
(1.4.9) X{Y}- XoY. (Unit-object relation implies o-relation.)

Proof. Let X be a unit object of Y. For any o-object P satisfying Y S € P,
holds Y € € P i.e. Y is a proto-member of a proto-member Z of P. Accordingly,
by (1.3.5), the unit object X of Y is a subobject of the proto-member Z of P.
Hence XoY.

(1.4.10) XS YAY{Z}) > - 9(X)V X{Z}. (Any subobject of a unit object of
an object Z is either a null object or a unit object of Z.)

Proof. Let X be a subobject of a unit object Y of an object Z. Assume
further that X is not a null object.

To show that X is a unit object of Z, take any proto-member T of X. Then,
by (1.2.2), T is also a proto-member of the unit object Y of Z, so T=2Z.
Conversely, take any object T which is identical with Z. Since X is not a null
object, there is a proto-member S of X, which is also a proto-member of Y by
(1.2.2). Hence S=Z. By symmetricity and transitivity of identity, T is
identical with the proto-member S of X, so T€ X by (1.3.5).

(1.5) Constituents and ancestors.

(1.5.1) Definition: #(P) ZVS(Se € P >SseP) and
XY EVPW(PAYS€P->XSeP).

Any object P satisfying £(P) is called a k-object. Any object X satisfying
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XkY is called a constituent of Y.

(1.5.2) o(P)-«k(P). (Any og-object is a r-object.)
(1.5.8) XxY —» XoY. (x-relation implies o-relation.)
(1.5.4) XeY - XxY. (Proto-membership implies x-relation.)

Proof. Similar to the proof of (1.2.11) by making use of (1.2.2).
(1.5.5) XY - XxY. (Proto-inclusion implies #-relation.)

Proof. Similar to the proof of (1.2.12), by making use of transitivity of

proto-inclusion.

(1.5.6) XxX. (Reflexivity of &.)
(1.5.7) XekY -» XrY. (Transitivity of x.)

Proof. Similar to the proof of transitivity of o.

(1.5.8) Definition: a(P) 2 VS(SSeP->S€ € P) and
XY L VP(a(P)AYS €P+ > XS €P).

Any object P satisfying a(P) is called an a-object. Any object X satisfying

XaY is called an ancestor of Y.

(1.5.9) o(P)-a(P). (Any o-object is an a-object.)
(1.5.10) XaY - XoY. (a-relation implies o-relation.)
(1.5.11) XY~ XaY. (Proto-inclusion implies a«-relation.)

Proof. Similar to the proof of (1.2.12), by making use of transitivity of

proto-inclusion.
(1.5.12) X{Y}- XaY. (Unit-object relation implies a-relation.)

Proof. Similar to the proof of (1.4.9), by making use of (1.3.5).

(1.5.13) XaX. (Reflexivity of «.)
(1.5.14) XaaY - XaY. (Transitivity of a.)

Proof. Similar to the proof of transitivity of o.

(1.5.15) 0(X)-> XY and 0(X)-XaY. (Any null object is a constituent as

well as an ancestor of every object.)

Proof. By (1.4.7), (1.5.5), and (1.5.11),
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(1.6) Minimum properties.

(1.6.1) VXY?(XeYVXSYVX{Y} > AKX V) AVXYZ(U(X, VI AU(Y, 2)-

WX, Z): > UsV->%(U, V). (Minimum property of ¢.)

Proof. Let %(X, Y) be any transitive relation which satisfies
VXY(XeYVXsYVX{(Y}-->%(X,Y)). Take an object P which satisfies
P{T; ToVAUA(T, V)}, V being an arbitrary object.

We prove first ¢(P): Take any subobject S of a proto-membér T of P.
Then, A(S, T) and ToVAA(T, V) hold by assumption. Moreover S¢T by
(1.2.12). Take now a unit object W of S by (1.4.4). Then, WsS by (1.4.9),
and A(W, S) holds by assumption. By transitivity of ¢ and of the relation
A(X, Y), holds WoVAA(W, V).  Accordingly We P; so, by reflexivity of
identity, S is a proto-member of the proto-member W of P. Conversely, let S
be any proto-member of a proto-member T of P. ~Then, TeVAA(T, V) holds.
Moreover, SeT holds by (1.2.11), and %(S, T") holds by assumption. By transi-
tivity of ¢ and of the relation (X, Y), holds SeVAA(S, V) ie. S€ P. Hence
by reflexivity of proto-inclusion, S is a subobject of the proto-member S of P.

Next we prove Ve P: By reflexivity of ¢ and proto-inclusion, hold VoV and
Ve V, and the latter implies %(V, V) by assumption. Hence V€ P.

Now we prove that UsV implies A(U, V): If U is a satellite of V, U is a
subobject of a proto-member W of P, since Pis a s-object and V is, by re-
flexivity of proto-inclusion, a subobject of the proto-member V of P. Any proto-
member W of P satisfies clearly (W, V), and any subobject U of W satisfies

A(U, W) by assumption. Accordingly, (U, V) holds by transitivity of the
relation A(X, Y).

We can prove similarly the following two theorems, minimum property of
£ and that of &, by making use of (1.2.11); (1.2.12); (1.4.4); (1.4.9);
transitivity of ¢; and reflexivity of proto-inclusion, identity, and o.
(1.6.2) VXY(Xe€YVXEY ->A(X, Y))

AVXYZUX, Y)ANRY,2Z2)» > WX, Z)): > - UcV->ANU, V).
(1.6.3) VXY(XSYVX{Y} > UX, Y))

AVXYZ(UX, YIANRUY,Z) > WX, Z)):» UaV->UU, V).

(1.6.4) VXY(XeYVXSYVX{Y} - -A(X)>A(Y)) and UsV imply

3 In this work, quantifiers of the forms VX...Z and 3X..--Z stand for VX...VZ
and 3X...- 3Z respectively.
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W) > A(V).

Proof. Because the relation A(X)- A(Y) is transitive, this is a special
case of (1.6.1).

Similarly, as special cases of (1.6.2) and (1.6.3), we have
(1.6.5) VXY(XeYVXESY: - - A(X)>A(Y)) and UV imply A(U) > A(V).
(1.6.6) VXY(XSYVX{Y}: > A(X)>A(Y)) and UaV imply A( ) A(V).

(1.7.1) Xk Y=+-XsYVXreY. (Any object X is a constituent of an object

Y if and only if X is either a subobject of Y or a constituent of a proto-member
of Y.)

Proof. Take an object P satisfying P{T; ToYA(TSYVTreY)}). Then,
P{T; T€sYVTkeY} holds by (1.2.11), (1.2.12), (1.5.3), and transitivity of o.

We prove first £(P): Take any i)roto-member S of a proto-member T of P.
Then, T€Y or Tre€Y. Sk€Y is provable, by making use of (1.2.2) and
reflexivity of £ in the case T'SY, and by making use of (1.5.4) and transitivity
of £ in the case Tk€Y. Hence S€ P, so, by reflexivity of proto-inclusion, S is
a subobject of the proto-member S of P.

Moreover Y € P by reflexivity of proto-inclusion, so Y is a subobject of
the proto-member Y of P again by reflexivity of proto-inclusion. Hence any
constituent X of Y is also a subobject of a proto-member W of P. By (1.5.5)
and transitivity of proto-inclusion and of ¥ holds X€ YV X« € Y, because either
WeYor WkeY.

Conversely, XYV X«keY implies XxY by (1.5.4), (1.5.5), and transitivity
of «.

(1.7.2) XeY =-XgYVXcexrY.

Proof. The proof is simiar to that of (1.7.1). Namely, by (1.2.11), (1.2.12),
(1.5.3), and transitivity of o, we can take an object P satisfying P{T; T€Y
VTeserY) By (1.2.2), (1.5.4), transitivity of x, and reflexivity of proto-
inclusion and ¥, we can show for this P that P is a kx-object and that Y is a
subobject of the proto-member Y of P. Consequently, any constituent X of Y
is a subobject of a proto-member W of P, i.e. there is an object W satisfying
XsW and WYV We €rY, which imply XYV XS €xY by transitivity of
proto-inclusion. On the other hand, XY as well as X €xY implies XrY
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by (1.5.4), (1.5.5), and transitivity of «.

(1.7.3) XaY=-XsYVIZ(X{Z}) NZaY). (Any object X is an ancestor of an
object Y if and only if X is either a subobject of Y or a unit object of an an-
cestor of Y.)

Proof. The proof is similar to that of (1.7.1).

Namely, by (1.2.12), (1.4.9), (1.5.10), and transitivity of ¢, we can take
an object P satisfying P{T; TsYV3Z(T{Z}\NZaY)}. For this P we can
show a(P): Namely, take at{y subobject S of a proto-member T of P, and also
take any unit object U of S by (1.4.4). Then, S¢ U by reflexivity of identity,
and moreover, T is either a subobject of Y or a unit object of an ancestor Z
of Y. In the case TSY, holds S& Y by transitivity of proto-inclusion. Hence
SaY by (1.5.11). Accordingly U€ P, so S is a proto-member of the proto-
member U of P. In the case T{Z}AZaY, SaY by (1.5.11), (1.5.12), and
transitivity of «, so the unit object U of S is a proto-member of P. Accordingly,
S is a proto-member of the proto-member U of P.

Moreover, bjr reflexivity of proto-inclusion, we can show that Y is a sub-
object of the proto-member Y of P. Consequently, any ancestor X of ¥ is a
subobject of a proto-member W of P, namely, there is an object W satisfying
WsYV3Z(W{Z}ANZaY). From this we can easily deduce XYV 3IZ(X{Z}
AZaY) by making use of (1.4.7), (1.4.10), and transitivity of proto-inclusion.

Conversely, XY as well as 3Z(X{Z} ANZaY) implies XaY by (1.5.11),
(1.5.12), and transitivity of a.

(1.7.4) XeaY=+-XeYVXaY. (Any object X is a proto-member of an an-
cestor of Y if and only if X is either a proto-member of ¥ or an ancestor of
Y)

Proof. Assume first that X is a proto-member of an ancestor Z of Y. By
(1.7.3), Z is either a subobject of ¥ or a unit object of an ancestor T of Y.
In the case Z€Y, X is surely a proto-member of Y by (1.2.2). In the case
Z{T}\NTaY, holds X=T, so XaY by (1.3.5).

Conversely, any proto-member X of Y is a proto-member of the ancestor
Y of Y by reflexivity of «. On the other hand, we can take for any ancestor
X of Y, a unit object Z of X by (1.4.4). Then, by reflexivity of identity, X
is a proto-member of Z, which is an ancestor of Y by (1.5.12) and transitivity
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of a.

(1.7.5) XoY = XarY. (o-relation is equivalent to the relation product ax.)

Proof. We can take an object P satisfying P{T; TaxY} by (1.5.3),
(1.5.10), and transitivity of o.

At first, we prove ¢(P): Take any subobject S of a proto-momber T of P,
and then, take a unit object U of S by (1.4.4). By (1.5.11), (1.5.12), and
transitivity of a, TarY implies UakY, so holds Ue P. Consequently, S is a
proto-member of the proto-member U of P by reflexivity of identity. Conversely,
take any proto-member S of a proto-member T of P. Then, T is an ancestor
of a constituent Z of Y. By (1.7.4), S is either a proto-member of Z or an
ancestor of Z. In the case S€Z, holds StY by (1.5.4) and transitivity of &,
so S is an ancestor of the constituent S of Y by reflexivity of «. In the case
SaZ, SarY holds too. Accordingly, S€ P anyway, so S is a subobject of the
proto-member S of P by reflexivity of proto-inclusion.

Moreover, Y & € P by reflexivity of proto-inclusion, «, and . Consequently,
any satellite X of Y is a subobject of a proto-member U of P. Since the proto-
member U of P is an ancestor of a constituent of Y, X itself is an ancestor
of a constituent of Y by (1.5.11) and transitivity of a.

Conversely, XarY implies X¢Y by (1.5.3), (1.5.10), and transitivity of .

(1.8) Proto-numbers.
(1.8.1) Definition: :(X) £ v P XoP.

Any object is called a proto-number if and only if it is a satellite of every
object.

(1.8.2) 9(X)->:(X). (Any null object is a proto-number.)
Proof. By (1.4.8).

(1.8.3) *(X)» » YoX=2(Y). (Any object is a proto-number if and only if it
is a satellite of a proto-number.)

Proof. By transitivity of o.

(1.8.4) X(XNIANYeX+ >2(Y), H(X)ANYS X ->2(Y), and

AXIANY{X}+ ->(Y). (Any proto-member as well as any subobject as well as
-y unit object of a proto-number is a proto-number.)
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Proof. By (1.2.11), (1.2.12), (1.4.9), and (1.8.3).
(1.8.5) 3P+ P{X; »(X)}. (There is an object formed by all the proto-numbers.}

Proof. Since (X) implies XoM, P{X; XoeMA+(X)} implies P{X; +(X)}.
Hence the axiom VM3P - P{X; XoMA»(X)} implies 3P+ P{X; »(X)}.

(1.8.6) 0(X)=VY-XrY. (Any object is a null object if and only if it is a
constituent of every object.)

Proof. Any null object is a constituent of every object by (1.4.7) and
(1.5.5).

Conversely, let X be a constituent of every object. Take now a null object
Z by (1.4.2), and a unit obiect U of Z by (1.4.4). Then, U is a «x-object,
because there is no proto-member of any proto-member of U by (1.3.5).
Moreover, by reflexivity of proto-inclusion and identity, Z& Z and Ze U, so X
is a subobject of a proto-member T of U, because X is a constituent of every
object, especially a consituent of Z. Accordingly, T is identical with the null
object Z. Hence, by (1.3.5), T is a null object, so X is also a null object by
(1.2.2).

(1.8.7) XkYANQ(Y)= »0(X). (Any constituent of a null object is also a null
object.)

Proof. By (1.8.6) and transitivity of «.

(1.8.8) »(X) = VY XaY. (Any object is a proto-number if and only if it is

an ancestor of every object.)

Proof. To show that any proto-number X is an ancestor of every object,
take a null object Z by (1.4.2). Since the proto-number X is a satellite of Z,
X is an ancestor of a constituent T of Z by (1.7.5). However, T is a null
object by (1.8.7), so X is an ancestor of every object by (1.5.15) and transi-
tivity of a.

Conversely, if X is an ancestor of every object, then X is, by (1.5.10), a

satellite of every object. Hence X is a proto-number.

(1.8.9) »(X) =« 0(X)VIAY(X{Y}A(Y)). (Any object is a proto-number if

and only if it is either a null object or a unit object of a proto-number.)

Proof. To show that any proto-number X is either a null object or a unit
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object of a proto-number Y, take a null object Z by (1.4.2). Then, by (1.8.8),
XaZ. Consequently, by (1.7.3), X is either a subobject of Z or a unit object
of an ancestor ¥ of Z. In the case X< Z, X is a null object by (1.2.2), and
in the case X{Y) AYaZ Y is a proto-number by (1.5.15), (1.8.8), and transi-
tivity of a.

Conversely, any null object as well as any unit object of a proto-number
is a proto-number by (1.8.2) and (1.8.4).

(1.8.10) VX(0(X) > Xe P)AVYZ(Y{ZINZeEP+ > Y€P):» «:(U)>UEP.

(A proposition corresponding to the complete induction of the kernel X¢ P.)

Proof. Assume VX(0(¥)—» XeP) and VYZIY{Z}NZeP+ ->YeP). By
(1.3.1), we can take an object @ satisfying Q{X; VI(T S X~ T € P)}, because
V1I(T<eX->T¢P) implies X€ P by reflexivity of proto-inclusion.

Evidently @ € P by reflexivity of proto-inclusion.

We prove now VX(0(X) > Xe€Q): Take any subobject T of any null object
X. Then, by (1.2.2), T is also a null object. So, T'€ 2 Hence X¢@Q.

Next, we prove YYZ(Y{Z}NZeQ - >Ye€Q): Take any unit object ¥ of
a proto-member Z of &. Then, by (1.2.2) holds Z€¢ P. Take now any sub-
object 7 of Y. Then, by (1.4.10), either §(T) or T{Z} hold. Anyway T€P
holds by assumption. Hence Y& Q.

Thirdly, we prove VINT s ¢Q - Te@): Take any subobject T of a proto-
member X of @, and take any subobject S of 7. Then, S&€ X by transitivity
of proto-inclusion, so Se P. Consequently T € &.

By (1.6.6), UaV implies Ve Q> U€ @, since VXY(X{Y}VXEY > +:YeQ
- X €@Q) holds as shown above. Taking V as a null object, which is surely
possible by (1.4.2), we know that any ancestor of a null object is a proto-
member of ¢, since every null object is a proto-member of €. Because every
proto-number is an ancestor of V by (1.8.8), it is a proto-member of @. Ac-

cordingly, it is a proto-member of P by (1.2.2).

(1.8.11) VX(0(X) > W(XNAVYZIY{ZYNR(Z) = »R(Y)) i - ~x(U)->A).

(A proposition corresponding to the complete induction.)

Proof. Take an object P satisfying P{T; ToMAA(T)}. Then, by (1.4.8),
(1.4.9), and transitivity of ¢, every null object as well as every unit object of

any proto-member of P is also a proto-member of P. Accordingly, by (1.8.10),
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every protc-uumber U satisfies the condition %(U) together with UsM.

(1.8.12) Remark. We can show 0(X)-> —X{Y} and X{Y}AU{V}ANX=U-~*
> Y=V by (1.3.5) and refiexivity of identity. Accordingly, if we call every
null object “zero” and every unit object of X “a number next to X”, the system
of the above two propositions, (1.8.2), the last formula of (1.8.4), and (1.8.11)
can be regarded as a system of the Peano axioms. However, we can not
develop the full theory of natural numbers by this interpretation, because we
can prove neither that all the null objects are mutually identical nor that all

the unit objects of the same proto-number are mutually identical.

(2) Regularity
The main purpose of this Chapter is to introduce a new notion of “regular”
objects and thereafter to prove some fundamental properties of regular obiects.
(2.1) Sub-constituents.

(2.1.1) Definition: X¢Y % VS(S€ X-SkY). Any object X satisfying XCY is
called a sub-constituent of Y. (Illustration: See (2.2.2).)

(2.1.2) XY X¢Y, especially X€ Y- X¢Y and X& Y- X¢Y. (Any constituent
of an object is a sub-constituent of the object. Especially, any proto-member

as well as any subobject of an object is a sub-constituent of the object.)

Proof. Any proto-member S of any constituent X of Y is a constituent of
Y by (1.5.4) and transitivity of x. The other two formulas follow immediately
from the first formula, (1.5.4), and (1.5.5).

(2.1.3) XCY = X¢rY. (Crelation is equivalent to the relation product ¢k.)

Proof. Let X be a sub-constituent of a constituent U/ of Y. Then, any
proto-member S of X is a constituent of U. So, by transitivity of £, S is also
a constituent of Y. Conversely, let X be a sub-constituent of Y. Then, X isa
sub-constituent of the constituent Y of Y by reflexivity of &.

(2.2) Regularity and semi-regularity.
(2.2.1) Definition: 4(P) € —3S(SxeSASkP) and

p(P) L VQIQPAYXIY(X€Q > - VE€ XATEQ) - - H(Q)).
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Any object P satisfying p(P) is called semi-regular and any object P satisfying
P(P) is called regular.

(2.2.2) Illustration. Semi-regularity is so defined that any semi-regular object
has no constituent S satisfying Sx¢S, which means S X,€ -+ € X,€S for
some sequence X, -+ +, Xa(n=1, 2, -.). Regularity can be comprehended
in connection with the proposition corresponding to the fundierung axiom
VYx3y(xeqg->ysxANycsqg)>q=8. The condition VXIY(XeQ->- YreX
AY €eQ)->0(Q) on @ is a modification of the fundierung axiom regarding it
as a condition on ¢g. To define p(P) so that our object theory can be developed
exclusively in the field of regular objects, we had to replace y € x of the axiom
by Y«re€ X instead of Y€ X and to require that the modified condition holds for

every object @ in the curious range of sub-constituents of P.
(2.2.3) 9(P)~p(P). (Any null object is regular.)

Proof. Let P be a null object and @ be any sub-constituent of P. Then,
any proto-member X of @ is a constituent of the null object P, so by (1.8.7),
X is a null object. Consequently, X can not satisfy Yr€ XA Y €@ for any Y.

(2.2.4) p(P) - u(P). (Regurality implies semi-regularity.)

Proof. Assume that any object P is not semi-regular. Then, there is a
constituent S of P satisfying Sxe€S.

Take now by (1.4.4) a unit object @ of S. Firstly, holds Q¢P; for, any
proto-member T of @ is identical with S, so it is a constituent of P by (1.3.5).
Secondly, VX3AY(X€Q~—> Yrk€ XN Y €Q) holds by (1.3.5) and reflexivity of
identity, because Sk € SAS€Q holds for the only proto-member S of Q. Thirdly,
Q is not a null object by reflexivity of identity. Hence P can not be regular.

(2.2.5) QcPAP(P)» -»p(Q), especially Q€ PAp(P)+ »p(Q) and
Qs PAp(P)+ »p(Q). (Any constituent of a regular object is regular, especially,

any proto-member as well as ahy subobject of a regular object is regular.)

Proof. Let @ be a constituent of a regular object P. Any sub-constituent
R of @, for which YX3Y(X€ R~ « Yr€ XA\ Y€ R) holds, is a null object, because
R is also a sub-constituent of P by (2.1.3).

Other two formulas can be derived from this formula, (1.5.4), and (1.5.5).
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(2.2.6) @{P}Np(P)- » p(®). (Every unit object of a regular object is also

regular.)

Proof. Let © be a unit object of a regular object P, and R be any sub-
constituent of @, which satisfies VX3Y(Xe€R~ -Yre XAYe€R). If Ris not
a null object, take a proto-member U of R. Then, by assumption, there exists
a proto-member V of R, which is also a constituent of a proto-member T of U.

At first, we prove Ve P: Since R(Q, the proto-member U of R is a con-
stituent of @, so U is either a subobject of @ or a constituent of a proto-
member W of @ by (1.7.1). In the case US @, the proto-member T of U is
also a proto-member of the unit object @ of P by (1.2.2), so T=P. Accord-
ingly, the constituent V of T is also a constituent of P by (1.3.5). In the case
UcW A WeR@, holds W= P since @ is a unit object of P. So, UkP by (1.3.5).
Accordingly, the constituent V of T is a constituent of P by transitivity of &,
because the proto-member 7T of the constituent U of P is a constituent of P by
(1.5.4) and transitivity of «.

Take now an object H which satisfies H{S; S€e RAS«tV} by (1.3.1). Firstly,
H(P; because any proto-member S of H is surely a constituent of the constituent
V of P, so S is a constituent of P by transitivity of x. Secondly, VX3Y(XeH
—»+Yre XANY€H). For: Since H is a subobject of R, for any proto-member
X of H there is a proto-member Y of R satisfying Yre€ X. Because X is a
constituent of V, Y is also a constituent of V by (1.5.4) and transitivity of .
Hence, Y is also a proto-member of H. Thirdly, H is not a null object, because
V is surely a proto-member of H by reflexivity of «.

Accordingly, P can never be regular, if R is not a null object.

(2.2.7) QePAp(P)* »p(Q). (Every satellite of a regular object is also regular.)

Proof. By (1.6.4), (2.2.5), and (2.2.6).

(2.3) Objects formed by satellites of an object.

(2.3.1) Definition: XﬂYdEf X{T; ToY}. Any object whose proto-members are
all the satellites of an object is called an object formed by satellites of the object.

(2.3.2) QGPApPp(P)» »p(Q). (Any object formed by satellites of a regular
object is also regular.)
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Proof. Let @ be any object formed by satellites of a regular chject £ To
show that § is also regular, take any sub-constituent £ of @ satisfying
WX3Y(XeR~-YreXNYeR. In the following, we shall show that R is a
null object.

Namely, if R is not a null object, take any proto-member U of K. Then,
U is a constituent of @ ; so, by (1.7.1), U is either a subobject of @ or a
constituent of a proto-member S of @. On the other hand, we can take such a
proto-member V' of R which is a constituent of a proto-member Z of U. In
the case US @, Z is a proto-member of § by (1.2.2), so Z is a satellite of
P. Since V is a satellite of Z by (1.5.3), V is a satellite of £ by transitivity
of o. In the case UrSAS&Q, S is a satellite of 2. By (1.2.11), (1.5.3), and
transitivity of o, V is a satellite of 2 Thus V is a satellite of the regular
object £ auyway, so V is also regular by (2.2.7).

Take now an object W satisfying WAT; TE€RANTcV} by (1.3.1).  Then,
firstly W<V, because every proto-member of W is a constituent of V. Secondly,
VXIY(XeW - Tee XANYeW). To show this, take any protc-member X of
W. Then, X is a proto-member of R, sc we can find such a proto-member ¥
of K, which is a constituent of a proto-member of X. Since the proto-member
X of W is a constituent of V, so Y is also a constituent of ¥V by (1.5.4) and
transitivity of x. Consequently, the proto-member ¥ of £ is a proto-member
of W. Thirdly, W is not a null object, because V is surely a prote-member of
W by reflexivity of «.

Hence V can not be regular if R is not a null object.

(2.3.3) 7 (POQAPo@). (Any object formed by satellites of an object can never
be a satellite of the object.)

Proof. Let P be an object formed by satellites of @. By the axiom scheme.
take an object R satisfying R{X; XoQAN - Xe€¢X}. Then, R can not be a
satellite of @, because Ré R= ~R¢e R can not hold. On the other hand, R is
clearly a subobject of P, so R is a satellite of P by (1.2.12). Accordingly, if
P were a satellite of @, so R would be a satellite of € by transitivity of ¢

<
ontradictory to the fact above stated.

(@]

(2.8.4) AT, +H(T)r—-p(P). (Any object formed by all the proic-numbers is

regulac.)
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Proof. Let P be any object formed by all the proto-numbes. Further, take
a null object X by (1.4.2). By (1.8.2) and (1.8.3), P is an object formed by
satellites of X, so P must be regular by (2. 3. 2), since the null object X is regular
by (2.2.3).

(2.3.5) X00ZAYBZ- X< Y. (Any object formed by satellites of a satellite
of an object Z is a subobject of any object formed by satellites of the object Z.)

Proof. Let X be any object formed by all the satellites of a satellite U of an
object Z, and Y be any object formed by satellites of the object Z. Take now
any proto-member S of X. Then, S is a satellite of the satellite U of Z; so,
by transitivity of ¢, holds SeZ. Hence S€Y.

(3) Basic objects and producible objects

It is not certain in our object theory that for any pair of objects X and Y
there exists a “pair object” of X and Y i.e. an object formed by X and Y, even
when X and Y are both regular. However, we can get rid of this difﬁculty‘ by
restricting our object field to “producible” objects, whose notion will be intro-
duced in this Chapter.

(3.1) Basic objects.

(8.1.1) Definition:

B(P) L 1p(PYAVX(X06P >+ X€ PV PcX) AVX(X€P - v(X)VX0€P).
Any object satisfying #(P) is called a basic object.

Illustration. Formal definition of basic objects is really complicated. The
condition for P to be a basic object is intended to describe essential property
of any object which is formed by some proto-numbers and X, - -, Xa
(#n=0,1,2+-+.) in an infinite sequence X;, X;, - + - satisfying the conditions
v(X;) and X;1,6X;(i=1, 2, + - -.). Notice that any object P of this kind is a
subobject, so also a constituent, of X,+;. It is quite uncertain in our object
theory whether there is a regular object formed by all the objects X; (i=1,
2, -+ +.). However, if there is such an object, it, too, is basic by our definition.
Accordingly, our definition of basic objects can not characterize the intended
objects above described.
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(3.1.2) P{T; »(T)}->B(P). (Any object formed by all the proto-numbers is
basic.)

Proof. Assume P{T; »(T)}. Then, Pis regular by (2.3.4). Take now
any object X formed by satellites of a proto-member Y of P ie. any object X
formed by satellites of a proto-number. Then, by (1.8.3), X is an object
formed by all the proto-numbers. So, P£X by (1.5.5) because P X. Moreover,
any proto-member X of P, ie. any proto-number X, satisfies evidently
»(X)V X60eP. Hence P is basic.

(3.1.3) B(P) =+ D(P)VIAXX)INX € P). (Any non-empty basic object

contains a proto-number as its proto-member.)

Proof. If a basic object P contains no proto-numers as its proto-members,
then by defintion of basic objects any proto-member X of P is an object formed
by satellites of a proto-member Y of P. Accordingly, for any proto-member
X of P, there is a proto-member Y of X which is also a proto-member of 2,
since any object formed by satellites of Y contains Y as its proto-member by
reflexivity of . Hence, by reflexivity of x, P can not be regular, if P is not a
null object; because PSP by (2.1.2) and reflexivity of «.

(3.1.4) 3QQ(T; UT)VTOeP) and BPAQUT; »(T)VTHEP »3(Q).
(For any object P, there is an object @ formed by all the proto-numbers and
all the objects T satisfying 7°6 € P. The object @ is basic if P is so.)

Proof. Take an object R formed by satellites of a given object P by (1.3.2),
and take further an object @ satisfying Q{T; ToRA (AN T)VTHeP)}. By defini-
tion of proto-numbers, »(T) implies ToR. Moreover, any object T formed by
satellites of a proto-member Y of P is a satellite of R. For, Y is a satellite of
P by (1.2.11), so T is a subobject of R by (2.3.5); consequently, T is also a
satellite of R by (1.2.12). Hence, @ satisfies also @{T; +(T)V T f¢€ P}.

Let us now discuss the case B(P).

At first, we prove p(Q): Namely, take an object H formed by satellites
of R by (1.3.2). Any proto-member T of @ is a satellite of R, so T€ H. Ac-
cordingly, @ € H. On the other hand, the object R formed by satellites of the
regular object P is regular by (2.3.2), so also the object H formed by satellites
of the regular object R is regular, again by (2.3.2). Consequently, the sub-
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object @ of the regular object H is also regular by (2.2.5).

Secondly, we prove VX(X0eQ —» - X€QV QrX): Take any object X formed
by satellites of a proto-member Y of @ Then, Y is either a proto-number or
an object formed by satellites of a proto-member of P. At first, the case »(Y) :
By (1.8.3), X is an object formed by all the proto-numbers. If P is a null
object, then @ is an object formed by all the proto-numbers. So, @«X by
(1.5.5). If Pis not a null object, then by (3.1.3) P contains a proto-number,
say Z, as a proto-member. So, any object formed by satellites of Z ie., by
(1.8.3), any object formed by all the proto-numbers is a proto-member of @,
especially the object X is a proto-member of Q. Next, the case Y0€ P: In
this case either Y € P or PrY hold, because P is basic. In the case YeP, X
is an object formed by satellites of the proto-member Y of P, so X€Q. Ac-

cordingly, we have further only to discuss the case PrY.

Now we prove @xX when Y is an object formed by satellites of a proto-
member W of the object P which is a constituent of Y: Take any proto-
member S of @  Then, we can show S€X. Namely, S is either a proto-
number or an object formed by satellites of a proto-member of P. If S is a
proto-number, S is surely a satellite of ¥, so S € X. Accordingly, we discuss the
case where S is an object formed by satellites of a proto-member V of P.
By (1.7.1), the constituent P of Y is either a subobject of ¥ or a’ constituent
of a proto-member of Y. In the case PSY, the proto-member V of P is a
proto-member of Y by (1.2.2), so VoW. Since any proto-member U of S'is a
satellite of V, U is also a satellite of W by transitivity of ¢, so U€Y. Con-
sequently SEY, so SoY by (1.2.12). Accordingly S € X. On the other hand,
when P is a constituent of a proto-member M of Y, M is a satellite of W. Since
any proto-member U of S is a satellite of the proto-member V of the object P
which is a constituent of the satellite M of W, Uis a satellite of W by (1.2.11),
(1.5.3), and transitivity of ¢. So Ue€Y. Consequently SE€Y, so Sc¢¥Y by
(1.2.12). Accordingly S€ X. Thus in any way we can prove that any proto-
member S of @ is a proto-member of X. Accordingly @ €X, so QX by (1.5.5).

Hence, any object X formed by satellites of a proto-member of @ is a
proto-member of @ unless @ is a constituent of X.

Thirdly, we prove VX(XeQ - -»(X)V X0€Q): Namely, take any proto-

member X of @. Then, X is an object formed by satellites of a proto-member
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Y of P, unless X is a proto-number. Since P is basic, Y is either a proto-
number or an object formed by satellites of a proto-member of P. Anyway Y
is a proto-member of @, so X is an object formed by satellites of the proto-
member Y of @, unless X is a proto-number.

Hence @ is basic.

(3.1.5) B(P)-»FAQBQNPSQAYVYT((T)->TeQ)). (For any basic object P,
there is a basic object which includes P as a subobject and which contains

every proto-number as a proto-member.)

" Proof. Let P be any basic object. Then, we can take a basic object @
satisfying Q{T; »(T)V T6eP) by (3.1.4).

Firstly P€@Q: To prove this, take any proto-member 7' of P. Then, T
satisfies »(T") VT8 € P, because P is basic. So, 7€ . Hence PS ®. Secondly,
it is evident that every proto-number is a proto-member of . Consequently, @
is a basic object which includes P as a subobject and which contains every

proto-number as a proto-member.

(3.1.6) B(P)AB(Q)+ »AR(B(R) N PtRA QkR). (For any pair of basic objects
P and @, there is such a basic object R that P as well as @ is a constituent
of R)

Proof. Let P and @ be any two basic objects. By (3.1.5) take a basic
object U which includes @ as a subobject and which contains every proto-
number as a proto-member.

We assert that either P U or UxP hold: Namely, if there is a proto-
member Y of P which is not a proto-member of U but which is an object formed
by satellites of a proto-member of U, then UrY because U is basic. So, by
(1.5.4) and transitivity of ¥, U is a constituent of P. On the other hand, if
there is no such proto-member of P, then take an object V satisfying
V(T; Te PN >TeU} by (1.3.1). Clearly V{Pby (2.1.2). Take now any proto-
member X of V. Then, X€ P, and X can never be a proto-number, because
every proto-number is a proto-member of U. Consequently, the proto-member
X of the basic object P is an object formed by satellites of a proto-member Z
of P. Z e X by reflexivity of s. Moreover —-Z€ U; for, the proto-member X
of P is not a proto-member of U, so the object X formed by satellites of Z

can never be an object formed by satellites of any proto-member of U by
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assumption. Thus we know Z € V. Accordingly, for any proto-member X of
V, there exists a common proto-member, Z for instance, of X and V. However,
by reflexivity of &, this can not be true for the basic object P, unless the sub-
constituent V of P is a null object; since the basic object P is regular. So,
PsU.

When PSU, P as well as @ is a constituent of the basic object U by (1.5.5),
and when UrP, P as well as @ is a constituent of the basic object P by (1.5.5)

and reflexivity and transitivity of «.

(3.1.7) BP)AXePANY€P+ > +«XoYV YoX. (Among any two proto-membars
of a basic object, one is a satellite of the other.)

Proof. Let P be any basic object. By (1.3.1), take an object @ satisfying
QT; TePN>VU(UE€P->+-TeUN UsT)}). Then, QCP by (2.1.2). Moreover,
any proto-number S can never be a proto-member of @. For, the proto-number
S surely satisfies VU(U & P- »SecUV UsS), since any proto-number is a satellite
of every object. Accordingly, any proto-member Z of @ is not a proto-number.
Hence, the proto-member Z of the basic object P is an object formed by
satellites of a proto-member W of P.

Now we assert We@: To prove this, we have only to show -VU Ue€P
-+« WoUN UsW). Namely, if YU(Ue€ P~ WeUN UsW) holds, we assert that
any proto-member U of P satisfies ZoUV UsZ contradictory to the assumption
Z€&Q. For, the proto-member U of the basic object P is either a proto-number
or an object formed by satellites of a proto-member V of P. In the case +(U),
U is a satellite of any object, especially of Z. In the case UV AVE€P, either
WoeV or VoW hold by assumption. If WoV, then hold UV and Z@oV; con-
sequently, Z& U by (2.3.5), so ZsU by (1.2.12). If VoW, then hold Z6WV and
UboW ; consequently US Z by (2.3.5), so, UsZ by (1.2.12).

The object W is a proto-member of Z by reflexivity of o.

Hence, for any proto-member Z of @, there is a proto-member W of &
which is also a proto-member of Z. Since P is a basic object, P is regular.
So, the sub-constituent @ of P is a null object by reflexivity of . Namely, any
proto-member X of P satisfies XoYV Yo X for any proto-member Y of P.

(3.2) Producible objects.

(3.2.1) Definition: 7(X) 4 IP(B(P) NXoeP). Any object X satisfying 7(X)
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is called a producible object.

Hlustration. In defining producible objects, we have intended to take up
only such objects whose existence can be affirmed by our axioms. As such
objects, we adopt those objects which are satellites of any terms X in an
infinite sequence of objects Xi, Xs, - » + satisfying the conditions: *(X;) and
Xi0X;(i=1,2,+--.). However, it is quite uncertain whether there is an
object formed by all the terms of any sequence of this kind. So, we had instead
to introduce the notion of basic objects, any one of which is supposed to be
formed by first finite terms of any sequence of this kind. Although our defini-
tion of basic objects can not characterize the said kind of objects as is pointed
out in (3.1.1), the definition works well for our purpose of introducing pro-
ducible objects.

(3.2.2) »(X)->=(X). (Any proto-number is producible.)

Proof. By (1.8.5) and (3.1.2), there is a basic object formed by all the

proto-numbers, so any proto-number is producible by reflexivity of o.

(3.2.3) XoYA=(Y)* >7(X); especially Xe€YA=(Y)* »=(X),
XSEYAR(Y) »7(X), and X{Y}A=(Y)+ »=(X). (Any satellite of a producible
object is also producible. Especially, any proto-member, any subobject, and any

unit object of any producible object are also producible.)
Proof. By (1.2.11), (1.2.12), (1.4.9), and transitivity of o.

(3.2.4) XY A=(Y)» >=(X). (Any object formed by satellites of a producible
object is also producible.)

Proof. Let X be any object formed by satellites of a producible object Y.
Then, Y is a satellite of a proto-member U of a basic object P. By (3.1.4),
take a basic object @ satisfying @{T'; *(T)V T6€ P}). Now, take an object V
formed by satellites of U by (1.3.2); then, V is a proto-member of Q. Since
X60U and VAU hold, XS V by (2.3.5); so, XoV by (1.2.12). Hence, X satisfies
Xoe@ for the basic object @, so X is producible.

(8.2.5) X{T; TS Y}A=(Y)+* »7(X) and X{T;Te€€Y}A=(Y)* >=(X). (Any
power object as well as any sum object of a producible object is also producible.)

Proof. By (1.2.11), (1.2,12), (1.3.2), (3.2.3), (3.2. 4), and transitivity of o,
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(8.2.6) X{T; T=eY}IA=(Y)* »7(X).

Proof. By (1.2.6), (1.2.11), (1.2.12), (1.3.2), (3.2.3), (3.2.4) and transi-
tivity of o.

(8.2.7) 7(X)-p(X). (Any producible object is regular.)

Proof. Let X be any producible object. Then, X is a satellite of a proto-
member of a basic object 2 By (1.2.11) and transitivity of ¢, X is a satellite

of the basic object P, which is naturally regular, so X is also regular by (2.2.7).

(3.2.8) (X)) A7(Y) »3Z(7(Z) N XeZ A\ YoZ). (For any two producible objects,

there is a producible object which has these objects as its satellites.)

Proof. Let X and Y be any two producible objects. Then, there are such
basic objects P and @ that X is a satellite of a proto-member W of P and Y
is a satellite of a proto-member of @. By (3.1.6), there is such a basic object
R that P as well as @ is a constituent of R. Then, by (1.7.1), P is either a
subobject of R, or a constituent of a proto-member T of R. In the case PER,
X is a satellite of the proto-member W of the basic object R by (1.2.2), and
in the case PkTATER, X is a satellite of the proto-member T of the basic
object R by (1.2.11), (1.5.3), and transitivity of . Anyway, X is'a satellite
of a proto-member U of the basic object R. Similarly, we can prove that Y
is also a satellite of a proto-member V of R.

According to (3.1.7), one of the two proto-members U and V of the basic
object R is a satellite of the other, say Z, so by reflexivity and transitivity of o,
X and Y are both satellites of the same proto-member Z of the basic object R.

The object Z is producible by reflexivity of o.

(3.2.9) Definition: U{X, Y} ¢ U{T; T=XVT=7Y}. Any object U satisfying

U{X, Y} is called a pair object of X and Y.
(3.2.10) 7(XHAT(Y)* ->3U-U{X, Y} and #(X)ATYIAUX, Y} ->=(D).

(For any two producible objects, there is a pair object of them; and any pair
object of any two producible objects is also producible.)

Proof. Let X and Y be anty two producible objects. Then, by (3.2.8),
there is a producible object W for which Xe¢W and Y¢W hold. Accordingly,
if we take an object U satisfying U{T; ToWA(T=XVT=Y)}, then by
(1.3.5), it satisfies also I{T; T=XVT=Y} ie. U{X, Y}
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Now, let U be any object satisfying U{X, Y} for two producible objects X
and Y, and by (1.3.2), take an object H formed by satellites of the producible
object W. Then, by (1.8.5), U is a subobject of H. Since H is producible by
(3.2.4), U itself is producible by (3.2.3).

(3.2.11) 7(X)A=(Y)» -3Z-Z{T; TeXVT€Y) and
T(X)ANT(Y)NZ{T; TeXNTeY} »n(2Z).

(For any two producible objects, there is a union object of them; and any
union object of any two producible objects is also producible. Here we call any
object Z satisfying Z{T'; Te€ XN T€Y} a union object of X and Y.)

Proof. By (1.8.5), (1.4.5), (3.2.5), (3.2.10), and reflexivity of identity.

(4) Membership and Equality

In our theory of objects, we do not assume the extensionality axiom of the
set theory for our objects with respect to proto-membership and identity, nor
we can not expect the second equality axiom holds with respect to proto-
membership and proto-equality for our objects. However, even if it is impos-
sible to prove the axioms with respect to proto-membership and identity, or
with respect to proto-membership and proto-equality, for our objects in general,
it may be still possible to prove them with respect to other suitably defined
notions, “membership” and “equality”, in a suitably defined range of objects,

the range of producible objects. In the following, we shall show that this is
the case.

(4.1) Before going into details, we describe here shortly our plan. By

modifying proto-membership, we introduce a new notion “membership” (nota-

“«

tion: “=”), and by modifying the notions, identity and proto-equality, we
introduce a new unified notion “equality” (notaion: “="), in such a way that
the axiom of extensionality together with the equality axioms holds with respect
to them. However, we try to minimize the modification as far as these axioms
hold. Perhaps, “membership” and “equality” should be weaker than proto-
membership and identity respectively, but we try to keep the mutual relation
X e P= X =¢€ P, a modification of the first formula of (1.2.8). As far as this
relation should be kept, we have only to define “equality”.

It would be very easy to define “equality”, if an object formed by all the
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pair objects of X and Y satisfying X =Y could be considered. However, it is
impossible to consider such an object, if X = X should hold for every X. For,
such an object must contain all the unit objects as its proto-members, so all
the objects must be its satellites.

An approach to define “equality” is to consider objects formed vby only
those pair objects of X and Y satisfying X =Y. If “<(P)” is a condition for
that P is an object of this kind, then every pair-object proto-member of P
satisfying “c(P)” must be a pair object of X and Y satisfying X = Y and also
satisfying VS(SeX =S<Y). We try to express the condition by introducing
new relations “X;» Y” and “X‘;’ Y”, which are defined by X=YVIU(U{X, Y}
ANU€P) and VZ(Z5 € X = Z5 € Y) respectively. (See (4.2.1), (4.3.1), and
(4.5.1).) Then, “s(P)” is defined for trial as =(P) ANVXY(X5Y->XFY). (See
(4.6.1).). In the following, we show that this trial definition works well for

our purpose.

(4.2) P-equality.

(4.2.1) Definition: X=Y % - X=YV3U(U(X, Y)AU€P). Any two objects
P

X and Y satisfying X % Y are called P-equal to each other. P-equality can be

taken as a binary relation regarding P as a parameter.

Remark. We define P-equality to introduce a way of weakening the notion
of identity with respect to an object P. Only for a special kind of objects P,
P-equality can be considered as closely related to “equality”.

(4.2.2) X=Y > X5 Y. (Identity implies P-equality.)

(4.2.3) P@ ~» (X5 Y-»Xa Y). (If Pis a subobject of @, P-equality implies
Q-equality.)

Proof. By (1.2.2) and (4.2.2).

(4.2.4) 0(P)AX5Y+->X=Y. (For any null object P, P-equality implies
identity.)

(4.2.5) X5 X. (Reflexivity of P-equality.)
Proof. By reflexivity of identity.

(4.2.6) X5Y > Y5 X. (Symmetricity of P-equality.)
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Proof. By symmetricity of identity.
(4.2.7) PIT; T=€Q} > X5Y = X5Y.

Proof. Let P be an object satisfying P{T; T=¢€Q}. Then, Q€ P by
reflexivity of proto-equality, so @-equality implies P-equality by (4.2.3).

To show that also P-equality implies @-equality, take any two objects X
and Y which are P-equal to each other. Then, either X =Y or a proto-member
U of P is a pair object of X and Y. In the case X=1Y, holds X 5 Y by (4.2.2).
Also in the case Ue PAU{X, Y}, the proto-member U of P is proto-equal to
a proto-member V of @, so V is also a pair object of X and Y. Hence X 5 Y.

(4.2.8) IQVXY(X5Y =X5Y)NQ(T; T=¢Q}). (For any object P,
there is such an object @ that Q-equality is equivalent to P-equality and
Q{T; T=€Q)} holds.)

Proof. For any object P, take an object @ satisfying @Q{T; T'= € P} by
(1.3.3). Then, P-equality is equivalent to Q-equaiiiy by (4.2.7). Moreover,
we can prove @{T; T=¢€Q}: Namely, take any T which is proto-equal to a
proto-member S of @. Then, S is proto-equal to a proto-member R of P. By
transitivity of proto-equality, T is proto-equal to the proto-member R of P, so
TeQ. Conversely, any proto-member U of @ is an object which is proto-
equal to the proto-member U of @ by reflexivity of proto-equality. Hence
QUT; T=€Q).

(4.3) P-membership.

(4.3.1) Definition: X S Y(!=‘f X% €Y. Any object X satisfying X sY is called a
P-member of Y.

(4.3.2) Xey X S Y. (Proto-membership implies P-membership.)
Proof. By reflexivity of P-equality.

(4.3.3) PsQ-(Xg Y>Xs Y). (For any subobject P of an object @,

P-membership implies @-membership.)
Proof. By (4.2.3).

(4.3.4) P(T; T=€Q} > XgV=XeY.
Proof. By (4.2.7),
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(4.4) Transitive objects.

(4.4.1) Definition: ~(P) g *PT; T=e PINVXY( X5 5Y-X57). Any

object P satisfying ©(P) is called a transitive object.

(4.4.2) «(PAX5Y+ > X=YVVUU(X, Y}~ UeP). (If two objects X and

Y are P-equal for a transitive object P, then any pair object of X and Y is a
proto-member of P unless X=Y.)

Proof. Let P be a transitive object, and X and Y be P-equal but not
identical. Then, there is a proto-member V of P satisfying V{X, Y}. Any
pair object U of X and Y is evidently proto-equal to the proto-member V of
P, so U€ P because P is transitive.

(4.4.3) ©{(F)ANT(G)ANP{T; TeFAT€G}* »7(P). (Any object formed by all
the common proto-members of two transitive objects is also transitive.)

Proof. Let P be any object satisfying P{T; Te FAT€&G} for any two
transitive objects F and G.

Firstly, we prove P{T; T = € P}: Namely, take any object T which is an
object proto-equal to a proto-member S of P. Then, S is a proto-member of
F as well as of G. Since F and G are transitive, T is a proto-member of F
as well as of G, so T€ P. Conversely, any proto-member T of Pis proto-equal
to the proto-member T of P by reflexivity of proto-equality.

Secondly, we prove that X 3 5 Y implies X 5 Y': Let any object X be P-
equal to an object Z and Z be P-equal to another object Y. Since P is a sub-
object of F as well as of G, so by (4.2.3), X is F-equal as well as G-equal to
Z, and Z is F-equal as well as G-equal to Y. Because F and G are both
transitive, X is F-equal as well as G-equal to Y. Consequently, there is a pair
object U of X and Y which is a proto-member of F, unless X=Y. Since G is
transitive, the pair object U of X and Y is a proto-member of G by (4.4.2),

unless X=Y. Accordingly U is a common proto-member of Fand Gie. U€ P,
unless X=Y. Hence X5 Y.

(4.4.4) 7(P)>(X53Y~>+XgZ=YgZ). (For any transitive object P, any two
P-equal objects are either both P-members or both no P-members of any object.)

Proof. Let X be P-equal to Y for a transitive object P, and X be a P-
member of Z. Then, X is P-equal to a proto-member U of Z. By symmetricity
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of P-equality, Y is P-equal to the proto-member U of Z, since P is transitive.
Hence Ye Z.

Similarly, we can prove that Y;Z implies X S Z.

(4.5) Equal P-extension.

(4.5.1) Definition: X3 v¥ VS(Sg X=SeY). Any two objects X and Y
satisfying X3 Y are called objects of equal P-extent.

(4.5.2) X=Y->X%Y. (Identity implies equal P-extension.)
Proof. By (1.3.5).

(4.5.3) P=Q->X3Y=X37Y. (f P and @ are proto-equal, equal

P-extension is equivalent to equal @-extension.)

Proof. Let P and @ be any two proto-equal objects, and X and Y be any
two objects of equal P-extent. Take any @-member S of X. Then, Sg X by
(1.2.6) and (4.3.3). Since X% Y, holds SeY. So, again by (1.2.6) and (4.3.3),
S S Y. By the same reasoning, we can show that any @-member of Y is a
Q-member of X.

Similarly, we can prove that any two objects are of equal P-extent if they
are objects of equal @-extent.

(4.5.4) PSQAT(Q)* >+ XFY->X3Y. (If X and Y are objects of equal P-
extent for a subobject P of a transitive object @, they are also objects of equal
Q-extent.)

Proof. Let X and Y be objects of equal P-extent for a subobject P of a
transitive object @, and let S be any @ member of X. Then, S is @-equal to
a proto-member T of X. By (4.3.2), T}E, X, so T}E, Y by assumption. Accord-
ingly, T is P-equal to a proto-member U of Y. By (4.2.3) T3U, so SzU
because @ is transitive. Hence SS Y.

Similarly, we can prove that any @-member of Y is a @ member of X.

(4.5.5) X3 X. (Reflexivity of equal P-extension.)
(4.5.6) X3 Y- Y3 X. (Symmetricity of equal P-extension.)
(4.5.7) X3 FY->XFY. (Transitivity of equal P-extension.)
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(4.6) c-objects.

daf

(4.6.1) Definition: ¢(P) = *z(P)AVXY(X5 Y- X3Y). Any object P satis-

fying <(P) is called an ¢-object.
(4.6.2) 0(P)-<(P). (Any null object is an e-object.)
Proof. By (1.8.2), (3.2.2), (4.2.4), and (4.5.2).

(4.6.3) e(P)AQ=P+ ><(Q). (Any object which is proto-equal to an &-obect
is also an c-object.)

Proof. Let @ be an object proto-equal to an s-object P.

Firstly, @ is a producible object by (1.2.6) and (3.2.3), because the ¢-
object P is naturally producible.

Secondly, we assert that @Q-equality implies equal Q-extension: To show
this, take any two mutually @-equal objects X and Y. Then, by (1.2.6) and
(4.2.3), they are mutually P-equal; so, they are also objects of equal P-extent,
because P is an c-object. Consequently, by (4.5.3) X 3Y. Hence @ is an
e-object.

(4.6.4) T(PAVYU(U€ P-3X-U{X})* »<(P). (Any producible object formed

by exclusively unit objects is an ¢-object.)

Proof. Let P be a producible object which is formed by unit objects only.
To show that P is an c-object, take any two mutually P-equal objects X and
Y. Then, X=Y because any pair object of X and Y can be a proto-member
of P only when X =Y by reflexivity, symmetricity, and transitivity of identity.
Since identity implies equal P-extension by (4.5.2), holds X F7Y. Hence e(P).

{4.7) :(PMNe(Q)» »AMPS MAQS MAe(M)AT(M)). (For any two -

objects, there is a transitive ¢-object which includes them as subobjects.)

Proof. The proof consists of two parts. In the first part, we prove that
for any two c-objects P and @ there exists a producible object M which satisfies
M{U; VS(x<(SY APSSAQESS--»>Ue€S)}, and that M is a transitive object
including P and @ as subobjects. In the second part, we show ¢(M) by proving
that A is proto-equal to any object N satisfying N{V; Ve MAVST(V{S, T}
—>S3T)}. There is surely an obect IV of this kind by (1.3.1).

Now, let P and @ be any two c-objects. By (1.4.5), we can take sum
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objects F and G of P and @ respectively. Since :-objects P and @ are pro-
ducible, F and G are also producible objects by (3.2.5). By (3.2.11), we can
take a union object H of the producible objects F and G, which is also pro-
ducible. Namely, H is a producible object satisfying H{T; Te€e PV T e€Q}.
By (1.4.6) and (3.2.5), we can take a producible object K satisfying
K{U; UsH}.

We assert that the producible object K is transitive and that P and @ are
subobjects of K. At first, we prove K{U; U= ¢ K}: Namely, take any object
U which is proto-equal to a proto-member V of K. Then, V € H, so, by (1.2.6)
and transitivity of proto-inclusion, also US H. Accordingly, U€ K. Conversely,
any proto-member U of K satisfies U= € K by reflexivity of proto-equality.
Hence K{U; U=¢€K}!. Secondly, we prove that Xz =Y implies X 2 Y for
any X and Y: Namely, let X be K-equal to Z and Z be K-equal to Y. Then,
either X = Z or there is a proto-member U of K which is a pair object of X
and Z, and also either Z=Y or there is a proto-member V of K which is a
pair object of Z and Y. When one of the two identities X = Z and Z =Y holds,
we can conclude X% Y by (1.8.5), so we have only to discuss the case
»X=7Z+*N-—>Z=Y. In this case, there are two proto-members U and V of
K satisfying U{X, Z} and V{Z, Y}). The proto-members U and V of K are
subobjects of H, so X and Y are proto-members of H by (1.2.2) and reflexivity
of identity. Accordingly, if we take an object W satisfying W{T; Te¢H
ANT=XVT=Y)} by (1.3.1), W is a pair object of X and Y by (1.3.5).
Moreover W e K, because W s H again by (1.3.5). Consequently X z Y. Hence
K is transitive. To prove further that P as well as @ is a subobject of K,
take any proto-member S of P or €. Then, any proto-member T of S is
surely a proto-member of H, soc S H ie. S6éK. Hence PS K and @ & XK.

Now we assert that there exists a producible object A7 satisfying
MU; YS(=(S)APSSAQSS+*->Ue€S)}). Toshow this, take an object A satis-
fying M{U; Ue KAVS(:(S)APSSAQES+*>UeS)} by (1.3.1). Clearly, Mis
a subobject of the producible object K, so M is also a producible object by (38.2.3).
Now, any U satisfying VS(-(S)ANPSSAQSS+*-UeS) satisfies especially
S(K)APSKANQE K+ -»U€K, so Ue K, because K is a transitive object and
satisfies P€ K and @ € K. Consequently, the producible object M satisfies also
M{U; VS(=(S)ANPSSAQSS+->UeS)}.
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Next we prove that M is a transitive object and P as well as @ is a sub-
object of M. To show that M is transitive, we prove at first M{U; U=€M}:
Namely, let any object U be proto-equal to a proto-member V of M. To show
that U is also a proto-member of M, take any transitive object S including P
and Q@ as its subobjects. Then, V is surely a proto-member of S, so also U is
a proto-member of S, because S is transitive. Conversely, any proto-member
U of M satisfies U = € M by reflexivity of proto-equality. Hence M{U; U =€ M).
Next we prove that X ﬁZ and ZgY imply X 24 for any three objects X, Y,
and Z. Namely, take again any transitive object S for which P€S and Q&S
hold. Then, M is a subobject of S, because any proto-member U of M satisfies
VYS(T(S)APSSAQsSS+-->Ue€S). Accordingly, by (4.2.3), X35Z as well as
Z 3 Y holds; so, X Y holds too, because S is transitive. If X=7Y, then X R4
holds by (4.2.2). If - X=Y, then we can find a proto-member V of S which
is a pair object of X and Y. Any pair object U of X and Y is evidently proto-
equal to V, so U€S, since S is transitive. Accordingly, U is a proto-member
of any transitive object S which includes P and @ as subobjects, ie. UeM.
Namely, any pair object U of X and Y is a proto-member of M, especially
VeM. Consequently, X and Y are M-equal even in the case =X =Y. Hence
M is transitive. Lastly, we prove that P and @ are subobjects of M: Namely,
take any proto-member U of P or Q. Then, by (1.2.2) U is a proto-member
of any transitive object including P and @ as subobjects, so Ue€M. Hence
PsEMand Qs M.

Next step is to show €(M). To prove this, take an object N satisfying
NV; VEMAVST(V{(S, T} >S5 T)} by (1.3.1). Then, surely NS M.

We assert ©(N). To show this, we prove at first M{ V; V= e€N}: Namely,
take any object V which is proto-equal to a proto-member W of N. VeM
because W is surely a proto-member of M and V is proto-equal to the proto-
member W of the transitive object M. Moreover, if V is a pair object of two
objects S and T, W is also a pair object of these two objects, because V is
proto-equal to W. Since W is a proto-member of N, S 3 T holds by assumption.
Consequently VeN. Conversely, any proto-member V of N satisfies V€N
by reflexivity of proto-equality. Hence N{V; V=e N}. Next we assert that
Xﬁ =Y implies Xﬁ Y for any X and Y: To show this, assume XﬁZ and
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Z %Y. Then, we can take a proto-member A of NV being a pair object of X
and Z and a proto-member B of N being a pair object of Z and Y, unless one
of the two identities X=Z7 and Z=Y holds. When one of these two identities
holds, X is N-equal to ¥ by (1.3.5), so we have only to discuss the case where
we have such pair objects A and B which are proto-members of V. Since NV
is a subobject of the transitive object M, hold XﬁZ and ZﬁY by (4.2.3), and
accordingly X i Y holds, i.e. there is a proto-member C of M which is a pair
object of X and ¥, unless X=Y. When X=Y, holds X £ Y by (4.2.2). On
the other hand, when there is a pair object C of X and Y which is a proto-
member of M, C is also a prolo-member of N. To show this, we remark that
X 3 Y holds by (4.5. 7), because X5Zand ZZY hold by assumption. This
implies that for any S and T satisfying C{S, T} holds ST by (1.3.5) and
{4.5.6), because we can show that, either S=X and T'=Y, or S=Yand T=X
hold for such S and T by (1.2.4) and (1.3.5). Accordingly X 5 Y anyway.
Hence, N is a transitive object.

Next we prove that P as well as @ is a subobject of N: Namely, take any
proto-member U of P. The proto-member U of the subobject P of M is a
proto-member of M by (1.2.2). If U is a pair object of Sand T, clearly S 5T,
) S%’ 7T, because P is an ¢-object. Moreover ST implies ST by (4.5.4),
since P is a subobject of the transitive object M. Consequently ¢ N. Hence
P& N. Similarly, we can show @ & N.

Since every proto-member U of M is a proto-member of the transitive object
N including P and @ as its subobjects, holds M & N.

Lastly, we prove that the producible object M is an <-object: Namely, take
any two mutually M-equal objects X and Y. Then, there is a proto-member
U of M which is a pair object of X and Y, unless X=Y. When X =Y, holds
X3 Y by (4.5.2). Also in the case > X =Y, the pair object U of X and Y,
being a proto-member of M, is a proto-member of N by (1.2.2), because M S N.
Accordingly X %Y. Hence, M is an ¢-object.

(4.8) Equality.

(4.8.1) Definition: A=B 4 3P(¢(P)NA 5 B). Two objects are called mutually
equal if and only if they are P-equal for a suitable ¢-object P.
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(4.8.2) A=B > A=DB. (Identity implies equality.)
(4.8.3) A=A. (Refelxivity of equality.)
Proof of (4.8.2) and (4.8.3). There is an c-object P by (1.4.2) and (4.6.2).

If A=B, then A% B for the e-object P by (4.2.2), so A = B. Also, by reflexivity
of P-equality, holds A§A for the c-object P, so A = A.

(4.8.4) A=B->B=A. (Symmetricity of equality.)

Proof. Assume A=B. Then, A5 B for a suitable c-object P. By sym-
metricity of P-equality holds B3 A for the ¢-object P. Hence B=A.

(4.8.5) A==B > A=B. (Transitivity of equality.)

Proof. Let any object A be equal to an object T which is equal to another
object B. Then, AT for a suitable c-object P and T5B for another suitable
c-object @. By (4.7), there exists a transitive e-object M which includes these
two c-objects P and @ as subobjects. Accordingly, by (4.2.3) hold A 57T and
T i B. Since M is transitive, holds A i B. Since M is an e-object, holds A = B.

(4.9) Membership. ,
To define membership “&”, two ways are possible. Of course, definitions

by these two ways are logically equivalent to each other.

(4.9.1) Definition: AcBL A=e¢B or AcBL3P(<(P)AAgB). Any object
A is called a member of an object B, if and only if A is equal to a proto-
member of B; or, if and only if A is a P-member of B for a suitable e-object P.

Proof of equivalence of the two definitions. At first, aséume that A is
equal to a proto-member T of B. Then, A 7 T for a suitable c-object . A5 T
and T'€B implies AIEJB. So, EIP(i(P)/\A}eJB). Next, assume conversely
A S B for an c-object P. Then, A is P-equal to a proto-member T of B. Since
AzT and <(P) implies A=T, A is equal to the proto-member T of B.

(4.9.2) A€ B> A< B. (Proto-membership implies membership.)
Proof. By reflexivity of equality.

(4.10) Equality principle.
Theorems corresponding to the equality axioms of the set theory hold in

our system with respect to equality and membership.
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(4.10.1) A=B AP = BeP. (Two equal objects are either simultaneously

members of an object or simultaneously non-members of the object.)

Proof. Assume A=B. If A is a member of an object P, A is equal to a
suitable proto-member C of P. By symmetricity and transitivity of equality,
B is also equal to the proto-member C of P. Hence Be P.

Similarly, we can prove that A is a member of P whenever B is so.

(4.10.2) A=B - +XcA = X€B. (Equal objects have all their members in

common.)

Proof. Let X be a member of an object A which is equal to another
object B. Then, X }=_,A for a suitable c-object P, and A 33 for another suitable
e-object Q. By (4.7), we can take a transitive c-object M which includes P and
Q@ as subobjects. By (4.3.3) XAelA and by (4.2.3) ApB. Since M is an
e-object, A 57 B implies A %B So X ﬁA implies X = B. Hence X< B, because
X ﬁB for the c¢-object M.

Similarly, we can prove that any member of B is a member of A.

(4.10.3) X =Y - - A(X) = WY), if A(T) can be expressed by the notions of
membership and equality only. (A theorem corresponding to the second axiom

of equality with respect to membership and equality.)
Proof. By (4.10.1), (4.10.2), and symmetricity and transitivity of equality.
(4.11) Equal extension.

(4.11.1) Definition: X~ V] VZ(Ze X=Z<Y). Any two objects are called
objects of equal extent if and only if they have all their members in common.

(4.11.2) A =B -»A=~B. (Equality implies equal extension.)
Proof. By (4.10.2).

(4.11.3) X~ X. (Reflexivity of equal extension.)

(4.11.4) XY -»Y=X. (Symmetricity of equal extension.)

(4.11.5) X~ =~Y > XZ Y. (Transitivity of equal extension.)

(4.12) Extensionality principle.

(4.12.1) =(A)A=(B)ANA>~B+« > A= B. (A theorem corresponding to the axiom
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of extensionality of the set theory. Producible objects of equal extent are equal
to each other.)

Proof. Let A and B be any two producible objects of equal extent. Then,
by (3.2.11) we can take a producible object H which is a union object of A
and B.

We assert first that there is a producible object P which satisfies
PlU; 3ST(SkHA TeHAU{S, T} ANS=T)}: To show this, take a producible object
K formed by satellites of H by (1.3.2) and (3.2.4), and then take an object
P satisfying P{U; UsKAN3IST(SkHA TkHAU{S, T} AS=T)}. Any constituents
S and T of H are proto-members of K by (1.5.3), so any pair object U of the
proto-members S and T of K is a subobject of X by (1.3.5); therefore UcK
by (1.2.12). Consequently, P satisfies P{U; 3ST(SkHA TcHAU{S, T} ANS=T)}.
Moreover, P is a producible object by (3.2.3), because we can prove by (1.3.2)
and (3.2.4) that P is a subobject of a producible object formed by satellites
of the producible object K.

We prove next that P-equality implies equal extension: Namely, take any
two mutually P-equal objects X and Y. Then, either X and Y are identical
or a pair object U of X and Y is a proto-member of P. In the case X=Y,
holds surely X=Y by (1.3.5). In the case =X =Y, there is a pair object U
of X and Y which is a proto-member of P. The proto-member U of P is a
pair object of two suitable objects S and T of equal extent, so one of the two
objects X and Y is identical with S and the other is identical with T by re-
flexivity, symmetricity, and transitivity of identity. Hence, by (1.3.5), X~ Y
holds also in this case.

Now we assert <(P): In order to show this, we have only to prove that
P-equality implies equal P-extension, because we know already that P is pro-
ducible. Take now any two mutually P-equal objects X and Y. Then, X and
Y are objects of equal extent, as we have shown above. If X=Y, X and Y
are objects of equal P-extent by (4.5.2), so we have only to discuss the case
- X=Y. In this case there is a proto-member M of P which is a pair object
of X and Y. Since M is also a pair object of two suitable constituents S and
T of H, X as well as Y is also a constituent of H by (1.3.5) and reflexivity
of identity. Take now any P-member Z of X. Then, Z is P-equal to a proto-
member W of X. Since P-equality implies equal extension for the object P,
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holds Z>~W. Moreover, W € X since proto-membership implies membership
by (4.9.2). Because X~ Y, the member W of X is also a member of Y; so,
W is equal to a proto-member V of Y. Since equality implies equal extension
by (4.11.2), holds W= V. So, by transitivity of equal extension, holds Z=~ V.
If Z=W, Z is a proto-member of the constituent X of H by (1.3.5), so Z is
also a constituent of H by (1.5.4) and transitivity of x. If >Z=W, Z is a
proto-member of a pair-object proto-member IV of P by reflexivity of identity,
and every proto-member of N is a constituent of H by (1.3.5), so Z itself is
a constituent of A. Consequently, ZcH anyway. Moreover, the proto-member
V of the constituent Y of H is also a constituent of H by (1.5.4) and transi-
tivity of x. Accordingly, by (1.3.5) and (1.5.3), there exists a pair object of
Z and V, which is a proto-member of P. So, Z is P-equal to the proto-member
Vof Y. Hence Z 5 Y. Similarly, we can prove that any P-member of Y is
also a P-member of X. Hence X 3 Y.

We prove now A5 B: Because A and B are subobjects of their union
object H, they are constituents of H by (1.5.5). By assumption, A=~B.
Moreover, there is a pair object R of the producible objects A and B by (3.2.10).
Consequently, the pair object R is a proto-member of P, so A3 B.

Because A B B holds for the ¢-object P, holds A = B.

(4.12.2) 1(A)AT(B)AVZ(n(Z) > +ZcA = ZeB)- - A>~B. (If any two pro-
ducible objects have all their producible members in common, they are objects

of equal extent.)

Proof. Let A and B be two producible objects which satisfy VZ(#n(Z)
»>+Z€ A =2Z<B). To prove A=B, take any member T of A. Then, T is
equal to a proto-member Z of A. The proto-member Z of the producible
object A is surely producible by (3.2.3), and Z€ 4 by (4.9.2). So, Z€ B by
assumption. Consequently, by (4.10.1), T € B too. Similarly, we can prove
that any member of B is a member of A.

(5) Properties modulo equality

Producible objects can be regarded as sets if we draw no distinction be-
tween mutually equal objects. To treat objects formally without drawing any

distinction between mutually equal objects is to consider only ‘“properties
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modulo equality” whose notion shall be introduced in this Chapter. If we restrict
ourselves only to properties modulo equality exclusively in the field of pro-
ducible objects, our object theory can be regarded as a set theory. Indeed,
with any proposition, we can associate a set-theoretical proposition which is
called the set-theoretical image of it. Fundamental properties of set-theoretical

images are also studied in this Chapter.

(5.1) Properties modulo equality.

(5.1.1) Definition: Any condition f(X) is called to define a property of X
modulo equality if and only if VXY(X=Y - (%(X)=%(Y))) holds, where X
and Y do not occur in A(Z). The condition A(X) is also called shortly a
condition on X modulo equality.

(5.1.2) If X does not occur in %, A is a condition on X modulo equality.

(5.1.3) XY defines a property of X as well as of ¥ modulo equality.

(5.1.4) X=Y defines a property of X as well as of ¥ modulo equality;
Proof of (5.1.3) and (5.1.4). By (4.10.3).

(5.1.5) 7(X) defines a property of X modulo equality.

Proof. Let X and Y be mutually equal objects, and moreover, one of them,
say X, be producible. Then, either these two objects are identical or there is
a pair object U of them which is a proto-member of an ¢-object P. In the
former case, ©(X) implies =(Y) by (1.3.5). In the latter case, the :-object P
is naturally producible, so the proto-member U of P is also a producible object
by (3.2.3). Since Y is a proto member of the producible object U by reflexivity
of identity, Y is also a producible object again by (3 2.3).

(5.1.6) If A(X,Y) defines a property of X and Y modulo equality, (X, X)
defines a property of X modulo equality, assuming that X and Y do not occur
in WG, V).

(5.1.7) If A(X) defines a property of X modulo equality, - %(X) defines a
property of X modulo equality.

(5.1.8) If A(X) and B(X) are conditions on X modulo equality, A(X) AB(X),
A(X) VB(X), and A(X)->B(X) are also conditions on X modulo equality.
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(5.1.9) If A(X) defines a property of X modulo equality, VZ-%(X) as well
as 3Z-UA(X) defines a property of X modulo equality.

”

(5.1.10) Any condition, expressible in terms of membership “ € ”, equality “ =",

and producibility “7(+)”, defines a property of any variable modulo equality.
Proof. By (5.1.2)—(5.1.9).

(5.1.11) A necessary and sufficient condition for that %(X) defines a property
of X modulo equality is that %(X) is equivalent to 3S(X = SA A(S)), assuming
that X and S do not occur in A(T).

Proof. Assume first that A(X) defines a property of X modulo equality.
Then, A(X) holds whenever X is equal to any object S satisfying €(S). On
the other hand, (X) implies 3S(X = SAA(S)) by reflexivity of equality.

Next, assume conversely that A(X) is equivalent to IS(X=SAA(S)) for
every X. By symmetricity of equality, X = ¥ and %(X) imply 3S(Y = SA %A(S)),
so also A(Y) by assumption. Similarly, X =Y and %(Y) imply A(X). Hence,
A(X) defines a property of X modulo equality.

(5.1.12) 3S(X =S A A(S)) is one of the strongest conditions under those condi-
tions on X modulo equality, which are weaker than the conditicn %(X), assum-
ing that X and S do not occur in A(T).

Proof. Let A(X) be any condition on X, where X and S do not occur in
WT).

3IS(X =S ANA(S)) defines a property of X modulo equality. For,
AS(X=SAAS)) is equivalent to AT(X = TAIAS(T =SAA(S))) by reflexivity
and transitivity of equality, so 3S(X = SA A(S)) defines a porperty of X modulo
equality by (5.1.11).

3S(X=SAA(S)) is weaker than A(X), i.e. the latter implies the former.
For, if %(X) holds, 3S(X =SA A(S)) holds by reflexivity of equality.

AS(X =SAA(S)) is stronger than any condition on X modulo equality
which is weaker than %(X); namely, if the condition A(X) on X implies any
condition B(X) on X modulo equality, also 3S(X =SA %(S)) implies B(X) for
any X. To show this, take any condition 8(X) on X modulo equality which
is weaker thaﬁ A(X). If X is equal to an object S which satisfies A(S), then
X is equal to the object $ which satisfies B(S). Consequently, B(X) holds too
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by (5.1.11), because B(X) is assumed to define a property of X modulo equality.

(5.1.13) A=BA=7(B)* »>7(A). (Any object which is equal to a producible
object is also producible.)

Proof. By (5.1.5).

(5.1.14) A€ BAn(B)- ~=(A). (Any member of a producible object is also
producible.)

Proof. Let A be a member of a producible object B. Then, A is equal
to a proto-member C of B. The proto-member C of the producible object B
is a producible object by (3.2.3), so A is also a producible object by (5.1.13).

(5.2) Set variables.

Together with capital Latin letters as variables for denoting objects in
general, we employ small Latin letters as variables for denoting producible
objects. Accordingly, whenever any small Latin letter x is employed as a free
variable in a proposition % (x), the proposition means that A(X) holds for a
corresponding free variable X which does not occur already in the course of
the reasoning, having in mind that X denotes a producible object. Vx.%(x)
means naturally VX(z(X)-%(X)), and 3x+A(x) means IX(7(X)AAX)),

where ¥ and X are variables which do not occur in %A(S).

(5.2.1) Remark. Producible objects can be regarded as sets with respect to
membership and equality, so we call variables denoted by small Latin letters
set variables.  Also, producible objects denoted by set variables are called
sometimes sets. Any expression expressed by membership and equality with

no bound capital-letter variables is called a set-theoretical expression.

(5.2.2) Remark. Although the relation between the set notion and the object
notion of our system is quite different from the relation between the set notion
and the class notion of the Bernays-Godel set-theory [5], [6], we can use our

set variables just as the set variables of the Bernays-Godel set-theory.

(5.2.83) Any proposition in our system can be expressed exclusively by the
primitive notion “proto-membership” and without employing bound set variables.
Any expression expressed exclusively by proto-membership and without employ-
ing bound set variables is called a proper expression. Any proposition has a
proper expression of it,
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(5.3) Set-theoretical images.

(5.3.1) Definition. Any set-theoretical expression B is called the sei-theoretical
image of a proper expression %, if and only if we obtain 8B by replacing proto-
membership in ¥ by membership and all the bound variables X, Y, Z, « - *

in A by their corresponding set variables %, », 2, - - *

(5.8.2) Any proper expression has a definite set-theoretical image. For any

proper expression %, we denote its set-theoretical image by | %|.

(5.8.3) Any set-theoretical expressions, especially the set-theoretical images of
any proper expressions, define properties modulo equality with respect to any

variables.
Proof. By (5.1.10).

(5.3.4) If % and B are proper expressions, so AAB, AVB, and A->B are
also proper expressions, and |AAB|, |AVB|, and |A->B| are |AIA|B],
[%AIVIB], and |A|~[B]| respectively. If % is a proper expression, so ~ A is
also a proper expression, and | > % | is —|A|. If A(T) is a proper expression,
so VX« A(X) and AX - A(X) are also proper, and | VX« A(X)| and | IX « A(X)|

are Vx| A(x)| and 3x|A(x)| respectively, where X and x do not occur in A(T).

(5.8.5) Remark. Although set-theoretical images are defined only for definite
expressions, they are practically defined whenever the expressions are definite
except for nomination of bound variables. Accordingly, we can make use of
notations such as |A s B|, |A=B|, |¢(A)|, | AsB]|, etc.

(5.4) Inclusion and set-theoretical inclusion.

(5.4.1) Definition: X< Y Z VZ(ZeX ~ZeY). Any object X is called a minor
object of Y or to be included in Y if and only if every member of X is a

member of Y.
(5.4.2) X€Y->XCY. (Proto-inclusion implies inclusion.)

Proof. Let X be any subobject of an object Y. Take any member S of
X. Then, S is equal to a suitable proto-member T of X, which is surely a
proto-member of Y by (1.2.2). Accordingly, S is equal to the proto-member
T of Y,ie. S=Y. Hence X<CV.

(5.4.3) Definition: The binary relation |Xg Y| ie. Vs(s€X->seY) is called
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set-theoretical inclusion. Any object X satisfying | X € Y| is called a set-theoretical
subobject of Y.

(5.4.4) XcY - |XsY|. (Inclusion implies set-theoretical inclusion.)

(5.4.5) XcX and | Xs X|. (Reflexivity of inclusion and of set-theoretical in-
clusion.)

(5.4.6) XCcCY->XcY and |XSYIAYSZ|: »|XsZ|. (Transitivity of

inclusion and of set-theoretical inclusion.)

(5.4.7 X~Y=-XcCYANYS X (Two objects are of equal extent if and only
if each one of them is included in the other.)

(5.4.8) X=Y-XCY. (Equality implies inclusion.)
Proof. By (4.11.2) and (5.4.7).

(5.4.9) XY =X=>gY. (Any object X is a minor object of another object
Y if and only if X is an object of equal extent with some subobject of Y.)

FProof. Let X be a minor object of Y. Take an object Z satisfying
Z{T; TeYANT< X} by (1.3.1). Evidently ZSY. Moreover, we assert X~ Z:
Namely, to show X< Z, take any member U of X. Then, U is a member of
the object ¥ which includes X. Accordingly, U is equal to a proto-member T
of Y. Moreover, T X by (4.10.1). Accordingly T€Z, so U= Z.  To show
conversely ZC X, take any member U of Z. Then, U is equal to a proto-
member T of Z. Since the proto-member T of Z is a member of X, U is equal
to the member T of X ie. U< X again by (4.10.1). Accordingly, X~ Z holds
by (5.4.7). Hence X>gY.

Conversely, let X be an object of equal extent with a subobject W of Y.
Then, WCY by (5.4.2), so X itself is included in ¥ by (5.4.7) and transitivity
of inclusion.

(5.410) xSy =x=Ey and xSy = J2(x=2A2S y). (Any set xis included in
another set ¥ if and only if x is equal to a subobject Z of y, or, if and only if
x is equal to a producible subobject z of y.)

Proof. If we assume in the proof of the preceding theorem further that
X and Y are producible objects and denoted by x and y respectively, then the
object Z is also a producible object by (3.2.3), since Z is a subobject of the
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producible object y. Consequently, x =Z by (4.12.1). Hence, x<y implies
x=Sy and Jz(x =2zA25y).

Conversely, if x is equal to a subobject Z of y, then x~Z by (4.11.2), so
xSy by (5.4.9).

(5.4.11) xCy=xS=yand xCy = Jz2(xSzAz=y). (Any set x is a minor
object of another set y if and only if x is a subobject of an object Z which is
equal to y, or, if and only if x is a subobject of a set z which is equal to y.)

Proof. At first, let any set ¥ be a minor object of another set y. By
(8.2.11), take a producible union-object z of x and y. Clearly ySz, so ycz
because proto-inclusion implies inclusion by (5.4.2). To show zCy, take any
member S of 2. Then, S is equal to a proto-member T of z. The proto-
member T of the union object z of x and y is a proto-member of x unless it
is a proto-member of y. So, T€x unless Ty, because proto-membership
implies membership by (4.9.2). Since x<y, T is a member of » even when
Tex So, Tey anyway. Accordingly Sy by (4.10.1). Hence z=~y by
(5.4.7), so, z=y by (4.12.1). Since clearly x Sz, x is a subobject of the set
z which is equal to y. .

Conversely, let ¥ be any subobject of an object Z which is equal to y.
Then, x< Z and Z< y hold, since proto-inclusion as well as equality implies
incusion by (5.4.2) and (5.4.8). Hence x Sy by transitivity of inclusion.

(5.4.12) xcY=|xcY|. (Inclusion is equivalent to set-theoretical inclusion
for sets. More precisely, any set is a minor object of an object if and only if
the set is a set-theoretical subobject of the object.)

Proof. Since inclusion implies set-theoretical inclusion by (5.4.4), we have
only to show that |x £ Y| implies x Y.

To show this, assume |*xSY|. Any member Z of x is equal to a proto-
member W of x. By (3.2.3), the proto-member W of the set x is producible,
and it is a member of x by (4.9.2). Accordingly WeY, so also Z€ Y by
(4.10.1). Hence x<Y.

(5.4.13) x=1y, x~y, and |x =y| are equivalent to each other.

Proof. By (4.10.2), (4.12.1), and (4.12.2),
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(5.5) Set-theoretical satellites.
(5.5.1) | Xeey| = Xeey.

Proof. |Xeey| implies X<y evidently. Conversely, let X be any
member of a member U of y. Then, U is equal to a proto-member V of jy.
The proto-member V of the producible object y is a producible object by (3. 2. 3),
so U is also a producible object by (5.1.13). Hence | X€€y| holds.

(5.5.2) XY =Xc€Y. (Any object is a member of a member of another
object if and only if the former is a member of a proto-member of the latter.)

Proof. Since proto-membership implies: membership by (4.9.2), X €Y
implies X Y. Conversely, let X be any member of a member U of Y.
Then, U is equal to a proto-member V of Y. Since the member X of U is
also a member of V by (4.10.2), X is a member of the proto-member V of Y.

(5.5.3) |[xseyl=xcey.

Proof. By (3.2.3), (4.9.2), (5.3.3), and (5.4.12). Similar to the proof of
(5.5.1).

(5.5.4) XceY =Xce€Y. (Any object is a minor object of a member of

another object if and only if the former is a minor object of a proto-member
of the other.)

Proof. By (4.9.2), (5.4.8), and transitivity of inclusion. Similar to the
proof of (5.5.2).

(5.5.5) e(p)>|k(p)|. (Any producible k-object is also a set-theoretical x-object
Here we call any object P satisfying |k(P)| a set-theoretical k-object.)

Proof. Let a set p be any k-set i.e. any producible x-object. To show that
p is also a set-theoretical x-object, take any set s satisfying |s€ €p|. Then,
by (5.5.1) and (5.5.2), s is a member of a proto-member of p, so s is equal
to a proto-member T of a proto-member of . Since p is a k-set, T is a sub-
object of a proto-member U of p. The proto-member U of the set p is a pro-
ducible object by (3.2.3). Since s is equal to subobject T of the producible
object U, |ss U| by (5.4.10) and (5.4.12). By (4.9.2), the proto-member U
of p is also a member of p; so, s is a set-theoretical subobject of the pro-
ducible member U of p. Hence, p is a set-theoretical x-object by (5.3.4),



A THEORY OF MATHEMATICAL OBJECTS 153

(5.5.6) a(p) - a(p)|. (Any producible «-object is also a set-theoretical a-

object. Here we call any object P satisfying |a(P)| a set-theoretical a-object.)

Proof. Let p be any a-seti.e. any producible a-object. To show that p isa
set-theoretical a-object, take any set s satisfying |[ss€p|. Then, by (5.5.3) and
(5.5.4), s is a minor object of a proto-member V of p. The proto-member V
of the set p is a producible object by (3.2.3), so the minor object s of V is
equal to a subobject T of V by (5.4.10). Since p is an a-set, the subobject T
of the proto-member V of P is a proto-member of a proto-member W of p.
So, se Wand W=p by (4.9.2). Accordingly |s ¢ € p| by (5.5.1). Hence p

is a set-theoretical «-object by (5.3.4).

(5.5.7) otp)-{o(p)l. (Any producible g-object is also a set-theoretical s-object.
Here we call any object P satisfying |o(P)| a set-theoretical s-object.)

Proof. Let p be any g-set i.e. any producible s-object. Then, p is a «-object
as well as an a-object by (1.5.2) and (1.5.9), so the producible object p is a
set-theoretical x-object as well as a set-theoretical a-object by (5.5.5) and
(5.5.6). Since any object which is a set-theoretical k-object as well as a set-
theoretical a-object is a set-theoretical ¢-object by (5.3.4), the set p is a set-

theoretical s-object.

(5.5.8) {x6h|—>x=rxh, \yahi—y=ah, and |zeh'!>z=0¢h. (Any producible set-
theoretical constituent of a set is equal to a constituent of the set, any pro-
ducible set-theoretical ancestor of a set is equal to an ancestor of the set, and
any producible set-theoretical satellite of a set is equal to a satellite of the set.
Here we call any object X satisfying | X«Y|, | Xa Y|, or | XoY| a set-theoretical

constituent, a set-theoretical ancestor, or a set-theoretical satellite of Y respectively.)

Proof. Let three sets x, ¥, and z be any set-theoretical constituent, any
set-theoretical ancestor, and any set-theoretical satellite of a set % respectively.
Then, by (1.3.2) and (3.2.4), we can take a set p formed by satellites of the
set &, and then we can take a set ¢ formed by constituents of % by (1.5.3)
and (3.2.3), and also a set » formed by ancestors of 2 by (1.5.10) and (3.2.3).

At first we assert £(g). To show this, take any proto-member S of a proto-
member T of q. Then, Tkh, so, by (1.5.4) and transitivity of x, Skh ie. S€q.
Consequently, by reflexivity of proto-inclusion, S is a subobject of the proto-



154 KATUZI ONO

member S of p.

Next we assert a(7). To show this, take any subobject S of a proto-
member T of . Then, Tah, so, by (1.5.11) and transitivity of «, Sak. Take
now by (1.4.4) any unit object K of S. Then, by (1.5.12) and transitivity of
a, also Kah ie. K€r. Since S€ K holds by reflexivity of identity, S is a proto-
member of the proto-member K of 7.

We assert thirdly ¢(»). We can prove this similarly to the above two
proofs by employing (1.2.11) in place of (1.5.4), (1.2.12) in place of (1.5.11),
(1.4.9) in place of (1.5.12), and transitivity of ¢ in places of transitivity of &
and of «.

h is a set-theortical subobject of a producible members of p, ¢, and 7
respectively. (|lhs€p|, |hs€ql, and |hse€r|.) For, h is a set-theoretical
subobject of 2 by reflexivity of set-theoretical inclusion, and % is a member of
b, q, and 7 by (4.9.2) and reflexivity of o, £, and a.

Since the «-set ¢ is a set-theoretical x-object by (5.5.5), the a-set 7 is a
set-theoretical «-object by (5.5.6), and the o-set p is a set-theoretical o-object
by (5.5.7), x, y, and z are set-theoretical subobjects of some producible
members of g, 7, and p respectively, by (5.3.4). (jxs€gql, |lyse€r|, and
lze €pl.) By (3.2.3), (5.5.3), and (5.5.4), x, , and z are minor objects of
some producible proto-members of g, 7, and p respectively. So, by (5.4.10),
x, v, and z are equal to some subobjects of a constituent, of an ancestor, and
of a satellite of & respectively. Accordingly, by (1.5.5), (1.5.11), (1.2.12), and
transitivity of «, of «, and of 4, the sets x, y, and z are equal to a constituent,
to an ancestor, and to a satellite of & respectively.

(5.6) Some other set-theoretical images.

(5.6.1) [0(p)|=0(P). (Any set is a set-theoretical null object if and only if
it is a null object. Here we call any object P satisfying | 0(P)| a set-theoretical
null object.)

Proof. Evidently, §(p) implies | 0(p)| for any set p. Conversely, if any
set p is not a null object, then p must have some proto-members, which are
producible members of p by (8.2.3) and (4.9.2), so p can never be a set-
theoretical null object. Hence, | 9(p)| implies 0(p) for any set p.

(5.6.2) U{X,Y}->Vs(ssU=-s=XVs=Y), especially U{X}->Vs(seU =
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s=X). (Any pair object of two objects X and Y is a set-theoretical pair
chject of X and Y, especially any unit object of an object X is a set-theoretical
unit object of X. Here we call any object U a set-theoretical pair object
of X and Y or a set-theoretical unit object of X if and only if U satisfies
Vs(seU=-s=XVs=Y) or Ys(seU =s = X) respectively.)

Proof. Let U be any pair object of X and Y. To show that U is a set-
theoretical pair object of X and Y, take at first any producible member s of
U. Then, s is equal to a proto-member T of U. Since the proto-member T of
the pair object U of X and Y must be identical with X or with Y, s must be
equal to X or to Y by (1.3.5). Conversely, if we take any set s which is
equal to one of the objects X and Y, then by reflexivity of identity, it is equal
to a proto-member of U. Consequently s=sU. Hence s€cU=:5s=XVs=Y
holds for any set s.

Especially, by taking ¥ as X, we know that any unit object U of X is

also a set-theoretical unit object of X.

(6) A theory of sets

Any proposition, expressible in terms of membership and equality only
with respect to exclusively set variables, can be regarded as a set-theoretical
proposition. Any provable set-theoretical proposition can be regarded as a
set-theoretical theorem. The set-theoretical image of any proposition containing
no free variables other than set variables is evidently a set-theoretical pro-
position. Furthermore, we shall prove in this Chapter that the set-theoretical
image of any theorem is a set-theoretical theorem, assuming that the original
theorem contains no free variables at all. In this Chapter, we shall prove also
that all the axioms of the Zermelo set-theory except the axiom of choice are
set-theoretical theorems. We shall prove further that the axiom of fundierung

is also a set-theoretical theorem.
(6.1) Set-theoretical images of the axioms.
(6.1.1) The set-theoretical image of any axiom is a set-theoretical theorem.

Proof. According to (5.3.4), the set-theoretical image of an axiom is a
formula of the form FpVx(x€p =« |xom| A|A(X)]).
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To show this formula for ‘any set m, take an object P satisfying
P{T; TomN|Tom|N|%(T)|}. Because P is clearly a subobject of any object
of satellites of the set m, it is a producible object by (1.3.2), (3.2.3), and
(3.2.4), so it can be also denoted by a small letter p.

We assert Vx(xsp=-|xom| Al U(x)|) : To show this, take any producible
member x of p. Then, x is equal to a proto-member Z of p. Z satisfies | Zom|
and [%(Z)|. Since set-theoretical images define propérties modulo equality by
(5.8.3), so also x satisfies |xom| and |A(x)|. Conversely, take any producible
set-theoretical satellite x of the set m satisfying |%(x)|. Then, by (5.5.8), x
is equal to a satellite 7° of m. Since set-theoretical images define properties
modulo equality by (5.3.3), T satisfies | Tom| and |%(T)|. Accordingly T € ».

Since x is equal to the proto-member T of p, holds x € p.

(6.1.2) The set-theoretical image of any provable theorem containing no free

variables is a set-theoretical theorem.

Proof. Let T be any provable theorem. Take any proof figure of ¥, and
replace all the propositions in the proof figure by their set theoretical images
and all the free variables by their corresponding set variables. Then, the proof
figure is transformed into a right proof figure of the set-theoretical image |Z|
of 2. For, by virtue of (5.3.4), every right inference is transformed into a
right inference, and moreover, by (6.1.1), every axiom is transformed into a
provable proposition. Hence, the set-theoretical image |Z| of any provable

theorem % is also provable.

(6.1.8) The set-theoretical images of mutually equivalent propositions are also
mutually equivalent with respect to free set variables.

Proof. If A and B are mutually equivalent, then A =B is provable. By
(6.1.2), | % =B|* is also provable, which implies | %|* = |8 |* by (5.3.4) ; where
[%=2B* |A|*, and |B|* are the formulas obtained by replacing all the free
variables of | % =8B, |%], and |B| by their corresponding free set variables

respectively.

(6.1.4) Remark. By (6.1.3), we can now talk of the set-theoretical image of
any proposition with respect to free set variables without assigning its definite

expression.
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(6.2) Equality.

(6.2.1) x=y=Vpxsp=yep) ie. x=y=|x=y|. (Twosetsare equal to each
other if and only if they are, for every set, simultaneously members or no

members of it.)

Proof. x=y implies Vp(xep =y€p) by (4.10.1). Conversely, by the
set-theoretical image of (1.3.4), Vp(x€p=y<p) implies |x=y| which is
equivalent to x=y by (5.4.13).

(6.2.2) x=y =Vs(sesx =s=y). (Two sets are equal to each other if and
only if every set is always simultaneously a member or no member of both of
them. This theorem implies the axiom of extensionality with respect to
membership and equality.)

Proof. By (5.4.13).

(6.2.3) x=y - » Alx) = A(y), where A(¢) is a set-theoretical proposition. (The
second axiom of equality with respect to membership and equality.)

Proof. By (6.2.1) and the set-theoretical image of (1.3.5).

(6.3) Term-symbols.

In the theory of objects, we can not introduce term-symbols of the form
{T; A(T)} as we have pointed out in (1.2.9). However, by virtue of (6.2.1),
(6.2.2), and (6.2.3), we can adopt term-symbols of the form {#; A(#)} in our
theory of sets, assuming that there exists surely a set p satisfying p{¢; A(#)).
Here we denote by p{t; A(¢)} the set-theoretical proposition Vi(t€p = A(t)).

(6.8.1) p{t; WD Aq{t; A}~ - B(p) =B(q), where B(s) is a set-theoretical
proposition.

Proof. By (6.2.2) and (6.2.3).
(6.3.2) When it is certain that there is at least one set p satisfying p{¢; %(¢)},
we know by (6.3.1) that, in our theory of sets, any set q satisfying q{¢; A(¢)}

does not show any distinction from the set p, so we can consider as if there
is one and only one set p satisfying p{t; A(¢)}.

Definition: When it is certain that there exists a set p satisfying
pit; A(t)}, we denote the set p by {¢; A(t)}. In this case, we call {#; A(2)}



158 KATUZI ONO

an admissible term-symbol.

(6.8.3) Any symbol of the form {¢; |tom| A\ %(¢)} is an admissible term-symbol,
assuming ‘that %(#) defines a property of ¢ modulo equality.

Proof. Similar to the proof of (6.1.1), by making use of (1.3.2), (3.2.3),
(3.2.4), (5.3.4), and (5.5.8).

(6.3.4) Remark. Here we would like to fix the meaning of set-theoretical
images of propositions, in which term-symbols occur. Namely, the set-theoretical
image | %(t)| containing a term-symbol t denotes the proposition obtained by
replacing all the free variables ¢ of |%(¢)| by t, where the free variable ¢ does

not occur in |A(s)| if s is different from ¢

(6.3.5) Remark. 1t is possible that free variables occur in a term as para-
meters. To denote explicitely parameters x, - - -, z of a term, we denote them

like t(x, -+, 2).
(6.8.6) x=y - t(x) =t(y).
Proof. By (6.2.3) and reflexivity of equality.
(6.4) The null set.
(6.4.1) 9(p)ANA(q) + >p=¢q. (All the null objects are equal to each other.)

Proof. If p as well as ¢ has no proto-members at all, they are sets of
equal extent, so they are mutually equal by (5.4.13).

We do not need to assume the two null objects are producible, because
every null object must be a producible object by (1.8.2) and (3.2.2).

(6.4.2) 9(p) =p{t;ltem| N —=|tom|}.
Proof. By (3.2.3) and (4.9.2).

(6.4.3) Definition: The term-symbol {¢; [tohzl/\ ~|tem]}, which is proved to
be admissible by (6.3.3) and which denotes a definite set independent of m by
(6.4.1) and (6.4.2), is called the null set and is denoted by 0.

(6.4.4) 0(0) and s< 0.

Compare with (5.6.1). Proof. By (6.4.2).
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(6.5) Unit sets and pair sets.
(6.5.1) {t; t =%} is an admissible term-symbol.

Proof. By (1.4.4) and (3.2.3), there exists a set # satisfying u{x}. By

(5.6.2), u{x) implies u{¢t; t==x1}, so {¢; t =x} is an admissible term-symbol.

(6.5.2) Definition: The set {f; t=x} is denoted by {x} and is called the unit set

of x.
(6.5.3) te{x} =t=x.

(6.5.4) {¢; t=xVit=y) is an admissible term-symbol. (The pair-set axiom.)

Proof. For any two sets x and y, there is a set u satisfying «{x, y; by
(3.2.10). By (5.6.2), ulx, y} implies u{t; t=xVit=y}, so {t; t=xVi=y}

is an admissible term-symbol.

(6.5.5) Definition: The set {f; t=xV¢=y} is denoted by {x, ¥} and is called
the pair set of x and v.

(6.5.6) Remark. Similarly, we can also define the set {x, - * * , %) of #n-members

Xy, X
(6.5.7) Ate{x, Y= t=xVi=y.
(6.5.8) {x, x}={x}.

Proof. By (6.2.2), (6.5.3), and (6.5.7).
(6.5.9) {x}={y} =x=y.

Proof. By (6.2.2), (6.5.3), and reflexivity, symmetricity, and transitivity
of equality.

(6.5.10) {x,y}={u, v} =(x=uAy=vNVex=0vAy=1u).

Proof. By (6.2.2), (6.5.7), and reflexivity, symmetricity, and transitivity
of equality.

(6.6) Union.
(6.6.1) {¢; t=xVt<y} is an admissible term-symbol.

Proof. For any two sets x and y, there is a set z satisfying 2{T; Tex

VTey} by (3.2.11). To show z{t; t€xVt<y}, take any producible member
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t of z. Then, ¢ is equal to a proto-member T of z, which must be a proto-
member of one of the two sets x and y. Accordingly, ¢ is equal to the proto-
member T of x or of y, i.e. ¢ is a member of x or a member of y. Conversely,
if any set ¢ is a member of x or of y, + must be equal to an object T which is
a proto-member of x or of y, so T is a proto-member of z. Accordingly, ¢ is
equal to the proto-member T of z, ie. t€z.

Hence {t; texVtey} is an admissible term-symbol.

(6.6.2) Definition: The set {¢t; texVicy)} is denoted by xUy and is called
the union of x and y.

(6.6.3) te(xUy)=-tsxVtey.

(6.7) Aussonderung.

(6.7.1) x=y-|xoyl. (Any member of a set is a set-theoretical satellite of
the set.)

(6.7.2) |xsy|-|xay]. (Any subset of a set is a set-theoretical satellite of the
set. Here we call any producible set-theoretical subobject of a set simply a subset
of the set.)

(6.7.3) |%ay|Alyoz]+ - |x02]l. (Any set-theoretical satellite of a set-theoretical

satellite of a set is a set-theoretical satellite of the set.)

Proof of (6.7.1), (6.7.2), and (6.7.3). These are the set-theoretical images
of (1.2.11), (1.2.12), and a modification of (1.2.14), respectively.

(6.7.4) {¢; temA%N(¢)} is an admissible term-symbol, assuming that %A(¢) is
a set-theoretical proposition. (The axiom of aussonderung with respect to
membership and equality.) Especially, {¢; txAtey} is an admissible term-

symbol.
Proof. By (6.3.3) and (6.7.1).

(6.7.5) Definition: The set {¢t; t€xAt=y} is denoted by xNy and is called

the intersection of x and y.
(6.7.6) te(xNy)=-texNtEy.

(6.7.7) {t; |t mlIAA()} is an admissible term-symbol, assuming that A(2)

is a set-theoretical proposition. Especially, {¢; |t< x|} is an admissible term-
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symbol. (The power-set axiom.)
Proof. By (6.3.3) and (6.7.2).

(6.7.8) Definition: The set {¢; |1 € x|} is called the power set of x and is denoted
by B(x).

(6.7.9) teP(x) = [tsxi, and t=Bx) =i«
Proof of the second formula. By (5.4.12).

(6.7.10) {t; 3y(tyAyex)} is an admissible term-symbol. (The sum-set

axiom.)
Proof. By (6.3.3), (6.7.1), and (6.7.3).

(6.7.11) Definition: The set {¢; y(t €yAy e x)} is called the sum set of x and
is denoted by S(x).

(6.7.12) i =C(x) = Ay(teyAyeEx), and t € S(x) =tecx

Proof of the second formula. By (5.5.1).

(6.8) Relations and functions.

Any set-theoretical proposition containing some free variables can be con-
sidered as a relation, and also any term containing some free variables can be
considered as a set-theoretical function. However, these relations and functions
can not be taken as sets in general. In order to consider sets which represent
relations and functions, we introduce the notions, ordered pairs, ordered =-

tuples, and direct products of sets, as usual.

(6.8.1) Remark. We can define the ordered pair <x, y> as the term denoting
the set {{x}, {x, ¥7} as usual. Moreover, we can further define the ordered -
tuple <x, -+, %, In a natural way. We can also prove the formula
o, w=<u, vy =-x=uNy=0vDby(6.5.8),(6.5.9),(6.5.10), and symmetricity and
transitivity of equality. According to this definition, we can prove that x as
well as y is a set-theoretical satellite of <x, »>. Namely, by (6.5.7) and re-
flexivity of equality, x as well as ¥ is a member of the member {x, y} of <x, .
So, ¥ as well as y is a set-theoretical satellite of <x,y> by (6.7.1) and (6.7.3).
Furthermore, we can prove also that <x, »> is a set-theoretical subobject of the
power set of any set which contains ¥ and y as members. Namely, take any

set w which contains ¥ and y. Then, by 4.10. 1), (6.5.3), and (6.5.7), {x} as
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well as {x, y} is a set-theoretical subobject of w, so <x, ¥> is a set-theoretical
subobject of P(w) by (4.10 1), (6.5.7), and (6.7.9). Accordingly, <x, »> is
also a set-theoretical satellite of P(w) by (6.7.2).

(6.8.2) The term-symbol {<u, v>; u€x A vE y} is admissible. Here the term-
symbol naturally stands for {¢; Suv(t =<u, D> ANusx ANvey)}

Proof. Take any ordered pair <u, v> of a member # of x and a member
v of x. Then, {u, v> is a set-theoretical satellite of BlxUy) by (6.6.3) and
(6.8.1). Accordingly, by (6.2.3) and (6.8.3), {{u,2); ucxANveyl is an

admissible term-symbol.

(6.8.8) Definition: The set {<w,v>; ucx A vy} is called the direct product of
x and y and is denoted by xXx3y.

(6.8.4) <, wWe(xxy)=-ucsxANvey, and
te(xxy)=3uww(t=<u, D NucsxNvey).
Proof. The second formula holds evidently. The first formula can be

proved by the second formula, (4.10.1), (6.8.1), and reflexivity of equality.

(6.8.5) Remark. Similarly, we can define the direct product of n-factors.

(6.9) Natural numbers.

In our theory of sets, natural numbers are introduced quite naturally by
taking 0 as the number zero, and the unit set {x} of a number x as the number
next to the number x. Since we can consider a set of all the natural numbers

as shown in (6.9.6), the axiom of infinity holds in our set theory.
(6.9.1) Definition: Any set x satisfying |¥(x)| is called a natural number.
(6.9.2) |¥(®)|. (Zero is a natural number.)

Proof. By (5.6.1), (6.4.4), and the set-theoretical image of (1.8.2).

(6.9.3) |v(x)]=|¥({x})l. (The unit set of any natural number or, in other

words, the number next to any natural number is also a natural number.)

Proof. By (1.4.4) and (3.2.3), we can take a set u satisfying #{x}. By
(5.6.2) and (6.2.1), u satisfies Vs(seu=|s=x|), so, also |#{x}| by (5.3.4).
Consequently, the set-theoretical image of (1.8.4) shows that # is a natural

number if x is so. On the other hand, by (5.6.2) and (6. 5.3), we have ju = {x}|
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which implies » = {x} by (5.4.13). Hence, by (6.2.3), {x} is a natural number

if x is so.
(6.9.4) 0 % {x}. (Zero is a number next to none.)

Proof. x is a member of {x} by (6.5.3) and reflexivity of equality, whereas
% is not a member of 0 by (6.4.4), so 0 == {x} by (6.2.2).

(6.9.5) |»(¢#)] =1te@!. (Any set is a natural number if and only if it is a set-

theoretical satellite of the null set.)
Proof. By (6.9.2) and the set-theoretical image of (1.8.3).

(6.9.6) {t; |»(¢)|} is an admissible term-symbol. (This theorem implies the

axiom of infinity with respect to membership and equality.)
Proof. By the set-theoretical image of (1.8.5).

(6.9.7) Definition: The set {¢; |¥(#)|} is called the set of natual numbers and is
denoted by N.

(6.9.8) x=N =|*(x)].

(6.9.9) fepAVx(xep->{xtep) >|Nsp|l. (Forany setp,if ¢ is a member
of p, and {x} is a member of p for any member x of p, then N is a subset

of p.)

Proof. Take any set p satisfying 0 €p and Vx(xep - {x}=p). Then, by
(4.10.1), (5.6.1), (6.4.1) and (6.4.4), we can show Vx(|9(x)|>x<p), and
by (4.10.1), (5.38.4), (5.4.13), and (6.5.3), we can also show Wyz(|y{z}|
Nzep.-»yep). Consequently, by (5.3.4) and the set-theoretical image of
(1.8.10), |v(#)| > u <= p holds for every u, which implies |N s p| by (6.9.8).

(6.9.10) Complete induction. R(H) and Vx(A(x)->A({x})) imply A(«x) for

any natural number x, assuming that %(x) is a set-theoretical proposition.

Proof. Let U(u) be any set-theoretical proposition satisfying %(4) and
Vx(A(x) > A({x})). Then, by (6.3.3), {t; [#c0|AUA(¢)} is an admissible term-
symbol, which we will denote by m. By the set-theoretical image of (1.2.13),
¢ is a member of m, and by (5.3.4), (6.5.3), (6.7.3), and the set-theoretical
image of (1.4.9), {x} is a member of m for any member x of m. Consequently,
by (6.9.9), N is a set-theoretical subobject of m, so every natural number
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satisfies A(x) by (6.9.8).

(6.9.11) Remark. (6.5.9), (6.9.2), (6.9.3), (6.9.4}, and (6.9.10) show that

we can construct a complete theory of natural numbers in our theory of sets.

(6.9.12) xeN=.x=0VIAy(yeNAx={y}). (Any set is a natural number
if and only if is equal to the null set or to the unit set of a natural number.)

Proof. By (4.10:2), (5.3.4), (5.4.13), (5.6.1), (6.2.3), (6.4.1), (6.4.4),
(6.5.3), (6.9.8), and the set-theoretical image of (1.8.9).

(6.9.13) xeN=xc N, ie. N=&(N). (Any set is a natural number if and

only if it is a member of a natural number. Namely, the sum set of N is N.)

Proof. By (5.8.4), (5.4.13), (5.5.1), (6.5.3), (6.7.1), (6.7.3), (6.7.12),
(6.9.3), (6.9.8), and reflexivity of equality.

(6.9.14) Remark. The ordering of the natural numbers can be defined very

easily as x <y stands for |xcy|. We do not go into details in this matter.

(6.9.15) Remark. We do not discuss here in detail on recursive functions and
recursively defined relations. However, it should be remarked here that we
can define functions as sets recursively, if it is certain that their value domains
can be considered as definite sets. Moreover, we can take the parameters of
these functions as variables of these functions, if they are restricted to definite
sets. The same holds also for recursively defined relations.

There is no difficulty to use the usual function notations such as f(x),
f(x, ¥), etc. as terms. However, it should be noticed here that in our theory
of sets, we can not define functions or relations as sets recursively in general.
For example, it seems impossible to prove that there is a function f(x) of a

natural-number parameter x satisfying f(0) =0 and f({x}) = {u; |lusfix)l}.

(6.10) Fundierung.
In our theory of sets, also the axiom of fundierung holds in a somewhat

generalized form.

(6.10.1) Vx3y(xsp - - |yrexiAyEp)-p=0, especially
VxIdy(xep->-.yexAvep)>p=0. (The second formula is the axiom of

fundierung. As for the meaning of the first formula, see (2.2.2).)

Proof. The first formula implies the second one by the set-theoretical
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image of (1.5.6). We shall prove the first formula in our theory of objects.

Take namely any set p satisfying Vx3y(xp >« |yx € x| Ay p), and then
take an object @ satisfying Q{T; Tup AT p}). @ is surely a subobject of any
object formed by satellites of p, so @ is producible by (1.3.2), (3.2.), and
(3.2.4). Consequently, @ is regular by (3.2.7).

Now we prove VXIAU(XeQ » - Ur€ XAU€Q): Namely, take any proto-
member X of @. Then, the proto-member X of the set @ is a producible object
by (3.2.3), and X< p by definition. Accordingly, by our assumption, there is
a member y of p, which is also a set-theoretical constituent of a member s of
X. The member s of X is equal to a proto-member T of X. Since |yxs| defines
a property of s modulo equality by {5.3.3), holds |y«T|. Moreover, the proto-
member T of the set X is a producible object by (3.2.3); so, by (5.5.8), the
set-theoretical constituent y of T is equal to a constituent I/ of 7. By (4.10.1),
Uep. On the other hand, the proto-member X of @ is a satellite of p by
definition, so the constituent U of the proto-member T of X is a satellite of p
by (1.2.11), (1.5.3), and transitivity of . Consequently, U€ @ by definition.
Hence, for any proto-member X of @, there is a proto-member of @ (U for
example) which is a constituent of the proto-member T of X.

Because Q4@ by (2.1.2) and reflexivity of &, the regular object @ must be
a null object.

Now we prove @(p): Namely, if there were a proto-member W of p, W
would be a satellite as well as a member of p by (1.2.11) and (4.9.2), so W
would be a proto-member of @ contradictory to the fact that @ is a null object.

@(p) implies p=F by (6.4.1) and (6.4.4).

(6.10.2) [p(p)l. (Every set is set-theoretically regular, i.e. every set p satisfies
Ip(p1)

Proof. This follows trivially from (4.10.2), (5.3.4), (5.4.13), (6.4.4), and
(6.10.1).

(7) Supplementary remark

To show relative consistency of our object theory with respect to the Fraenkel
set-theory, we prove that all the interpreted propositions of our axioms are
provable in the Fraenkel system @ without the axiom of choice. Objects and

proto-membership are interpreted as sets and membership respectively. We
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use small letters for sets of @. [Inclusion “<” is defined naturally by
xCy g‘v’s(se x—->s€y), and the notion of satellites in ® is defined by
X5y ‘ng(a(p) AySep->xC€p), where 5(p) stands for Vs(sesep=
scep).

We show that the following theorem holds in @.
Theorem. FpVx(xsp =+ xomNAAlx)).

Proof. For any set x of @, there are well defined sum set §(x) and power
set P(x) of x. Also, for any pair of sets x and y of @, there is a well defined
pair set {x, ¥} of them. Accordingly, we can define the ordered pair <x, y>
and the unit set {x}. Furthermore, in @ there is also the set of all the natural
numbers N = {f, {0}, {{0}}, - -+ }. We can also define the transitive relation
“<” on N which satisfies x<{y}=-x<yVax=y.

On the domain N, we define functions f(x, ) and g(x, ¢) satisfying the
conditions : fl, ) =% f(x{)={f(xD}; and glx, ) ={x},
g(x, {t)) = S(g(x t)). Namely, f(x,t) and g(#, ) are y and z defined by the

following conditions respectively :
VO, 2> € hAVuvru<t ANu,vd> e h» > Lu),{v}> € h) - > <, 3> €h),
Va0, {x}> e b AVuv(u<tALu,vp € h>u}, @)D e h) ><t, 2> h).

Existence and uniqueness of y and z for every natural number # can be proved
by complete induction.

By the axiom of replacement, we define A(x) ‘—1——f( flx,t); t=N}, and
B(x) [g{g(x, t); te N} Accordingly, we A(z2) holds if and only if w=2z or
w is a unit set of a member of A(z). Evidently, we A(z) implies {w} e A(z).
Also holds m = €(B(m)) and that x € € S(B(m)) implies x € S(B(m)).

Again by the axiom of replacement, we define C(m2) 4 {Plx); x=E(B(m))}.
Evidently, sC € €(C(m)) as well as s€ € &(C(m)) implies s€ S(C(m)). Once
again by the axiom of replacemement, we define D(m) LirD); ze S(C(m))}.

Now we prove that s = &(D(m)) implies s &(D(m)) as well as
s€ € S(D(m)): Namely, take any subset s of a member w of &(D(m)).
Then, w is a member of a member A(z) of D(m), z being a member of
€(C(m)). The member w of A(z) is a unit set unless w =2z If w is a unit

set, the subset s of w is 0 or w itself. In the case s=, hold scz and
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zeS(C(m)), so s S(C(m)). Accordingly A(s) €D(m), so s €D(m) ie.
s €(D(m)). In the case s=w, holds s& S(D(m)) because we S(D(m)).
On the other hand, if w=2z then sSz and z=€(C(m)), so s &S(C(m)) since
sce 3(C(m)) implies s= &(C(m)). Because s= A(s), holds s€ €D(m) ie.
se&(D(m)). Hence s Z(D(m)) anyway. Now, the member s of &(D(m))
is a member of a member A(z) of D{(m), z being a member of S(C(m)).
Because s A(z) implies {s} = A(z), so s& € &S(D(m)).

Next we prove that s€ € S(D(m)) implies s< & &(D(m)): Namely, let
s be a member of a member w of €©(D(m)). Then, w is a member of a
member A(z) of D(m), z being a member of &(C(m)). The member w of
A(z) is a unit set of a member of A(z) unless w=2  If w is a unit set of a
member of A(z), also its member s belongs to A(z), so s€eD(m) ie.
s€ &(D(m)). On the other hand, if w = z, then s€ € &(C(m)), so s &(C(m)).
Because s=A(s), seeD(m) ie. s€S(D(m)). Hence s S(D(m)) holds
anyway. Since sCs, holds s ©(D(m)).

Thus we obtain 5(S(D(m))). Moreover, holds m << &(D(m)). For:
me € B(m) ie. me E(B(m)), because {m} = B(m) by definition. Since m < m,
holds me = C(m) ie. me &(C(m)). Because m< A(m), holds me € D(m)
ie. me S(D(m)). Hence mc € &(D(m)), since m < m.-

Assume now xim. Then, x €= E(D(m)) holds, because 5(S(D(m))) and
mce S(D(m)). However, xS < E(D(m)) implies x € S(D(m)), so xim implies
e E(D(m)).

Because the aussonderung axiom holds in @, we can take a set p satisfying
Vilxsp=-x=8(Dm)) AxamAA(x)). The set p satisfies evidently

Yx(xsp=-xomAAx)), because x5m implies x< S(D(m)).
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